Intel® Edison Compute Module Hardware Guide January 2015 Revision 004 Document Number: 331189-004 Notice: This document contains information on products in the design phase of development. The information here is subject to change without notice. Do not finalize a design with this information. INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL’S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions stated in Intel’s Software License Agreement, or in the case of software delivered to the government, in accordance with the software license agreement as defined in FAR 52.227-7013. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. The code names presented in this document are only for use by Intel to identify products, technologies, or services in development that have not been made commercially available to the public, i.e., announced, launched, or shipped. They are not "commercial" names for products or services and are not intended to function as trademarks. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com/design/literature.htm. Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See http://www.intel.com/products/processor_number for details. Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the United States and other countries. * Other brands and names may be claimed as the property of others. Copyright © 2015 Intel Corporation. All rights reserved. Intel® Edison Compute Module Hardware Guide 2 January 2015 Document Number: 331189-004 Contents 1 2 3 4 Introduction ....................................................................................................................................................................... 8 1.1 References ........................................................................................................................................................................................ 8 High-Level Functional Description ............................................................................................................................... 9 2.1 Block diagram .............................................................................................................................................................................. 10 2.2 Module photos ............................................................................................................................................................................ 10 Component and Subsystem Details............................................................................................................................ 12 3.1 Intel® Atom™ processor ........................................................................................................................................................... 12 3.2 Wi-Fi / BT module ...................................................................................................................................................................... 12 3.3 Managed NAND (eMMC) flash .............................................................................................................................................. 12 3.4 DDR SDRAM .................................................................................................................................................................................. 12 3.5 Power management IC (PMIC).............................................................................................................................................. 13 3.6 USB 2.0 transceiver ULPI interface .................................................................................................................................... 13 3.7 Integrated chip antenna or u.FL connector for external antenna ....................................................................... 13 3.8 70-pin interface connector .................................................................................................................................................... 14 External Interface Pins and Electrical Characteristics............................................................................................. 16 4.1 Clocks .............................................................................................................................................................................................. 16 4.1.1 19.2 MHz OSC clock output specification .......................................................................................... 16 4.1.2 RTC clock specification ............................................................................................................................... 17 I2C Interfaces ................................................................................................................................................................................ 18 4.2 4.2.1 Standards specification compliance ..................................................................................................... 18 4.2.2 I2C standard/fast mode electrical characteristics ........................................................................... 18 SD card interface ........................................................................................................................................................................ 22 4.3 4.3.1 Standards specification compliance ..................................................................................................... 22 4.3.2 SD/SDIO AC specification .......................................................................................................................... 22 4.3.3 SD/SDIO DC specification .......................................................................................................................... 23 4.4 UART interfaces .......................................................................................................................................................................... 24 4.4.1 UART AC specification ................................................................................................................................. 24 4.4.2 UART DC specification ................................................................................................................................. 24 2 4.5 I S interface................................................................................................................................................................................... 25 4.5.1 I2S AC specification ....................................................................................................................................... 26 4.5.2 I2S DC specifications ..................................................................................................................................... 29 4.6 SPI interface.................................................................................................................................................................................. 30 4.6.1 SPI master AC specification ...................................................................................................................... 30 4.6.2 SPI slave AC specification .......................................................................................................................... 31 4.6.3 SPI DC Specification ..................................................................................................................................... 32 4.7 GPIO ................................................................................................................................................................................................. 33 4.7.1 GPIO AC specification .................................................................................................................................. 33 4.7.2 GPIO DC specification .................................................................................................................................. 33 4.7.3 GPIO pullup and pulldown specification ............................................................................................ 34 4.8 PWM ................................................................................................................................................................................................. 35 4.8.1 PWM AC specification .................................................................................................................................. 35 4.8.2 PWM DC specification .................................................................................................................................. 35 4.9 USB ................................................................................................................................................................................................... 36 4.9.1 Standards specification compliance ..................................................................................................... 36 4.10 System reset ................................................................................................................................................................................. 36 4.11 Software recovery (FWR_RCVR and RCVR_MODE) .................................................................................................... 36 January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 3 5 6 7 8 4.12 Power input and output .......................................................................................................................................................... 37 4.13 V_VBAT_BKUP............................................................................................................................................................................. 37 4.14 Electrostatic discharge (ESD) specification .................................................................................................................... 38 Powering Intel® Edison .................................................................................................................................................. 