Vector Signal Generation for present and coming

Aerospace
and Defense Symposium 2007
EuMw 2007
Agilent Workshop
Vector Signal Generation for
present and coming modulations
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Page M6- 1
Aerospace
and Defense Symposium 2007
To Mobile
Communications….
EuMw
2007
Agilent
Workshop
TESTING DIGITAL TRANSMITTERS and RECEIVERs
1011001110001010001
1011001110001010001
RF Signal injection
IF Signal Injection
Baseband Signal Injection
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and
Symposium
2007
Generating
Signals
– Defense
Composite
Modulation
EuMw
2007
Agilent
Workshop
Vector Modulation - Important Characteristics
Q
Phase
IQ Modulation Bandwidth
Frequency Response/flatness
IQ quadrature skew
IQ gain balance
0 deg
I
flatness
Fb
w
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
Defense
Symposium 2007
Basic 2007
CW
Signals
–and
Block
Diagram
EuMw
Agilent Workshop
RF Source
Synthesizer Section
Frac-N
Output Section
ALC
Modulator
Output
Attenuator
Phase
Detector
VCO
divide
by X
Reference
Oscillator
Reference Section
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
ALC
Driver
ALC Detector
ALC = automatic level control
Aerospace
Defense
Symposium 2007
EuMw
Agilent Workshop
Basic 2007
CW
Signals
–and
Block
Diagram
Reference Section
Divide
by X
Phase
Detector
Optional External
Reference Input
Reference Oscillator (TCXO or OCXO)
Aging Rate
TCXO
+/- 2ppm/year
OCXO
+/- 0.1 ppm /year
Temp.
+/- 1ppm
+/- 0.01 ppm
Line Voltage
+/- 0.5ppm
+/- 0.001 ppm
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
To synthesizer
section
Aerospace
Defense
Symposium 2007
EuMw
Agilent Workshop
Basic 2007
CW
Signals
–and
Block
Diagram
Synthesizer Section
Front
panel
control
N = 93.1
Frac-N
Error signal
5MHz
To output section
Phase
Detector
X
VCO
5MHz
From reference
section
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
465.5 MHz
2
Multiplier
931 MHz
Aerospace
Defense
Symposium 2007
EuMw
Agilent Workshop
Basic 2007
CW
Signals
–and
Block
Diagram
Output Section
• ALC
•maintains level output
ALC
Modulator
power by adding/subtracting From
power as needed
synthesizer
Output
Attenuator
section
Source
output
• Output Attenuator
•mechanical or electronic
•provides attenuation to
achieve wide output range
(e.g. -136dBm to +17dBm)
ALC
Driver
ALC Detector
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
Defense
Symposium 2007
EuMw
Agilent Workshop
Basic 2007
CW
Signals
–and
Block
Diagram
High Performance Source
Reference Section
Frac
N
ALC
Modulator
Phase
Det
VCO
Sampler
Ref
Osc
YIG
Oscillator
Phase
Detector
ALC
Driver
Frac
-N
Synthesizer
Section
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
ALC Detector
Output Section
Output
Attenuator
Aerospace
Defense Symposium 2007
EuMw
Agilent Workshop
Basic 2007
CW
Signals
–and
Specifications
Frequency
Range -- Fmin to Fmax
Resolution – smallest frequency increment
Accuracy – is it where it says it is
Uncertainty
Power
Accuracy = +_ f CW * t aging * t
f CW =
Frequency
t aging
=
t cal =
Accuracy = +_152 Hz
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
cal
CW frequency = 1 GHz
aging rate = 0.152 ppm/year
time since last calibrated = 1 year
Aerospace
Defense Symposium 2007
EuMw
Agilent Workshop
Basic 2007
CW
Signals
–and
Specifications
Amplitude
Range (-136dBm to +17dBm)
Accuracy (+/- 0.5dB)
Resolution (0.02dB)
Switching Speed (19ms)
Reverse Power Protection
Source protected from
accidental transmission from
DUT
What is Pmax out?
