AKM AK4122AVQ

[AK4122A]
AK4122A
24-Bit 96kHz SRC with DIR
GENERAL DESCRIPTION
The AK4122A is a digital sample rate converter (SRC) with the digital audio receiver (DIR). The input
sample rate ranges from 8kHz to 96kHz. The output sample rate is 32kHz, 44.1kHz, 48kHz or 96kHz. By
using the AK4122A, the system can take very simple configuration because the AK4122A has an internal
PLL and does not need any master clock at slave mode. Then the AK4122A is suitable for the application
interfacing to different sample rates like Car Audio, DVD recorder, etc.
FEATURES
1. SRC
• Asynchronous Sample Rate Converter
• Input Sample Rate Range (fsi) : 8kHz ∼ 96kHz
• Output Sample Rate (fso) : 32kHz, 44.1kHz, 48kHz, 96kHz
• Input to Output Sample Rate Ratio : 0.33 to 6
• THD+N : −113dB
• I/F format : MSB justified, LSB justified (16/24bit) and I2S compatible
• Clock for Master mode : 256/384/512/768fs
• SRC Bypass mode
• Soft Mute Function
2. DIR
3.
4.
5.
6.
• 4-Channel Inputs Selector & 1-Channel Through Output
• AES3, IEC60958, S/PDIF, EIAJ CP1201 Compatible
• Low Jitter Analog PLL
• PLL Lock Range : 32kHz ∼ 96kHz
• Auto detection
- Non-PCM Bit Stream
- DTS-CD Bit Stream
- Validity Flag
- Sampling Frequency (32kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz)
- Unlock & Parity Error
- DAT Start ID
• 40-bit Channel Status Buffer
• Burst Preamble bit Pc, Pd Buffer for Non-PCM bit streams
• Q-subcode Buffer for CD bit streams
4-wire Serial μP Interface
Power Supply
• AVDD: 3.0 ∼ 3.6V (typ. 3.3V)
• DVDD: 3.0 ∼ 3.6V (typ. 3.3V)
Ta = −10 ∼ 70°C
Package : 48pin LQFP
MS1076-E-01
2010/05
-1-
[AK4122A]
■ Block Diagram
INT0 INT1 INT2
R
FILT
RX1
RX1
RX2
RX3
RX4
RX2
OPS1-0
TX
RX3
TX
RX4
PDN
IPS1-0
DIR
SMUTE
PORT3
PORT1
BICK1
LRCK1
SDTI
BICK1
BICK2
LRCK2
SDTIO
BICK2
LRCK1
SDTI
Serial
Audio
I/F
ISEL1-0
De-em
Filter
PORT2
LRCK2
SDTIO
OSEL
SRC
BYPS
Serial
Audio
I/F
LRCK
BICK
SDTO
LRCK
BICK
SDTO
OMCLK
PLL
Serial
Audio
I/F
M/S2
M/S3
Control Register
MCLK2
AVDD AVSS
DVDD DVSS
CDTO CDTI CCLK CSN
Block diagram
MS1076-E-01
2010/05
-2-
[AK4122A]
■ Ordering Guide
AK4122AVQ
AKD4122A
−10 ∼ +70°C
48pin LQFP (0.5mm pitch)
Evaluation Board for AK4122A
R
AVSS
PDN
LRCK1
BICK1
SDTI
DVSS
DVDD
MCLK2
LRCK2
BICK2
SDTIO
■ Pin Layout
36 35 34 33 32 31 30 29 28 27 26 25
INT0
37
24
TST11
INT1
38
23
TST10
TX
39
22
RX4
SDTO
40
21
TST9
BICK
41
20
RX3
19
TST8
18
RX2
LRCK
AK4122AVQ
42
Top View
BVSS
46
15
TST6
CSN
47
14
AVDD
CCLK
48
1
13
AVSS
4
5
6
7
8
9
10 11 12
MS1076-E-01
FILT
3
TST5
2
TST4
RX1
SMUTE
16
M/S3
45
M/S2
DVDD
TST3
TST7
TST2
17
INT2
44
TST1
DVSS
CDTO
43
CDTI
OMCLK
2010/05
-3-
[AK4122A]
PIN/FUNCTION
No.
1
2
3
4
5
Pin Name
CDTI
CDTO
TST1
INT2
TST2
I/O
Function
I
O
O
O
O
Control Data Input Pin
Control Data Output Pin
Test 1 Pin
Interrupt 2 Pin
Test 2 Pin
Test 3 Pin
6 TST3
I
This pin should be connected to DVSS.
Master / Slave Mode Pin for PORT2
7 M/S2
I
“H” : Master mode, “L” : Slave Mode
Master / Slave Mode Pin for PORT3
8 M/S3
I
“H” : Master mode, “L” : Slave Mode
Soft Mute Pin
9 SMUTE
I
“H” : Soft Mute, “L” : Normal Operation
Test 4 Pin
10 TST4
I
This pin should be connected to AVSS.
Test 5 Pin
11 TST5
I
This pin should be connected to AVSS.
PLL Loop Filter Pin
12 FILT
O
470Ω±5% resistor and 2.2μF±50% ceramic capacitor in parallel with a
2.2nF±50% ceramic capacitor should be connected to AVSS externally.
13 AVSS
Analog Ground Pin
14 AVDD
Analog Power Supply Pin, 3.0 ∼ 3.6V
Test 6 Pin
15 TST6
I
This pin should be connected to AVSS.
16 RX1
I
Receiver Input 1 Pin with Amp for 0.2Vpp (Internal Biased Pin)
Test 7 Pin
17 TST7
I
This pin should be connected to AVSS.
18 RX2
I
Receiver Input 2 Pin with Amp for 0.2Vpp (Internal Biased Pin)
Test 8 Pin
19 TST8
I
This pin should be connected to AVSS.
20 RX3
I
Receiver Input 3 Pin with Amp for 0.2Vpp (Internal Biased Pin)
Test 9 Pin
21 TST9
I
This pin should be connected to AVSS.
22 RX4
I
Receiver Input 4 Pin with Amp for 0.2Vpp (Internal Biased Pin)
Test 10 Pin
23 TST10
I
This pin should be connected to AVSS.
24 TST11
O
Test 11 Pin
Note: All input pins except internal biased pins should not be left floating.
MS1076-E-01
2010/05
-4-
[AK4122A]
External Resistor Pin
12kΩ±5% resistor should be connected to AVSS externally.
26 AVSS
Analog Ground Pin
Power-Down Mode Pin
27 PDN
I
“H”: Power up, “L”: Power down reset and initializes the control register.
28 LRCK1
I
Input Channel Clock Pin
29 BICK1
I
Audio Serial Data Clock Pin
30 SDTI
I
Audio Serial Data Input Pin
31 DVSS
Digital Ground Pin
32 DVDD
Digital Power Supply Pin, 3.0 ∼ 3.6V
33 MCLK2
I
Master Clock Input Pin
34 LRCK2
I/O Input / Output Channel Clock Pin
35 BICK2
I/O Audio Serial Data Clock Pin
36 SDTIO
I/O Audio Serial Data Input / Output Pin
37 INT0
O
Interrupt 0 Pin
38 INT1
O
Interrupt 1 Pin
39 TX
O
Transmitter Output Pin
40 SDTO
O
Audio Serial Data Output Pin
41 BICK
I/O Audio Serial Data Clock Pin
42 LRCK
I/O Output Channel Clock Pin
43 OMCLK
I
Master Clock Input Pin
44 DVSS
Digital Ground Pin
45 DVDD
Digital Power Supply Pin, 3.0 ∼ 3.6V
Substrate Ground Pin
46 BVSS
This pin should be connected to AVSS.
47 CSN
I
Chip Select Pin
48 CCLK
I
Control Data Clock Pin
Note: All input pins except internal biased pins should not be left floating.
25
R
-
MS1076-E-01
2010/05
-5-
[AK4122A]
■ Handling of Unused pins
The unused digital I/O pins should be processed appropriately as below.
Classification
PORT1
PORT2
Pin Name
BICK1, LRCK1, SDTI
MCLK2
BICK2, LRCK2
SDTIO
M/S2
OMCLK
PORT3
DIR
Control PORT
Other
TEST
BICK, LRCK
SDTO
M/S3
RX1, RX2, RX3, RX4
INT0, INT1, INT2, TX
CCLK, CDTI, CSN
CDTO
SMUTE
TST1, TST2, TST11
TST3
TST4, TST5, TST6, TST7,
TST8, TST9, TST10
Setting
These pins should be connected to DVSS.
This pin should be connected to DVSS.
These pins should be connected to DVSS in slave mode
or
open in master mode.
This pin should be connected to DVSS.
This pin should be connected to DVDD or DVSS.
This pin should be connected to DVSS.
These pins should be connected to DVSS in slave mode
or open in master mode.
This pin should be open.
This pin should be connected to DVDD or DVSS.
These pins should be open.
These pins should be open.
These pins should be connected to DVSS.
This pin should be open.
This pin should be connected to DVSS.
These pins should be open.
This pin should be connected to DVSS.
These pins should be connected to AVSS.
MS1076-E-01
2010/05
-6-
[AK4122A]
ABSOLUTE MAXIMUM RATINGS
(AVSS=BVSS=DVSS=0V; Note 1)
Parameter
Symbol
Power Supplies:
Analog
AVDD
Digital
DVDD
|BVSS − DVSS| (Note 2)
ΔGND
Input Current, Any Pin Except Supplies
IIN
Digital Input Voltage 1 (Except RX1-4 pins)
VIND1
Digital Input Voltage 2 (RX1-4 pins)
VIND2
Ambient Temperature (Power applied)
Ta
Storage Temperature
Tstg
Note 1. All voltages with respect to ground.
Note 2. AVSS, BVSS and DVSS must be connected to the same ground.
min
max
Units
−0.3
−0.3
−0.3
−0.3
−10
−65
4.6
4.6
0.3
±10
DVDD+0.3
AVDD+0.3
70
150
V
V
V
mA
V
V
°C
°C
WARNING: Operation at or beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
RECOMMENDED OPERATING CONDITIONS
(AVSS=BVSS=DVSS=0V; Note 1)
Parameter
Symbol
min
typ
Power Supplies
Analog
AVDD
3.0
3.3
(Note 3)
Digital
DVDD
3.0
3.3
Note 1. All voltages with respect to ground.
Note 3. The power up sequence between AVDD and DVDD is not critical.
max
3.6
AVDD
Units
V
V
WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet.
MS1076-E-01
2010/05
-7-
[AK4122A]
SRC CHARACTERISTICS
(Ta=25°C; AVDD=DVDD=3.3V; AVSS=BVSS=DVSS=0V; data = 24bit; measurement bandwidth = 20Hz ~ FSO/2;
unless otherwise specified.)