39 5.1 Main power supply VSYS ....................................................................................................................................................... 39 5.2 Lithium-polymer battery direct attach ............................................................................................................................. 39 5.3 Lithium-polymer battery with diode or FET isolation ............................................................................................... 40 5.4 Connection to USB VBUS ....................................................................................................................................................... 40 5.5 Cold boot sequence .................................................................................................................................................................. 41 Intel® Edison Mechanicals ............................................................................................................................................. 42 Layout................................................................................................................................................................................ 43 7.1 Antenna keepout ........................................................................................................................................................................ 43 7.2 Layout SD card, I2S, SPI, I2C ................................................................................................................................................. 43 7.3 Layout DXF .................................................................................................................................................................................... 44 7.4 Layout PTC EMN files ............................................................................................................................................................... 44 Handling ........................................................................................................................................................................... 46 Intel® Edison Compute Module Hardware Guide 4 January 2015 Document Number: 331189-004 Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Intel® Edison block diagram ............................................................................................................................................. 10 Intel® Edison compute module top view .................................................................................................................... 10 Intel® Edison compute module bottom view............................................................................................................ 11 Clock jitter definitions ......................................................................................................................................................... 17 Period jitter measurement methodology................................................................................................................... 17 Definition of timing for standard/fast mode devices on I2C bus ..................................................................... 19 Definition of timing for high speed-mode devices on I2C bus ......................................................................... 21 SD/SDIO timing diagram (DDR50) ................................................................................................................................. 22 SD/SDIO output timing diagram (SDR 12/25).......................................................................................................... 23 SD/SDIO input timing diagram (SDR12/25) .............................................................................................................. 23 UART timing diagram .......................................................................................................................................................... 24 I2S master port timings in I2S mode ............................................................................................................................. 26 I2S master port timings in PCM short frame mode ................................................................................................ 27 I2S master port timings in PCM long frame mode.................................................................................................. 27 I2S slave port timing parameters in I2S mode ......................................................................................................... 28 I2S slave port timing parameters in PCM short frame mode............................................................................. 29 I2S slave port timing parameters in PCM long frame mode .............................................................................. 29 SPI master timing .................................................................................................................................................................. 31 SPI slave timing ...................................................................................................................................................................... 32 GPIO buffer input range ..................................................................................................................................................... 34 Example Intel® Edison external USB design.............................................................................................................. 36 Example Intel® Edison lithium-polymer battery direct attach .......................................................................... 39 Example Intel® Edison lithium-polymer battery with FET isolation ............................................................... 40 Intel® Edison cold boot sequence.................................................................................................................................. 41 Intel® Edison mechanical dimensions (top view through PCB) ........................................................................ 42 Area around antenna ........................................................................................................................................................... 43 Layout DXF ............................................................................................................................................................................... 44 PTC EMN graphic ................................................................................................................................................................... 44 H383485-300 ......................................................................................................................................................................... 45 Inserting an Intel® Edison module ................................................................................................................................. 46 Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Product-specific documents ............................................................................................................................................... 8 Hardware features.................................................................................................................................................................... 9 Intel® Edison 70-pin connector part numbers ......................................................................................................... 14 Intel® Edison 70-pin connector board-to-board mating height...................................................................... 14 Intel® Edison connector pinout and signal list ......................................................................................................... 14 19.2 MHz OSC_Clock output............................................................................................................................................ 16 RTC clock input specification........................................................................................................................................... 17 AC specification for standard/fast mode I2C bus devices .................................................................................. 18 I2C standard/fast mode pullup strength settings for SCL and SDA ............................................................... 19 DC specification for I2C standard/fast mode devices .......................................................................................... 20 AC specification for high speed mode I2C bus devices........................................................................................ 20 I2C high speed mode pullup strength settings for SDA....................................................................................... 20 I2C high speed mode pullup strength settings for SCL ....................................................................................... 21 DC specification for high-speed mode—I2C bus device ..................................................................................... 21 SD AC specification............................................................................................................................................................... 22 SD/SDIO DC specification.................................................................................................................................................. 23 UART AC specification ........................................................................................................................................................ 24 Intel® Edison I2S available formats ............................................................................................................................... 