How accurate
is this number?
DUT
Voltage
•
•
•
•
•
What is Pmin out?
Frequency
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
Defense Symposium 2007
EuMw
Agilent Workshop
Basic 2007
CW
Signals
–and
Specifications
Spectral Purity
• Phase Noise
• Spurious
CW output
Phase
noise
Non-harmonic spur
~65dBc
Harmonic spur
~30dBc
Sub-harmonics
0.5 f0
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
f0
2f0
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent
Workshop
Basic CW Signals – Specifications
PLL/Fractional-N…suppress phase noise
Overall phase noise of signal
Reference
oscillator
Phase
detector
noise
20logN
VCO noise
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Phase-locked-loop (PLL)
bandwidth selected for optimum
noise performance
Broadband
noise floor
frequency
Aerospace
and
Defense Symposium 2007
EuMw
Agilent
Basic2007
CW
SignalsWorkshop
– Applications
In-Channel Receiver Testing
The smallest RF signal that will produce
a desired baseband output from the
receiver
Receiver Sensitivity
IF
signal
DUT
Key Specs:
in-channel signal
(cw signal)
source
• Range (-136dBm to +17dBm)
• Accuracy (+/- 0.5dB)
• Resolution (0.02dB)
Level (dBm)
output
IF Rejection Curve
-116 dBm to –
126 dBm
IF Channel Frequency
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and
Defense Symposium 2007
EuMw
Agilent
Basic 2007
CW
SignalsWorkshop
– Applications
Out-of-channel Receiver Testing
Receiver Selectivity
Spurious Response
Immunity
IF
signal
out-of-channel signal
(CW and/or modulated
signal)
DUT
source output
IF Rejection Curve
Key Specs:
Frequency Range
Output Power
Phase Noise
Broadband noise
Non-harmonic spurious
spur from source and/or high levels
of phase noise can cause a good
receiver to fail
Level (dBm)
•
•
•
•
•
Frequency
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and
Defense Symposium 2007
Basic2007
CW
Signals
– Applications
EuMw
Agilent
Workshop
Out-of-channel Receiver Testing - IMD
Intermodulation immunity
f1
IF
signal
isolator
f2
Fmod = nF1 + mF2
DUT
•
•
•
•
•
Frequency Range
Frequency Accuracy
Frequency Resolution
Output Power
Non-harmonic spurious
out-of-channel
signals
sources
output
F1
F2
Frequency
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
IF Rejection Curve
Intermodulation product
Fmod = 2F2 – F1
spur from
source
Level (dBm)
Key Specs:
n= -1,2
m= 2,-1
Aerospace
and Defense
Symposium 2007
EuMw
2007
Agilent–Workshop
Analog
Signals
Block
Diagram
Add AM, FM, PM, and Pulse Modulation
VCO
Output
Attenuator
ALC
Modulator
Pulse
Mod.
Freq.
Control
Reference
Oscillator
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
ALC
Driver
FM, PM input
AM input
Pulse Mod input
Aerospace
and
Defense
Symposium 2007
EuMw
2007
Agilent–Workshop
Analog
Signals
Block
Diagram
Add internal modulation generator
VCO
Output
Attenuator
ALC
Modulator
Pulse
Mod.
Freq.
Control
ALC
Driver
AM input
FM, PM input
Reference
Oscillator
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
FM
AM
Source Source
Pulse Mod input
Pulse
Source
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent–Workshop
Analog
Signals
Applications
Pulsed Radar Testing with Chirps
RF Signal
Injection
Key Specs:
FM during the pulse = chirp
• Frequency Range
• FM Modulation rate/deviation
• Pulse rate, width, rise time
LNA
1st LO
Signal
Processor
(range and Doppler)
2nd
IFA
IF
BPF
2nd
LO
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
ANTENNA
1st
IFA
IF
BPF
Aerospace
and Defense
Symposium 2007
EuMw
2007
Agilent– Workshop
Vector
Signals
Block
Diagram
IQ Modulation
01
I
:
Q
00
Carrier
I
p/
2
Q
:
11
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Good Interface with Digital Signals and Circuits
Can be Implemented with Simple Circuits
Fast, accurate state change
10
Aerospace
and Defense
Symposium 2007
EuMw
2007
Agilent
Vector
Signals
– Workshop
Block
Diagram
Adding the IQ modulator
Synthesizer
VCO
I-Q Modulator
Output
p/2
Freq.