Parameter
Symbol
min
typ
max
Units
SRC Characteristics:
Resolution
(Note 4)
24
Bits
Input Sample Rate
FSI
8
96
kHz
Output Sample Rate
FSO
32
96
kHz
THD+N
(Input = 1kHz, 0dBFS, Note 5)
FSO/FSI = 44.1kHz/48kHz
−113
dB
FSO/FSI = 48kHz/44.1kHz
−113
dB
FSO/FSI = 32kHz/48kHz
−114
dB
FSO/FSI = 96kHz/32kHz
−111
dB
Worst Case (FSO/FSI = 48kHz/8kHz)
−103
dB
Dynamic Range (Input = 1kHz, −60dBFS, Note 5)
FSO/FSI = 44.1kHz/48kHz
114
dB
FSO/FSI = 48kHz/44.1kHz
115
dB
FSO/FSI = 32kHz/48kHz
115
dB
FSO/FSI = 96kHz/32kHz
116
dB
Worst Case (FSO/FSI = 32kHz/44.1kHz)
112
dB
Dynamic Range (Input = 1kHz, −60dBFS, A-weighted, Note 5)
FSO/FSI = 44.1kHz/48kHz
117
dB
Ratio between Input and Output Sample Rate
(Note 6) FSO/FSI
0.33
6
Note 4. Input data for SRC corresponds to 24bit data. When LSB 4bit data is input, the AK4122A calculates the data as
“0” because SRC is 20bit calculation. Therefore, SRC outputs “0” data.
Note 5. Measured by ROHDE & SCHWARZ UPD04, Rejection Filter = wide, 8192point FFT.
Note 6. The “0.33” is the ratio of FSO/FSI when FSI is 96kHz and FSO is 32kHz. The “6” is the ratio of FSO/FSI
when FSI is 8kHz and FSO is 48kHz.
S/PDIF RECEIVER CHARACTERISTICS
(Ta=25°C; AVDD=DVDD=3.0 ∼ 3.6V)
Parameter
Symbol
min
typ
Input Resistance
Zin
10
Input Voltage
VTH
200
Input Sample Frequency
fs
32
-
MS1076-E-01
max
96
Units
kΩ
mVpp
kHz
2010/05
-8-
[AK4122A]
FILTER CHARACTERISTICS
(Ta=25°C; AVDD=DVDD=3.0 ∼ 3.6V; DEM=OFF)
Parameter
Symbol
min
typ
max
Units
Digital Filter
Passband −0.001dB 0.985 ≤ FSO/FSI ≤ 6.000
PB
0
0.4583FSI
kHz
0.905 ≤ FSO/FSI < 0.985
PB
0
0.4167FSI
kHz
0.714 ≤ FSO/FSI < 0.905
PB
0
0.3195FSI
kHz
0.656 ≤ FSO/FSI < 0.714
PB
0
0.2852FSI
kHz
0.536 ≤ FSO/FSI < 0.656
PB
0
0.2245FSI
kHz
0.492 ≤ FSO/FSI < 0.536
PB
0
0.2003FSI
kHz
0.452 ≤ FSO/FSI < 0.492
PB
0
0.1781FSI
kHz
0.333 ≤ FSO/FSI < 0.452
PB
0
0.1092FSI
kHz
Stopband
0.985 ≤ FSO/FSI ≤ 6.000
SB
0.5417FSI
kHz
0.905 ≤ FSO/FSI < 0.985
SB
0.5021FSI
kHz
0.714 ≤ FSO/FSI < 0.905
SB
0.3965FSI
kHz
0.656 ≤ FSO/FSI < 0.714
SB
0.3643FSI
kHz
0.536 ≤ FSO/FSI < 0.656
SB
0.2974FSI
kHz
0.492 ≤ FSO/FSI < 0.536
SB
0.2732FSI
kHz
0.452 ≤ FSO/FSI < 0.492
SB
0.2510FSI
kHz
0.333 ≤ FSO/FSI < 0.452
SB
0.1822FSI
kHz
Passband Ripple
PR
±0.01
dB
Stopband Attenuation
SA
96
dB
Group Delay
(Note 7)
GD
58.5
1/fs
Note 7. This value is the time from the rising edge of LRCK after data is input to rising edge of LRCK after data is output,
when LRCK for Output data corresponds with LRCK for Input.
DC CHARACTERISTICS
(Ta=25°C; AVDD=DVDD=3.0 ∼ 3.6V)
Parameter
Symbol
min
High-Level Input Voltage
VIH
70%DVDD
Low-Level Input Voltage
VIL
High-Level Output Voltage
(Iout=−400μA)
VOH
DVDD−0.4
Low-Level Output Voltage
(Iout=400μA)
VOL
Input Leakage Current
Iin
-
typ
-
max
30%DVDD
0.4
±10
Parameter
min
typ
max
Power Supply Current
Normal operation (PDN pin = “H”)
(Note 8)
15
FSI=FSO=48kHz at Slave Mode: AVDD=DVDD=3.3V
29
FSI=FSO=96kHz at Master Mode: AVDD=DVDD=3.3V
45
FSI=FSO=96kHz at Master Mode: AVDD=DVDD=3.6V
Power down (PDN pin = “L”)
(Note 9)
100
10
AVDD+DVDD
Note 8. Typ and max values are the value of AVDD+DVDD in each power supply voltage.
Power supply current of each path@Slave Mode, AVDD=DVDD=3.3V, FSI=FSO=48kHz
1. PORT1 → SRC → PORT3: AVDD=5mA(typ), DVDD=10mA(typ)
2. PORT2 → SRC → PORT3: AVDD=5mA(typ), DVDD=10mA(typ)
3. DIR → SRC → PORT3: AVDD=6mA(typ), DVDD=9mA(typ)
Note 9. All digital input pins are held DVSS.
MS1076-E-01
Units
V
V
V
V
μA
Units
mA
mA
mA
μA
2010/05
-9-
[AK4122A]
SWITCHING CHARACTERISTICS
(Ta=25°C; AVDD=DVDD=3.0 ∼ 3.6V; CL=20pF)
Parameter
Symbol
min
Master Clock Timing
8.192
fCLK
Frequency
0.4/fCLK
tCLKL
Pulse Width Low
0.4/fCLK
tCLKH
Pulse Width High
LRCK for Input data (LRCK1, LRCK2)
Frequency
fs
8
Duty Cycle
Duty
48
LRCK for Output data (LRCK, LRCK2)
Frequency
(Note 10)
32
fs
Duty Cycle
Slave Mode
48
Duty
Master Mode
Duty
S/PDIF Clock Recover Frequency
fPLL
32
Audio Interface Timing
Input for PORT1
1/64fs
tBCK
BICK1 Period
65
tBCKL
BICK1 Pulse Width Low
65
tBCKH
Pulse Width High
30
tLRB
LRCK1 Edge to BICK1 “↑”
(Note 11)
30
tBLR
BICK1 “↑” to LRCK1 Edge
(Note 11)
30
tSDH
SDTI Hold Time from BICK1 “↑”
30
tSDS
SDTI Setup Time to BICK1 “↑”
Input for PORT2 (Slave mode)
1/64fs
tBCK
BICK2 Period
65
tBCKL
BICK2 Pulse Width Low
65
tBCKH
Pulse Width High
30
tLRB
LRCK2 Edge to BICK2 “↑”
(Note 11)
30
tBLR
BICK2 “↑” to LRCK2 Edge
(Note 11)
30
tSDH
SDTIO Hold Time from BICK2 “↑”
30
tSDS
SDTIO Setup Time to BICK2 “↑”
Output for PORT2 (Slave mode)
1/64fs
tBCK
BICK2 Period
65
tBCKL
BICK2 Pulse Width Low
65
tBCKH
Pulse Width High
30
tLRB
LRCK2 Edge to BICK2 “↑”
(Note 11)
30
tBLR
BICK2 “↑” to LRCK2 Edge
(Note 11)
tLRS
LRCK2 to SDTIO (MSB) (Except I2S mode)
tBSD
BICK2 “↓” to SDTIO
Note 10. Min value is 8kHz at BYPASS mode.
Note 11. BICK1 rising edge must not occur at the same time as LRCK1 edge.
BICK2 rising edge must not occur at the same time as LRCK2 edge.
MS1076-E-01
typ
50
50
50
max
Units
36.864
MHz
ns
ns
96
52
kHz
%
96
52
kHz
%
%
96
kHz
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
30
30
ns
ns
ns
ns
ns
ns
ns
2010/05
- 10 -
[AK4122A]
Parameter
Output for PORT3 (Slave mode)
BICK Period
BICK Pulse Width Low
Pulse Width High
LRCK Edge to BICK “↑”
(Note 11)
BICK “↑” to LRCK Edge
(Note 11)
2
LRCK to SDTO (MSB) (Except I S mode)
BICK “↓” to SDTO
Output for PORT2 (Master mode)
BICK2 Frequency
BICK2 Duty
BICK2 “↓” to LRCK2
BICK2 “↓” to SDTIO
Output for PORT3 (Master mode)
BICK Frequency
BICK Duty
BICK “↓” to LRCK
BICK “↓” to SDTO
Control Interface Timing
CCLK Period
CCLK Pulse Width Low
Pulse Width High
CDTI Setup Time
CDTI Hold Time
CSN “H” Time
CSN “↓” to CCLK “↑”
CCLK “↑” to CSN “↑”
CDTO Delay
CSN “↑” to CDTO Hi-Z
(Note 12)
Symbol
min
tBCK
tBCKL
tBCKH
tLRB
tBLR
tLRS
tBSD
1/64fs
65
65
30
30
fBCK
dBCK
tMBLR
tBSD
fBCK
dBCK
tMBLR
tBSD
tCCK
tCCKL
tCCKH
tCDS
tCDH
tCSW
tCSS
tCSH
tDCD
tCCZ
typ
max
Units
30
30
ns
ns
ns
ns
ns
ns
ns
20
30
Hz
%
ns
ns
−20
−20
20
30
Hz
%
ns
ns
200
80
80
40
40
150
50
50
1000
64fs
50
−20
−20
64fs
50
Reset Timing
PDN Pulse Width
(Note 13)
tPD
150
Note 11. BICK rising edge must not occur at the same time as LRCK edge.
Note 12. In case of using INT2. When INT2 is not used, the max value is not limited.
Note 13. The AK4122A can be reset by bringing the PDN pin = “L”.
