Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Vector Signal Generation for present and coming modulations Beyond S-Parameters © Agilent Technologies, Inc. 2007 Page M6- 1 Aerospace and Defense Symposium 2007 To Mobile Communications…. EuMw 2007 Agilent Workshop TESTING DIGITAL TRANSMITTERS and RECEIVERs 1011001110001010001 1011001110001010001 RF Signal injection IF Signal Injection Baseband Signal Injection Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Symposium 2007 Generating Signals – Defense Composite Modulation EuMw 2007 Agilent Workshop Vector Modulation - Important Characteristics Q Phase IQ Modulation Bandwidth Frequency Response/flatness IQ quadrature skew IQ gain balance 0 deg I flatness Fb w Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace Defense Symposium 2007 Basic 2007 CW Signals –and Block Diagram EuMw Agilent Workshop RF Source Synthesizer Section Frac-N Output Section ALC Modulator Output Attenuator Phase Detector VCO divide by X Reference Oscillator Reference Section Beyond S-Parameters © Agilent Technologies, Inc. 2007 ALC Driver ALC Detector ALC = automatic level control Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Block Diagram Reference Section Divide by X Phase Detector Optional External Reference Input Reference Oscillator (TCXO or OCXO) Aging Rate TCXO +/- 2ppm/year OCXO +/- 0.1 ppm /year Temp. +/- 1ppm +/- 0.01 ppm Line Voltage +/- 0.5ppm +/- 0.001 ppm Beyond S-Parameters © Agilent Technologies, Inc. 2007 To synthesizer section Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Block Diagram Synthesizer Section Front panel control N = 93.1 Frac-N Error signal 5MHz To output section Phase Detector X VCO 5MHz From reference section Beyond S-Parameters © Agilent Technologies, Inc. 2007 465.5 MHz 2 Multiplier 931 MHz Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Block Diagram Output Section • ALC •maintains level output ALC Modulator power by adding/subtracting From power as needed synthesizer Output Attenuator section Source output • Output Attenuator •mechanical or electronic •provides attenuation to achieve wide output range (e.g. -136dBm to +17dBm) ALC Driver ALC Detector Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Block Diagram High Performance Source Reference Section Frac N ALC Modulator Phase Det VCO Sampler Ref Osc YIG Oscillator Phase Detector ALC Driver Frac -N Synthesizer Section Beyond S-Parameters © Agilent Technologies, Inc. 2007 ALC Detector Output Section Output Attenuator Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Specifications Frequency Range -- Fmin to Fmax Resolution – smallest frequency increment Accuracy – is it where it says it is Uncertainty Power Accuracy = +_ f CW * t aging * t f CW = Frequency t aging = t cal = Accuracy = +_152 Hz Beyond S-Parameters © Agilent Technologies, Inc. 2007 cal CW frequency = 1 GHz aging rate = 0.152 ppm/year time since last calibrated = 1 year Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Specifications Amplitude Range (-136dBm to +17dBm) Accuracy (+/- 0.5dB) Resolution (0.02dB) Switching Speed (19ms) Reverse Power Protection Source protected from accidental transmission from DUT What is Pmax out? How accurate is this number? DUT Voltage • • • • • What is Pmin out? Frequency Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace Defense Symposium 2007 EuMw Agilent Workshop Basic 2007 CW Signals –and Specifications Spectral Purity • Phase Noise • Spurious CW output Phase noise Non-harmonic spur ~65dBc Harmonic spur ~30dBc Sub-harmonics 0.5 f0 Beyond S-Parameters © Agilent Technologies, Inc. 2007 f0 2f0 Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Basic CW Signals – Specifications PLL/Fractional-N…suppress phase noise Overall phase noise