Intel® Edison Compute Module Hardware Guide

Intel® Edison Compute Module
Hardware Guide
January 2015
Revision 004
Document Number: 331189-004
Notice: This document contains information on products in the design phase of development. The information here is subject to change without
notice. Do not finalize a design with this information.
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death.
SHOULD YOU PURCHASE OR USE INTEL’S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL
AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST
ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF
PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT
INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.
Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to
restrictions stated in Intel’s Software License Agreement, or in the case of software delivered to the government, in accordance with the software
license agreement as defined in FAR 52.227-7013.
The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.
The code names presented in this document are only for use by Intel to identify products, technologies, or services in development that have not
been made commercially available to the public, i.e., announced, launched, or shipped. They are not "commercial" names for products or services
and are not intended to function as trademarks.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel’s website at http://www.intel.com/design/literature.htm.
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across
different processor families. See http://www.intel.com/products/processor_number for details.
Intel, the Intel logo, and Intel Atom are trademarks of Intel Corporation in the United States and other countries.
* Other brands and names may be claimed as the property of others.
Copyright © 2015 Intel Corporation. All rights reserved.
Intel® Edison Compute Module
Hardware Guide
2
January 2015
Document Number: 331189-004
Contents
1
2
3
4
Introduction ....................................................................................................................................................................... 8
1.1
References ........................................................................................................................................................................................ 8
High-Level Functional Description ............................................................................................................................... 9
2.1
Block diagram .............................................................................................................................................................................. 10
2.2
Module photos ............................................................................................................................................................................ 10
Component and Subsystem Details............................................................................................................................ 12
3.1
Intel® Atom™ processor ........................................................................................................................................................... 12
3.2
Wi-Fi / BT module ...................................................................................................................................................................... 12
3.3
Managed NAND (eMMC) flash .............................................................................................................................................. 12
3.4
DDR SDRAM .................................................................................................................................................................................. 12
3.5
Power management IC (PMIC).............................................................................................................................................. 13
3.6
USB 2.0 transceiver ULPI interface .................................................................................................................................... 13
3.7
Integrated chip antenna or u.FL connector for external antenna ....................................................................... 13
3.8
70-pin interface connector .................................................................................................................................................... 14
External Interface Pins and Electrical Characteristics............................................................................................. 16
4.1
Clocks .............................................................................................................................................................................................. 16
4.1.1
19.2 MHz OSC clock output specification .......................................................................................... 16
4.1.2
RTC clock specification ............................................................................................................................... 17
I2C Interfaces ................................................................................................................................................................................ 18
4.2
4.2.1
Standards specification compliance ..................................................................................................... 18
4.2.2
I2C standard/fast mode electrical characteristics ........................................................................... 18
SD card interface ........................................................................................................................................................................ 22
4.3
4.3.1
Standards specification compliance ..................................................................................................... 22
4.3.2
SD/SDIO AC specification .......................................................................................................................... 22
4.3.3
SD/SDIO DC specification .......................................................................................................................... 23
4.4
UART interfaces .......................................................................................................................................................................... 24
4.4.1
UART AC specification ................................................................................................................................. 24
4.4.2
UART DC specification ................................................................................................................................. 24
2
4.5
I S interface................................................................................................................................................................................... 25
4.5.1
I2S AC specification ....................................................................................................................................... 26
4.5.2
I2S DC specifications ..................................................................................................................................... 29
4.6
SPI interface.................................................................................................................................................................................. 30
4.6.1
SPI master AC specification ...................................................................................................................... 30
4.6.2
SPI slave AC specification .......................................................................................................................... 31
4.6.3
SPI DC Specification ..................................................................................................................................... 32
4.7
GPIO ................................................................................................................................................................................................. 33
4.7.1
GPIO AC specification .................................................................................................................................. 33
4.7.2
GPIO DC specification .................................................................................................................................. 33
4.7.3
GPIO pullup and pulldown specification ............................................................................................ 34
4.8
PWM ................................................................................................................................................................................................. 35