MS1076-E-01
45
70
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
2010/05
- 11 -
[AK4122A]
■ Timing Diagram
1/fCLK
VIH
MCLK
VIL
tCLKH
tCLKL
1/fs
VIH
LRCK
VIL
tBCK
VIH
BICK
VIL
tBCKH
tBCKL
Clock Timing
VIH
LRCK
VIL
tBLR
tLRB
VIH
BICK
VIL
tLRS
tBSD
SDTO
50%DVDD
tSDS
tSDH
VIH
SDTI
VIL
Audio Interface Timing (Slave mode)
Note : BICK shows BICK1 of PORT1, BICK2 of PORT2 and BICK of PORT3. LRCK shows LRCK1 of PORT1,
LRCK2 of PORT2 and LRCK of PORT3. SDTI shows SDTI of PORT1 or SDTIO of PORT2 that is used as
input port. SDTO shows SDTO of PORT3 or SDTIO of PORT2 that is used as output port.
MS1076-E-01
2010/05
- 12 -
[AK4122A]
LRCK
50%DVDD
tMBLR
dBCK
BICK
50%DVDD
tBSD
SDTO
50%DVDD
tSDH
tSDS
VIH
SDTI
VIL
Audio Interface Timing (Master mode)
Note : BICK shows BICK1 of PORT1, BICK2 of PORT2 and BICK of PORT3. LRCK shows LRCK1 of PORT1,
LRCK2 of PORT2 and LRCK of PORT3. SDTI shows SDTI of PORT1 or SDTIO of PORT2 that is used as
input port. SDTO shows SDTO of PORT3 or SDTIO of PORT2 that is used as output port.
VIH
CSN
VIL
tCSS
tCCKL
tCCKH
VIH
CCLK
VIL
tCDH
tCDS
VIH
CDTI
C1
C0
R/W
VIL
CDTO
Hi-Z
WRITE/READ Command Input Timing
MS1076-E-01
2010/05
- 13 -
[AK4122A]
tCSW
VIH
CSN
VIL
tCSH
VIH
CCLK
VIL
VIH
CDTI
D2
D1
D0
VIL
Hi-Z
CDTO
WRITE Data Input Timing
VIH
CSN
VIL
VIH
CCLK
VIL
VIH
CDTI
A1
A0
VIL
tDCD
CDTO
Hi-Z
D7
D6
50%DVDD
READ Data Output Timing 1
MS1076-E-01
2010/05
- 14 -
[AK4122A]
tCSW
VIH
CSN
VIL
tCSH
VIH
CCLK
VIL
VIH
CDTI
VIL
tCCZ
CDTO
D2
D1
D0
Hi-Z
50%DVDD
READ Data Output Timing 2
tPD
PDN
VIL
Power Down & Reset Timing
MS1076-E-01
2010/05
- 15 -
[AK4122A]
OPERATION OVERVIEW
■ Internal Signal Path
The input source of the SRC can be switched between the outputs of the DIR, PORT1 or PORT2. The input source of the
PORT2 and PORT3 can be switched between the outputs of the SRC or BYPASS. When PORT2 is used as an input port,
PORT2 cannot be used as an output port. The signal path should be controlled during PWN bit = “0”. The Switch Names
(ISEL1-0, BYPS and OSEL) in Figure 1 correspond to the register bits that control the switch function. Refer to Table 1.
DIR
PORT3
PORT1
Serial
Audio
I/F
ISEL1-0
OSEL
De-em
Filter
SRC
BYPS
Serial
Audio
I/F
PLL
PORT2
Serial
Audio
I/F
Figure 1. Connection Input Source & Output Source
Mode
0
1
2
3
4
5
6
7
8
9
Input PORT
ISEL1-0 bit
00: PORT1
01: PORT2
10: DIR
00: PORT1
01: PORT2
10: DIR
00: PORT1
10: DIR
00: PORT1
10: DIR
SRC / Bypass
BYPS bit
Output PORT
OSEL bit
0: SRC
0: PORT3
(Note 14)
1: Bypass
0: SRC
1: PORT2
(Note 15)
1: Bypass
Path
PORT1 → SRC → PORT3
PORT2 → SRC → PORT3
DIR → SRC → PORT3
PORT1 → PORT3
PORT2 → PORT3
DIR → PORT3
PORT1 → SRC → PORT2
DIR → SRC → PORT2
PORT1 → PORT2
DIR → PORT2
Table 1. Path Select
Default is Mode 0. (Path : PORT1 → SRC → PORT3)
After PDN pin = “L” → “H”, SDTIO pin of PORT2 is the input pin.
The DIF1-0 bits of the PORT1 should be set a value except “10” (I2S Compatible) when the DIR is
selected as an input port.
Refer to Table 6 and Table 7 for Master/Slave mode setting.
MS1076-E-01
2010/05
- 16 -
[AK4122A]
Note 14. In this case, PORT2 is input port. If PORT2 is unused, the digital I/O pins should be processed appropriately
as shown in Table 2.
M/S2 pin
Mode
L
Slave
H
Master
Unused pin
Pin I/O
Setting
MCLK2
I
This pin should be connected to DVSS.
BICK2
I
This pin should be connected to DVSS.
LRCK2
I
This pin should be connected to DVSS.
SDTIO
I
This pin should be connected to DVSS.
MCLK2
I
This pin should be connected to DVSS.
BICK2
O
This pin should be open.
LRCK2
O
This pin should be open.
SDTIO
I
This pin should be connected to DVSS.
Table 2. Pin Setting for PORT2
Note 15. In this case, PORT3 is output port. If PORT3 is unused, the digital I/O pins should be processed appropriately
as shown in Table 3.
M/S3 pin
Mode
L
Slave
H
Master
Unused pin
Pin I/O
Setting
OMCLK
I
This pin should be connected to DVSS.
BICK
I
This pin should be connected to DVSS.
LRCK
I
This pin should be connected to DVSS.
SDTO
O
This pin should be open.
OMCLK
I
This pin should be connected to DVSS.
BICK
O
This pin should be open.
LRCK
O
This pin should be open.
SDTO
O
This pin should be open.
Table 3. Pin Setting for PORT3
■ System Clock
PORT1 can be operated in slave mode only. PORT2 and PORT3 work in master mode and slave mode. Internal system
clock is created by internal PLL using LRCK1, LRCK2 or LRCK of DIR. The MCLK is not needed when PORT2 and
PORT3 are in slave mode. Set the MCLK2 pin and OMCLK pin to DVSS. When PORT2 and PORT3 are used in master
mode, the MCLK2 pin and OMCLK pin should be supplied MCLK. The M/S2 pin and M/S3 pin control master and slave
mode switching. Table 4 and Table 5 show setting of MCLK frequency when PORT2 and PORT3 are master mode. In
case of detecting the sampling frequency by MCLK when DIR is used, MCLK (MCLK2 or OMCLK) of selected output
port (PORT2 or PORT3) should be input.
ICKS1
0
0
1
1
OCKS1
0
0
1
1
MCLK2
32kHz ≤ fs ≤ 48kHz 48kHz < fs ≤ 96kHz
0
256fs
256fs
1
384fs
384fs
0
512fs
N/A
1
768fs
N/A
Table 4. MCLK2 frequency select for Master mode
ICKS0
OMCLK
32kHz ≤ fs ≤ 48kHz 48kHz < fs ≤ 96kHz
0
256fs
256fs
1
384fs
384fs
0
512fs
N/A
1
768fs
N/A
Table 5. OMCLK frequency select for Master mode
(default)
OCKS0
MS1076-E-01
(default)
2010/05
- 17 -
[AK4122A]
■ Master Mode and Slave Mode
When PORT2 and PORT3 are used as output port, the M/S2 pin and M/S3 pin select either master or slave mode for each
port. “H” is for master mode, and “L” is for slave mode. MCLK should be supplied to the port which is in master mode,
and the AK4122A outputs BICK and LRCK. BICK and LRCK should be supplied externally to the port which is in slave
mode, and MCLK is not needed fro this ports. When PORT2 is used as an input port, the M/S2 pin should be set “H” or
“L”.
M/S2 pin
L
L
H
H
M/S3 pin
L
L
H
H
BYPS bit
0
Data I/O
Mode
BICK, LRCK
I/O
Slave, SRC
Input
Input
Slave, Bypass
1
Output
Not Available
0
I/O
Master, SRC
Output
1
I/O
Master, Bypass
Table 6. Master mode/Slave mode for PORT2
BYPS bit
Data I/O
Mode
BICK, LRCK
0
Output
Slave, SRC
Input
1
Output
Not Available
0
Output
Master, SRC
Output
1
Output
Master, Bypass
Table 7. Master mode/Slave mode for PORT3
■ Audio Interface Format
The audio interface should be controlled during PWN bit = “0”. When in BYPASS mode, BICK1, BICK2 and BICK are
fixed to 64fs.
(1) PORT1
Four types of data formats are available and are selected by setting the DIF1-0 bits. (Table 8) In all modes, the serial data
is in MSB first, 2’s compliment format. The SDTI is latched on the rising edge of BICK1. PORT1 corresponds to slave
mode only.
Mode
0
1
2
3
DIF1
0
0
1
1
DIF0
Input Format
LRCK BICK
0
16bit, LSB justified
H/L
≥ 32fs
1
24bit, MSB justified
H/L
≥ 48fs
0
24bit, I2S Compatible
L/H
≥ 48fs
1
24bit, LSB justified
H/L
≥ 48fs
Table 8. Audio Interface Format for PORT1
(default)
Note: The DIF1-0 bits of the PORT1 must not be set “10” (I2S Compatible) when the DIR is
selected as an input port.
MS1076-E-01
2010/05
- 18 -
[AK4122A]
LRCK
0 1 2 3
9 10 11 12 13 14 15 0 1 2 3
9 10 11 12 13 14 15 0 1
BICK(32fs)
SDTI(i)
15 14 13
7 6 5 4 3 2 1 0 15 14 13
0 1 2 3
17 18 19 20
31 0 1 2 3
7 6 5 4 3 2 1 0 15
17 18 19 20
31 0 1
BICK(64fs)
SDTI(i)
Don't Care
15 14 13 12
1 0
Don't Care
15 14 13 12
2 1 0
SDTI-15:MSB, 0:LSB
Lch Data
Rch Data
Figure 2. Mode 0 Timing
LRCK
0 1 2
20 21 22 23 24
31 0 1 2
20 21 22 23 24
31 0 1
BICK(64fs)
SDTI(i)
23 22
4 3 2 1 0
Don't Care 23 22
Don't Care 23
4 3 2 1 0
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 3. Mode 1 Timing
LRCK
0 1 2 3
21 22 23 24 25
0 1 2
21 22 23 24 25
0 1
BICK(64fs)
SDTI(i)
23 22
4 3 2 1 0 Don't Care 23 22
4 3 2 1 0
Don't Care
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 4. Mode 2 Timing
LRCK
0 1 2
8 9
24
31 0 1 2
8 9
24
31 0 1
BICK(64fs)
SDTI(i)
Don't Care
23
8
1 0
Don't Care
23
8
1 0
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 5. Mode 3 Timing
MS1076-E-01
2010/05
- 19 -
[AK4122A]
(2) PORT2
Four kinds of data formats are available and are selected by setting IDIF1-0 bits (Table 9). In all modes, the serial data is
in MSB first, 2’s compliment format. If PORT2 is selected as an output port, the SDTIO is clocked out on the falling edge
of BICK2, and if PORT2 is selected as an input port, the SDTIO is latched on the rising edge of BICK2. The audio
interface supports both master and slave modes. In master mode, BICK2 output is fixed to 64fs and the LRCK2 output
fixed to 1fs.
