AOTF20C60P 600V,20A N-Channel MOSFET General Description Product Summary • Trench Power AlphaMOS-II technology • Low RDS(ON) • Low Ciss and Crss • High Current Capability VDS @ Tj,max 700V IDM 80A RDS(ON),max < 0.25Ω Qg,typ 52nC Eoss @ 400V 8.2µJ Applications 100% UIS Tested 100% Rg Tested • General Lighting for LED and CCFL • AC/DC Power supplies for Industrial, Consumer, and Telecom D TO-220F G D S G S AOTF20C60P Orderable Part Number Package Type Form Minimum Order Quantity AOTF20C60P AOTF20C60PL TO-220F Pb Free TO-220F Green Tube Tube 1000 1000 Absolute Maximum Ratings TA=25°C unless otherwise noted Parameter Drain-Source Voltage Symbol VDS TC=25°C Continuous Drain Current Avalanche Current C TC=100°C C L=1mH Repetitive avalanche energy C Single pulsed avalanche energy G MOSFET dv/dt ruggedness Peak diode recovery dv/dt TC=25°C Power Dissipation B Derate above 25°C Junction and Storage Temperature Range Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds ID ±30 Units V V 20* 20* 16* 16* IDM 80 IAR 20 A A EAR 200 mJ EAS 1599 100 20 mJ dv/dt PD V/ns -55 to 150 W W/°C °C 300 °C 50 0.4 TJ, TSTG 45 0.35 TL Thermal Characteristics Parameter Symbol RθJA Maximum Junction-to-Ambient A,D Maximum Junction-to-Case RθJC * Drain current limited by maximum junction temperature. Rev.1.0: November 2014 AOTF20C60PL 600 VGS Gate-Source Voltage Pulsed Drain Current AOTF20C60P AOTF20C60P AOTF20C60PL Units 65 2.5 65 2.8 °C/W °C/W www.aosmd.com Page 1 of 6 Electrical Characteristics (TJ=25°C unless otherwise noted) Symbol Parameter Conditions Min ID=250µA, VGS=0V, TJ=25°C 600 Typ Max Units STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage BVDSS /∆TJ Breakdown Voltage Temperature Coefficient IDSS Zero Gate Voltage Drain Current ID=250µA, VGS=0V, TJ=150°C 700 ID=250µA, VGS=0V 0.54 VDS=600V, VGS=0V 1 10 Gate-Body leakage current VDS=0V, VGS=±30V VDS=5V, ID=250µA RDS(ON) VGS=10V, ID=10A gFS Forward Transconductance VDS=40V, ID=10A 20 VSD Diode Forward Voltage IS=1A,VGS=0V 0.7 IS ISM ±100 nA 5 V 0.215 0.25 Ω 1 V Maximum Body-Diode Continuous Current 20 A Maximum Body-Diode Pulsed Current C 80 A Coss Output Capacitance Co(er) Effective output capacitance, energy related H Crss Effective output capacitance, time related I Reverse Transfer Capacitance Rg Gate resistance VGS=0V, VDS=100V, f=1MHz Gate Source Charge S 3607 pF 140 pF 95 pF 182 pF 3.3 pF 2 Ω VGS=0V, VDS=0 to 480V, f=1MHz VGS=0V, VDS=100V, f=1MHz f=1MHz SWITCHING PARAMETERS Qg Total Gate Charge Qgs 3 µA 3.8 DYNAMIC PARAMETERS Input Capacitance Ciss Co(tr) V/ oC VDS=480V, TJ=125°C Gate Threshold Voltage Static Drain-Source On-Resistance IGSS VGS(th) V 52 VGS=10V, VDS=480V, ID=20A 80 nC 20 nC Qgd Gate Drain Charge 14 nC tD(on) Turn-On DelayTime 77 ns tr Turn-On Rise Time tD(off) Turn-Off DelayTime tf trr Body Diode Reverse Recovery Time Qrr Body Diode Reverse Recovery Charge IF=20A,dI/dt=100A/µs,VDS=100V VGS=10V, VDS=300V, ID=20A, RG=25Ω 67 ns 120 ns 43 ns IF=20A,dI/dt=100A/µs,VDS=100V 599 ns µC Turn-Off Fall Time 11 A. The value of R θJA is measured with the device in a still air environment with T A =25°C. B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used. C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep initial TJ =25°C. D. The R θJA is the sum of the thermal impedance from junction to case R θJC and case