25 January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 5 Table 19 Table 20 Table 21 Table 22 Table 23 Table 24 Table 25 Table 26 Table 27 Table 28 Table 29 Table 30 Table 31 Table 32 Table 33 I2S ports overview (reference design implementation) ....................................................................................... 25 I2S master AC timings .......................................................................................................................................................... 26 I2S slave mode AC timing parameters ......................................................................................................................... 28 I2S buffer DC specification ................................................................................................................................................ 29 SPI ports overview ................................................................................................................................................................ 30 SPI modes ................................................................................................................................................................................. 30 SPI master AC timings ......................................................................................................................................................... 30 SPI slave AC timings ............................................................................................................................................................. 31 GPIO buffer AC specifications ......................................................................................................................................... 33 GPIO buffer DC specifications ......................................................................................................................................... 33 GPIO pullup and pulldown specification .................................................................................................................... 34 Intel® Edison PWM programming examples ............................................................................................................. 35 BBCHGRCFG - Backup battery charger and main battery charger IC configuration registers ........... 38 ESD performance .................................................................................................................................................................. 38 Layout SD card........................................................................................................................................................................ 43 Intel® Edison Compute Module Hardware Guide 6 January 2015 Document Number: 331189-004 Revision History Revision Description Date ww32 Initial release August 4, 2014 ww34 Minor edits. August 20, 2014 001 First public release. September 9, 2014 002 Minor corrections. September 16, 2014 003 Added section on software recovery mode. November 14, 2014 004 Major content additions to chapter 4. January 30, 2015 § January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 7 Introduction 1 Introduction This document describes the hardware interface of the Intel® Edison compute module. It provides an overview of how to create an expansion board that connects directly to the Intel® Edison compute module. 1.1 References Table 1 Product-specific documents Reference Name 331188 Intel® Edison Board Support Package User Guide Number/location 331189 Intel® Edison Compute Module Hardware Guide 331190 Intel® Edison Breakout Board Hardware Guide 331191 Intel® Edison Kit for Arduino* Hardware Guide 329686 Intel® Galileo and Intel® Edison Release Notes [GSG] Intel® Edison Getting Started Guide 331438 Intel® Edison Wi-Fi Guide 331704 Intel® Edison Bluetooth* Guide (This document) W: http://www.intel.com/support/edison/sb/CS-035336.htm M: http://www.intel.com/support/edison/sb/CS-035344.htm L: http://www.intel.com/support/edison/sb/CS-035335.htm § Intel® Edison Compute Module Hardware Guide 8 January 2015 Document Number: 331189-004 High-Level Functional Description 2 High-Level Functional Description The Intel® Edison Compute Module is designed to lower the barriers to entry for anyone prototyping and producing IoT and wearable computing products. Intel® Edison contains core system processing and connectivity elements: Processor and processor power management IC, RAM, eMMC, and Wi-Fi/BT. Intel® Edison is a module that interfaces with end-user systems via a 70-pin connector. Intel® Edison relies on the end-user to provide input power, and overall system power management, such as battery recharging for battery-powered systems. Table 2 shows the main system components. Table 2 Hardware features Component Description Processor 22 nm Intel® SoC that includes a dual-core, dual-threaded Intel® Atom™ CPU at 500 MHz and a 32-bitIntel® Quark™ microcontroller at 100 MHz RAM 1 GB LPDDR3 POP memory (2 channel 32 bits @ 800 MT/sec) Internal storage 4 GB eMMC (v4.51 spec) Power TI SNB9024 power management IC Wireless Dual-band (2.4 and 5 GHz) IEEE 802.11a/b/g/n Bluetooth* BT 4.0 + 2.1 EDR Antenna Dual-band onboard chip antenna or u.FL for external antenna Connector 70-pin Hirose DF40 Series (1.5, 2.0, or 3.0 mm stack height) Size 35.5 × 25.0 × 3.9 mm maximum (to be verified) Power input 3.15 to 4.5 V I/O USB 2.0 40 general purpose GPIO which can be configured as: • SD card: 1 interface • UART: 2 controllers (one full flow control, one Rx/Tx) • I2C: 2 controllers • SPI: 1 controller with 2 chip selects • I2S: 1 controller • GPIO: Additional 14 (with 4 capable of PWM) 1 OTG controller Clocks 19.2 MHz, 32 kHz January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 9 High-Level Functional Description 2.1 Block diagram Figure 1 shows the basic Intel® Edison block diagram. Intel® Edison block diagram Wi-Fi dual-band (802.11a/b/g/n) Bluetooth LE (with 2.1 + EDR) 4 GB eMMC Intel® Atom™ Processor (dual-core 500 MHz) 1 GB LPDDR3 (PoP) GPIOs, various buses USB USB 2.0 PHY VBUS PMIC 3.15 to 4.5 V input Intel® Edison 70-pin connector Figure 1 3.3 V output 1.8 V output 2.2 Module photos Figure 2 Intel® Edison compute module top view eMMC (4 GB) Wi-Fi/BTLE module USB ULPI transceiver Embedded 2.4/5.0 GHz antenna Antenna coaxial connector Intel® Edison Compute Module Hardware Guide 10 January 2015 Document Number: 331189-004 High-Level Functional Description Figure 3 Intel® Edison compute module bottom view Pin 69 Pin 70 Processor and DDR POP memory 70-pin I/O connector Pin 1 PMIC Pin 2 § January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 11 Component and Subsystem Details 3 Component and Subsystem Details 3.1 Intel® Atom™ processor Intel® Edison takes advantage of the Intel® Atom™ Processor 22 nm System-on-Chip, targeted for the smartphone market segment. The SoC contains dual IA-32 cores operating at 500 MHz. The architecture includes 2-wide instruction decode and Out Of Order Execution with 1 MB cache shared between the two CPU cores. It includes Intel SIMD Extensions 2, 3, 4 (SSE2, SSE3, SSE4.1/4.2). 3.2 Wi-Fi / BT module The Murata integrated Wi-Fi BT module is built around a Broadcom BCM43340 Wi-Fi/BT device. The Broadcom BCM43340 single-chip quad device provides a high level of integration for a mobile or handheld wireless system, with integrated dual-band (2.4 / 5 GHz) IEEE 802.11a/b/g/n MAC/baseband/radio with Bluetooth* 4.0. • Dual-band 2.4 GHz and 5 GHz IEEE 802.11 a/b/g/n. • Single-stream IEEE 802.11n support for 20 MHz and 40 MHz channels provides PHY layer rates up to 150 Mbps for typical upper layer throughput in excess of 90 Mbps. • Supports standard SDIO v2.0 and gSPI (48 MHz) host interfaces. • Complies with Bluetooth* Core Specification Version 4.0 with provisions for supporting future specifications. Bluetooth Class 1 or Class 2 transmitter operation. • Security: − WPA and WPA2 (personal) support for powerful encryption and authentication. − AES in WLAN hardware for faster data encryption and IEEE 802.11i compatibility –Reference WLAN subsystem provides Cisco* Compatible Extensions (CCX, CCX 2.0, CCX 3.0, CCX 4.0, CCX 5.0). − Reference WLAN subsystem provides Wi-Fi protected setup (WPS). 3.3 Managed NAND (eMMC) flash Intel® Edison uses 4 GB of managed NAND to store the file system and user data. Managed NAND flash contains a full MMC controller, wear-leveling firmware, and all the other features that are typically found in MMC cards, except it is available in a small BGA form-factor. • Bus mode − Data bus width: 1 bit (default), 4 bits, 8 bits − Data transfer rate: up to 200 MBps (HS200) − MMC I/F clock frequency: 0~200 MHz − MMC I/F boot frequency: 0~52 MHz 3.4 DDR SDRAM Intel® Edison supports 1 GB LPDDR3 memory at speeds up to 1033 MT/s. • 8 banks • Row addresses R0-R13 • Column addresses C0-C9 • Dual-channel 32 bits • 400 MHz clock max (800 MT/s) Intel® Edison Compute Module Hardware Guide 12 January 2015 Document Number: 331189-004 Component and Subsystem Details 3.5 Power management IC (PMIC) Intel® Edison uses the Texas Instruments* SNB9024 Power Management Integrated Circuit (PMIC). The SNB9024 PMIC is for mobile application processors platforms with high feature integration in order to minimize system board area. It includes subsystems for voltage regulation, A/D conversion, GPIOs, and RTC. The SNB9024 device is controlled and programmed using an I2C interface. There is also a serial voltage ID interface between the SOC and PMIC for handling core voltage rail settings as well as system control signals. • Four high-efficiency buck converters − - Two dual-phase 0.55 to 1.2 V @ 4.8 A with DVS − - One dual-phase 1.24 V @ 2.5 A − - One single-phase 1.8 V @ 1.1 A • One 5 V 1.2 A boost converter • One 3.3 V/3.4 V 1.4 A buck-boost converter • Five low drop-out regulators − - Three programmable 1.05 to 2.85 V @ 100 to 300 mA − - One high precision 1 V @ 2 mA − - One DVS 0.75 to 0.95 V @ 220 mA • Two load switches with slew rate control and external load switch control • USB and AC/DC adapter power supply detection with external charger control (enable/disable and current limit) • I2C Interface and dedicated SVI • Interrupt controller for PMIC events • Seven