of signal Reference oscillator Phase detector noise 20logN VCO noise Beyond S-Parameters © Agilent Technologies, Inc. 2007 Phase-locked-loop (PLL) bandwidth selected for optimum noise performance Broadband noise floor frequency Aerospace and Defense Symposium 2007 EuMw Agilent Basic2007 CW SignalsWorkshop – Applications In-Channel Receiver Testing The smallest RF signal that will produce a desired baseband output from the receiver Receiver Sensitivity IF signal DUT Key Specs: in-channel signal (cw signal) source • Range (-136dBm to +17dBm) • Accuracy (+/- 0.5dB) • Resolution (0.02dB) Level (dBm) output IF Rejection Curve -116 dBm to – 126 dBm IF Channel Frequency Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense Symposium 2007 EuMw Agilent Basic 2007 CW SignalsWorkshop – Applications Out-of-channel Receiver Testing Receiver Selectivity Spurious Response Immunity IF signal out-of-channel signal (CW and/or modulated signal) DUT source output IF Rejection Curve Key Specs: Frequency Range Output Power Phase Noise Broadband noise Non-harmonic spurious spur from source and/or high levels of phase noise can cause a good receiver to fail Level (dBm) • • • • • Frequency Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense Symposium 2007 Basic2007 CW Signals – Applications EuMw Agilent Workshop Out-of-channel Receiver Testing - IMD Intermodulation immunity f1 IF signal isolator f2 Fmod = nF1 + mF2 DUT • • • • • Frequency Range Frequency Accuracy Frequency Resolution Output Power Non-harmonic spurious out-of-channel signals sources output F1 F2 Frequency Beyond S-Parameters © Agilent Technologies, Inc. 2007 IF Rejection Curve Intermodulation product Fmod = 2F2 – F1 spur from source Level (dBm) Key Specs: n= -1,2 m= 2,-1 Aerospace and Defense Symposium 2007 EuMw 2007 Agilent–Workshop Analog Signals Block Diagram Add AM, FM, PM, and Pulse Modulation VCO Output Attenuator ALC Modulator Pulse Mod. Freq. Control Reference Oscillator Beyond S-Parameters © Agilent Technologies, Inc. 2007 ALC Driver FM, PM input AM input Pulse Mod input Aerospace and Defense Symposium 2007 EuMw 2007 Agilent–Workshop Analog Signals Block Diagram Add internal modulation generator VCO Output Attenuator ALC Modulator Pulse Mod. Freq. Control ALC Driver AM input FM, PM input Reference Oscillator Beyond S-Parameters © Agilent Technologies, Inc. 2007 FM AM Source Source Pulse Mod input Pulse Source Aerospace and Defense Symposium 2007 EuMw 2007 Agilent–Workshop Analog Signals Applications Pulsed Radar Testing with Chirps RF Signal Injection Key Specs: FM during the pulse = chirp • Frequency Range • FM Modulation rate/deviation • Pulse rate, width, rise time LNA 1st LO Signal Processor (range and Doppler) 2nd IFA IF BPF 2nd LO Beyond S-Parameters © Agilent Technologies, Inc. 2007 ANTENNA 1st IFA IF BPF Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Block Diagram IQ Modulation 01 I : Q 00 Carrier I p/ 2 Q : 11 Beyond S-Parameters © Agilent Technologies, Inc. 2007 Good Interface with Digital Signals and Circuits Can be Implemented with Simple Circuits Fast, accurate state change 10 Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Vector Signals – Workshop Block Diagram Adding the IQ modulator Synthesizer VCO I-Q Modulator Output p/2 Freq. Control ALC Driver Q Reference Beyond S-Parameters © Agilent Technologies, Inc. 2007 I Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Block Diagram Baseband IQ signal generation Analog Reconstruction Filters Symbol Mapping and Baseband Filters Pattern RAM 00 -> 1+j1 11000101101 01001011100 10101010 01 -> -1+j1 10 -> -1-j1 11 -> 1-j1 Beyond S-Parameters © Agilent Technologies, Inc. 2007 DAC I DAC Q Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Vector2007 