4.8.1
PWM AC specification .................................................................................................................................. 35
4.8.2
PWM DC specification .................................................................................................................................. 35
4.9
USB ................................................................................................................................................................................................... 36
4.9.1
Standards specification compliance ..................................................................................................... 36
4.10
System reset ................................................................................................................................................................................. 36
4.11
Software recovery (FWR_RCVR and RCVR_MODE) .................................................................................................... 36
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
3
5
6
7
8
4.12
Power input and output .......................................................................................................................................................... 37
4.13
V_VBAT_BKUP............................................................................................................................................................................. 37
4.14
Electrostatic discharge (ESD) specification .................................................................................................................... 38
Powering Intel® Edison .................................................................................................................................................. 39
5.1
Main power supply VSYS ....................................................................................................................................................... 39
5.2
Lithium-polymer battery direct attach ............................................................................................................................. 39
5.3
Lithium-polymer battery with diode or FET isolation ............................................................................................... 40
5.4
Connection to USB VBUS ....................................................................................................................................................... 40
5.5
Cold boot sequence .................................................................................................................................................................. 41
Intel® Edison Mechanicals ............................................................................................................................................. 42
Layout................................................................................................................................................................................ 43
7.1
Antenna keepout ........................................................................................................................................................................ 43
7.2
Layout SD card, I2S, SPI, I2C ................................................................................................................................................. 43
7.3
Layout DXF .................................................................................................................................................................................... 44
7.4
Layout PTC EMN files ............................................................................................................................................................... 44
Handling ........................................................................................................................................................................... 46
Intel® Edison Compute Module
Hardware Guide
4
January 2015
Document Number: 331189-004
Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Intel® Edison block diagram ............................................................................................................................................. 10
Intel® Edison compute module top view .................................................................................................................... 10
Intel® Edison compute module bottom view............................................................................................................ 11
Clock jitter definitions ......................................................................................................................................................... 17
Period jitter measurement methodology................................................................................................................... 17
Definition of timing for standard/fast mode devices on I2C bus ..................................................................... 19
Definition of timing for high speed-mode devices on I2C bus ......................................................................... 21
SD/SDIO timing diagram (DDR50) ................................................................................................................................. 22
SD/SDIO output timing diagram (SDR 12/25).......................................................................................................... 23
SD/SDIO input timing diagram (SDR12/25) .............................................................................................................. 23
UART timing diagram .......................................................................................................................................................... 24
I2S master port timings in I2S mode ............................................................................................................................. 26
I2S master port timings in PCM short frame mode ................................................................................................ 27
I2S master port timings in PCM long frame mode.................................................................................................. 27
I2S slave port timing parameters in I2S mode ......................................................................................................... 28
I2S slave port timing parameters in PCM short frame mode............................................................................. 29
I2S slave port timing parameters in PCM long frame mode .............................................................................. 29
SPI master timing .................................................................................................................................................................. 31
SPI slave timing ...................................................................................................................................................................... 32
GPIO buffer input range ..................................................................................................................................................... 34
Example Intel® Edison external USB design.............................................................................................................. 36
Example Intel® Edison lithium-polymer battery direct attach .......................................................................... 39
Example Intel® Edison lithium-polymer battery with FET isolation ............................................................... 40
Intel® Edison cold boot sequence.................................................................................................................................. 41
Intel® Edison mechanical dimensions (top view through PCB) ........................................................................ 42
Area around antenna ........................................................................................................................................................... 43
Layout DXF ............................................................................................................................................................................... 44
PTC EMN graphic ................................................................................................................................................................... 44
H383485-300 ......................................................................................................................................................................... 45