general purpose 1.8 V I/Os, with two of them supporting up to 3.3 V • 32.768 kHz RTC for backup time • Alarm timer interrupt • Sleep clock outputs (32.768 kHz) 3.6 USB 2.0 transceiver ULPI interface The TUSB1211 is a USB 2.0 transceiver chip, designed to interface with a USB controller via a ULPI interface. It supports all USB 2.0 data rates (High-Speed 480 Mbps, Full-Speed 12 Mbps, and Low-Speed 1.5 Mbps) in both Host and Peripheral modes. TUSB1211 also supports the OTG (Ver1.3) optional addendum to the USB 2.0 specification, including Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). TUSB1211 also supports USB Battery Charging Specification v1.1 integrating a charger detection module for sensing and control on DP/DM lines, and ACA (Adaptive Charger Accessory) detection and control on ID line. ACA allows simultaneous connection of a USB Charger or Charging Downstream Port and an Accessory to a portable OTG device. Configuration bits allow an ACA-agnostic legacy link to correctly communicate with the connected accessory port through the ACA. 3.7 Integrated chip antenna or u.FL connector for external antenna The Intel® Edison Compute Module has an integrated dual-band 2.4/5 GHz antenna built onboard. The onboard antenna is used primarily for small form factor plastic devices. For larger devices or a device which has a metal enclosure, another version of Intel® Edison is available with an industry standard u.FL connector for attachment to an external antenna. This will allow the end-user to locate the antenna for optimal performance. Note: The internal antenna versions also have a u.FL connector on the board, but it is only used as a manufacturing test point. Do not connect an external antenna to a board with an internal antenna. January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 13 Component and Subsystem Details 3.8 70-pin interface connector The Intel® Edison Compute Module connects to the end user device via a 70-pin connector. The connector on Intel® Edison is a Hirose 70-pin DF40 Series “header” connector sometimes referred to as a “plug” connector. The Hirose part number for the “header” connector on the Intel® Edison compute module is DF40C-70DP-0.4V(51). The mating Hirose connector on an expansion board is the “receptacle” connector. This mating “receptacle” connector is available in three different heights. The board-to-board mating stack height can be 1.5, 2.0, or 3.0 mm. Table 3 lists the Hirose part number for the “receptacle” connector and corresponding DigiKey and Mouser part numbers for an expansion board. Table 3 Intel® Edison 70-pin connector part numbers Hirose P/N Mating stack height DigiKey P/N Mouser P/N DF40C-70DS-0.4V(51) 1.5 mm n/a 798-DF40C70DS04V51 DF40C(2.0)-70DS-0.4V(51) 2.0 mm H11908CT-ND (low quantity) H11908TR-ND (tape and reel) 798-DF40C2070DS04V51 DF40HC(3.0)-70DS-0.4V(51) 3.0 mm n/a n/a The Intel® Edison Arduino board utilizes the 2.0 mm board-to-board stack height connector. The bottom side of the Intel® Edison compute module (side with 70-pin connector) has a component height (shield height) of 1.5 mm and will sit flush against the connecting PCB if a 1.5 mm connector is used. Table 3 lists the expansion board component height restrictions for components under the Intel® Edison compute module. Table 4 Intel® Edison 70-pin connector board-to-board mating height Hirose P/N Board-to-board mating height Available height under Intel® Edison DF40C-70DS-0.4V(51) 1.5 mm n/a DF40C(2.0)-70DS-0.4V(51) 2.0 mm 0.5 mm DF40HC(3.0)-70DS-0.4V(51) 3.0 mm 1.5 mm Intel® Edison is secured to an expansion board via two mounting holes each with a diameter of 2.0 mm. Any mounting standoffs will also need to match the mating connector height (1.5, 2.0, or 3.0 mm). Table 5 lists the Intel® Edison 70-pin connector pinouts and signals. Table 5 Intel® Edison connector pinout and signal list Pin Signal name 2, 4, 6 VSYS 8, 10 3.3 V System 3.3 V output 12 1.8 V System 1.8 V output (same as I/O voltage levels) 14 DCIN Input, connect to VSYS when powering from a DC power adapter (no connect if powering from a battery) 1,5,9,11,13,15 GND Alternate function Description System input power (3.3 to 4.5 V) Ground 7 MSIC_SLP_CLK3 32 kHz sleep clock output 3 USB_ID USB OTG ID pin 16 USB_DP USB D+ 18 USB_DN USB D- 20 USB_VBUS USB VBUS input (does not power system) 17 PWRBTN# Power/sleep button input (active low) 19 FAULT USB power fault input (from external USB current limit switch) 21 PSW USB power output enable (to external USB current limit switch) 23 V_VBAT_BKUP Real-time clock (RTC) backup battery input 36 RESET_OUT# System reset output (active low) 24 GP44 GPIO Intel® Edison Compute Module Hardware Guide 14 January 2015 Document Number: 331189-004 Component and Subsystem Details Pin Signal name 25 GP165 Alternate function GPIO Description 26 GP45 GPIO 28 GP46 GPIO 30 GP47 GPIO 32 GP48 GPIO 34 GP49 GPIO 42 GP15 GPIO 48 GP14 GPIO 35 GP12_PWM0 PWM_0 GPIO, capable of PWM output 33 GP13_PWM1 PWM_1 GPIO, capable of PWM output 37 GP182_PWM2 PWM_2 GPIO, capable of PWM output 39 GP183_PWM3 PWM_3 GPIO, capable of PWM output 41 GP19 I2C_1_SCL GPIO, I2C1 clock (open collector when configured for I2C) 43 GP20 I2C_1_SDA GPIO, I2C1 data (open collector when configured for I2C) 45 GP27 I2C_6_SCL GPIO, I2C6 clock (open collector when configured for I2C) 47 GP28 I2C_6_SDA GPIO, I2C6 data (open collector when configured for I2C) 50 GP42 I2S_2_RXD GPIO, I2S2 receive data (input) 52 GP40 I2S_2_CLK GPIO, I2S2 clock (output) 54 GP41 I2S_2_FS GPIO, I2S2 frame sync (output) 56 GP43 I2S_2_TXD GPIO, I2S2 transmit data (output) 22 GP134 UART_2_RX GPIO, UART2 receive (input) 27 GP135 UART_2_TX GPIO, UART2 transmit (output) 51 GP111 SPI_2_FS1 GPIO, SPI2 chip select 1 (output) 53 GP110 SPI_2_FS0 GPIO, SPI2 chip select 0 (output) 55 GP109 SPI_2_CLK GPIO, SPI2 clock output 57 GP115 SPI_2_TXD GPIO, SPI2 transmit data (output) 59 GP114 SPI_2_RXD GPIO, SPI2 receive data (input) 46 GP131 UART_1_TX GPIO, UART1 transmit (output) 61 GP130 UART_1_RX GPIO, UART1 receive data (input) 63 GP129 UART_1_RTS GPIO, UART1 ready to send (output) 65 GP128 UART_1_CTS GPIO, UART1 clear to send (input) 44 GP84 SD_0_CLK_FB GPIO, SD clock feedback 58 GP78 SD_0_CLK GPIO, SD clock output 60 GP77 SD_0_CD# GPIO, SD card detect input (active low) 62 GP79 SD_0_CMD GPIO, SD command 66 GP80 SD_0_DAT0 GPIO, SD data 0 70 GP81 SD_0_DAT1 GPIO, SD data 1 64 GP82 SD_0_DAT2 GPIO, SD data 2 68 GP83 SD_0_DAT3 67 OSC_CLK_OUT_0 19.2 MHz high speed clock output 31 RCVR_MODE Firmware recovery mode 69 FW_RCVR Firmware recovery (active high on boot) 29,38,40,49 Unused. GPIO, SD data § January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 15 External Interface Pins and Electrical Characteristics 4 External Interface Pins and Electrical Characteristics Every Intel® Edison I/O (with the exception of USB) uses 1.8 V signaling. 4.1 Clocks Intel® Edison has two clock outputs. A 32 kHz sleep clock connected to pin 7 and a high frequency 19.2 MHz clock connected to pin 67. The sleep clock has ±5 mA drive capability, and may be programmed to provide an output when the SoC is in a sleep state. Refer to the GPIO buffer (1.8 V) DC specification, mentioned in Table 28. You might need to buffer the clocks, depending on external trace lengths. 4.1.1 19.2 MHz OSC clock output specification Table 6 provides specifications for clocks labeled OSC_CLK[4:0]. Table 6 Symbol 19.2 MHz OSC_Clock output Parameter Min Frequency Typ Max Unit 19.2 – MHz Figure Notes 2, 4 1, 3 TRISE/TFALL Rise and fall time 1 – 5 ns Duty cycle Duty cycle 45 – 55 % C2C-J Cycle to cycle jitter (peak) – – 300 ps Figure 4 2, 5 PJ Period Jitter (peak to peak) – – 350 ps Figure 4, Figure 5 2, 6 Long term accuracy –100 0 +100 ppm 2 7 NOTE: 1. Edge rate is measured from 20 to 80% of 1.8 V supply. 2. Frequency and duty cycle are measured with respect to 50% of the 1.8 V supply. Duty cycle is measured over three measurements of the of 10 K cycles. 3. Output is based on trace length of 25 to 200 mm, Far End Load of 2 to 5 pF, ESD of 10 pF, and board impedance of 30 to 75 ohm. 4. Divide by two (to achieve frequency of 9.6 MHz) and divide by four (to achieve frequency of 4.8 MHz) options available. Refer to Merrifield Platform Firmware Architecture Specification (FAS) for Selected Targeted Accounts for more details. 5. Cycle-to-cycle jitter represents how much the clock period changes between any two adjacent cycles. It can be found by applying a first-order difference operation to the period jitter, as shown by C2 and C3 in Figure 4.The peak cycle-to-cycle jitter is the maximum over 10 measurements of absolute values of 1000 cycles, per JEDEC Specification (JESD65B) Definition of Skew Specifications for Standard Logic Devices. 6. Period jitter value is measured by adjusting an oscilloscope to display a little more than one complete clock cycle with the display set to infinite persistence. Scope trigger is set on the first edge, and the period jitter is captured by measuring spread/peak-peak value of the second edge. Period jitter is the maximum over three measurements of the 10,000 cycles, per JEDEC Specification (JESD65B) Definition of Skew Specifications for Standard Logic Devices. 