Mode
0
1
2
3
IDIF1
0
0
1
1
IDIF0
0
1
0
1
Output Format
Input Format
24bit, MSB justified
16bit, LSB justified
24bit, MSB justified
24bit, MSB justified
24bit, I2S Compatible 24bit, I2S Compatible
24bit, MSB justified
24bit, LSB justified
Table 9. Audio Interface Format for PORT2
LRCK
H/L
H/L
L/H
H/L
BICK
≥ 32fs
≥ 48fs
≥ 48fs
≥ 48fs
(default)
LRCK
9 10 11 12 13 14 15 0 1 2 3
0 1 2 3
9 10 11 12 13 14 15 0 1
BICK(32fs)
SDTIO(o)
23 22 21
15 14 13 12 11 10 9 8 23 22 21
15 14 13 12 11 10 9 8 23
SDTIO(i)
15 14 13
7 6 5 4 3 2 1 0 15 14 13
7 6 5 4 3 2 1 0 15
0 1 2 3
17 18 19 20
31 0 1 2 3
23 22 21
7 6 5 4 3
17 18 19 20
31 0 1
BICK(64fs)
SDTIO(o)
SDTIO(i)
Don't Care
15 14 13 12
23 22 21
1 0
Don't Care
7 6 5 4 3
15 14 13 12
23
2 1 0
SDTIO-23:MSB, 0:LSB
SDTIO-15:MSB, 0:LSB
Lch Data
Rch Data
Figure 6. Mode 0 Timing
LRCK
0 1 2
20 21 22 23 24
31 0 1 2
20 21 22 23 24
31 0 1
BICK(64fs)
SDTIO(o)
23 22
4 3 2 1 0
23 22
4 3 2 1 0
23
SDTIO(i)
23 22
4 3 2 1 0
Don't Care 23 22
4 3 2 1 0
Don't Care 23
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 7. Mode 1 Timing
MS1076-E-01
2010/05
- 20 -
[AK4122A]
LRCK
0 1 2 3
21 22 23 24 25
0 1 2
21 22 23 24 25
0 1
BICK(64fs)
SDTIO(o)
23 22
4 3 2 1 0
23 22
4 3 2 1 0
SDTIO(i)
23 22
4 3 2 1 0
Don't Care 23 22
4 3 2 1 0
Don't Care
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 8. Mode 2 Timing
LRCK
0 1 2
8 9
24
31 0 1 2
8 9
24
31 0 1
BICK(64fs)
SDTIO(o)
SDTIO(i)
23 22
16 15
Don't Care
0
23
23 22
8
1 0
16 15
Don't Care
0
23
8
23
1 0
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 9. Mode 3 Timing
(3) PORT3
Two kinds of data formats are available and are selected by setting the ODIF bit (Table 10). In both modes, the serial data
is in MSB first, 2’s compliment format. The SDTO is clocked out on the falling edge of BICK. The audio interface
supports both master and slave modes. In master mode, BICK output is fixed to 64fs and LRCK output is fixed to 1fs.
Mode
0
1
ODIF
Output Format
LRCK BICK
0
24bit, MSB justified
H/L
≥ 48fs
1
24bit, I2S Compatible
L/H
≥ 48fs
Table 10. Audio Interface Format for PORT3
(default)
LRCK
0 1 2 3
17 18 19 20
23 22 21
7 6 5 4 3
31 0 1 2 3
17 18 19 20
31 0 1
BICK(64fs)
SDTO(o)
23 22 21
7 6 5 4 3
23
SDTO-23:MSB, 0:LSB
Lch Data
Rch Data
Figure 10. Mode 0 Timing
LRCK
0 1 2 3
21 22 23 24 25
0 1 2
21 22 23 24 25
0 1
BICK(64fs)
SDTO(o)
23 22
4 3 2 1 0
23 22
4 3 2 1 0
23:MSB, 0:LSB
Lch Data
Rch Data
Figure 11. Mode 1 Timing
MS1076-E-01
2010/05
- 21 -
[AK4122A]
■ Soft Mute Operation
Soft mute operation is performed in the digital domain of the SRC output. Soft mute can be controlled by SMUTE bit or
SMUTE pin. The SMUTE bit setting is logically ORed with the SMUTE pin setting. When SMUTE bit goes “1” or
SMUTE pin goes “H”, the SRC output data is attenuated by −∞ within 1024 LRCK cycles. When the SMUTE bit returned
“0” and SMUTE pin goes “L” the mute is cancelled and the output attenuation gradually changes to 0dB during 1024
LRCK cycles. If the soft mute is cancelled before mute state, the attenuation is discontinued and returned to 0dB in the
same cycles. The soft mute is effective for changing the signal source without stopping the signal transmission.
S MU TE
DAT T L eve l
(1 )
(1 )
(2 )
A tten u a tion
-∞
S DT IO / S D T O
Figure 12. Soft Mute Function
(1) The output data is attenuated by −∞ during 1024 LRCK cycles (1024/fs).
(2) If the soft mute is cancelled before attenuating to −∞, the attenuation is discontinued and returned to 0dB in the same
clock cycles.
MS1076-E-01
2010/05
- 22 -
[AK4122A]
■ De-emphasis Filter Control
The AK4122A includes a digital de-emphasis filter (tc=50/15μs) by IIR filter corresponding to three sampling
frequencies (32kHz, 44.1kHz and 48kHz).
(1) When input port is DIR
When the input port is DIR and DEAU bit = “1”, the de-emphasis filter is enabled automatically by sampling frequency
(FS3-0 bit) and pre-emphasis information in the channel status. DEM1-0 bits can control the de-emphasis filter when
DEAU bit = “0”. When the de-emphasis filter is OFF, the internal de-emphasis filter is bypassed. When PEM bit = “0”,
the internal de-emphasis filter is always bypassed.
PEM
1
1
1
1
0
FS3
0
0
0
x
PEM
1
1
1
1
FS2
0
0
0
FS1
0
1
1
FS0
0
0
1
(Others)
x
x
x
Table 11. De-emphasis Auto Control (DEAU bit = “1”)
Mode
44.1kHz
48kHz
32kHz
OFF
OFF
DEM1
DEM0
Mode
0
0
44.1kHz
0
1
OFF
(default)
1
0
48kHz
1
1
32kHz
Table 12. De-emphasis Manual Control (DEAU bit = “0”)
(2) When input port is PORT1 or PORT2
When PORT1 or PORT2 is selected as an input port, DEM1-0 bits can control the de-emphasis filter regardless of the
DEAU bit setting. In this case, the de-emphasis filter can not be enabled automatically. When the de-emphasis setting is
OFF, the internal de-emphasis filter is bypassed.
DEM1
DEM0
Mode
0
0
44.1kHz
0
1
OFF
(default)
1
0
48kHz
1
1
32kHz
Table 13. De-emphasis Manual Control
■ System Reset and Power-Down
The AK4122A has a full power-down mode for all circuits that is activated by the PDN pin, and a partial power-down
mode activated by the PWN bit. The AK4122A should be reset once at power-up by bringing the PDN pin = “L”.
PDN pin:
All analog and digital circuits are placed in power-down and reset modes by bringing the PDN pin = “L”. All the
registers are initialized and clocks are stopped. Read/Write operations to the registers are disabled.
PWN bit (Address 00H; D0):
Unlike the PDN pin operation described above, internal registers and mode settings are not initialized. Read/Write
operations to the registers are enabled.
MS1076-E-01
2010/05
- 23 -
[AK4122A]
■ System Reset
Bringing the PDN pin = “L” sets the AK4122A in power-down mode and initializes digital filters. When the PDN pin =
“L”, the SDTO output is “L”. The AK4122A should be reset once by bringing the PDN pin = “L” upon power-up. The
SDTO becomes valid in less than 100ms from the rising edge of PDN after a reset release by clock supply. Until the
SDTO becomes valid, it outputs “L”. After the rising of PDN pin, the SDTIO pin is an input pin.
External clocks
(input / output port)
(stable)
don’t care
don’t care
PDN
< 100msec
(internal state)
Power-down
PLL locktime & fs detection
SDTO
normal operation
Power-down
normal data
“0” data
“0” data
Figure 13. System Reset
■ Sequence of Changing Clocks
A clock change sequence is shown in Figure 14. An internal reset is executed when the input or the output clocks are
changed. The SDTO data is placed “0” during the reset. Within 100ms, the SDTO outputs normal data after the reset.
When the frequency transition occurs gradually without phase change or when the output clock is changed while fso/fsi >
4, the output data may have large distortion for several seconds. A reset should be made by bringing the PDN pin = “L” or
PWN bit = “0” to obtain normal data within 100ms when clocks are changed.
External clocks
(Input port
or Output port)
Clocks 1
Don’t care
Clocks 2
PDN pin
< 100ms
(Internal state) Normal operation Power-down PLL lock &
fs detection
SDTIO/SDTO
Normal data
SMUTE
(recommended)
Att.Level
Note16
Note17
Normal operation
Normal data
1024/fso
1024/fso
0dB
- ∞dB
Figure 14. Sequence of Changing Clocks
Note 16. The data on SDTO may cause a clicking noise. To prevent this, set SDTI or SDTIO to “0” from GD before the
PDN pin changes to “L”, which will cause the data on SDTO to remain “0”. SMUTE can also remove this
clicking noise.
Note 17. The data on SDTO may cause a clicking noise. To prevent this, set SDTI to “0” for 1024/fso+100ms or more
from the timing when the PDN pin changes to “H” while the SMUTE pin = “H”.
Note 18. The data on SDTO may cause a clicking noise. To prevent this, set SDTI to “0” for 1024/fso+100ms or more
from the timing when the PDN pin changes to “H” while the SMUTE pin = “H”.
MS1076-E-01
2010/05
- 24 -
[AK4122A]
■ 96kHz Clock Recovery
An integrated low jitter PLL of the DIR has a wide lock range of 32kHz to 96kHz and its lock time is less than 20ms. The
AK4122A has a sampling frequency detect function (32kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz) that uses either clock
comparison against the MCLK2 or OMCLK frequency or the channel status information. The PLL loses synchronization
when receiving preambles in incorrect interval.
■ Biphase Input
Four inputs (RX1-4) are available for DIR. Each input includes an amplifier for unbalance loads that can accept 200mVpp
or greater signal. The IPS1-0 bits select the receiver channel (Table 14).