Signals – Block Diagram Adding an internal Baseband Generator Synthesizer VCO I-Q Modulator Output p/2 Freq. Control ALC Driver Q DAC I Reference DAC Pattern RAM and Symbol Mapping Baseband Generator Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Applications Digital Receiver Sensitivity The smallest modulated RF signal that will produce a specified BER from the receiver DUT RF DAC Baseband DSP Amplitude RF LO Payload Data BER Spec Line frequency Beyond S-Parameters © Agilent Technologies, Inc. 2007 BER Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Applications Digital Receiver Sensitivity Testing a -110 dB sensitivity digital receiver: X= Failed unit O=Passed unit -110 dB specification X X X -110 dB specification Set source to -111 dBm X X X X Actual output power= -114 dBm O Set source to -115 dBm Frequency Case 1: Source has +/-5 dB of output power accuracy at -100 to -120 dBm output power. Beyond S-Parameters © Agilent Technologies, Inc. 2007 O O O Actual output power= -112 dBm O Frequency Case 2: Source has +/-1 dB of output power accuracy at -100 to -120 dBm output power. Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Vector2007 Signals – Applications Receiver Sensitivity – Connected Solutions • Simulated portion RF IF I Demodulator Q A/D Converter Baseband De-Coding DUT RF/IF BER Signal Generator Beyond S-Parameters © Agilent Technologies, Inc. 2007 Simulation Software Signal Analyzer Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Vector2007 Signals – Applications Receiver Selectivity (Blocking Tests) In-channel signal (modulated signal) RF DAC Out-of-channel signal (CW or modulated signal) Baseband DSP RF LO Level (dBm) IF Rejection Curve Spur from source and/or high levels of phase noise can cause a good receiver to fail Sensitivity specification Frequency Beyond S-Parameters © Agilent Technologies, Inc. 2007 Payload Data Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Vector Signals – Workshop Applications Component Distortion – Adjacent Channel Power Ratio DUT Spectral Output from amplifier ACPR Input from VSG Spectral regrowth ACP Margin Margin (dB) 0 Error contribution (dB) 3.0 Beyond S-Parameters © Agilent Technologies, Inc. 2007 1 2 3 4 5 10 15 2.5 2.1 1.8 1.5 1.2 0.4 0.2 Aerospace and Defense Symposium 2007 EuMw Agilent Workshop Vector2007 Signals – Applications Component Distortion – Error Vector Magnitude OFDM Signal 400 MHz Bandwidth DAC Q Q Magnitude Error Q (IQ error mag) I Test Signal f Error Vector Magnitude Ideal (Reference) Signal Phase Error (IQ error phase) I Beyond S-Parameters © Agilent Technologies, Inc. 2007 I Aerospace and Defense Symposium A portfolio of signal generation solutions 2007 EuMw 2007 Agilent Workshop Analog Vector Basic & Mid-performance RF MW RF N5172B EXG N5183A MXG N5171B EXG 1, 3, 6, 20, 32, 40 GHz High reliability, high power, and fast switching speeds Fast switching speeds, low ACPR, high power and high reliability Baseband Fading N5106A PXB High performance RF RF MW RF MW N5181B MXG E8663D E8257D PSG N5182B MXG E8267D PSG High spectral purity Best close-in phase noise High power, low phase noise Real-time BBG, BERT, digital I/Q Agilent INNOVATION first vector modulation at MW 3, 6, 9, 20, 32, 40, 50, 67 GHz Beyond S-Parameters © Agilent Technologies, Inc. 2007 1, 2, 3, 4, 6, 20, 32, 44 GHz Aerospace andofDefense Symposium 2007 EuMw 2007 Agilent Workshop EXG/MXG a Range Performance MXG Golden transmitter in R&D EXG Optimized for manufacturing VECTOR VECTOR N5182B N5172B ANALOG ANALOG N5181B N5171B Specifications MXG EXG PHASE NOISE@ 1GHZ -146 dBc -121 dBc POWER @ 1GHZ +27 dBm +27 dBm ACPR (VECTOR) -73 dBc -70 dBc BANDWIDTH (VECTOR) 160MHz 120 MHz EVM (VECTOR) 0.4% in 160 MHz BW ARB MEMORY (VECTOR) 1024 Msamples 