7. Long-term accuracy is a function of crystal and platform design. Meeting short term accuracy of ±50 ppm satisfies long term accuracy specification. Intel® Edison Compute Module Hardware Guide 16 January 2015 Document Number: 331189-004 External Interface Pins and Electrical Characteristics Figure 4 Clock jitter definitions Measured Waveform P1 P2 P3 Period Jitter (PJ) C2 = P2 – P1 C3 = P3 – P2 Cycle-to-Cycle Jitter (C2C-J) Figure 5 Period jitter measurement methodology 0.5(*)VDD Period Jitter Trigger Position 4.1.2 RTC clock specification Table 7 shows the 32.768 kHz clock specifications to the SoC driven by PMIC. Table 7 Symbol RTC clock input specification Parameter Min Typ Frequency – 32.768 Long term accuracy -100 0 January 2015 Document Number: 331189-004 Max Unit +100 ppm Notes kHz Intel® Edison Compute Module Hardware Guide 17 External Interface Pins and Electrical Characteristics I2C Interfaces 4.2 Intel® Edison has two available I2C interfaces, I2C1 and I2C6. I2C1 on pins 41 and 43 is a general purpose I2C interface that connects directly to the IA cores. I2C6 on pins 45 and 47 can be configured as I2C6 which connects to the IA cores or as I2C8 which connects to a system controller fabric (controlled by MCU). For the initial release of Intel® Edison, only I2C1 and I2C6 are available. Both of these interfaces are open collector when configured as I2C. When configured as GPIO, they can be standard push pull outputs. The I2C module can operate in the following modes: • Standard mode (with data rates up to 100 kbps). • Fast mode (with data rates up to 400 kbps). • High-speed mode (with data rates up to 3.4 Mbps). • The SoC is always I2C master, it does not support multimaster mode. • The SoC can support clock stretching by slave devices. • Both 7-bit and 10-bit addressing modes are supported. When I2C6 is configured as I2C8, it can only run in standard or fast mode. 4.2.1 • Standards specification compliance I2C–Bus Specification and User Manual Revision 03 dated June 2007. 4.2.2 I2C standard/fast mode electrical characteristics 4.2.2.1 I2C standard/fast mode AC specification Table 8 AC specification for standard/fast mode I2C bus devices Symbol Parameter Standard fSCL SCL clock frequency tHD: STA Hold time (repeated) START condition. After this period, 4.0 the first clock pulse is generated tLOW LOW period of the SCL clock 4.7 – tHIGH HIGH period of the SCL clock 4.0 – tSU: STA setup time for a repeated START condition 4.7 – tHD: DAT Data hold time: I2C-bus devices 0 – tSU: DAT Data setup time 250 tr Rise time of both SDA and SCL signals tf Fall time of both SDA and SCL signals tSU: STO Setup time for STOP condition tBUF Bus free time between a STOP and START condition Cb Capacitive load for each bus line (=trace capacitance + device load) VnL VnH Fast Unit Notes Min Max Min 0 100 0 Max 400 KHz – 0.6 – µs 1.3 – µs 0.6 – µs 0.6 – µs 0 – ns – 100 – ns 1 – 1000 20 + 0.1Cb 300 ns 2, Table 9 10 300 1 300 ns 4, Table 9 4.0 – 0.6 – µs 4.7 – 1.3 – µs – 400 – 400 pF Noise margin at the LOW level for each connected device (including hysteresis) 0.1 VDD – 0.1 VDD – V Noise margin at the HIGH level for each connected device (including hysteresis) 0.2 VDD – 0.2 VDD – V 3 I NOTE: 1. A fast-mode I2C-bus device can be used in a standard mode I2C-bus system, but the requirement tSU; DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tSU; DAT = 1000 + 250 = 1250 ns (according to the standard-mode I2C-bus specification) before the SCL line is released. Intel® Edison Compute Module Hardware Guide 18 January 2015 Document Number: 331189-004 External Interface Pins and Electrical Characteristics 2. 3. 4. Cb = total capacitance of one bus line, in picofarads. The maximum tHD;DAT could be 3.45 µs and 0.9 µs for standard-mode and fast-mode, but must be less than the maximum of tVD;DAT or tVD;ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the data must be valid by the setup time before it releases the clock. Deviates from the I2C specification, which has a minimum fall time of 20 + 0.1 Cb. Table 9 I2C standard/fast mode pullup strength settings for SCL and SDA Cb Internal pullup value Current assist setting Cb ≤ 14 pF 20,000 NA Note 1 14 pF ≤ Cb ≤ 144 pF 2000 NA 1 40 pF ≤ Cb ≤ 400 pF 910 NA 1, 2 NOTE: 1. The internal pullup values need to be programmed in the MIP Header of the firmware depending on the value of Cb. 2. Cb greater than 350 pF may require external pulls on the board. Contact your Intel Representative for further guidance. 30% 30% 30% 30% 70% 70% 30% 30% tLOW 70% 70% 70% 30% 70% 70% 30% Definition of timing for standard/fast mode devices on I2C bus 70% Figure 6 January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 19 External Interface Pins and Electrical Characteristics 4.2.2.2 I2C standard/fast mode DC specification Table 10 DC specification for I2C standard/fast mode devices Standard (100 kHz) Fast (400 kHz) Unit Notes1 Symbol Parameter Min Typ Max Min Typ Max TSP Pulse width of the spikes which are suppressed by the input filter. 0 – 54 0 – 54 VOL Output low voltage. – – VDD * – 0.2 – VDD * V 0.2 Ports 0 to 2 and 4 to7 – NA mV Port 3 – V VOL Output low voltage. – – 90 – VOH Output high voltage. VDD * 0.9 – – VDD * – 0.9 ns 2 NOTE: 1. For all other DC specifications, refer to the GPIO buffer DC specification mentioned in Table 28. 2. Deviates from the I2C specification, which states maximum TSP of 50 ns for fast mode. 4.2.2.3 Note: I2C high speed mode electrical characteristics I2C high speed mode AC specification based on Cb ≤ 100 pF, where Cb = trace capacitance + device load. AC specification for high speed mode I2C bus devices Table 11 Symbol High speed mode Unit Parameter Min Max Figure fSCL SCL clock frequency 0 2.8 MHz tSU:STA Setup time for a repeated START condition 160 – ns tHD:STA Hold time (repeated) START condition 160 – ns tLOW LOW period of the SCL clock 160 – ns tHIGH HIGH period of the SCL clock 60 – ns tHD:DAT Data hold time: I2C-bus devices 0 – ns tSU:DAT Data setup time 10 – ns tr CL Rise time of SCL signals 10 40 ns tf CL Fall time of SCL signals 1 40 ns trCL1 Rise time of SCL signal after repeated START condition and after acknowledge bit 10 40 ns tr DA Rise time of SDAH signals 10 80 ns Table 12 tf DA Fall time of SDAH signals 1 80 ns Table 12 tSU:STO Setup time for STOP condition 160 – ns VnL Noise margin at the LOW level for each connected device (including hysteresis) 0.1 VDD – V VnH Noise margin at the HIGH level for each connected device (including hysteresis) 0.2 VDD – V NOTE: 1. Notes 1 Deviates from the I2C Specification, which has a minimum fall time of 20 + 0.1 Cb. Table 12 I2C high speed mode pullup strength settings for SDA Cb Internal pullup value Current assist settings Cb < 40 pF 2 kohm NA 40 pF ≤ Cb ≤ 100 pF 910 ohm NA NOTE: 1. Internal pullup values must be programmed in the MIP Header of the firmware depending on the Cb for the SDA signals. Intel® Edison Compute Module Hardware Guide 20 January 2015 Document Number: 331189-004 External Interface Pins and Electrical Characteristics I2C high speed mode pullup strength settings for SCL Table 13 Internal pullup value Current assist settings 1 Cb< 30pF 2 kohm 0x1 30 pF ≤ Cb ≤ 40 pF 2 kohm 0x4 40 pF ≤ Cb ≤ 70 pF 2 kohm 0x5 70 pF ≤ Cb ≤ 90 pF 2 kohm 0xD 90 pF ≤ Cb ≤ 100 pF 2 kohm 0xE Cb Notes 2 NOTE: 1. The internal pullup values and current assist setting need to be programmed in the MIP Header of the firmware depending on the Cb. 2. This setting would apply to I2C Port 0 used to communicate to PMIC. Definition of timing for high speed-mode devices on I2C bus Figure 7 Sr trDA Sr tfDA 70% SDAH 70% 70% 30% 30% P 30% tSU;STA tSU;STO tHD;DAT tHD;STA tSU;DAT 70% 70% 70% 70% 30% 30% 30% tfCL SCLH trCL1 trCL (1) tLOW trCL1 tLOW tHIGH (1) tHIGH = MCS current source pull-up = Rp resistor pull-up (1) First rising edge of the SCLH signal after Sr and after each acknowledge bit. 4.2.2.4 I2C high speed mode DC specification Table 14 DC specification for high-speed mode—I2C bus device Notes1 ns 2 Parameter Min Typ TSP Pulse width of the spikes, which are suppressed by the input filter. – – 12 VOL Output low voltage. – – VDD * 0.2 V VOH Output high voltage. VDD * 0.9 – NOTE: 1. 2. For all other DC Specifications, refer to GPIO Buffer DC Specification, mentioned in Table 28. Deviates from the I2C Specification, which has a max TSP = 10 ns. January 2015 Document Number: 331189-004 High speed 2.8 MHz Unit Symbol Max – V Intel® Edison Compute Module Hardware Guide 21 External Interface Pins and Electrical Characteristics 4.3 SD card interface An SD 3.0 compliant interface is available on pins 44, 58, 60, 62, 64, 66, 68, and 70. SD memory key features: • Host clock up to 50 MHz. • Supports card detection (insertion/removal) with dedicated card detection signal only. • Meets SD Host Controller Standard Specification version 3.0. • Only supports SD memory. • Requires external level shifter for support of 2.85 V devices. 4.3.1 • Standards specification compliance SD Specifications Physical Layer Specification—v3.01 4.3.2 SD/SDIO AC specification Table 15 SD AC specification Symbol Parameter Port 0 (SD) Port 1 (SDIO) Unit Figure Min Max Min Max Twc(DDR50) CLK cycle time for DDR50 mode 20 – 20 – ns Figure 8. Twc(SDR25) CLK cycle time for SDR25 mode 20 – 20 – ns Figure 9. Twc(SDR12) CLK cycle time for SDR12 mode 40 – 40 – ns Notes TDC Clock duty cycle 45 55 45 55 % TODLY(DDR50) SD_CLK transitioning edge to SDIO_D 1.9 4.6 2.0 4.5 ns Figure 8. 4 TODLY(SDR25) SD_CLK rising edge to SDIO_D 1.9 11.6 3.2 11.5 ns Figure 9. 4 TODLY(SDR12) SD_CLK rising edge to SDIO_D 1.9 11.6 3.2 11.5 ns 4 TSU_SOC SoC setup time (data valid before clock 2.4 launched) – 1.3 – ns SDR12/25: Figure 10 4 DDR50: Figure 8 THD_SOC SoC hold time (data valid after clock launched) 1.7 – 2.2 – ns SDR12/25: Figure 10 4 DDR50: Figure 8 0.5 4 0.5 4 ns TRISE CLK/TFALL CLK Clock rise and fall time 1, 2, 3, 5 NOTE: 1. Based on trace length of 0.25 to 4.0 inch, 2 to 5 pF far end load for Port 0, AND 2 to 10 pF far end load (for Port 1) and board impedance of 25 to 75 ohm. This corresponds to a lump load of 35 pF on Port 0 and 40 pF on Port 1. 2. Minimum time deviates from SDIO Specification 3.0, which is not defined in the specification. 3. Measured from 0.58 to 1.27 V. 4. Measured at SoC. 5. Measured at level shifter for Port 0 and at end device for Port 1. Figure 8 SD/SDIO timing diagram (DDR50) min (VIH) CLK TWC DDR50 max (VIL) THD_SOC TSU_SOC THD_SOC TSU_SOC min (VIH) DATA INPUT DATA DATA INVALID max (VIL) TODLY(DDR50) - MAX TODLY(DDR50) - MAX TODLY(DDR50) - MIN TODLY(DDR50) - MIN min (VOH ) OUTPUT DATA DATA DATA max (VOL ) Intel® Edison Compute Module Hardware Guide 22 January 2015 Document Number: 331189-004 External Interface Pins and Electrical Characteristics Figure 9 SD/SDIO output timing diagram (SDR 12/25) TWC SDR 12 / 25 ½ VDD CLK TODLY(SDR 12 /25) VIH DATA/CMD VIL Figure 10 SD/SDIO input timing diagram (SDR12/25) ½ VDD CLK THD_SOC DATA/CMD VIH TSU_SOC VIL 4.3.3 SD/SDIO DC specification Table 16 provides the SD/SDIO DC specification. For all other DC specifications not listed here, refer to Table 28. Table 16 Symbol SD/SDIO DC specification Parameter Min Typ – Max Unit Notes 1, 2. Port 0. VOL Output low voltage. – 0.125*VDD1 V VOH Output high voltage. 