IPS1
0
0
1
1
IPS0
Input Data
0
RX1
1
RX2
0
RX3
1
RX4
Table 14. Recovery Data Select
(default)
■ Biphase Output
The AK4122A can output through data from the digital receiver inputs (RX1-4) to the TX pin. The OPS1-0 bits can select
the source of the TX pin output. TX output can be stopped by TXE bit. The AK4122A does not have a TX output buffer
(Line Driver), therefore the TX pin cannot drive the 75Ω coaxial cable directly.
OPS1
0
0
1
1
OPS0
Output Data
0
RX1
1
RX2
0
RX3
1
RX4
Table 15. Output Data Select for TX
MS1076-E-01
(default)
2010/05
- 25 -
[AK4122A]
■ Biphase Signal Input Circuit
0.1uF
RX
75Ω
Coax
75Ω
AK4122A
Figure 15. Consumer Input Circuit (Coaxial Input)
Note 19. Coaxial input only : if a coupling level to this input by the next RX input line pattern exceeds 50mV,
an malfunction may occur. In this case, it is possible to lower the coupling level by adding this
decoupling capacitor.
Note 20. Ground of the RCA connector and terminator should be connected to AVSS of the AK4122A with low
impedance on PC board.
3.3V
Optical
Fiber
470
O/E
RX
Optical Receiver
AK4122A
Figure 16. Consumer Input Circuit (Optical Input, Using 3.3V Optical Receiver)
When using coaxial input, the input level of the RX line is small. Care must be taken to reduce, crosstalk among RX input
lines by inserting a shield pattern between them.
MS1076-E-01
2010/05
- 26 -
[AK4122A]
■ Sampling Frequency and Pre-emphasis Detection for DIR
The AK4122A has two methods for detecting sampling frequency for DIR. The sampling frequency is detected by
comparing the recovered clock to the MCLK2 or OMCLK frequency, and the detected frequency is reported on FS3-0
bits. XTL1-0 bits , ICKS1-0 bits and OCKS1-0 bits must be set according to the FSO and MCLK frequencies for the
detection. (Table 16) When XTL1-0 bits = “11”, the sampling frequency is detected by the channel status sampling
frequency information. The detected frequency is reported on FS3-0 bits. The default values of FS3-0 bits are “0001”. In
case of detecting the sampling frequency by MCLK when DIR is used, MCLK (MCLK2 or OMCLK) of selected output
port (PORT2 or PORT3) should be input.
FSO
XTL1
MCLK2 or OMCLK
ICKS1 / OCKS1
ICKS0 / OCKS0
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
0
0
0
1
1
0
1
1
Table 16. Reference MCLK Frequency
XTL0
44.1kHz
0
0
48kHz
0
1
96kHz
1
0
-
1
1
Except XTL1-0 bit = “11”
Register Output
fs
FS3
FS2
FS1
FS0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
0
1
0
1
0
1
0
0
Clock comparison
(Note 21)
44.1kHz
Reserved
48kHz
32kHz
88.2kHz
96kHz
± 3%
± 3%
± 3%
± 3%
± 3%
Table 17. fs Information
MCLK Frequency
11.2896MHz
16.9344MHz
22.5792MHz
33.8688MHz
12.288MHz
18.432MHz
24.576MHz
36.864MHz
24.576MHz
36.864MHz
N/A
N/A
Use channel status
(default)
XTL1-0 bit = “11”
Consumer Mode
Professional Mode
(Note 22)
Byte3
Byte0
Byte4
Bit3,2,1,0
Bit7,6
Bit6,5,4,3
0000
01
0000
0001
(others)
0000
0010
10
0000
0011
11
0000
(1000)
00
1010
(1010)
00
0010
Note 21. Frequencies in a range of ± 3% are identified as shown in the Table 17. Intermediate frequencies between these
frequencies shown in Table 17 are identified as nearer vale and are shown on FS3-0 bits. FS3-0 bits indicate
“1100”, “1110” or “0001” for the frequencies beyond the range of 32~ 96kHz.
Note 22. In consumer mode, Byte3 Bit3-0 are copied to FS3-0.
The pre-emphasis information is detected and reported on the PEM bit. This information is extracted from channel 1 by
default (CS12 bit = “0”). It can be switched to channel 2 by changing the CS12 bit in the control register.
PEM bit
0
1
Consumer mode
Professional mode
Byte0
Byte0
Bit3,4,5
Bit2,3,4
OFF
≠ 0X100
≠ 100
ON
0X100
100
Table 18. PEM Information
Pre-emphasis
MS1076-E-01
2010/05
- 27 -
[AK4122A]
■ Interrupt Handling for DIR
Following nine events cause that the INT2-0 pins go to “H”.
1. UNLCK: PLL unlock state detection
UNLCK bit =“1” when the PLL loses lock. The AK4122A loses synchronization when the interval of
two preambles is not correct or when those preambles are not correct.
2. PAR:
Parity error or biphase coding error detection
PAR bit =“1” when parity error or biphase coding error is detected. It is updated every sub-frame
cycle.
3. AUTO:
Non-PCM or DTS-CD Bit Stream detection
The ORed result of NPCM and DTSCD bits is output to the AUTO bit.
4. V:
Validity flag detection
V bit =“1” when validity flag is detected. It is updated every sub-frame cycle.
5. AUDN:
Non-audio detection
AUDN bit= “1” when the recovered channel status indicates “1”. It is updated every block cycle.
6. STC:
Sampling frequency or pre-emphasis information change detection
STC bit= “1” when FS3-0 or PEM bit is changed. Reading 07H register resets it.
7. CINT:
Channel status sync flag
CITN bit=“1” when received C bits differ from old ones, and stays “1” until this register is read.
Updated every block cycle. Reading 07H register resets it.
8. QINT:
U bit (Q-subcode) sync flag
QINT bit =“1” when the Q-subcode differs from old one, and stays “1” until this register is read.
Updated every sync code cycle for Q-subcode. Reading 07H register resets it.
9. DAT:
DAT Start ID detection
When the category code shows DAT, this bit becomes “1” if the Start ID of DAT is detected as “1”.
Reading 08H register resets it.
INT1-0 pins output an OR’ed signal based on the above nine interrupt events. When these registers are masked, the
interrupt event does not affect the operation of the INT1-0 pins (the masks do not affect the registers (UNLCK, PAR, etc.)
themselves). Once INT0 pin goes to “H”, it maintains “H” for 1024 cycles (this value can be changed by the EFH1-0 bits)
after all events which is not masked by mask bits are cleared. The INT1 pin immediately returns to “L” when those events
are cleared.
The INT2 pin outputs “H” by detecting a status change of events 1~5 and ORed results of the events 6~9. It stays “H”
until 07H and 08H registers are read. Mask bits are shared with INT0.
UNLCK, PAR, AUTO, V and AUDN bits indicate the interrupt status events above in real time. STC, QINT and CINT
bits at address 07H and DAT bit at 08H are changed to “1” by these events. Once STC, QINT or CINT and DAT bit goes
to “1”, it stays “1” until the register is read (07H, 08H (DAT bit)).
When the AK4122A loses lock, the channel status bits are initialized. In this initial state, the INT0 and INT2 pins output
an OR’ed signal between UNLCK and PAR bits. The INT1 pin outputs an OR’ed signal between AUTO, V and AUDN.
INT2-0 pins are “L” when the DIR is not selected.
When DIR is used as input port and the PLL loses lock (unlock state), the output data is muted automatically. When
AMUTE bit = “1”, SDTIO and SDTO are muted automatically when the AK4122A detects unlock, Non-Audio or
Non-PCM/DTS-CD. After the interrupt events are cleared, mute is cancelled automatically. When AMUTE bit = “0”,
SDTIO and SDTO outputs “L” when the PLL loses lock (unlock state), and outputs “H” when other errors (PAR, AUTO
and etc.) are occured.
MS1076-E-01
2010/05
- 28 -
[AK4122A]
(1) UNLCK, PAR, AUTO, V and AUDN bits
Interrupt
(UNLCK, PAR, AUTO, V, AUDN)
INT0 pin
Hold Time (max:4096/fs)
INT1 pin
Hold Time = 0
INT2 pin
Register 07H
“0”
Hold “1”
“0”
Read 07H
BICK, LRCK (UNLCK)
Free Run
fs : around 20kHz
BICK, LRCK (except UNLCK)
SDTIO / SDTO (AMUTE = “1”)
(UNLCK, AUTO, V, AUDN)
Mute
SDTIO / SDTO (AMUTE = “0”)
(UNLCK)
“L” Output
SDTIO / SDTO (AMUTE = “0”)
(AUTO, V, AUDN)
SDTIO / SDTO (PAR error)
Previous Data
: Normal Operation
Figure 17. INT2-0 Timing (UNLCK, PAR, AUTO, V, AUDN bits)
MS1076-E-01
2010/05
- 29 -
[AK4122A]
(2) STC, CINT and QINT bits
Interrupt
(FS3-0, PEM, C-bit, Q-sub)
Interrupt
(STC, CINT, QINT)
INT0 pin
(1)
(1)
(2)
INT1 pin
(2)
INT2 pin
Register 07H
“0”
Hold “1”
“0”
Hold “1”
“0”
Read 07H
BICK, LRCK
SDTIO / SDTO
: Normal Operation
Figure 18. INT2-0 Timing (STC, CINT, QINT bits)
(1) Hold Time : max. 4096/fs
(2) Hold Time = 0
MS1076-E-01
2010/05
- 30 -
[AK4122A]
(3) DAT bit
Interrupt
(DAT)
INT0 pin
(1)
(1)
(2)
INT1 pin
(2)
INT2 pin
Register 08H
“0”
Hold “1”
“0”
Hold “1”
“0”
Read 08H
BICK, LRCK
SDTIO / SDTO
: Normal Operation
Figure 19. INT2-0 Timing (DAT bit)
(1) Hold Time: max. 4096/fs
(2) Hold Time = 0
MS1076-E-01
2010/05
- 31 -
[AK4122A]
PD pin ="L" to "H"
Initialize
Read 07H, 08H
INT0/1 pin ="H"
No
Yes
Release
Muting
Mute SDTIO / SDTO
Read 07H, 08H
(Each Error Handling)
Read 07H, 08H
(Resets registers)
No
INT0/1 pin ="H"
Yes
Figure 20. Interrupt Handling Sequence Example 1
MS1076-E-01
2010/05
- 32 -
[AK4122A]
PD pin ="L" to "H"
Initialize
Read 07H
No
INT1 pin ="H"
Yes
Read 07H
and
Detect QSUB= “1”
(Read Q-buffer)
QCRC = “0”
No
New data
is invalid
Yes
INT1 pin ="L"
No
Yes
New data
is valid
Figure 21. Interrupt Handling Sequence Example 2
MS1076-E-01
2010/05
- 33 -
[AK4122A]
■ Q-subcode buffers
The DIR of the AK4122A has a Q-subcode buffer for CD applications. The AK4122A takes Q-subcode into registers
under the following conditions:
1)
2)
3)
4)
The sync word (S0, S1) consists of at least 16 “0”s.