512 Msamples X-Series capabilities • • • Industry-leading performance Most sophisticated real-time applications Low cost of ownership Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense Symposium 2007 EuMw 2007 AgilentPXB Workshop Agilent N5106A • Baseband Performance • Up to 4 baseband generators (160 MHz 512 MSa) • Analog and digital I/Q outputs • MIMO • Up to 8 real-time faders (160MHz BW) • Up to 24 paths per fader (40MHz BW) • Up to 2x4, 4x2 MIMO in one unit • Pre-defined fading setups • Channel/Path Correlation • Signal Creation Software • Supports multiple signal creation apps • LTE FDD-TDD, WiMAX, W-CDMA, GSM/EDGE • WLAN, Real time LTE-FDD Uplink, DVB T/H Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop PSG microwave signal generators • CW/Analog up to 67 GHz (70 GHz) • Highest output power • Superior phase noise performance E8257D PSG analog signal generator Up to 67 GHz Beyond S-Parameters © Agilent Technologies, Inc. 2007 Page 32 • Integrated vector modulation up to 44 GHz • Wide bandwidth up to 2 GHz • Flexible option configuration E8267D PSG vector signal generator Up to 44 GHz accelerating innovation PSG VIP September-October 2004 Aerospace and wideband Defense Symposium 2007 EuMw 2007 Agilent Workshop E8267D PSG vector modulation • Differential wideband IQ inputs – Up to 2 GHz of modulation BW • Option 016 for frequencies above 3.2 GHz – 260 MHz below 3.2 GHz without H18 • Option H18 for frequencies below 3.2 GHz I I Q Q • Interoperability with the N6030A, N8241A, 81180A or M8190A wideband AWGs • Multitone, noise power ratio and pulse building Signal Studio waveform creation software Wideband signals from 250 kHz – 44 GHz Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Currently Available High-Speed AWGs SFDR 1) 80 What could you do if you had something here? R&S 70 60 50 40 0.5 1 2 1) SFDR across Nyquist range with fout = 150 MHz 2) Bandwidth of a single channel AWG output 4 8 Bandwidth (GHz) 2) 34 Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Agilent M8190A Arbitrary Waveform Generator • Precision AWG with DAC resolution of: • 14 bit up to 8 GSa/s • 12 bit up to 12 GSa/s • Up to 2 GSa Arbitrary Waveform Memory per channel • 5 GHz analog bandwidth per channel • 3 selectable output paths: direct DAC, DC and AC • SFDR goal: < -75 dBc typ. (fout < 1 GHz, 14 bit mode, across Nyquist range) • Harmonic distortion goal: < -65 dBc typ. • Advanced sequencing scenarios define stepping, looping, and conditional jumps of waveforms or waveform sequences • 2 markers per channel (do not reduce DAC resolution) 35 Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop High-Precision AWG Example: Digital Modulation •Wideband digital modulation: QAM16, 1G Sym/s (~ 4 Gb/s) Fs = 7.2 GHz with amplitude correction 36 Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Wideband I/Q Modulation AWG • Analog I and Q signals are generated using an AWG. An I/Q modulator generates the IF or RF signal Memory Analog IQ Modulator ~ + 90° Digital signal Analog signal Memory D/A Signal Generation Setup Differential I/Q signals IQ Modulation X D/A X Modulation BW up to 2 GHz RF up to 44 GHz PCIe RF/IF out M8190A Marker output Pulse mod. input E8267D Opt. 016 37 Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Wideband Analog I/Q Modulation Example •Multi-tone signal with 20 tones spanning 2GHz •Asymmetric with respect to the carrier frequency Notice: • Images • Carrier feed-through • Non-Flatness Theoretical signal 38 Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Amplitude Correction Setup • AWG and spectrum analyzer are remotely controlled by a PC running an equalization routine • Magnitude of each tone in the multi-tone signal is measured and frequency response