0.75*VDD1 – – V 1, 2. Port 0. VOL Output low voltage. – – 0.45 V 1, 2. Port 1. VOH Output high voltage. 1.4 – – V 1, 2. Port 1. NOTE: 1. Assuming a IOH/IOL of 2 mA. 2. Measured at level shifter for port 0 and at end device for port 1. January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 23 External Interface Pins and Electrical Characteristics 4.4 UART interfaces There are two UARTs available: UART1 with flow control and UART2 without flow control. The UART1 interface is available on pins 46, 63, 61, and 54. UART2 is on pins 22 and 27. The UARTs are: • 16550 compliant • 64-byte buffer size • Baud rate from 300 bps to 3.686 Mbps. The UART2 alternate function is as the Linux* debug serial port. The SoC supports three instances of a 16550 compliant UART controller (The buffering for this IP is 64 bytes, which makes it 16750 compliant. The register set remains compatible with the 16550.). Each of the UART interfaces supports the following baud rates (TBAUD): 3.6864 M, 921.6 k, 460.8 K, 307.2 K, 230.4 K, 184.32 K, 153.6 K, 115.2 K, 57.6 K, 38.4 K, 19.2 K, 9.6 K, 7.2 K, 4.8 K, 3.6 K, 2.4 K, 1.8 K, 1.2 K, 600, and 300. 4.4.1 UART AC specification Table 17 UART AC specification Symbol Parameter Unit Notes TRISE Maximum Rise Time 5 Min 25 Max ns 1, 2 TFALL Maximum Fall Time 5 25 ns 1, 2 TUARTFIL UART Sampling Filter Period 26 – ns 3 NOTE: 1. Based on total load capacitance of 5 to 65 pF (trace length up to 100 mm) and board impedance of 25 to 75 ohm. 2. Measured from 10 to 90%. 3. Each bit including start and stop bit are sampled at one-quarter of the prescalar value. Each prescalar cycle has a period of TUARTFIL. Figure 11 UART timing diagram TBAUD UART_TX Start Bit Data and Parity Bit Stop Bit UART_RX TUARTFILL 4.4.2 UART DC specification Refer to the GPIO buffer (1.8 V) DC specification, mentioned in Table 28. Intel® Edison Compute Module Hardware Guide 24 January 2015 Document Number: 331189-004 External Interface Pins and Electrical Characteristics I2S interface 4.5 An I2S interface is available on pins 50, 52, 54, and 56. All of the I2S modes below have not been verified and are subject to change. Table 18 lists the available formats available on the I2S port. Table 18 Mode Intel® Edison I2S available formats Priority Frame rate Bits/ sample Number of slots Frame- Frame to-data polarity offset 1 0-left, 1-right Frame rate Notes inaccuracy 50/50 0% Standard I2S protocol. 50% duty cycle on frame. High 1 bit clockwide 0% Rising edge frame sensitive. Design supports more frameto-data offset options. 0 High 1-bit to n-bit clocks 0% n is the width of one slot. Design supports width > 1 slot. 2 0 0-left, 1-right 50/50 0% Design supports flipping polarity on the frame signal. 16, 24 2 0 0-left, 1-right 50/50 0% 16, 24 2 0 0-left, 1-right 50/50 0% I2S master 1 192K, 96K, 16, 24 48K, 16K, 8K 2 PCM slave - SFS 1 192K, 96K, 48K, 44.1K, 16K, 8K 16, 24 192 kHz: 2 96 kHz: 4 All else: 1 to 6 0 High PCM slave - LFS 1 192K, 96K, 48K, 44.1K, 16K, 8K 16, 24 192 kHz: 2 96 kHz: 4 All else: 1 to 6 0 High PCM master - SFS 1 192K, 96K, 16, 24 48K, 16K, 8K 192 kHz: 2 All else: 1 to 4 0 PCM master - LFS 1 192K, 96K, 16, 24 48K, 16K, 8K 192 kHz: 2 All else: 1 to 4 Left justified master 2 192K, 96K, 48K 16, 24 I2S slave 3 192K, 96K, 48K, 44.1K Left justified slave 3 192K, 96K, 48K Right justified Frame width Not supported. The SoC has three I2S ports (labeled I2S 0, 1, 2). Table 19 I2S ports overview (reference design implementation) Port # Mode supported Nominal voltage Max operational Notes frequency 0 Master and Slave 1.8 V 9.6 MHz Used to interface with the Modem on Reference Design and is used in Slave Mode. Modem uses PCM Short Frame Mode. 1 Master and Slave 1.8 V 9.6 MHz Used to interface with Bluetooth*/FM Module on Reference Design in Slave Mode. 2 Master and Slave 1.8 V 9.6 MHz Used to interface with Audio codec in Reference Design and used in Slave Mode. January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 25 External Interface Pins and Electrical Characteristics 4.5.1 I2S AC specification 4.5.1.1 I2S master mode AC specification Table 20 I2S master AC timings Symbol Parameter Min Max Unit Figure TDC Clock duty cycle 45 55 % I, I, I Notes TI2S Clock frequency – 9.6 MHz I, I, I TS-RXD Setup for RXD with respect to the I2S CLK active edge. 10 – ns I, I, I 1, 2, 3, 4 TH_RXD Hold for RXD with respect to the I S CLK active edge. 10 – ns I, I, I 1, 2, 3, 4 TCO_TXD Tco of TXD with respect to I2S CLK active edge at the SoC. – 10 ns I, I, I 1, 2, 3, 4 TCO-FS Tco of FS with respect to CLK at the SoC. – 10 ns I, I, I 1, 2, 3, 4 NOTE: 1. 2. 2 Active edge refers to the mode selected. For I2S mode: a. b. 3. For PCM mode SoC: a. b. 4. I2S_TXD - SoC launches data after falling clock edge. I2S_RXD - SoC latches data on rising clock edge. I2S_TXD - SoC launches after rising clock edge. I2S_RXD - SoC latches data on falling clock edge. PCM Mode has two different modes, Short Frame Mode and Long Frame Mode: a. b. Short Frame Mode - Master asserts I2S-FS one clock before it drives data. Long Frame Mode - Master asserts I2S_FS and data on the same clock I2S master port timings in I2S mode Figure 12 I2S MODE TCO-FS I2S_FS TDC TDC I2S_CLK TS-RXD TH-RXD I2S_RXD TCO-TXD I2S_TXD Intel® Edison Compute Module Hardware Guide 26 January 2015 Document Number: 331189-004 External Interface Pins and Electrical Characteristics Figure 13 I2S master port timings in PCM short frame mode PCM Short Frame Mode I2S_FS (Short Frame Mode) TDC TDC I2S_CLK TCO_TXD I2S_TXD TH-RXD I2S_RXD Figure 14 I2S master port timings in PCM long frame mode PCM Long Frame Mode I2S_FS TDC TDC I2S_CLK TCO_TXD I2S_TXD TH-RXD I2S_RXD January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 27 External Interface Pins and Electrical Characteristics 4.5.1.2 I2S slave mode AC specification Table 21 I2S slave mode AC timing parameters Symbol Parameter Min Max Unit Figure Notes TDC Clock Duty Cycle 40 60 % Figure 15, Figure 16, Figure 17 TI2S Clock Frequency – 9.6 MHz Figure 15, Figure 16, Figure 17 TS-RXD Setup for RXD with respect to the I2S CLK active edge. 18 – ns Figure 15, Figure 16, Figure 17 1, 2, 3, 4 TH_RXD Hold for RXD with respect to the I2S CLK active edge. 0 – ns Figure 15, Figure 16, Figure 17 1, 2, 3, 4 TS-FS Setup for FS with respect to the I2S CLK active edge. 5.1 – ns Figure 15, Figure 16, Figure 17 1, 2, 3, 4 TH_FS Hold for FS with respect to I2S CLK active edge. 5.1 – ns Figure 15, Figure 16, Figure 17 1, 2, 3, 4 TCO_TXD Tco of TXD with respect to I2S CLK active edge at the host 3.3 29.2 ns Figure 15, Figure 16, Figure 17 1, 2,3, 4 TCO-FS Tco of TXD with respect to FS at the host 3.3 29.2 ns Figure 15, Figure 17 1, 2, 3, 4, 5 NOTE: 1. Active edge refers to the mode configuration. 2. For I2S mode: a. b. 3. For PCM mode SoC: a. b. 4. I2S_TXD – SoC launches after rising clock edge. I2S_RXD – SoC latches data on falling clock edge. PCM Mode has two different modes, Short Frame Mode and Long Frame Mode: a. b. 5. I2S_TXD – SoC launches data after falling clock edge. I2S_RXD – SoC latches data on rising clock edge. Short Frame Mode – Master asserts I2S-FS one clock before it drives data. Long Frame Mode – Master asserts I2S_FS and data on the same clock. TCO-FS does not apply to I2S mode and PCM-short frame mode. Figure 15 I2S slave port timing parameters in I2S mode I2S MODE I2S_FS TDC TDC I2S_CLK TCO_TXD I2S_TXD I2S_RXD Intel® Edison Compute Module Hardware Guide 28 January 2015 Document Number: 331189-004 External Interface Pins and Electrical Characteristics I2S slave port timing parameters in PCM short frame mode Figure 16 PCM Short Frame Mode I2S_FS (Short Frame Mode) TDC TDC I2S_CLK TCO_TXD I2S_TXD TH-RXD I2S_RXD I2S slave port timing parameters in PCM long frame mode Figure 17 PCM Long Frame Mode I2S_FS TDC TDC I2S_CLK TCO_TXD I2S_TXD TH-RXD I2S_RXD 4.5.2 I2S DC specifications For I2S DC specifications not listed in Table 22, refer to GPIO buffer DC specifications listed in Table 28. Table 22 I2S buffer DC specification Symbol Parameter Min Typ Max Unit Notes VOH Output high voltage 0.8 * VDD – – V Measured at IOH maximum. VOL Output low voltage – – 0.2 * VDD V Measured at IOL maximum. January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 29 External Interface Pins and Electrical Characteristics 4.6 SPI interface An SPI interface is available on pins 51, 53, 55, 57, and 59. The interface has two available chip selects. • In a single-frame transfer, the SoC supports all four possible combinations for the serial clock phase and polarity. • In multiple frame transfer, the SoC supports SPH=1 and SPO= 0 or 1. • The SoC may toggle the slave select signal between each data frame for SPH=0. • 25 MHz Master mode, 16.67 MHz slave mode. The SoC contains four SPI ports: SPI 0, 1, 2, and 3. Table 23 SPI ports overview Port # Mode Nominal voltage Max frequency 0 to 3 Master and slave 1.8 V 25 MHz (master mode) 16.67 MHz (slave mode) Table 24 SPI modes Port # SPO SPH 0 0 0 1 0 1 2 1 0 3 1 1 Note: SPO and SPH can be configured by SSP Control Register CTRL1 (SSCR1). 