The start bit is “1”.
Those 7-bits Q-W follow the start bit.
The distance between two start bits is 8-16 bits.
QINT bit should be valid and “0” while Q-subcode is read from the register.
S0
S1
S2
S3
:
S97
S0
S1
S2
S3
:
Q2
Q3 Q4
CTRL
Q5
Q6
Q7 Q8
ADRS
1
0
0
1
1
:
1
0
0
1
1
:
2
3
4
5
6
7
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Q2
R2
S2
T2
U2
V2
W2
Q3
R3
S3
T3
U3
V3
W3
:
:
:
:
:
:
:
Q97 R97 S97 T97 U97 V97 W97
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Q2
R2
S2
T2
U2
V2
W2
Q3
R3
S3
T3
U3
V3
W3
:
:
:
:
:
:
:
(*) number of “0” : min=0; max=8.
↑
Q
Figure 22. Configuration of U-bit(CD)
Q9
*
0…
0…
0…
0…
:
0…
0…
0…
0…
0…
:
Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25
TRACK NUMBER
INDEX
Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40 Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49
MINUTE
SECOND
FRAME
Q50 Q51 Q52 Q53 Q54 Q55 Q56 Q57 Q58 Q59 Q60 Q61 Q62 Q63 Q64 Q65 Q66 Q67 Q68 Q69 Q70 Q71 Q72 Q73
ZERO
ABSOLUTE MINUTE
ABSOLUTE SECOND
Q74 Q75 Q76 Q77 Q78 Q79 Q80 Q81 Q82 Q83 Q84 Q85 Q86 Q87 Q88 Q89 Q90 Q91 Q92 Q93 Q94 Q95 Q96 Q97
ABSOLUTE FRAME
CRC
G(x)=x16+x12+x5+1
Figure 23. Q-subcode
Addr
Register Name
13H Q-subcode Address / Control
14H
Q-subcode Track
15H
Q-subcode Index
16H
Q-subcode Minute
17H
Q-subcode Second
18H
Q-subcode Frame
19H
Q-subcode Zero
1AH
Q-subcode ABS Minute
1BH
Q-subcode ABS Second
1CH
Q-subcode ABS Frame
D7
D6
D5
D4
Q9
Q8
···
···
Q17
Q16
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
Q81
Q80
···
···
Figure 24. Q-subcode register map
MS1076-E-01
D3
···
···
···
···
···
···
···
···
···
···
D2
···
···
···
···
···
···
···
···
···
···
D1
Q3
Q11
···
···
···
···
···
···
···
Q75
D0
Q2
Q10
···
···
···
···
···
···
···
Q74
2010/05
- 34 -
[AK4122A]
■ Non-PCM (AC-3, MPEG, etc.) and DTS-CD Bitstream Detection
The DIR of the AK4122A has a Non-PCM steam auto-detection function. In the 32-bit mode when Non-PCM preamble
based on Dolby “AC-3 Data Stream in IEC60958 Interface” is detected, the NPCM bit goes to “1”. The 96-bit sync code
consists of 0x0000, 0x0000, 0x0000, 0x0000, 0xF872 and 0x4E1F. Detection of this pattern will set the NPCM bit to “1”.
Once the NPCM bit is set to “1”, it will remain “1” until 4096 frames pass through the chip without an additional sync
pattern being detected (Timing diagram: Figure 27and Figure 28). When those preambles are detected, the burst
preambles Pc and Pd (Pc: burst information, Pd: length code; Refer to Table 22, Table 23) that follow those sync codes are
stored to registers. The AK4122A also has a DTS-CD bitstream auto-detection function. When AK4122A detects
DTS-CD bitstream, the DTSCD bit goes to “1”. If the next sync code does not occur within 4096 frames, the DTSCD bit
returns to “0” until either the AK4122A detects the stream again. OR’ed value of the NPCM and DTSCD bits are output
to the AUTO bit. The AK4122A detects 14-bit sync word and 16-bit sync word of a DTS-CD bitstream, and these
detection can be ON/OFF by DTS14 and DTS16 bits.
■ Serial Control Interface
The internal registers may be either written or read by the 4-wire μP interface pins: CSN, CCLK, CDTI and CDTO. The
data on this interface consists of Chip address (2bits, C1/0 are fixed to “00”), Read/Write (1bit), Register address (MSB
first, 5bits) and Control data (MSB first, 8bits). Address and data are clocked in on the rising edge of CCLK and data is
clocked out on the falling edge. For write operations, data is latched after the 16th rising edge of CCLK, after a
high-to-low transition of CSN. For read operations, the CDTO output goes to high impedance after a low-to-high
transition of CSN. The maximum speed of CCLK is 5MHz. The chip address is fixed to “00”. Accessing to the chip
address except for “00” is invalid. The PDN pin = “L” resets the registers to their default values. Read/Write operation
can be made without MCLK, BICK and LRCK clocks.
CSN
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
C1
C0
R/W
A4
A3
A2
A1
A0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
CCLK
CDTI
Write
Hi-Z
CDTO
CDTI
C1
C0
R/W
A4
A3
A2
A1
A0
Read
CDTO
Hi-Z
Hi-Z
C1 - C0 : Chip Address (Fixed to "00")
R/W :
READ / WRITE ("1" : WRITE, "0" : READ)
A4 - A0 : Register Address
D7 - D0 : Control Data
Figure 25. Control I/F Timing
MS1076-E-01
2010/05
- 35 -
[AK4122A]
■ Register Map
Addr
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
Register Name
PDN & Mode Control
Selector & Clock Control
Audio Interface Format
DIR Control
INT0 Mask
INT1 Mask
DAT Mask & DTS Detect
Receiver Status 0
Receiver Status 1
Receiver Status 2
RX Channel Status Byte 0
RX Channel Status Byte 1
RX Channel Status Byte 2
RX Channel Status Byte 3
RX Channel Status Byte 4
Burst Preamble Pc Byte 0
Burst Preamble Pc Byte 1
Burst Preamble Pd Byte 0
Burst Preamble Pd Byte 1
Q-subcode Address / Control
Q-subcode Track
Q-subcode Index
Q-subcode Minute
Q-subcode Second
Q-subcode Frame
Q-subcode Zero
Q-subcode ABS Minute
Q-subcode ABS Second
Q-subcode ABS Frame
D7
XTL1
BYPS
0
CS12
MULK0
MULK1
0
UNLCK
DAT
0
CR7
CR15
CR23
CR31
CR39
PC7
PC15
PD7
PD15
Q9
Q17
Q25
Q33
Q41
Q49
Q57
Q65
Q73
Q81
D6
XTL0
OSEL
0
AMUTE
MPAR0
MPAR1
0
PAR
DTSCD
0
CR6
CR14
CR22
CR30
CR38
PC6
PC14
PD6
PD14
Q8
Q16
Q24
Q32
Q40
Q48
Q56
Q64
Q72
Q80
D5
TXE
ISEL1
0
EFH1
MAUT0
MAUT1
0
AUTO
NPCM
0
CR5
CR13
CR21
CR29
CR37
PC5
PC13
PD5
PD13
Q7
Q15
Q23
Q31
Q39
Q47
Q55
Q63
Q71
Q79
D4
SMUTE
ISEL0
ODIF
EFH0
MV0
MV1
0
V
PEM
0
CR4
CR12
CR20
CR28
CR36
PC4
PC12
PD4
PD12
Q6
Q14
Q22
Q30
Q38
Q46
Q54
Q62
Q70
Q78
D3
DEAU
ICKS1
IDIF1
IPS1
MAUD0
MAUD1
DTS16
AUDN
FS3
0
CR3
CR11
CR19
CR27
CR35
PC3
PC11
PD3
PD11
Q5
Q13
Q21
Q29
Q37
Q45
Q53
Q61
Q69
Q77
D2
DEM1
ICKS0
IDIF0
IPS0
MSTC0
MSTC1
DTS14
STC
FS2
0
CR2
CR10
CR18
CR26
CR34
PC2
PC10
PD2
PD10
Q4
Q12
Q20
Q28
Q36
Q44
Q52
Q60
Q68
Q76
D1
DEM0
OCKS1
DIF1
OPS1
MCIT0
MCIT1
MDAT1
CINT
FS1
CCRC
CR1
CR9
CR17
CR25
CR33
PC1
PC9
PD1
PD9
Q3
Q11
Q19
Q27
Q35
Q43
Q51
Q59
Q67
Q75
D0
PWN
OCKS0
DIF0
OPS0
MQIT0
MQIT1
MDAT0
QINT
FS0
QCRC
CR0
CR8
CR16
CR24
CR32
PC0
PC8
PD0
PD8
Q2
Q10
Q18
Q26
Q34
Q42
Q50
Q58
Q66
Q74
When th ODN pin is “L”, the registers are initialized to their defoult value.
When PORT1 or PORT2 are selected as input port, the status registers (07H ∼ 1CH) are initialized.
Note 23. The bits defined as 0 must contain a “0” value.
Note 24. For addresses from 1DH ∼ 1FH, data must not be written.
MS1076-E-01
2010/05
- 36 -
[AK4122A]
■ Register Definitions
Addr Register Name
00H PDN & Mode Control
R/W
Default
D7
XTL1
R/W
1
D6
XTL0
R/W
1
D5
TXE
R/W
1
D4
SMUTE
R/W
0
D3
DEAU
R/W
0
D2
DEM1
R/W
0
D1
DEM0
R/W
1
D0
PWN
R/W
1
PWN: Power Down Control
0: Power down
1: Normal operation (default)
“0” powers down all sections. The contents of all register are not initialized and enabled to write to the
registers. The internal registers (00H ∼ 06H) are not initialized, however, the status registers (07H ∼ 1CH)
are initialized. Read/Write operations to the registers are enabled.
DEM1-0: De-emphasis Control (Table 12, Table 13)
Initial values are “01”.
DEAU:
De-emphasis Auto Control
0: Disable (default)
1: Enable
When DEAU bit = “1”, the de-emphasis filter is enabled automatically by sampling frequency and
pre-emphasis information in the channel status.
SMUTE: Soft Mute Control
0: Normal operation (default)
1: SDTIO and SDTO soft mute
When SMUTE bit = “1”, SDTO and SDTIO outputs “L”.
TXE:
TX Output enable
0: Disable, TX outputs “L”.
1: Enable (default)
XTL1-0: Reference MCLK Frequency Select (Table 16)
Initial values are “11”.