Inserting an Intel® Edison module ................................................................................................................................. 46
Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Product-specific documents ............................................................................................................................................... 8
Hardware features.................................................................................................................................................................... 9
Intel® Edison 70-pin connector part numbers ......................................................................................................... 14
Intel® Edison 70-pin connector board-to-board mating height...................................................................... 14
Intel® Edison connector pinout and signal list ......................................................................................................... 14
19.2 MHz OSC_Clock output............................................................................................................................................ 16
RTC clock input specification........................................................................................................................................... 17
AC specification for standard/fast mode I2C bus devices .................................................................................. 18
I2C standard/fast mode pullup strength settings for SCL and SDA ............................................................... 19
DC specification for I2C standard/fast mode devices .......................................................................................... 20
AC specification for high speed mode I2C bus devices........................................................................................ 20
I2C high speed mode pullup strength settings for SDA....................................................................................... 20
I2C high speed mode pullup strength settings for SCL ....................................................................................... 21
DC specification for high-speed mode—I2C bus device ..................................................................................... 21
SD AC specification............................................................................................................................................................... 22
SD/SDIO DC specification.................................................................................................................................................. 23
UART AC specification ........................................................................................................................................................ 24
Intel® Edison I2S available formats ............................................................................................................................... 25
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
5
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Table 31
Table 32
Table 33
I2S ports overview (reference design implementation) ....................................................................................... 25
I2S master AC timings .......................................................................................................................................................... 26
I2S slave mode AC timing parameters ......................................................................................................................... 28
I2S buffer DC specification ................................................................................................................................................ 29
SPI ports overview ................................................................................................................................................................ 30
SPI modes ................................................................................................................................................................................. 30
SPI master AC timings ......................................................................................................................................................... 30
SPI slave AC timings ............................................................................................................................................................. 31
GPIO buffer AC specifications ......................................................................................................................................... 33
GPIO buffer DC specifications ......................................................................................................................................... 33
GPIO pullup and pulldown specification .................................................................................................................... 34
Intel® Edison PWM programming examples ............................................................................................................. 35
BBCHGRCFG - Backup battery charger and main battery charger IC configuration registers ........... 38
ESD performance .................................................................................................................................................................. 38
Layout SD card........................................................................................................................................................................ 43
Intel® Edison Compute Module
Hardware Guide
6
January 2015
Document Number: 331189-004
Revision History
Revision
Description
Date
ww32
Initial release
August 4, 2014
ww34
Minor edits.
August 20, 2014
001
First public release.
September 9, 2014
002
Minor corrections.
September 16, 2014
003
Added section on software recovery mode.
November 14, 2014
004
Major content additions to chapter 4.
January 30, 2015
§
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
7
Introduction
1
Introduction
This document describes the hardware interface of the Intel® Edison compute module. It provides an overview of
how to create an expansion board that connects directly to the Intel® Edison compute module.
1.1
References
Table 1
Product-specific documents
Reference
Name
331188
Intel® Edison Board Support Package User Guide
Number/location
331189
Intel® Edison Compute Module Hardware Guide
331190
Intel® Edison Breakout Board Hardware Guide
331191
Intel® Edison Kit for Arduino* Hardware Guide
329686
Intel® Galileo and Intel® Edison Release Notes
[GSG]
Intel® Edison Getting Started Guide
331438
Intel® Edison Wi-Fi Guide
331704
Intel® Edison Bluetooth* Guide
(This document)
W: http://www.intel.com/support/edison/sb/CS-035336.htm
M: http://www.intel.com/support/edison/sb/CS-035344.htm
L: http://www.intel.com/support/edison/sb/CS-035335.htm
§
Intel® Edison Compute Module
Hardware Guide
8
January 2015
Document Number: 331189-004
High-Level Functional Description
2
High-Level Functional Description
The Intel® Edison Compute Module is designed to lower the barriers to entry for anyone prototyping and producing
IoT and wearable computing products. Intel® Edison contains core system processing and connectivity elements:
Processor and processor power management IC, RAM, eMMC, and Wi-Fi/BT. Intel® Edison is a module that
interfaces with end-user systems via a 70-pin connector. Intel® Edison relies on the end-user to provide input
power, and overall system power management, such as battery recharging for battery-powered systems. Table 2
shows the main system components.
Table 2
Hardware features
Component
Description
Processor
22 nm Intel® SoC that includes a dual-core, dual-threaded Intel® Atom™ CPU at 500 MHz and a 32-bitIntel®
Quark™ microcontroller at 100 MHz
RAM
1 GB LPDDR3 POP memory (2 channel 32 bits @ 800 MT/sec)
Internal storage
4 GB eMMC (v4.51 spec)
Power
TI SNB9024 power management IC
Wireless
Dual-band (2.4 and 5 GHz) IEEE 802.11a/b/g/n
Bluetooth*
BT 4.0 + 2.1 EDR
Antenna
Dual-band onboard chip antenna or u.FL for external antenna
Connector
70-pin Hirose DF40 Series (1.5, 2.0, or 3.0 mm stack height)
Size
35.5 × 25.0 × 3.9 mm maximum (to be verified)
Power input
3.15 to 4.5 V
I/O
USB 2.0
40 general purpose GPIO which can be configured as:
•
SD card: 1 interface
•
UART: 2 controllers (one full flow control, one Rx/Tx)
•
I2C: 2 controllers
•
SPI: 1 controller with 2 chip selects
•
I2S: 1 controller
•
GPIO: Additional 14 (with 4 capable of PWM)
1 OTG controller
Clocks
19.2 MHz, 32 kHz
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
9
High-Level Functional Description
2.1
Block diagram
Figure 1 shows the basic Intel® Edison block diagram.