to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating. G. L=60mH, IAS=7.3A, VDD=150V, RG=25Ω, Starting TJ=25°C. H. Co(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V(BR)DSS. I. Co(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% V(BR)DSS. THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE. Rev.1.0: November 2014 www.aosmd.com Page 2 of 6 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 100 50 VDS=40V 10V 40 7V 10 6.5V 6V 20 -55°C ID(A) ID (A) 30 125°C 1 25°C VGS=5.5V 10 0 0.1 0 5 10 15 20 25 30 2 4 VDS (Volts) Figure 1: On-Region Characteristics Normalized On-Resistance 0.4 RDS(ON) (Ω) 8 10 3 0.5 VGS=10V 0.3 0.2 0.1 2.5 2 0 10 20 30 40 1 0.5 0 -100 50 ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage 1.2 1E+01 1.1 1E+00 IS (A) 1E+02 0 50 100 150 200 125°C 1E-01 0.9 1E-02 0.8 1E-03 0.7 -100 -50 Temperature (°C) Figure 4: On-Resistance vs. Junction Temperature 1.3 1 VGS=10V ID=10A 1.5 0 BVDSS (Normalized) 6 VGS(Volts) Figure 2: Transfer Characteristics 25°C 1E-04 -50 0 50 100 150 200 TJ (°C) Figure 5: Break Down vs. Junction Temperature Rev.1.0: November 2014 www.aosmd.com 0.0 0.2 0.4 0.6 0.8 1.0 VSD (Volts) Figure 6: Body-Diode Characteristics Page 3 of 6 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS 15 10000 Ciss VDS=480V ID=20A 1000 Capacitance (pF) VGS (Volts) 12 9 6 Coss 100 10 3 0 Crss 1 0 15 30 45 60 75 90 0.1 20 25 16 20 12 10 100 1000 Eoss 8 15 10 5 4 0 0 0 100 200 300 400 500 600 0 VDS (Volts) Figure 9: Coss stored Energy 25 50 75 100 125 150 TCASE (°C) Figure 10: Current De-rating (Note F) 100 100 RDS(ON) limited 10ms DC 0.1s 0.1 1s 1ms ID (Amps) 1ms 100µs 10 100µs 1 10µs RDS(ON) limited 10µs 10 ID (Amps) 1 VDS (Volts) Figure 8: Capacitance Characteristics Current rating ID(A) Eoss(uJ) Qg (nC) Figure 7: Gate-Charge Characteristics 1 10ms 0.1s DC 0.1 1s TJ(Max)=150°C TC=25°C TJ(Max)=150°C TC=25°C 0.01 0.01 1 10 100 1000 VDS(Volts) Figure 11: Maximum Forward Biased Safe Operating Area for TO-220F Pb Free (Note F) Rev.1.0: November 2014 www.aosmd.com 1 10 100 1000 VDS(Volts) Figure 12: Maximum Forward Biased Safe Operating Area for TO-220F Green (Note F) Page 4 of 6 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS ZθJC Normalized Transient Thermal Resistance 10 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=2.5°C/W 0.1 PDM 0.01 Single Pulse Ton T 0.001 1E-05 0.0001 0.001 0.01 0.1 1 10 Pulse Width (s) Figure 13: Normalized Maximum Transient Thermal Impedance for TO-220F Pb Free (Note F) ZθJC Normalized Transient Thermal Resistance 10 1 In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse D=Ton/T TJ,PK=TC+PDM.ZθJC.RθJC RθJC=2.8°C/W 0.1 PDM 0.01 Single Pulse Ton T 0.001 1E-05 0.0001 0.001 0.01 0.1 1 10 100 Pulse Width (s) Figure 14: Normalized Maximum Transient Thermal Impedance for TO-220F Green (Note F) Rev.1.0: November 2014 www.aosmd.com Page 5 of 6 Gate Charge Test Circuit & Waveform Vgs Qg 10V + + Vds VDC - Qgs Qgd VDC - DUT Vgs Ig Charge Resistive Switching Test Circuit & Waveforms RL Vds Vds Vgs 90% + Vdd DUT VDC - Rg 10% Vgs Vgs td(on) tr td(off) ton tf toff Unclamped Inductive Switching (UIS) Test Circuit & Waveforms L 2 EAR= 1/2 LIAR Vds BVDSS Vds Id + Vdd Vgs Vgs I AR VDC - Rg Id DUT Vgs Vgs Diode Recovery Test Circuit & Waveforms Q rr = - Idt Vds + DUT Vds - Isd Vgs Ig Rev.1.0: November 2014 Vgs L Isd + Vdd t rr dI/dt I RM Vdd VDC - IF Vds www.aosmd.com Page 6 of 6