4.6.1 SPI master AC specification Table 25 SPI master AC timings Symbol Parameter t180 Serial clock frequency t182 SPI clock duty cycle at the host t183 Tco of SPI_SDO (SPI_MOSI) with respect to serial clock edge at the host. 0 5.4 ns Figure 18 3 t184 Setup of SPI_SDI (SPI_MISO) with respect to the serial clock edge at the host. 5.2 – ns Figure 18 3 t185 Hold of SPI_SDI (SPI_MISO) with respect to serial clock edge at the host. 14.3 – ns Figure 18 3 t186 Setup of SPI_SS assertion with respect to serial clock edge at the host. 5.2 – ns Figure 18 3 t187 Hold of SPI_SS deassertion with respect to serial clock edge at the host. 14.3 – ns Figure 18 3 TRISE/TFALL Maximum rise/fall time 0.85 10 ns 1 TRISE/TFALL Maximum rise/fall time 0.6 3 ns 2 NOTE: 1. Figure 25 MHz Figure 18 45 55 % Figure 18 Notes Trace length of up to six inches Board impedance of 25–75 ohm. Total maximum far end capacitance of 40 pF (4 loads at 10 pF per load) Measured from 35–65% Based on: a. b. c. d. 3. Max Unit Based on: a. b. c. d. 2. Min Trace length of up to four inches Board impedance of 25–75 Total maximum far end capacitance of 10 pF Measured from 35 to 65% Clock edge depends on the mode being used on SPI ports. Intel® Edison Compute Module Hardware Guide 30 January 2015 Document Number: 331189-004 External Interface Pins and Electrical Characteristics SPI master timing 4.6.2 Table 26 t184 Data Valid SPH=1 SPI_SDI SPI_SDO SPI_SDI SPH=0 SPI_SDO SPI_CLK SPI_SS SPO =0 SPO=1 t184 t183 t185 t182 t180 t182 Data Valid t187 Figure 18 SPI slave AC specification SPI slave AC timings Symbol Parameter Min Typ t190 Serial clock frequency – – 16.67 MHz Figure 19 t191 Clock duty cycle 45 – 55 % Figure 19 t193 Setup of SPI_SDI (MOSI) with respect to the serial clock edge. 5 – – ns Figure 19 1 t194 Hold of SPI_SDI (MOSI) with respect to serial clock edge. 5 – – ns Figure 19 1 t195 TCO of SPI_SDO (MISO) with respect to the serial clock edge. 5 – 21 ns Figure 19 1 t197 Setup of SPI_SS assertion with respect to serial clock edge. 5 – – ns Figure 19 1 t198 Hold of SPI_SS deassertion with respect to serial clock edge. 5 – – ns Figure 19 1 NOTE: 1. Clock edge depends on the mode being used. January 2015 Document Number: 331189-004 Max Unit Figure Notes Intel® Edison Compute Module Hardware Guide 31 External Interface Pins and Electrical Characteristics SPI slave timing t191 t191 Figure 19 4.6.3 SPI DC Specification For SPI master and slave DC Specifications, refer to Table 28. Intel® Edison Compute Module Hardware Guide 32 January 2015 Document Number: 331189-004 External Interface Pins and Electrical Characteristics 4.7 GPIO A number of general purpose I/Os are available on the external interface. These are found on pins: 24, 25, 26, 28, 30, 32, 34, 42, and 48. Some of these serve alternate functions of interrupts for external sensor support. All the interfaces listed in Section 4 (I2C, I2S, UART, etc.) if not used, can be turned into general purpose I/Os. When the pin mode is chosen as GPIO, it can be programmed as an output or input. When programmed as an input, a GPIO can serve as an interrupt or wake source. Inputs have programmable pullups or pulldowns. Pullup value can be 2, 20, or 50 kohm. I2C pins also have an additional 910 ohm value. When in general purpose mode, input GPIO signals enter a glitch filter by default, before reaching the edge detection registers. To ensure that a pulse is detected by the edge detection register, the pulse should be five clock cycles long. • 100 ns for a 50 MHz clock when SoC is in S0 state. • 260 ns for 19.2 MHz clock when SoC is in S0i1 or S0i2 State. • 155.5 µs for 32 kHz clock (RTC) when SoC is in S0i3 State. Most GPIO-capable pins are configured as GPIO inputs during the assertion of all resets, and they remain inputs until configured otherwise. As outputs, the GPIOs can be individually cleared or set. They can be preprogrammed to either state when entering standby. Output drive is ±3 mA. GPIO buffer is used across various interfaces on the SoC such as, GPIOs, I2C, I2S, MIPI PTI, SPI, SDIO, SVID, UART, PWM, CAMERA SB, JTAG and ULPI, FAST-INT, OSC_CLK_OUT, OSC_CLK_CLTRL. 4.7.1 GPIO AC specification GPIO buffer AC specifications, AC specifications apply to signals when used as GPIOs. Table 27 GPIO buffer AC specifications Symbol Parameter TRISE Maximum rise time 5 Min 45 ns 1, 2 TFALL Maximum fall time 5 45 ns 1, 2 NOTE: 1. 2. Based on total maximum capacitance of 150 pF. Measured from 10 to 90%. 4.7.2 GPIO DC specification Table 28 GPIO buffer DC specifications Symbol Parameter Min VDD Supply voltage 1.71 1.8 Typ 1.89 Max V Unit VIH Input high voltage 0.65 * VDD – – V VIL Input low voltage – – 0.35 * VDD V Max Unit Notes VOH Output high voltage VDD – 0.45 – – V Measured at IOH maximum. VOL Output low voltage – – 0.45 V Measured at IOL maximum. VHYSTERESIS Input hysteresis 100 – – mv IOH/IOL Current at VOL/VOH -3 – 3 mA ILI Input leakage current -2 – 2 µA ILO Output leakage current -2 – 2 µA C pin Input pin load capacitance 2 – 5 pF January 2015 Document Number: 331189-004 Notes Intel® Edison Compute Module Hardware Guide 33 External Interface Pins and Electrical Characteristics Figure 20 GPIO buffer input range max VIH Valid 1 min VIH 100 mv Hysteresis min max VIL Valid 0 min VIL 4.7.3 GPIO pullup and pulldown specification Table 29 GPIO pullup and pulldown specification Pullup and pulldown options Tolerance Notes 2 kohm, 20 kohm, 50 kohm ±30% Available for all pins which can be used as GPIOs. 910 ohm ±30% Available only for I2C pins. Intel® Edison Compute Module Hardware Guide 34 January 2015 Document Number: 331189-004 External Interface Pins and Electrical Characteristics 4.8 PWM There are four available GPIO that can be configured as PWM outputs. These are found on pins 33, 35, 37, and 39. The PWM resolution is 8 bits. The main PWM variables that control PWM output are: • The PWM output frequency and duty cycle can be estimated by the equations: − Target frequency ~= 19.2 MHz * Base_unit value/256 − Target PWM duty cycle ~= PWM_on_time_divisor / 256 Table 30 shows some examples of PWM programming. Table 30 Integer part of PWM_base_unit (bits 29:22) Intel® Edison PWM programming examples Fractional part of PWM_base_unit (bits 21:8) Decimal base unit value Base unit type PWM frequency (Hz) PWM period (µs) Bits of resolution PWM steps 0000_0000b 00_0100_0000_0000b 0.0625 fractional 4,688 213 8 0.39% 0000_0000b 00_0010_0000_0000b 0.03125 fractional 2,344 427 8 0.39% 0000_0000b 00_0001_0000_0000b 0.015625 fractional 1,172 853 8 0.39% 0000_0000b 00_0000_1000_0000b 0.0078125 fractional 586 1,707 8 0.39% 0000_0000b 00_0000_0100_0000b 0.00390625 fractional 293 3,413 8 0.39% 0000_0000b 00_0000_0010_0000b 0.00195325 fractional 146 6827 8 0.39% 0000_0000b 00_0000_0001_0000b 0.0009765625 fractional 73.2 13,653 8 0.39% 0000_0000b 00_0000_0000_1000b 0.00048828125 fractional 36.6 27,307 8 0.39% 0000_0000b 00_0000_0000_0100b 0.000244140625 fractional 18.3 54,613 8 0.39% 0000_0000b 00_0000_0000_0010b 0.0001220703125 fractional 9.2 109,227 8 0.39% 0000_0000b 00_0000_0000_0001b 0.00006103515625 fractional 4.6 218,453 8 0.39% 0000_0000b 00_0000_0010_0001b 0.00201416015625 fractional 151 6619 8 0.39% The SoC consists of four PWM drivers with programmable frequency and duty cycle, operating at 1.8 V. The operating frequency can be set from 0 to 9.6 MHz. The frequency selection is based on system clock (19.2 MHz). Refer to the SoC technical reference manual for the PWM registers configuration. 4.8.1 PWM AC specification For PWM AC specifications, refer to Table 27. 4.8.2 PWM DC specification For PWM DC specifications, refer to Table 28. January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 35 External Interface Pins and Electrical Characteristics 4.9 USB The Intel® Edison Compute Module has a single USB 2.0 interface. This interface is the primary method for downloading code. The interface is found on pins: 3, 16, 18, and 20. Note: The USB_VBUS signal should be applied to pin 20. This signal is only used to alert the Intel® Edison that it has been connected to a host port. The Intel® Edison compute module does not use power applied to pin 20 to power the device. Intel® Edison is designed to support OTG, using the ID signal on pin 3. The OTG power function is offboard. Two signals PSW (pin 21), and FAULT (pin 19) from the ULPI controller are used to control the external power switch and monitor the overcurrent condition on VBUS. Figure 21 shows the configuration of the external hardware. Figure 21 Example Intel® Edison external USB design The PSW signal is active high and controls an external VBUS power switch or charge pump. The FAULT signal is active low. FAULT should be connected to GND if USB host mode is not used. The SoC contains one ULPI interface with labeled ULPI which is used for OTG operation. The SoC features a 12-bit UTMI+ Low Pin Interface Specification (ULPI) interface with a USB 2.0 OTG v2.0 transceiver that is a discrete component external to the SoC on the platform. 4.9.1 • Standards specification compliance On-the-Go Supplement to the USB 2.0 Specification, Revision 2.0 (May 2009). 4.10 System reset Intel® Edison has two system reset signals PWRBTN# (pin 17) and RESET_OUT# (pin 36). The PWRBTN# pin is an active low input which can cause the Intel® Edison module to transition into and out of sleep, or cause a power-off , depending on the configuration of the software. RESET_OUT# is open-drain, and driven low by default out of system reset. This signal can be used by external hardware to indicate system reset. The Intel® Edison I/Os are undefined until RESET_OUT# transitions high. 4.11 Software recovery (FWR_RCVR and RCVR_MODE) The Intel® Edison board has two signals, used during boot, to cause the SoC to force firmware and OS image download. These are for factory use only. Intel® Edison Compute Module Hardware Guide 36 January 2015 Document Number: 331189-004 External Interface Pins and Electrical Characteristics 4.12 Power input and output There are five power rails on the Intel® Edison: VSYS, 3.3 V, 1.8 V, USB_VBUS, and V_VBAT_BKUP. VSYS is the only input power rail to the Intel® Edison module, and the voltage range is 3.15 to 4.5 V. USB_VBUS is a standard USB VBUS input from 4.75 to 5.25 V. This rail is not used to power the device; it is only used by the USB ULPI PHY to determine a host device has attached to the Intel® Edison device. The 3.3 and 1.8 V are power outputs from the Intel® Edison module that source a maximum of 100 mA each. DCIN is a signal that indicates whether the Intel® Edison device is being powered from a battery or from an external power source. DCIN also sets the voltage level required on VSYS in order to boot. When DCIN is floating or tied to ground, the voltage on VSYS MUST rise from 2.5 to 3.5 V in 100 ms, otherwise the boot is aborted. When the boot is aborted, power must be cycled below 2.5 V. If DCIN is connected to VSYS, the Intel® Edison device will start to boot when VSYS is above 2.5 V for 100 ms. Note: 4.13 The absolute minimum voltage to assure Wi-Fi and