stored in a file • Pre-distorted multi-tone signal can be calculated Remote Control PC running Multi-tone and equalization routine AWG Vector Signal Generator Spectrum Analyzer 39 Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Wideband Analog I/Q Modulation Example •Adjusting the skew and relative amplitude between the I and Q signals reduces the images •Typically, they can be reduced to about -30 dBc •Adjusting the differential offset of the I and Q signals reduces the carrier feed-through •With amplitude correction, the frequency response can be adjusted to be flat within less than 0.5 dB Theoretical signal 40 Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Broad Range of Applications Agilent Signal Studio and embedded software Cellular communications LTE-Advanced FDD/TDD LTE FDD/TDD W-CDMA/HSPA/HSPA+ TD-SCDMA/HSPA GSM/EDGE/EDGE Evo cdma2000/1xEV-DO Wireless connectivity 802.11n WLAN 802.11a/b/g/p/j /ac WLAN 802.16 WiMAX Bluetooth Simplify signal creation Beyond S-Parameters © Agilent Technologies, Inc. 2007 Audio/video broadcasting ATSC CMMB / DTMB DAB/DAB+ DOCSIS DVB-T/T2/H/C/S/S2 FM Stereo/RDS ISDB-T/TSB/Tmm J.83 Annex A/B/C S/T-DMB Detection, positioning, tracking & navigation General RF & MW GPS/GLONASS Toolkit Multitone GPS Scenario Generator Pulse Train Phase noise impairment Noise (AWGN) Channel emulation Analog & digital mod MATLAB SytemVue Aerospace and Defense Symposium 2007 EuMw 2007 Agilent– Workshop Vector Signals Applications Format Specific Modulation GSM: slots multiple users, same frequency, different time Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense Symposium 2007 W-LAN EuMw 2007 Agilent Workshop Wireless Evolution 1990 - 2012 Increasing efficiency, bandwidth and data rates 2G 2.5G PDC GSM IS-136 IS-95A (Japan) (Europe) (US TDMA) (US CDMA) iMODE HSCSD IS-95B GPRS 802.11b 802.11a/g (US CDMA) 802.11h 3G 3.5G W-CDMA TD-SCDMA E-GPRS cdma2000 (FDD & TDD) (China) (EDGE) (1x RTT) HSDPA HSUPA EDGE Evolution 1x EV-DO 0AB 802.11n 802.16d (Fixed WiMAX) WiBRO 3.9G/ 4G HSPA+ / E-HSPA 4G / IMTAdvanced Beyond S-Parameters © Agilent Technologies, Inc. 2007 LTE 802.16e (R8/9 FDD & TDD) (Mobile WiMAX) (Korea) LTE-Advanced 802.16m / WiMAX2 (R10 & beyond) WirelessMAN-Advanced 802.11ac 802.11ad Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop LTE Major Features Access modes FDD & TDD Channel BW (1RB = 12 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz 6 RB 15 RB 25 RB 50 RB subcarriers = 180 kHz) 75 RB 100 RB Transmission Scheme Downlink: OFDMA (Orthogonal Frequency Division Multiple Access) Uplink: SC-FDMA (Single Carrier Frequency Division Multiple Access Modulation Schemes QPSK, 16QAM, 64QAM MIMO Technology Downlink: Tx diversity, Rx diversity, Single-User MIMO (up to 4x4), beamforming Uplink: Multi-User MIMO Peak Data Rates Downlink: 150 Mbps (2x2 MIMO, 20 MHz, 64QAM); 300 Mbps (4x4 MIMO, 20 MHz, 64QAM) Upliknk: 75 Mbps @ 20 MHz BW, 64QAM Bearer services Packet only – no circuit switched voice or data services are supported voice must use VoIP Transmission Time Interval 1 ms Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace andbands Defense Symposium 2007 EuMwFrequency 2007 Agilent Workshop LTE FDD Band 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15* 16* 17 18 19 20 21 23 24 25 Uplink MHz 1920 1980 1850 1910 1710 1785 1710 1755 824 849 830 840 2500 2570 880 915 1749.9 1784.9 1710 1770 1427.9 1447.9 698 716 777 787 788 798 1900 1920 2010 2025 704 716 815 830 830 845 832 862 1447.9 1462.9 2000 2020 1626.5 1660.5 1850 1915 Downlink MHz Width Duplex Gap 2110 2170 60 190 130 1930 1990 60 80 20 1805 1880 75 95 20 2110 2155 45 400 355 869 894 25 45 20 865 87510 35 25 2620 2690 70 120 50 925 960 35 45 10 1844.9 1879.9 35 95 60 