AOTF20C60P

AOTF20C60P
600V,20A N-Channel MOSFET
General Description
Product Summary
• Trench Power AlphaMOS-II technology
• Low RDS(ON)
• Low Ciss and Crss
• High Current Capability
VDS @ Tj,max
700V
IDM
80A
RDS(ON),max
< 0.25Ω
Qg,typ
52nC
Eoss @ 400V
8.2µJ
Applications
100% UIS Tested
100% Rg Tested
• General Lighting for LED and CCFL
• AC/DC Power supplies for Industrial, Consumer, and
Telecom
D
TO-220F
G
D
S
G
S
AOTF20C60P
Orderable Part Number
Package Type
Form
Minimum Order Quantity
AOTF20C60P
AOTF20C60PL
TO-220F Pb Free
TO-220F Green
Tube
Tube
1000
1000
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Drain-Source Voltage
Symbol
VDS
TC=25°C
Continuous Drain
Current
Avalanche Current C
TC=100°C
C
L=1mH
Repetitive avalanche energy
C
Single pulsed avalanche energy G
MOSFET dv/dt ruggedness
Peak diode recovery dv/dt
TC=25°C
Power Dissipation B Derate above 25°C
Junction and Storage Temperature Range
Maximum lead temperature for soldering
purpose, 1/8" from case for 5 seconds
ID
±30
Units
V
V
20*
20*
16*
16*
IDM
80
IAR
20
A
A
EAR
200
mJ
EAS
1599
100
20
mJ
dv/dt
PD
V/ns
-55 to 150
W
W/°C
°C
300
°C
50
0.4
TJ, TSTG
45
0.35
TL
Thermal Characteristics
Parameter
Symbol
RθJA
Maximum Junction-to-Ambient A,D
Maximum Junction-to-Case
RθJC
* Drain current limited by maximum junction temperature.
Rev.1.0: November 2014
AOTF20C60PL
600
VGS
Gate-Source Voltage
Pulsed Drain Current
AOTF20C60P
AOTF20C60P
AOTF20C60PL
Units
65
2.5
65
2.8
°C/W
°C/W
www.aosmd.com
Page 1 of 6
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
Conditions
Min
ID=250µA, VGS=0V, TJ=25°C
600
Typ
Max
Units
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
BVDSS
/∆TJ
Breakdown Voltage Temperature
Coefficient
IDSS
Zero Gate Voltage Drain Current
ID=250µA, VGS=0V, TJ=150°C
700
ID=250µA, VGS=0V
0.54
VDS=600V, VGS=0V
1
10
Gate-Body leakage current
VDS=0V, VGS=±30V
VDS=5V, ID=250µA
RDS(ON)
VGS=10V, ID=10A
gFS
Forward Transconductance
VDS=40V, ID=10A
20
VSD
Diode Forward Voltage
IS=1A,VGS=0V
0.7
IS
ISM
±100
nA
5
V
0.215
0.25
Ω
1
V
Maximum Body-Diode Continuous Current
20
A
Maximum Body-Diode Pulsed Current C
80
A
Coss
Output Capacitance
Co(er)
Effective output capacitance, energy
related H
Crss
Effective output capacitance, time
related I
Reverse Transfer Capacitance
Rg
Gate resistance
VGS=0V, VDS=100V, f=1MHz
Gate Source Charge
S
3607
pF
140
pF
95
pF
182
pF
3.3
pF
2
Ω
VGS=0V, VDS=0 to 480V, f=1MHz
VGS=0V, VDS=100V, f=1MHz
f=1MHz
SWITCHING PARAMETERS
Qg
Total Gate Charge
Qgs
3
µA
3.8
DYNAMIC PARAMETERS
Input Capacitance
Ciss
Co(tr)
V/ oC
VDS=480V, TJ=125°C
Gate Threshold Voltage
Static Drain-Source On-Resistance
IGSS
VGS(th)
V
52
VGS=10V, VDS=480V, ID=20A
80
nC
20
nC
Qgd
Gate Drain Charge
14
nC
tD(on)
Turn-On DelayTime
77
ns
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
trr
Body Diode Reverse Recovery Time
Qrr
Body Diode Reverse Recovery Charge IF=20A,dI/dt=100A/µs,VDS=100V
VGS=10V, VDS=300V, ID=20A,
RG=25Ω
67
ns
120
ns
43
ns
IF=20A,dI/dt=100A/µs,VDS=100V
599
ns
µC
Turn-Off Fall Time
11
A. The value of R θJA is measured with the device in a still air environment with T A =25°C.
B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C, Ratings are based on low frequency and duty cycles to keep
initial TJ =25°C.