Control
ALC
Driver
Q
Reference
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
I
Aerospace
and Defense
Symposium 2007
EuMw
2007
Agilent– Workshop
Vector
Signals
Block
Diagram
Baseband IQ signal generation
Analog Reconstruction
Filters
Symbol
Mapping and
Baseband
Filters
Pattern
RAM
00 -> 1+j1
11000101101
01001011100
10101010
01 -> -1+j1
10 -> -1-j1
11 -> 1-j1
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
DAC
I
DAC
Q
Aerospace
and Defense
Symposium 2007
EuMw
Agilent
Workshop
Vector2007
Signals
– Block
Diagram
Adding an internal Baseband Generator
Synthesizer
VCO
I-Q Modulator
Output
p/2
Freq.
Control
ALC
Driver
Q
DAC
I
Reference
DAC
Pattern
RAM
and
Symbol
Mapping
Baseband Generator
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent– Workshop
Vector
Signals
Applications
Digital Receiver Sensitivity
The smallest modulated RF signal that will
produce a specified BER from the receiver
DUT
RF
DAC
Baseband
DSP
Amplitude
RF LO
Payload
Data
BER Spec
Line
frequency
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
BER
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent– Workshop
Vector
Signals
Applications
Digital Receiver Sensitivity
Testing a -110 dB sensitivity digital receiver:
X= Failed unit
O=Passed unit
-110 dB specification
X
X
X
-110 dB specification
Set source to -111 dBm
X
X X X Actual output power= -114 dBm
O
Set source to -115 dBm
Frequency
Case 1: Source has +/-5 dB of
output power accuracy at
-100 to -120 dBm output power.
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
O O O
Actual output power= -112 dBm
O
Frequency
Case 2: Source has +/-1 dB of
output power accuracy at
-100 to -120 dBm output power.
Aerospace
and Defense Symposium 2007
EuMw
Agilent
Workshop
Vector2007
Signals
– Applications
Receiver Sensitivity – Connected Solutions
• Simulated portion
RF
IF
I
Demodulator
Q
A/D
Converter
Baseband
De-Coding
DUT
RF/IF BER
Signal Generator
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Simulation Software
Signal
Analyzer
Aerospace
and Defense Symposium 2007
EuMw
Agilent
Workshop
Vector2007
Signals
– Applications
Receiver Selectivity (Blocking Tests)
In-channel signal
(modulated signal)
RF
DAC
Out-of-channel signal
(CW or modulated signal)
Baseband
DSP
RF LO
Level (dBm)
IF Rejection Curve
Spur from source and/or high
levels of phase noise can
cause a good receiver to fail
Sensitivity specification
Frequency
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Payload
Data
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent
Vector
Signals
– Workshop
Applications
Component Distortion – Adjacent Channel Power Ratio
DUT
Spectral Output from amplifier
ACPR
Input from VSG
Spectral regrowth
ACP Margin
Margin (dB)
0
Error contribution (dB) 3.0
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
1
2
3
4
5
10
15
2.5
2.1
1.8
1.5
1.2
0.4
0.2
Aerospace
and Defense Symposium 2007
EuMw
Agilent
Workshop
Vector2007
Signals
– Applications
Component Distortion – Error Vector Magnitude
OFDM Signal 400 MHz Bandwidth
DAC
Q
Q
Magnitude Error
Q (IQ error mag)
I
Test
Signal
f
Error
Vector
Magnitude
Ideal (Reference) Signal