2110 2170 60 400 340 1475.9 1495.9 20 48 28 728 746 18 30 12 746 756 10 -31 41 758 768 10 -30 40 2600 2620 20 700 680 2585 2600 15 575 560 734 746 12 30 18 860 875 15 45 30 875 890 15 45 30 791 821 30 -41 71 1495.9 1510.9 15 48 33 2180 2200 20 180 160 1525 1559 34 -101.5 135.5 1930 1995 65 80 15 Beyond S-Parameters © Agilent Technologies, Inc. 2007 Duplex spacing Width Uplink Band Width Gap Downlink Band Frequency Points of note • There is a lot of overlap between band definitions for regional reasons • The Duplex spacing varies from 30 MHz to 799 MHz • The gap between downlink and uplink varies from 10 MHz to 680 MHz Aerospace andbands Defense Symposium 2007 EuMw 2007 AgilentTDD Workshop LTE Frequency Width Transceive Band Frequency Band 33 34 35 36 37 38 39 40 41 42 43 Uplink MHz 1900 2010 1850 1930 1910 2570 1880 2300 2496 3400 3600 Downlink MHz 1920 2025 1910 1990 1930 2620 1920 2400 2690 3600 3800 Beyond S-Parameters © Agilent Technologies, Inc. 2007 1900 2010 1850 1930 1910 2570 1880 2300 2496 3400 3600 1920 2025 1910 1990 1930 2620 1920 2400 2690 3600 3800 Width 20 15 60 60 20 50 40 100 194 200 200 Points of note • For TDD there is no concept of duplex spacing or gap since the downlink and uplink frequencies are the same • As such, the challenge of separating transmit from receive does not require a duplex filter for the frequency domain but a switch for the time domain Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Future LTE/UTRA Frequency bands • The work on defining new frequency bands shows no sign of slowing up. • These are the bands currently being considered by 3GPP: – Band 22 – Band 26 – Band 27 3410/3490 + 3510/3590 – UMTS/LTE 3500 MHz 814/849 MHz + 859/894 – Extended 850 upper band 806/824 + 851/869 – Extended 850 lower band • Other possibilities identified by the ITU: – 3.6-4.2 GHz – 450−470 MHz – 698−862 MHz – 790−862 MHz band (European digital dividend) – 4.4-4.99 GHz band Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Orthogonal Frequency Division Multiplexing 5 MHz Bandwidth FFT Sub-carriers Guard Intervals … Symbols Frequency … Time • • • • • LTE provides QPSK, 16QAM, 64QAM as downlink modulation schemes Each sub-carrier carries a separate low-rate stream of data 15 kHz subcarrier spacing Each sub-carrier is independently modulated Cyclic prefix is used as guard interval to minimize inter-symbol interference Beyond S-Parameters © Agilent Technologies, Inc. 2007 Slot Structure andand Resource Block (RB) 2007 Aerospace Defense Symposium EuMw 2007 Agilent Workshop Downlink – OFDMA ‒ One downlink slot, Tslot DL N symb OFDM symbols subcarriers Resource Element (RE) (k, l) RB Nsc subcarriers RB Nsc Condition Normal cyclic prefix Extended cyclic prefix : l=0 A Resource Block (RB) is basic scheduling unit. It contains: • 7 symbols (1 slot) X 12 subcarriers for normal cyclic prefix or; • 6 symbols (1 slot) X 12 subcarriers for extended cyclic prefix ‒ Minimum user allocation is 1 ms (2 slots) and 180 kHz (12 subcarriers, 1RB). ‒ Resource Block (RB) RB DL N symb x Nsc : A Resource Element (RE) is the smallest unit in the physical layer and occupies one symbol in the time domain and one sub-carrier in the frequency domain. DL l=N symb Beyond S-Parameters © Agilent Technologies, Inc. 2007 ∆f=15kHz 12 N DL RB DL7 N symb ∆f=15kHz 12 6 ∆f=7.5kHz 24 3 –1 Page 49 Aerospace andOverview Defense Symposium 2007 EuMw Agilent Workshop LTE 2007 Physical Layer LTE air interface consists of two main components: signals and channels ‒ Physical Signals • These are generated in Layer 1 and are used for system synchronization, cell identification and radio channel estimation ‒ Physical Channels • These carry data from higher layers including control, scheduling and user payload