MS1076-E-01
2010/05
- 37 -
[AK4122A]
Addr Register Name
01H Selector & Clock Control
R/W
Default
D7
BYPS
R/W
0
D6
OSEL
R/W
0
D5
ISEL1
R/W
0
D4
ISEL0
R/W
0
D3
ICKS1
R/W
1
D2
ICKS0
R/W
0
D1
OCKS1
R/W
1
D0
OCKS0
R/W
0
OCKS1-0: OMCLK Frequency Select for Master mode (Table 5)
Initial values are “10”.
ICKS1-0: MCLK2 Frequency Select for Master mode (Table 4)
Initial values are “10”.
ISEL1-0: Input Port Select
Initial values are “00”.
ISEL1
0
0
1
1
ISEL0
Input PORT
(default)
0
PORT1
1
PORT2
0
DIR
1
N/A
Table 19. Input PORT Select
OSEL: Output Port Select
Initial values are “0”.
OSEL
Output PORT
(default)
0
PORT3
1
PORT2
Table 20. Output PORT Select
BYPS: Select Bypass mode
0: SRC mode (default)
1: Bypass mode
When BYPS bit = “1”, the AK4122A outputs the clocks (BICK, LRCK) and data that is input by input port
without SRC.
MS1076-E-01
2010/05
- 38 -
[AK4122A]
Addr Register Name
02H Audio Interface Format
R/W
Default
DIF1-0:
D7
0
RD
0
D6
0
RD
0
D5
0
RD
0
D4
ODIF
R/W
0
D3
IDIF1
R/W
0
D2
IDIF0
R/W
1
D1
DIF1
R/W
0
D0
DIF0
R/W
1
D5
EFH1
R/W
0
D4
EFH0
R/W
1
D3
IPS1
R/W
0
D2
IPS0
R/W
0
D1
OPS1
R/W
0
D0
OPS0
R/W
0
Audio Interface Format for PORT1 (Table 8)
Initial values are “01”.
IDIF1-0: Audio Interface Format for PORT2 (Table 9)
Initial values are “01”.
ODIF: Audio Interface Format for PORT3 (Table 10)
Initial values are “0”.
Addr Register Name
03H DIR Control
R/W
Default
D7
CS12
R/W
0
D6
AMUTE
R/W
1
OPS1-0:
Output Through Data Select for TX (Table 15)
Initial values are “00”.
IPS1-0:
Input Recovery Data Select (Table 14)
Initial values are “00”.
EFH1-0:
Interrupt 0 pin Hold Count Select
Initial values are “01”.
LRCK of Table 21 is DIR’s LRCK, the hold time scales with 1/fs.
EFH1
0
0
1
1
EFH0
Hold Count
0
512LRCK
1
1024LRCK (default)
0
2048LRCK
1
4096LRCK
Table 21. Hold count select
AMUTE: Auto Mute Control
0: Normal operation
1: Auto Mute (default)
When AMUTE bit = “1”, SDTIO and SDTO are muted automatically if the AK4122A detects unlock,
Non-Audio or Non-PCM/DTS-CD.
CS12: Channel Status select
0: Channel 1 (default)
1: Channel 2
These bit selects the channel status for C-bit, AuDN, PEM, FS3-0, Pc, Pd and CRC bit.
MS1076-E-01
2010/05
- 39 -
[AK4122A]
Addr Register Name
04H INT0 Mask
R/W
Default
D7
MULK0
R/W
0
MQIT0:
Mask enable for QINT bit
0: Mask disable
1: Mask enable (default)
MCIT0:
Mask enable for CINT bit
0: Mask disable
1: Mask enable (default)
MSTC0:
Mask enable for STC bit
0: Mask disable
1: Mask enable (default)
D6
MPAR0
R/W
0
D5
MAUT0
R/W
1
D4
MV0
R/W
1
D3
MAUD0
R/W
1
D2
MSTC0
R/W
1
D1
MCIT0
R/W
1
D0
MQIT0
R/W
1
MAUD0: Mask enable for AUDN bit
0: Mask disable
1: Mask enable (default)
MV0:
Mask enable for V bit
0: Mask disable
1: Mask enable (default)
MAUT0: Mask enable for AUTO bit
0: Mask disable
1: Mask enable (default)
MPAR0: Mask enable for PAR bit
0: Mask disable (default)
1: Mask enable
MULK0: Mask enable for UNLCK bit
0: Mask disable (default)
1: Mask enable
Registers which the corresponding mask bit is set to “0” affects INT0 and INT2 pins operation.
MS1076-E-01
2010/05
- 40 -
[AK4122A]
Addr Register Name
05H INT1 Mask
R/W
Default
D7
MULK1
R/W
1
MQIT1:
Mask enable for QINT bit
0: Mask disable
1: Mask enable (default)
MCIT1:
Mask enable for CINT bit
0: Mask disable
1: Mask enable (default)
MSTC1:
Mask enable for STC bit
0: Mask disable
1: Mask enable (default)
D6
MPAR1
R/W
1
D5
MAUT1
R/W
0
D4
MV1
R/W
0
D3
MAUD1
R/W
0
D2
MSTC1
R/W
1
D1
MCIT1
R/W
1
D0
MQIT1
R/W
1
MAUD1: Mask enable for AUDN bit
0: Mask disable (default)
1: Mask enable
MV1:
Mask enable for V bit
0: Mask disable (default)
1: Mask enable
MAUT1: Mask enable for AUTO bit
0: Mask disable (default)
1: Mask enable
MPAR1: Mask enable for PAR bit
0: Mask disable
1: Mask enable (default)
MULK1: Mask enable for UNLCK bit
0: Mask disable
1: Mask enable (default)
Registers which the corresponding mask bit is set to “0” affects the INT1 pin operation.
MS1076-E-01
2010/05
- 41 -
[AK4122A]
Addr Register Name
06H DAT Mask & DTS Detect
R/W
Default
D7
0
RD
0
D6
0
RD
0
D5
0
RD
0
D4
0
RD
0
D3
DTS16
R/W
1
D2
DTS14
R/W
1
D1
MDAT1
R/W
1
D0
MDAT0
R/W
1
MDAT0: Mask enable for DAT bit
0: Mask disable
1: Mask enable (default)
If this mask bit is set to “0”, DAT bit affects INT0 and INT2 pins operation.
MDAT1: Mask enable for DAT bit
0: Mask disable
1: Mask enable (default)
If this mask bit is set to “0”, DAT bit affects the INT1 pin operation.
DTS14:
DTS-CD 14bit Sync Word Detect
0: No detect
1: Detect (default)
DTS16:
DST-CD 16bit Sync Word Detect
0: No detect
1: Detect (default)
MS1076-E-01
2010/05
- 42 -
[AK4122A]
Addr Register Name
07H Receiver Status 0
R/W
Default
D7
UNLCK
RD
0
D6
PAR
RD
0
D5
AUTO
RD
0
D4
V
RD
0
D3
AUDN
RD
0
D2
STC
RD
0
D1
CINT
RD
0
D0
QINT
RD
0
QINT: Q-subcode Buffer Interrupt
0: No change
1: Changed
This bit goes to “1” when Q-subcode stored in register addresses 13H to 1CH is updated.
CINT: Channel Status Buffer Interrupt
0: No change
1: Changed
This bit goes to “1” when C-bit stored in register addresses 0AH to 0EH changes.
STC:
Sampling Frequency or Pre-emphasis Information Change Detection
0: No detect
1: Detect
This bit goes to “1” when either the FS3-0 or PEM bit changes.
AUDN:
V:
Validity Bit
0: Valid
1: Invalid
AUTO:
PAR:
Audio Bit Output
0: Audio
1: Non audio
This bit is made by encoding channel status bits.
Non-PCM or DTS-CD Bit Steam Auto Detection
0: No detect
1: Detect
This bit outputs an OR’ed result of NPCM and DTSCD bits.
Parity Error or Bi-phase Error Status
0: No error
1: Error
This bit goes to “1” if a parity error or biphase error is detected in the sub-frame.
UNLCK: PLL Lock Status
0: Lock
1: Unlock
QINT, CINT and STC bits are initialized when 07H is read.
MS1076-E-01
2010/05
- 43 -
[AK4122A]
Addr Register Name
08H Receiver Status 1
R/W
Default
D7
DAT
RD
0
D6
DTSCD
RD
0
D5
NPCM
RD
0
D4
PEM
RD
0
D3
FS3
RD
0
D2
FS2
RD
0
D1
FS1
RD
0
D0
FS0
RD
1
FS3-0: Sampling Frequency Detection (Table 17)
PEM:
NPCM:
Pre-emphasis Detect (Table 18)
0: OFF
1: ON
This bit is made by decoding the channel status bits.
Non-PCM Bit Stream Auto Detection
0: No detect
1: Detect
DTSCD: DTS-CD Bit Stream Auto Detect
0: No detect
1: Detect
DAT:
DAT Start ID Detect
0: No detect
1: Detect
When the category code shows DAT, this bit becomes “1” if the Start ID of DAT is detected as “1”.
Reading 08H register resets this bit to “0”.
DAT bit is initialized when 08H is read.
Addr Register Name
09H Receiver Status 2
R/W
Default
D7
0
RD
0
D6
0
RD
0
D5
0
RD
0
D4
0
RD
0
D3
0
RD
0
D2
0
RD
0
D1
CCRC
RD
0
D0
QCRC
RD
0
QCRC: Cyclic Redundancy Check for Q-subcode
0: No error
1: Error
CCRC: Cyclic Redundancy Check for Channel Status
0: No error
1: Error
This bit is enabled only in professional mode and only for the channel selected by the CS12 bit.
MS1076-E-01
2010/05
- 44 -
[AK4122A]
Addr
0AH
0BH
0CH
0DH
0EH
Register Name
RX Channel Status Byte 0
RX Channel Status Byte 1
RX Channel Status Byte 2
RX Channel Status Byte 3
RX Channel Status Byte 4
R/W
Default
CR39-0:
Addr
0FH
10H
11H
12H
PD15-0:
Addr
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
D6
CR6
CR14
CR22
CR30
CR38
D5
CR5
CR13
CR21
CR29
CR37
D4
CR4
CR12
CR20
CR28
CR36
D3
CR3
CR11
CR19
CR27
CR35
D2
CR2
CR10
CR18
CR26
CR34
D1
CR1
CR9
CR17
CR25
CR33
D0
CR0
CR8
CR16
CR24
CR32
D2
PC2
PC10
PD2
PD10
D1
PC1
PC9
PD1
PD9
D0
PC0
PC8
PD0
PD8
D2
Q4
Q12
Q20
Q28
Q36
Q44
Q52
Q60
Q68
Q76
D1
Q3
Q11
Q19
Q27
Q35
Q43
Q51
Q59
Q67
Q75
D0
Q2
Q10
Q18
Q26
Q34
Q42
Q50
Q58
Q66
Q74
RD
Not initialized
Receiver Channel Status Byte 4-0
All 40 bits are updated at the same time every block (192 frames) cycle.