Phase Error (IQ error phase)
I
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
I
Aerospace
and
Defense Symposium
A portfolio
of
signal
generation
solutions 2007
EuMw
2007
Agilent
Workshop
Analog
Vector
Basic & Mid-performance
RF
MW
RF
N5172B EXG
N5183A
MXG
N5171B
EXG
1, 3, 6, 20, 32, 40 GHz
High reliability, high power,
and fast switching speeds
Fast switching speeds, low
ACPR, high power and high
reliability
Baseband Fading
N5106A PXB
High performance
RF
RF
MW
RF
MW
N5181B MXG
E8663D
E8257D PSG
N5182B MXG
E8267D PSG
High spectral purity
Best close-in
phase noise
High power,
low phase noise
Real-time BBG, BERT,
digital I/Q
Agilent INNOVATION
first vector modulation at MW
3, 6, 9, 20, 32, 40, 50, 67 GHz
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
1, 2, 3, 4, 6, 20, 32, 44 GHz
Aerospace
andofDefense
Symposium 2007
EuMw
2007
Agilent
Workshop
EXG/MXG
a Range
Performance
MXG
Golden transmitter in R&D
EXG
Optimized for manufacturing
VECTOR
VECTOR
N5182B
N5172B
ANALOG
ANALOG
N5181B
N5171B
Specifications
MXG
EXG
PHASE NOISE@ 1GHZ
-146 dBc
-121 dBc
POWER @ 1GHZ
+27 dBm
+27 dBm
ACPR (VECTOR)
-73 dBc
-70 dBc
BANDWIDTH (VECTOR)
160MHz
120 MHz
EVM (VECTOR)
0.4% in 160 MHz BW
ARB MEMORY (VECTOR)
1024 Msamples
512 Msamples
X-Series capabilities
•
•
•
Industry-leading performance
Most sophisticated real-time applications
Low cost of ownership
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and Defense Symposium 2007
EuMw
2007
AgilentPXB
Workshop
Agilent
N5106A
• Baseband Performance
• Up to 4 baseband generators (160 MHz 512 MSa)
• Analog and digital I/Q outputs
• MIMO
• Up to 8 real-time faders (160MHz BW)
• Up to 24 paths per fader (40MHz BW)
• Up to 2x4, 4x2 MIMO in one unit
• Pre-defined fading setups
• Channel/Path Correlation
• Signal Creation Software
• Supports multiple signal creation apps
• LTE FDD-TDD, WiMAX, W-CDMA, GSM/EDGE
• WLAN, Real time LTE-FDD Uplink, DVB T/H
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent
Workshop
PSG microwave signal generators
• CW/Analog up to 67 GHz (70 GHz)
• Highest output power
• Superior phase noise performance
E8257D PSG
analog signal generator
Up to 67 GHz
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Page
32
• Integrated vector modulation up to 44 GHz
• Wide bandwidth up to 2 GHz
• Flexible option configuration
E8267D PSG
vector signal generator
Up to 44 GHz
accelerating innovation
PSG VIP
September-October 2004
Aerospace
and wideband
Defense Symposium
2007
EuMw
2007
Agilent
Workshop
E8267D
PSG
vector
modulation
• Differential wideband IQ inputs
– Up to 2 GHz of modulation BW
• Option 016 for frequencies above 3.2 GHz
– 260 MHz below 3.2 GHz without H18
• Option H18 for frequencies below 3.2 GHz
I I
Q
Q
• Interoperability with the
N6030A, N8241A, 81180A or
M8190A wideband AWGs
• Multitone, noise power ratio and
pulse building Signal Studio
waveform creation software
Wideband signals from 250 kHz – 44 GHz
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent Workshop
Currently
Available
High-Speed AWGs
SFDR 1)
80
What could you
do if you had
something here?