The following is a simplified high-level description of the essential signals and channels Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Symposium 2007 EuMw Agilent Workshop Signal2007 Modulation andDefense Mapping DL Signals Modulation Sequence Physical Mapping uth root Zadoff-Chu 62 out of the available 72 central subcarriers at OFDMA symbol #6 of slot #0 & #10 Secondary Synchronization Signal (S-SS) Binary sequences; BPSK 62 out of the available 72 central subcarriers at OFDMA symbol #5 of slot #0 & #10 Reference Signal (RS) Orthogonal Sequence (OS) and Pseudo Random Sequence (PRS) defined by Cell ID Every 6th subcarrier of OFDMA symbols #0 & #4 of every slot (port 0) UL Signals Modulation Sequence Physical Mapping PUSCH Demodulation Reference Signal (DM-RS) Zadoff-Chu for PUSCH RB ≥ 3 QPSK for PUSCH RB < 3 SC-FDMA symbol #3 of every PUSCH slot PUCCH Demodulation Reference Signal (DM-RS) QPSK PUCCH format 1/1a/1b: SCFDMA symbols #2, #3 and # 4 of every PUCCH slot. Sounding Reference Signal (SRS) uth root Zadoff-Chu Last SC-FDMA symbol of subframe Primary Synchronization Signal (P-SS) Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and and Defense Symposium 2007 EuMw 2007 Agilent Workshop Channel Modulation Mapping DL Channels Modulation Scheme Physical Mapping Physical Broadcast Channel (PBCH) QPSK 72 central subcarriers at OFDMA symbol #0 to #3 of slot #1. Physical Control Format Indicator Channel (PCFICH) QPSK OFDMA symbol #0 of slot 0 in a sub-frame Physical Hybrid-ARQ Indicator Channel (PHICH) BPSK (CDM) OFDMA symbol #0 of every sub-frame (Normal duration) and symbols #0, 1 & 2 of every subframe (Extended duration) if the number of PDCCH symbols = 3 Physical Downlink Control Channel (PDCCH) QPSK OFDMA symbol #0, #1 & #2 of the first slot of the subframe. Physical Downlink Shared Channel (PDSCH) QPSK, 16QAM, 64QAM Resource blocks not occupied by the rest of downlink channels and signals UL Channels Modulation Scheme Physical Mapping Physical Random Access Channel (PRACH) uth root Zadoff-Chu for preamble sequence Depends on PRACH configuration BPSK & QPSK Resource blocks not occupied by the rest of UL channels and signals but not simultaneous with PUSCH QPSK, 16QAM, 64QAM Resource blocks not occupied by the rest of UL channels and signals but not simultaneous with PUCCH Physical Uplink Control Channel (PUCCH) Physical Uplink Shared Channel (PUSCH) Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Multiple Antenna Techniques Multiple antenna techniques are fundamental to LTE The main multi-antenna techniques used in LTE are: Transmit diversity Receive diversity Spatial multiplexing (MIMO) Single User MIMO (SU-MIMO) Multi-user MIMO (MU-MIMO) Beamforming Beyond S-Parameters © Agilent Technologies, Inc. 2007 Aerospace and Defense EuMw 2007 Workshop Release 10Agilent LTE Radio AspectsSymposium 2007 1. Carrier aggregation 2. Enhanced uplink multiple access a) Clustered SC-FDMA b) Simultaneous Control and Data 3. Enhanced multiple antenna transmission Rel 10 LTE-A proposed to ITU a) Downlink 8 antennas, 8 streams b) Uplink 4 antennas, 4 streams 4. Coordinated Multipoint (CoMP) – study item 5. Relaying 6. Home eNB mobility enhancements 7. Customer Premises Equipment 8. Heterogeneous network support 9. Self Organized networks (SON) Beyond S-Parameters © Agilent Technologies, Inc. 2007 Other Release 10 Aerospace and Defense Symposium 2007 EuMw 2007 Agilent Workshop Carrier Aggregation Lack of sufficient contiguous spectrum up to 100 MHz forces use of carrier aggregation to meet peak data rate targets Able to be implemented with a mix of terminals Backward compatibility with legacy system (LTE) System scheduler operating across multiple bands Component carriers (CC) - M