Intel® Edison block diagram
Wi-Fi dual-band
(802.11a/b/g/n)
Bluetooth LE
(with 2.1 + EDR)
4 GB eMMC
Intel® Atom™ Processor
(dual-core 500 MHz)
1 GB LPDDR3
(PoP)
GPIOs, various buses
USB
USB 2.0 PHY
VBUS
PMIC
3.15 to 4.5 V input
Intel® Edison 70-pin connector
Figure 1
3.3 V output
1.8 V output
2.2
Module photos
Figure 2
Intel® Edison compute module top view
eMMC (4 GB)
Wi-Fi/BTLE
module
USB ULPI
transceiver
Embedded
2.4/5.0 GHz
antenna
Antenna
coaxial
connector
Intel® Edison Compute Module
Hardware Guide
10
January 2015
Document Number: 331189-004
High-Level Functional Description
Figure 3
Intel® Edison compute module bottom view
Pin 69
Pin 70
Processor and DDR POP
memory
70-pin I/O connector
Pin 1
PMIC
Pin 2
§
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
11
Component and Subsystem Details
3
Component and Subsystem Details
3.1
Intel® Atom™ processor
Intel® Edison takes advantage of the Intel® Atom™ Processor 22 nm System-on-Chip, targeted for the smartphone
market segment. The SoC contains dual IA-32 cores operating at 500 MHz. The architecture includes 2-wide
instruction decode and Out Of Order Execution with 1 MB cache shared between the two CPU cores. It includes
Intel SIMD Extensions 2, 3, 4 (SSE2, SSE3, SSE4.1/4.2).
3.2
Wi-Fi / BT module
The Murata integrated Wi-Fi BT module is built around a Broadcom BCM43340 Wi-Fi/BT device.
The Broadcom BCM43340 single-chip quad device provides a high level of integration for a mobile or handheld
wireless system, with integrated dual-band (2.4 / 5 GHz) IEEE 802.11a/b/g/n MAC/baseband/radio with
Bluetooth* 4.0.
•
Dual-band 2.4 GHz and 5 GHz IEEE 802.11 a/b/g/n.
•
Single-stream IEEE 802.11n support for 20 MHz and 40 MHz channels provides PHY layer rates up to
150 Mbps for typical upper layer throughput in excess of 90 Mbps.
•
Supports standard SDIO v2.0 and gSPI (48 MHz) host interfaces.
•
Complies with Bluetooth* Core Specification Version 4.0 with provisions for supporting future specifications.
Bluetooth Class 1 or Class 2 transmitter operation.
•
Security:
−
WPA and WPA2 (personal) support for powerful encryption and authentication.
−
AES in WLAN hardware for faster data encryption and IEEE 802.11i compatibility –Reference WLAN
subsystem provides Cisco* Compatible Extensions (CCX, CCX 2.0, CCX 3.0, CCX 4.0, CCX 5.0).
−
Reference WLAN subsystem provides Wi-Fi protected setup (WPS).
3.3
Managed NAND (eMMC) flash
Intel® Edison uses 4 GB of managed NAND to store the file system and user data. Managed NAND flash contains a
full MMC controller, wear-leveling firmware, and all the other features that are typically found in MMC cards, except
it is available in a small BGA form-factor.
•
Bus mode
−
Data bus width: 1 bit (default), 4 bits, 8 bits
−
Data transfer rate: up to 200 MBps (HS200)
−
MMC I/F clock frequency: 0~200 MHz
−
MMC I/F boot frequency: 0~52 MHz
3.4
DDR SDRAM
Intel® Edison supports 1 GB LPDDR3 memory at speeds up to 1033 MT/s.