R&S
70
60
50
40
0.5
1
2
1) SFDR across Nyquist range with fout = 150 MHz
2) Bandwidth of a single channel AWG output
4
8
Bandwidth
(GHz) 2)
34
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent
Workshop
Agilent M8190A Arbitrary Waveform
Generator
• Precision AWG with
DAC resolution of:
• 14 bit up to 8 GSa/s
• 12 bit up to 12 GSa/s
• Up to 2 GSa Arbitrary Waveform Memory per channel
• 5 GHz analog bandwidth per channel
• 3 selectable output paths: direct DAC, DC and AC
• SFDR goal: < -75 dBc typ. (fout < 1 GHz, 14 bit mode, across Nyquist range)
• Harmonic distortion goal: < -65 dBc typ.
• Advanced sequencing scenarios define stepping, looping, and conditional
jumps of waveforms or waveform sequences
• 2 markers per channel (do not reduce DAC resolution)
35
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent
Workshop
High-Precision AWG Example:
Digital Modulation
•Wideband digital
modulation:
QAM16, 1G Sym/s
(~ 4 Gb/s)
Fs = 7.2 GHz
with amplitude
correction
36
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent
Workshop
Wideband I/Q Modulation
AWG
• Analog I and Q signals are
generated using an AWG.
An I/Q modulator generates
the IF or RF signal
Memory
Analog IQ Modulator
~
+
90°
Digital signal
Analog signal
Memory
D/A
Signal Generation Setup
Differential I/Q signals
IQ Modulation
X
D/A
X
Modulation BW up to 2 GHz
RF up to 44 GHz
PCIe
RF/IF out
M8190A
Marker output Pulse mod. input
E8267D Opt. 016
37
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent
Workshop
Wideband Analog I/Q Modulation Example
•Multi-tone signal with
20 tones spanning
2GHz
•Asymmetric with
respect to the carrier
frequency
Notice:
• Images
• Carrier feed-through
• Non-Flatness
Theoretical signal
38
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent
Workshop
Amplitude Correction Setup
•
AWG and spectrum analyzer
are remotely controlled by a PC
running an equalization routine
•
Magnitude of each tone in the
multi-tone signal is measured
and frequency response stored
in a file
•
Pre-distorted multi-tone signal
can be calculated
Remote
Control
PC running
Multi-tone and
equalization
routine
AWG
Vector Signal Generator
Spectrum Analyzer
39
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent
Workshop
Wideband Analog I/Q Modulation Example
•Adjusting the skew and
relative amplitude
between the I and Q
signals reduces the
images
•Typically, they can be
reduced to about -30
dBc
•Adjusting the
differential offset of the
I and Q signals reduces
the carrier feed-through
•With amplitude
correction, the frequency
response can be
adjusted to be flat within
less than 0.5 dB
Theoretical signal
40
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and Defense Symposium 2007
EuMw 2007
Agilent
Workshop
Broad
Range
of Applications
Agilent Signal Studio and embedded software
Cellular
communications
LTE-Advanced FDD/TDD
LTE FDD/TDD
W-CDMA/HSPA/HSPA+
TD-SCDMA/HSPA
GSM/EDGE/EDGE Evo
cdma2000/1xEV-DO
Wireless
connectivity
802.11n WLAN
802.11a/b/g/p/j /ac
WLAN
802.16 WiMAX
Bluetooth
Simplify signal creation
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Audio/video
broadcasting
ATSC
CMMB / DTMB
DAB/DAB+
DOCSIS
DVB-T/T2/H/C/S/S2
FM Stereo/RDS
ISDB-T/TSB/Tmm
J.83 Annex A/B/C
S/T-DMB
Detection, positioning,
tracking & navigation
General
RF & MW
GPS/GLONASS
Toolkit
Multitone
GPS Scenario Generator
Pulse Train
Phase noise impairment
Noise (AWGN)
Channel emulation
Analog & digital mod
MATLAB
SytemVue
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent– Workshop
Vector
Signals
Applications
Format Specific Modulation
GSM:
slots
multiple users, same frequency, different time
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and Defense Symposium 2007