D. The R θJA is the sum of the thermal impedance from junction to case R θJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming
a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse rating.
G. L=60mH, IAS=7.3A, VDD=150V, RG=25Ω, Starting TJ=25°C.
H. Co(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V(BR)DSS.
I. Co(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% V(BR)DSS.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev.1.0: November 2014
www.aosmd.com
Page 2 of 6
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
50
VDS=40V
10V
40
7V
10
6.5V
6V
20
-55°C
ID(A)
ID (A)
30
125°C
1
25°C
VGS=5.5V
10
0
0.1
0
5
10
15
20
25
30
2
4
VDS (Volts)
Figure 1: On-Region Characteristics
Normalized On-Resistance
0.4
RDS(ON) (Ω)
8
10
3
0.5
VGS=10V
0.3
0.2
0.1
2.5
2
0
10
20
30
40
1
0.5
0
-100
50
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage
1.2
1E+01
1.1
1E+00
IS (A)
1E+02
0
50
100
150
200
125°C
1E-01
0.9
1E-02
0.8
1E-03
0.7
-100
-50
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
1.3
1
VGS=10V
ID=10A
1.5
0
BVDSS (Normalized)
6
VGS(Volts)
Figure 2: Transfer Characteristics
25°C
1E-04
-50
0
50
100
150
200
TJ (°C)
Figure 5: Break Down vs. Junction Temperature
Rev.1.0: November 2014
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
VSD (Volts)
Figure 6: Body-Diode Characteristics
Page 3 of 6
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
15
10000
Ciss
VDS=480V
ID=20A
1000
Capacitance (pF)
VGS (Volts)
12
9
6
Coss
100
10
3
0
Crss
1
0
15
30
45
60
75
90
0.1
20
25
16
20
12
10
100
1000
Eoss
8
15
10
5
4
0
0
0
100
200
300
400
500
600
0
VDS (Volts)
Figure 9: Coss stored Energy
25
50
75
100
125
150
TCASE (°C)
Figure 10: Current De-rating (Note F)
100
100
RDS(ON)
limited
10ms
DC
0.1s
0.1
1s
1ms
ID (Amps)
1ms
100µs
10
100µs
1
10µs
RDS(ON)
limited
10µs
10
ID (Amps)
1
VDS (Volts)
Figure 8: Capacitance Characteristics
Current rating ID(A)
Eoss(uJ)
Qg (nC)
Figure 7: Gate-Charge Characteristics
1
10ms
0.1s
DC
0.1
1s
TJ(Max)=150°C
TC=25°C
TJ(Max)=150°C
TC=25°C
0.01
0.01
1
10
100
1000
VDS(Volts)
Figure 11: Maximum Forward Biased Safe Operating
Area for TO-220F Pb Free (Note F)
Rev.1.0: November 2014
www.aosmd.com
1
10
100
1000
VDS(Volts)
Figure 12: Maximum Forward Biased Safe Operating
Area for TO-220F Green (Note F)
Page 4 of 6
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
ZθJC Normalized Transient
Thermal Resistance
10
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
RθJC=2.5°C/W
0.1
PDM
0.01
Single Pulse
Ton
T
0.001
1E-05
0.0001
0.001
0.01
0.1
1
10
Pulse Width (s)
Figure 13: Normalized Maximum Transient Thermal Impedance for TO-220F Pb Free (Note F)
ZθJC Normalized Transient
Thermal Resistance
10
1
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
RθJC=2.8°C/W
0.1
PDM
0.01
Single Pulse
Ton
T
0.001
1E-05
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 14: Normalized Maximum Transient Thermal Impedance for TO-220F Green (Note F)
Rev.1.0: November 2014
www.aosmd.com
Page 5 of 6
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
-
DUT
Vgs
Ig
Charge
Resistive Switching Test Circuit & Waveforms
RL
Vds
Vds
Vgs
90%
+ Vdd
DUT
VDC
-
Rg
10%
Vgs
Vgs
td(on)
tr
td(off)
ton
tf
toff
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
2
EAR= 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT
Vgs
Vgs
Diode Recovery Test Circuit & Waveforms
Q rr = - Idt
Vds +
DUT
Vds -
Isd
Vgs
Ig
Rev.1.0: November 2014
Vgs
L
Isd
+ Vdd
t rr
dI/dt
I RM
Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6