Bluetooth functionality is 3.15 V. V_VBAT_BKUP The PMIC has a dedicated charging subsystem for a backup battery supply that could be either a rechargeable coin cell batteries or super-capacitors. This backup subsystem allows for interruption of the main supply for a short period of time, such as changing a main system battery. The external cell should be connected to pin 23, V_VBAT_BKUP. The PMIC can be programmed with a charge voltage of 2.5, 3.0, 3.15, or 3.3 V. The charge current is programmable to 10, 50, 100, or 500 µA. The default settings are 2.5 V and 10 µA. To change these settings, the BBCHGRCFG register (Table 31) will need to be modified. To read and write the 8-bit value of the BBCHGRCFG register from within the Linux kernel using the following functions that are provided by the drivers/platform/x86/intel_scu_pmic.c driver: // Read BBCHGRCFG into bbchgrcfg_value uint8_t bbchgrcfg_value; int ret; ret = intel_scu_ipc_ioread8(0x52, &bbchgrcfg_value); if (ret) error; // Set BBCHGRCFG to NEW_BBCHGRCFG_VALUE int ret; ret = intel_scu_ipc_iowrite8(0x52, NEW_BBCHGRCFG_VALUE); if (ret) error; D5, D6, and D7 should remain 0. January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 37 External Interface Pins and Electrical Characteristics Table 31 Register name BBCHGRCFG BBCHGRCFG - Backup battery charger and main battery charger IC configuration registers R/W R/W D7 D6 RSVD D5 CHGDIS_ACT D4 D3 BBCHGI[1:0] D2 D1 BBCHGV[1:0] D0 BBCHGEN Initial 0x01 Address 0x52 (0x5E) Bit Name Function Default D[7:6] RSVD Reserved. 00 D5 CHGDIS_ACT Charger IC disable pin action. Set according to how the main battery charger IC responds to the CHGDIS pin being asserted. What this bit’s tile value is set to depends entirely on charger IC selection. This bit is read only. 0 = The main battery charger IC is disabled when asserted. (Power-path is not available.) 1 = Only the battery charging function within the main battery charger IC will be disabled when asserted. (Power-path is still available.) 0 (NVM) D[4:3] BBCHGI[1:0] Sets the backup supply charger current limit. 00 = 10 µA 01 = 50 µA 10 = 100 µA 11 = 500 µA 00 (NVM) D[2:1] BBCHGV[1:0] Sets the backup supply charging limit. 00 = 2.5 V 01 = 3.0 V 10 = 3.15 V 11 = 3.3 V 00 (NVM) D0 BBCHGEN 0 = Disable charging of backup supply. 1 = Enable charging of backup supply. 1 (NVM) Example implementation: • Register setting: BBCHGRCFG=19 • Voltage: 2.5 V (default value) • Current: 500 µA • Charging current: 500 µA • Discharge current (consumption): 8.0 µA • Charge voltage: 2.5 V • Minimum RTC retention voltage: 2.05 V • Capacitance of supercap: 0.014F (PAS3225P2R6143/Taiyo Yuden) • Theoretical backup times = 0.014F * (2.5 to 2.05) V / 8 µA = 787.5 s = 13 min • Measured (actual) backup time = 15 min 20 sec • Measured chargeup time (0 to 2.5 V) = 2 min 24 sec 4.14 Electrostatic discharge (ESD) specification Table 32 ESD performance Model Passing voltages Human body model (HBM) ±1 kV Notes Charged device model (CDM) ±500 V For all pins, other than mentioned below. Charged device model (CDM) ±250 V For USB3, HDMI, DSI, CSI, and LPDDR3 pins. Note: Passing voltage applies to all signal and power pins. § Intel® Edison Compute Module Hardware Guide 38 January 2015 Document Number: 331189-004 Powering Intel® Edison 5 Powering Intel® Edison Intel® Edison may be embedded in a number of devices either battery powered, or AC wall powered. Therefore, Intel® Edison was designed not to support a specific power delivery method or specific battery chemistry and capacity range. This portion of the design is left to the end-user. With the interfaces available, smart battery coulomb counters and smart rechargers could be placed onto one of the available I2C buses. Porting of the software to the specific bus would be the responsibility of the end-user. 5.1 Main power supply VSYS Intel® Edison uses VSYS (pins 2, 4, and 6) as the only power input path. Internal to Intel® Edison, this signal is also connected to the VBAT path. Application of power to VSYS is interpreted as a battery insertion and will cause Intel® Edison to boot. The VSYS power range is 3.15 min to 4.5 V max (see section 4.12). This allows VSYS to run off a standard lithium-ion battery. There are a number of possible power configurations for Intel® Edison, based on the size and cost sensitivity of the end-user’s product. 5.2 Lithium-polymer battery direct attach The simplest battery power connection to Intel® Edison is to directly attach a battery to VSYS, as shown in Figure 22. We do not recommend this configuration as the charging system cannot distinguish between charge current and total system current. Note: If Intel® Edison is prevented from booting by holding the power button signal PWRBTN# (pin 17) low, then the power input can be assumed to be the battery charging current. Figure 22 Example Intel® Edison lithium-polymer battery direct attach END USER PRODUCT EDISON MODULE VBUS VBUS 2 1 2 1 USB PHY CHARGER VSYS PMIC Battery 1 VOUT GATE VBAT VBAT 2 DCIN . January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 39 Powering Intel® Edison 5.3 Lithium-polymer battery with diode or FET isolation In this configuration, Intel® Edison will see a diode drop during normal operation. This configuration allows the system to boot even with a dead battery. This configuration requires an additional pin to the external world to control the charging. Replacing the diode with a PFET, and pulling the gate low will remove the diode drop power loss. The external charger would require a gate control pin for an external PFET. This function is found on rechargers like the Texas Instruments* BQ24073. Figure 23 Example Intel® Edison lithium-polymer battery with FET isolation END USER PRODUCT EDISON MODULE VBUS VBUS 2 1 USB PHY CHARGER 2 1 VSYS VOUT 1 PMIC 3 DCIN VBAT 1 2 GATE 1 2 Battery 2 VBAT . 5.4 Connection to USB VBUS It is not possible to run an Intel® Edison compute module directly off a USB power supply. The maximum input voltage to VSYS should be less than 4.5 V. The USB power supply specification (4.75 to 5.25 V) exceeds the safe operational range of Intel® Edison. USB power must be down converted with an LDO or small buck switching converter or a recharger like the Texas Instruments* BQ24074. Intel® Edison Compute Module Hardware Guide 40 January 2015 Document Number: 331189-004 Powering Intel® Edison 5.5 Cold boot sequence Figure 24 shows the signal sequence from a cold boot. Note: The reset# signal in Figure 24 is accessible on the 70-pin connectors as RESET_OUT# on pin 36. Figure 24 Intel® Edison cold boot sequence § January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 41 Intel® Edison Mechanicals 6 Intel® Edison Mechanicals Figure 25 shows the dimensions (in millimeters) of the Intel® Edison module. Figure 25 Intel® Edison mechanical dimensions (top view through PCB) The location for pin 1 of the 70-pin connector is the lower right corner of the connector. The location of pin 2 is across the connector at the lower left corner. Consequently, the location of pin 69 is the upper right corner of the connector and the location of pin 70 is the upper left corner of the connector. The center point of the connector is specified in the drawing. The diameters of the two mounting holes are 2.0 mm. Screw heads should be less than 3.0 mm. The mounting holes were designed for a T1.6 mm screw. Note: The onboard chip antenna is in the lower right corner of Intel® Edison is denoted in the drawing as “ANTENNA KOZ”. User-designed expansion PCBs should not place components or metallic objects close to the antenna keepout zone. Most components on both sides of Intel® Edison will be covered with a shield. The height of the shields on both sides of the board, as measured from the surface of the PCB, is approximately 1.5 mm. The PCB thickness is specified as 0.8 mm ±0.1 mm. Therefore, the total maximum thickness of Intel® Edison is 3.9 mm. These values are verified with DVT modules. § Intel® Edison Compute Module Hardware Guide 42 January 2015 Document Number: 331189-004 Layout 7 Layout 7.1 Antenna keepout The area under and around the antenna should be kept free of all components, routes, and ground plane. An example is shown here with the Intel® Edison Compute Module DXF in white with antenna keepout shown in the Intel® Edison Kit for Arduino* trace layers. See Figure 26. Figure 26 Area around antenna 7.2 Layout SD card, I2S, SPI, I2C Table 33 Layout SD card Signal parameter Metric (mm) Standard (mils) Total length L1 0.254 to 101.6 mm 10 to 4000 mils DATA/CMD/CTRL to CLK maximum pin-to-pin length mismatch ±2.54 mm ±100 mils Minimum main route spacing ratio 60 × 60 µm. 1:1 trace width/space. CLK to DATA/CMD/CTRL matching ±200 mils Characteristic single ended impedance 42 to 45 ohm (±10%) Load capacitance 2 to 5 pF Note: 1) For SPI, total length is 6000 mils. 2) For I2C, total length is 8000 mils. January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 43 Layout 7.3 Layout DXF The following embedded file is a DXF of the Intel® Edison compute module as shown in Figure 27. Note: KOZ stands for “keepout zone”. Figure 27 Layout DXF (See attachment: Edison_DVT.dxf) 7.4 Layout PTC EMN files Figure 28 PTC EMN graphic H38489-005_R02 _emn.emn (See attachment: H38489-005_R02 _emn.emn) H38489-005_R02 _emn.emp (See attachment: H38489-005_R02 _emn.emp) Intel® Edison Compute Module Hardware Guide 44 January 2015 Document Number: 331189-004 Layout Figure 29 H383485-300 Adobe Acrobat Document (See attachment: H383485-300.pdf) § January 2015 Document Number: 331189-004 Intel® Edison Compute Module Hardware Guide 45 Handling 8 Handling When assembling an Intel® Edison Compute Module to a carrier board such as the Intel® Edison Arduino* board, handle the Intel® Edison Compute Module by the PCB edges. Avoid holding or exerting pressure to the shields. To mate the Intel® Edison Compute Module to the Intel® Edison Arduino* board, apply pressure directly above the connector and to the left corner, as shown in Figure 30. Figure 30 Inserting an Intel® Edison module § Intel® Edison Compute Module Hardware Guide 46 January 2015 Document Number: 331189-004