W-LAN
EuMw
2007
Agilent Workshop
Wireless
Evolution
1990 - 2012
Increasing efficiency, bandwidth and data rates
2G
2.5G
PDC
GSM
IS-136
IS-95A
(Japan)
(Europe)
(US TDMA)
(US CDMA)
iMODE
HSCSD
IS-95B
GPRS
802.11b
802.11a/g
(US CDMA)
802.11h
3G
3.5G
W-CDMA
TD-SCDMA
E-GPRS
cdma2000
(FDD & TDD)
(China)
(EDGE)
(1x RTT)
HSDPA
HSUPA
EDGE
Evolution
1x EV-DO
0AB
802.11n
802.16d
(Fixed WiMAX)
WiBRO
3.9G/
4G
HSPA+ /
E-HSPA
4G / IMTAdvanced
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
LTE
802.16e
(R8/9 FDD & TDD)
(Mobile WiMAX)
(Korea)
LTE-Advanced
802.16m / WiMAX2
(R10 & beyond)
WirelessMAN-Advanced
802.11ac
802.11ad
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent
Workshop
LTE Major Features
Access modes
FDD & TDD
Channel BW (1RB = 12
1.4 MHz
3 MHz
5 MHz
10 MHz 15 MHz 20 MHz
6 RB
15 RB
25 RB
50 RB
subcarriers = 180 kHz)
75 RB
100 RB
Transmission Scheme
Downlink: OFDMA (Orthogonal Frequency Division Multiple Access)
Uplink: SC-FDMA (Single Carrier Frequency Division Multiple Access
Modulation Schemes
QPSK, 16QAM, 64QAM
MIMO Technology
Downlink: Tx diversity, Rx diversity, Single-User MIMO (up to 4x4),
beamforming
Uplink: Multi-User MIMO
Peak Data Rates
Downlink: 150 Mbps (2x2 MIMO, 20 MHz, 64QAM); 300 Mbps
(4x4 MIMO, 20 MHz, 64QAM)
Upliknk: 75 Mbps @ 20 MHz BW, 64QAM
Bearer services
Packet only – no circuit switched voice or data services are
supported voice must use VoIP
Transmission Time
Interval
1 ms
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
andbands
Defense Symposium 2007
EuMwFrequency
2007
Agilent
Workshop
LTE
FDD
Band
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15*
16*
17
18
19
20
21
23
24
25
Uplink MHz
1920
1980
1850
1910
1710
1785
1710
1755
824
849
830
840
2500
2570
880
915
1749.9 1784.9
1710
1770
1427.9 1447.9
698
716
777
787
788
798
1900
1920
2010
2025
704
716
815
830
830
845
832
862
1447.9 1462.9
2000
2020
1626.5 1660.5
1850
1915
Downlink MHz Width Duplex Gap
2110
2170
60
190
130
1930
1990
60
80
20
1805
1880
75
95
20
2110
2155
45
400
355
869
894
25
45
20
865
87510
35
25
2620
2690
70
120
50
925
960
35
45
10
1844.9 1879.9
35
95
60
2110
2170
60
400
340
1475.9 1495.9
20
48
28
728
746
18
30
12
746
756
10
-31
41
758
768
10
-30
40
2600
2620
20
700
680
2585
2600
15
575
560
734
746
12
30
18
860
875
15
45
30
875
890
15
45
30
791
821
30
-41
71
1495.9 1510.9
15
48
33
2180
2200
20
180
160
1525
1559
34
-101.5 135.5
1930
1995
65
80
15
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Duplex spacing
Width
Uplink
Band
Width
Gap
Downlink
Band
Frequency
Points of note
• There is a lot of overlap between band
definitions for regional reasons
• The Duplex spacing varies from 30 MHz
to 799 MHz
• The gap between downlink and uplink
varies from 10 MHz to 680 MHz
Aerospace
andbands
Defense Symposium 2007
EuMw
2007
AgilentTDD
Workshop
LTE Frequency
Width
Transceive
Band
Frequency
Band
33
34
35
36
37
38
39
40
41
42
43
Uplink MHz
1900
2010
1850
1930
1910
2570
1880
2300
2496
3400
3600
Downlink MHz
1920
2025
1910
1990
1930
2620
1920
2400
2690
3600
3800
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
1900
2010
1850
1930
1910
2570
1880
2300
2496
3400
3600
1920
2025
1910
1990
1930
2620
1920
2400
2690
3600
3800
Width
20
15
60
60
20
50
40
100
194
200
200
Points of note
• For TDD there is no concept of duplex
spacing or gap since the downlink and uplink
frequencies are the same
• As such, the challenge of separating transmit
from receive does not require a duplex filter
for the frequency domain but a switch for the
time domain
Aerospace
and
Defense Symposium
2007
EuMw
2007
Agilent Workshop
Future
LTE/UTRA
Frequency
bands
• The work on defining new frequency bands shows no sign of slowing
up.