Register Name
Burst Preamble Pc Byte 0
Burst Preamble Pc Byte 1
Burst Preamble Pd Byte 0
Burst Preamble Pd Byte 1
R/W
Default
PC15-0:
D7
CR7
CR15
CR23
CR31
CR39
D7
PC7
PC15
PD7
PD15
D6
PC6
PC14
PD6
PD14
D5
PC5
PC13
PD5
PD13
D4
PC4
PC12
PD4
PD12
D3
PC3
PC11
PD3
PD11
RD
Not initialized
Burst Preamble Pc Byte 0 and 1
Burst Preamble Pd Byte 0 and 1
Register Name
Q-subcode Address / Control
Q-subcode Track
Q-subcode Index
Q-subcode Minute
Q-subcode Second
Q-subcode Frame
Q-subcode Zero
Q-subcode ABS Minute
Q-subcode ABS Second
Q-subcode ABS Frame
R/W
Default
D7
Q9
Q17
Q25
Q33
Q41
Q49
Q57
Q65
Q73
Q81
D6
Q8
Q16
Q24
Q32
Q40
Q48
Q56
Q64
Q72
Q80
D5
Q7
Q15
Q23
Q31
Q39
Q47
Q55
Q63
Q71
Q79
D4
Q6
Q14
Q22
Q30
Q38
Q46
Q54
Q62
Q70
Q78
D3
Q5
Q13
Q21
Q29
Q37
Q45
Q53
Q61
Q69
Q77
RD
Not initialized
Q81-2: Q-subcode
All 80 bits are updated at the same time every sync code cycle for Q-subcode.
MS1076-E-01
2010/05
- 45 -
[AK4122A]
■ Burst Preambles in Non-PCM Bitstreams
sub-frame of IEC60958
0
3 4
preamble
7 8
Aux.
11 12
27 28 29 30 31
LSB
MSB V U C P
16 bits of bitstream
0
Pa Pb Pc Pd
15
Burst_payload
stuffing
repetition time of the burst
Figure 26. Data Structure of IEC60958
Preamble word
Pa
Pb
Pc
Pd
Length of field
Contents
16 bits
sync word 1
16 bits
sync word 2
16 bits
Burst info
16 bits
Length code
Table 22. Burst Preamble Word
MS1076-E-01
Value
0xF872
0x4E1F
see Table 23
numbers of bits
2010/05
- 46 -
[AK4122A]
Repetition time of burst
in IEC60958 frames
Bits of Pc Value
Contents
0-4
data type
NULL data
Dolby AC-3 data
reserved
PAUSE
MPEG-1 Layer1 data
MPEG-1 Layer2 or 3 data or MPEG-2 without extension
MPEG-2 data with extension
MPEG-2 AAC ADTS
MPEG-2, Layer1 Low sample rate
MPEG-2, Layer2 or 3 Low sample rate
reserved
DTS type I
DTS type II
DTS type III
ATRAC
ATRAC2/3
reserved
reserved, shall be set to “0”
error-flag indicating a valid burst_payload
error-flag indicating that the burst_payload may contain
errors
data type dependent info
bit stream number, must be set to “0”
Table 23. Field of Burst Information Pc
7
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16-31
0
0
1
8-12
13-15
0
5, 6
MS1076-E-01
≤ 4096
1536
384
1152
1152
1024
384
1152
512
1024
2048
512
1024
2010/05
- 47 -
[AK4122A]
■ Non-PCM Bitstream Timing
(1) When Non-PCM preamble does not arrive within 4096 frames
PDN pin
Bit stream
Pa Pb Pc1 Pd1
Pa Pb Pc2 Pd2
Repetition time
Pa Pb Pc3 Pd3
>4096 frames
AUTO bit
Pc Register
“0”
Pd Register
“0”
Pc1
Pc3
Pc2
Pd1
Pd3
Pd2
Figure 27. Timing example 1
(2) When Non-PCM bitstream stops (when MULK0 bit = “0”)
INT0 hold time
INT0 pin
<20mS (Lock time)
Bit stream
Pa Pb Pc1 Pd1
Stop
Pa Pb Pcn Pdn
2~3 Syncs (B,M or W)
<Repetition time
AUTO bit
Pc Register
Pd Register
Pc0
Pcn
Pc1
Pd0
Pd1
Pdn
Figure 28. Timing example 2
MS1076-E-01
2010/05
- 48 -
[AK4122A]
SYSTEM DESIGN
Figure 29 shows the typical system connection diagram. An evaluation board is available which demonstrates application
circuits, the optimum layout, power supply arrangements and measurement results.
• PORT2, PORT3 : Slave Mode
Digital Supply
3.0 ~ 3.6V
uP & DSP
DSP3
10μ
fso
0.1μ
48
47
46
45
44
43
42
41
40
39
38
37
CCLK
CSN
BVSS
DVDD
DVSS
OMCLK
LRCK
BICK
SDTO
TX
INT1
INT0
1 CDTI
SDTIO 36
2 CDTO
BICK2 35
3 TST1
LRCK2 34
4 INT2
MCLK2 33
5 TST2
DVDD 32
Top View
6 TST3
7 M/S2
0.1μ
10μ
Digital Supply
3.0 ~ 3.6V
DVSS 31
SDTI 30
8 M/S3
DSP1
BICK1 29
9 SMUTE
LRCK1 28
10 TST4
PDN 27
11 TST5
AVSS 26
fsi
Reset
RX1
TST7
RX2
TST8
RX3
TST9
RX4
TST10
TST11
2.2μ
TST6
470Ω
AVDD
R 25
AVSS
12 FILT
2.2n
DSP2
fsi
13
14
15
16
17
18
19
20
21
22
23
24
12kΩ
0.1μ
10μ
Shield
Analog Supply
3.0 ~ 3.6V
Shield
Shield
Shield
Shield
S/PDIF
sources
Note:
- AVSS, BVSS and DVSS of the AK4122A should be distributed separately from the ground of external digital
devices (MPU, DSP etc.).
- All digital input pins should not be left floating.
Figure 29. Typical Connection Diagram
MS1076-E-01
2010/05
- 49 -
[AK4122A]
1. Grounding and Power Supply Decoupling
The AK4122A requires careful attention to power supply and grounding arrangements. Alternatively if AVDD and DVDD
are supplied separately, the power up sequence is not critical. AVSS, BVSS and DVSS of the AK4122A must be
connected to analog ground plane. System analog ground and digital ground should be connected together near to where
the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK4122A as
possible, with the small value ceramic capacitor being the nearest.
2. PLL Loop-Filter
The C1 (2.2μF) and R1 (470Ω) should be connected in series and attached between the FILT pin and AVSS in parallel with
C2 (2.2nF). Noises onto the FILT pin should be avoided.
AK4122A
FILT
R1
C2
C1
AVSS
Parameter
Recommended value
Accuracy
R1
470Ω
−5% ∼ +5%
C1
2.2μF
−50% ∼ +50%
C2
2.2nF
−50% ∼ +50%
Note: The accuracy includes temperature dependence.
Figure 30. Loop Filter for SRC
The R2 (12kΩ) should be connected in series between R pin and AVSS. Please be careful the noise onto the R pin.
AK4122A
R
R2
AVSS
Parameter
Recommended value
Accuracy
R2
12kΩ
−5% ∼ +5%
Note: The accuracy includes temperature dependence.
Figure 31. Loop Filter for DIR
MS1076-E-01
2010/05
- 50 -
[AK4122A]
3. Jitter Tolerance
Figure 32 shows the jitter tolerance to ILRCK. The jitter frequency and the jitter amplitude shown in Figure 32 define the
jitter quantity. When the jitter amplitude is 0.01Uipp or less, the AK4122A operate normally regardless of the jitter
frequency.
AK4122A Jitter Tolerance
10.00
1.00
Amplitude [UIpp]
(3)
(2)
0.10
0.01
(1)
0.00
1
10
100
1000
10000
Frequency [Hz]
(1) Normal operation
(2) There is a possibility that the distortion degrades. (It may degrade up to about −50dB.)
(3) There is a possibility that the output data is lost.
Note:
- The jitter amplitude is for ILRCK and 1UI (Unit Interval) is one cycle of ILRCK. When FSI = 48kHz, 1UI is
1/48kHz = 20.8μs.
Figure 32. Jitter Tolerance
MS1076-E-01
2010/05
- 51 -
[AK4122A]
PACKAGE
48pin LQFP(Unit: mm)
1.70Max
9.0 ± 0.2
0.13 ± 0.13
7.0
36
25
24
48
13
7.0
37
1
9.0 ± 0.2
1.40 ± 0.05
12
0.16 ± 0.07
0.5
0.22 ± 0.08
0.10 M
0° ∼ 10°
0.10
0.5 ± 0.2
■ Material & Lead finish
Package molding compound:
Lead frame material:
Lead frame surface treatment:
Epoxy
Cu
Solder (Pb free) plate
MS1076-E-01
2010/05
- 52 -
[AK4122A]
MARKING
AKM
AK4122AVQ
XXXXXXX
1
XXXXXXXX: Date code identifier
REVISION HISTORY
Date (YY/MM/DD)
09/05/19
Revision
00
10/05/17
01
Reason
First Edition
Description
Addition
Page
Contents
24
■ Sequence of changing clocks
Description is added in notes.
MS1076-E-01
2010/05
- 53 -
[AK4122A]
IMPORTANT NOTICE
z These products and their specifications are subject to change without notice.
When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei
Microdevices Corporation (AKM) or authorized distributors as to current status of the products.
z Descriptions of external circuits, application circuits, software and other related information contained in this
document are provided only to illustrate the operation and application examples of the semiconductor products. You
are fully responsible for the incorporation of these external circuits, application circuits, software and other related
information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third
parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent,
intellectual property, or other rights in the application or use of such information contained herein.
z Any export of these products, or devices or systems containing them, may require an export license or other official
approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange,
or strategic materials.
z AKM products are neither intended nor authorized for use as critical componentsNote1) in any safety, life support, or
other hazard related device or systemNote2), and AKM assumes no responsibility for such use, except for the use
approved with the express written consent by Representative Director of AKM. As used here:
Note1) A critical component is one whose failure to function or perform may reasonably be expected to result,
whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and
which must therefore meet very high standards of performance and reliability.
Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety
or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or
perform may reasonably be expected to result in loss of life or in significant injury or damage to person or
property.
z It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places
the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer
or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all
claims arising from the use of said product in the absence of such notification.
MS1076-E-01
- 54 -
2010/05