•
8 banks
•
Row addresses R0-R13
•
Column addresses C0-C9
•
Dual-channel 32 bits
•
400 MHz clock max (800 MT/s)
Intel® Edison Compute Module
Hardware Guide
12
January 2015
Document Number: 331189-004
Component and Subsystem Details
3.5
Power management IC (PMIC)
Intel® Edison uses the Texas Instruments* SNB9024 Power Management Integrated Circuit (PMIC). The SNB9024
PMIC is for mobile application processors platforms with high feature integration in order to minimize system
board area. It includes subsystems for voltage regulation, A/D conversion, GPIOs, and RTC. The SNB9024 device is
controlled and programmed using an I2C interface. There is also a serial voltage ID interface between the SOC and
PMIC for handling core voltage rail settings as well as system control signals.
•
Four high-efficiency buck converters
−
- Two dual-phase 0.55 to 1.2 V @ 4.8 A with DVS
−
- One dual-phase 1.24 V @ 2.5 A
−
- One single-phase 1.8 V @ 1.1 A
•
One 5 V 1.2 A boost converter
•
One 3.3 V/3.4 V 1.4 A buck-boost converter
•
Five low drop-out regulators
−
- Three programmable 1.05 to 2.85 V @ 100 to 300 mA
−
- One high precision 1 V @ 2 mA
−
- One DVS 0.75 to 0.95 V @ 220 mA
•
Two load switches with slew rate control and external load switch control
•
USB and AC/DC adapter power supply detection with external charger control (enable/disable and current
limit)
•
I2C Interface and dedicated SVI
•
Interrupt controller for PMIC events
•
Seven general purpose 1.8 V I/Os, with two of them supporting up to 3.3 V
•
32.768 kHz RTC for backup time
•
Alarm timer interrupt
•
Sleep clock outputs (32.768 kHz)
3.6
USB 2.0 transceiver ULPI interface
The TUSB1211 is a USB 2.0 transceiver chip, designed to interface with a USB controller via a ULPI interface. It
supports all USB 2.0 data rates (High-Speed 480 Mbps, Full-Speed 12 Mbps, and Low-Speed 1.5 Mbps) in both
Host and Peripheral modes. TUSB1211 also supports the OTG (Ver1.3) optional addendum to the USB 2.0
specification, including Host Negotiation Protocol (HNP) and Session Request Protocol (SRP).
TUSB1211 also supports USB Battery Charging Specification v1.1 integrating a charger detection module for
sensing and control on DP/DM lines, and ACA (Adaptive Charger Accessory) detection and control on ID line. ACA
allows simultaneous connection of a USB Charger or Charging Downstream Port and an Accessory to a portable
OTG device. Configuration bits allow an ACA-agnostic legacy link to correctly communicate with the connected
accessory port through the ACA.
3.7
Integrated chip antenna or u.FL connector for external
antenna
The Intel® Edison Compute Module has an integrated dual-band 2.4/5 GHz antenna built onboard. The onboard
antenna is used primarily for small form factor plastic devices. For larger devices or a device which has a metal
enclosure, another version of Intel® Edison is available with an industry standard u.FL connector for attachment to
an external antenna. This will allow the end-user to locate the antenna for optimal performance.
Note:
The internal antenna versions also have a u.FL connector on the board, but it is only used as a
manufacturing test point. Do not connect an external antenna to a board with an internal antenna.
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
13
Component and Subsystem Details
3.8
70-pin interface connector
The Intel® Edison Compute Module connects to the end user device via a 70-pin connector. The connector on Intel®
Edison is a Hirose 70-pin DF40 Series “header” connector sometimes referred to as a “plug” connector. The Hirose
part number for the “header” connector on the Intel® Edison compute module is DF40C-70DP-0.4V(51).
The mating Hirose connector on an expansion board is the “receptacle” connector. This mating “receptacle”
connector is available in three different heights. The board-to-board mating stack height can be 1.5, 2.0, or 3.0 mm.
Table 3 lists the Hirose part number for the “receptacle” connector and corresponding DigiKey and Mouser part
numbers for an expansion board.