• These are the bands currently being considered by 3GPP:
– Band 22
– Band 26
– Band 27
3410/3490 + 3510/3590 – UMTS/LTE 3500 MHz
814/849 MHz + 859/894 – Extended 850 upper band
806/824 + 851/869 – Extended 850 lower band
• Other possibilities identified by the ITU:
– 3.6-4.2 GHz
– 450−470 MHz
– 698−862 MHz
– 790−862 MHz band (European digital dividend)
– 4.4-4.99 GHz band
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and Defense
Symposium
2007
EuMw
2007
Agilent
Workshop
Orthogonal
Frequency
Division
Multiplexing
5 MHz Bandwidth
FFT
Sub-carriers
Guard Intervals
…
Symbols
Frequency
…
Time
•
•
•
•
•
LTE provides QPSK, 16QAM, 64QAM as downlink modulation schemes
Each sub-carrier carries a separate low-rate stream of data
15 kHz subcarrier spacing
Each sub-carrier is independently modulated
Cyclic prefix is used as guard interval to minimize inter-symbol interference
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Slot Structure
andand
Resource
Block
(RB) 2007
Aerospace
Defense
Symposium
EuMw 2007 Agilent Workshop
Downlink – OFDMA
‒
One downlink slot, Tslot
DL
N symb
OFDM symbols
subcarriers
Resource
Element (RE)
(k, l)
RB
Nsc
subcarriers
RB
Nsc
Condition
Normal
cyclic prefix
Extended
cyclic prefix
:
l=0
A Resource Block (RB) is basic
scheduling unit. It contains:
• 7 symbols (1 slot) X 12 subcarriers for
normal cyclic prefix or;
• 6 symbols (1 slot) X 12 subcarriers for
extended cyclic prefix
‒ Minimum user allocation is 1 ms (2 slots)
and 180 kHz (12 subcarriers, 1RB).
‒
Resource
Block (RB)
RB
DL
N symb
x Nsc
:
A Resource Element (RE) is the smallest
unit in the physical layer and occupies
one symbol in the time domain and one
sub-carrier in the frequency domain.
DL
l=N symb
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
∆f=15kHz
12
N DL
RB
DL7
N symb
∆f=15kHz
12
6
∆f=7.5kHz
24
3
–1
Page 49
Aerospace
andOverview
Defense Symposium 2007
EuMw
Agilent
Workshop
LTE 2007
Physical
Layer
LTE air interface consists of two main components:
signals and channels
‒ Physical Signals
• These are generated in Layer 1 and are used for system
synchronization, cell identification and radio channel estimation
‒ Physical Channels
• These carry data from higher layers including control, scheduling
and user payload
The following is a simplified high-level description of the
essential signals and channels
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and
Symposium 2007
EuMw
Agilent Workshop
Signal2007
Modulation
andDefense
Mapping
DL Signals
Modulation Sequence
Physical Mapping
uth root Zadoff-Chu
62 out of the available 72 central
subcarriers at OFDMA symbol #6
of slot #0 & #10
Secondary Synchronization
Signal
(S-SS)
Binary sequences; BPSK
62 out of the available 72 central
subcarriers at OFDMA symbol #5
of slot #0 & #10
Reference Signal (RS)
Orthogonal Sequence (OS) and
Pseudo Random Sequence (PRS)
defined by Cell ID
Every 6th subcarrier of OFDMA
symbols #0 & #4 of every slot
(port 0)
UL Signals
Modulation Sequence
Physical Mapping
PUSCH Demodulation
Reference Signal (DM-RS)
Zadoff-Chu for PUSCH RB ≥ 3
QPSK for PUSCH RB < 3
SC-FDMA symbol #3 of every
PUSCH slot
PUCCH Demodulation
Reference Signal (DM-RS)
QPSK
PUCCH format 1/1a/1b: SCFDMA symbols #2, #3 and # 4 of
every PUCCH slot.
Sounding Reference Signal (SRS)
uth root Zadoff-Chu
Last SC-FDMA symbol of
subframe
Primary Synchronization Signal
(P-SS)
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and and
Defense
Symposium 2007
EuMw
2007
Agilent Workshop
Channel
Modulation
Mapping
DL Channels
Modulation Scheme
Physical Mapping
Physical Broadcast Channel
(PBCH)
QPSK
72 central subcarriers at OFDMA symbol #0 to
#3 of slot #1.
Physical Control Format Indicator
Channel (PCFICH)
QPSK
OFDMA symbol #0 of slot 0 in a sub-frame
Physical Hybrid-ARQ Indicator
Channel (PHICH)
BPSK (CDM)
OFDMA symbol #0 of every sub-frame (Normal
duration) and symbols #0, 1 & 2 of every subframe (Extended duration) if the number of
PDCCH symbols = 3
Physical Downlink Control Channel
(PDCCH)
QPSK
OFDMA symbol #0, #1 & #2 of the first slot of the
subframe.
Physical Downlink Shared Channel
(PDSCH)
QPSK, 16QAM, 64QAM
Resource blocks not occupied by
the rest of downlink channels and signals
UL Channels
Modulation Scheme
Physical Mapping
Physical Random Access Channel
(PRACH)
uth root Zadoff-Chu for
preamble sequence
Depends on PRACH configuration
BPSK & QPSK
Resource blocks not occupied by the rest of UL
channels and signals but not simultaneous with
PUSCH
QPSK, 16QAM, 64QAM
Resource blocks not occupied by the rest of UL
channels and signals but not simultaneous with
PUCCH
Physical Uplink Control Channel
(PUCCH)
Physical Uplink Shared Channel
(PUSCH)
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent Workshop
Multiple
Antenna
Techniques
Multiple antenna techniques are fundamental to LTE
The main multi-antenna techniques used in LTE are:
Transmit diversity
Receive diversity
Spatial multiplexing (MIMO)
Single User MIMO (SU-MIMO)
Multi-user MIMO (MU-MIMO)
Beamforming
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Aerospace
and Defense
EuMw 2007
Workshop
Release
10Agilent
LTE Radio
AspectsSymposium 2007
1.
Carrier aggregation
2.
Enhanced uplink multiple access
a) Clustered SC-FDMA
b) Simultaneous Control and Data
3.
Enhanced multiple antenna transmission
Rel 10 LTE-A
proposed to ITU
a) Downlink 8 antennas, 8 streams
b) Uplink 4 antennas, 4 streams
4.
Coordinated Multipoint (CoMP) – study item
5.
Relaying
6.
Home eNB mobility enhancements
7.
Customer Premises Equipment
8.
Heterogeneous network support
9.
Self Organized networks (SON)
Beyond S-Parameters
© Agilent Technologies, Inc. 2007
Other Release 10
Aerospace
and Defense Symposium 2007
EuMw
2007
Agilent Workshop
Carrier
Aggregation
Lack of sufficient contiguous spectrum up to 100 MHz forces use of
carrier aggregation to meet peak data rate targets
Able to be implemented with a mix of terminals
Backward compatibility with legacy system (LTE)
System scheduler operating across multiple bands
Component carriers (CC) - M