Table 3
Intel® Edison 70-pin connector part numbers
Hirose P/N
Mating stack height
DigiKey P/N
Mouser P/N
DF40C-70DS-0.4V(51)
1.5 mm
n/a
798-DF40C70DS04V51
DF40C(2.0)-70DS-0.4V(51)
2.0 mm
H11908CT-ND (low quantity)
H11908TR-ND (tape and reel)
798-DF40C2070DS04V51
DF40HC(3.0)-70DS-0.4V(51)
3.0 mm
n/a
n/a
The Intel® Edison Arduino board utilizes the 2.0 mm board-to-board stack height connector.
The bottom side of the Intel® Edison compute module (side with 70-pin connector) has a component height (shield
height) of 1.5 mm and will sit flush against the connecting PCB if a 1.5 mm connector is used. Table 3 lists the
expansion board component height restrictions for components under the Intel® Edison compute module.
Table 4
Intel® Edison 70-pin connector board-to-board mating height
Hirose P/N
Board-to-board mating height Available height under Intel® Edison
DF40C-70DS-0.4V(51)
1.5 mm
n/a
DF40C(2.0)-70DS-0.4V(51)
2.0 mm
0.5 mm
DF40HC(3.0)-70DS-0.4V(51)
3.0 mm
1.5 mm
Intel® Edison is secured to an expansion board via two mounting holes each with a diameter of 2.0 mm. Any
mounting standoffs will also need to match the mating connector height (1.5, 2.0, or 3.0 mm).
Table 5 lists the Intel® Edison 70-pin connector pinouts and signals.
Table 5
Intel® Edison connector pinout and signal list
Pin
Signal name
2, 4, 6
VSYS
8, 10
3.3 V
System 3.3 V output
12
1.8 V
System 1.8 V output (same as I/O voltage levels)
14
DCIN
Input, connect to VSYS when powering from a DC power adapter
(no connect if powering from a battery)
1,5,9,11,13,15 GND
Alternate function
Description
System input power (3.3 to 4.5 V)
Ground
7
MSIC_SLP_CLK3
32 kHz sleep clock output
3
USB_ID
USB OTG ID pin
16
USB_DP
USB D+
18
USB_DN
USB D-
20
USB_VBUS
USB VBUS input (does not power system)
17
PWRBTN#
Power/sleep button input (active low)
19
FAULT
USB power fault input (from external USB current limit switch)
21
PSW
USB power output enable (to external USB current limit switch)
23
V_VBAT_BKUP
Real-time clock (RTC) backup battery input
36
RESET_OUT#
System reset output (active low)
24
GP44
GPIO
Intel® Edison Compute Module
Hardware Guide
14
January 2015
Document Number: 331189-004
Component and Subsystem Details
Pin
Signal name
25
GP165
Alternate function
GPIO
Description
26
GP45
GPIO
28
GP46
GPIO
30
GP47
GPIO
32
GP48
GPIO
34
GP49
GPIO
42
GP15
GPIO
48
GP14
GPIO
35
GP12_PWM0
PWM_0
GPIO, capable of PWM output
33
GP13_PWM1
PWM_1
GPIO, capable of PWM output
37
GP182_PWM2
PWM_2
GPIO, capable of PWM output
39
GP183_PWM3
PWM_3
GPIO, capable of PWM output
41
GP19
I2C_1_SCL
GPIO, I2C1 clock (open collector when configured for I2C)
43
GP20
I2C_1_SDA
GPIO, I2C1 data (open collector when configured for I2C)
45
GP27
I2C_6_SCL
GPIO, I2C6 clock (open collector when configured for I2C)
47
GP28
I2C_6_SDA
GPIO, I2C6 data (open collector when configured for I2C)
50
GP42
I2S_2_RXD
GPIO, I2S2 receive data (input)
52
GP40
I2S_2_CLK
GPIO, I2S2 clock (output)
54
GP41
I2S_2_FS
GPIO, I2S2 frame sync (output)
56
GP43
I2S_2_TXD
GPIO, I2S2 transmit data (output)
22
GP134
UART_2_RX
GPIO, UART2 receive (input)
27
GP135
UART_2_TX
GPIO, UART2 transmit (output)
51
GP111
SPI_2_FS1
GPIO, SPI2 chip select 1 (output)
53
GP110
SPI_2_FS0
GPIO, SPI2 chip select 0 (output)
55
GP109
SPI_2_CLK
GPIO, SPI2 clock output
57
GP115
SPI_2_TXD
GPIO, SPI2 transmit data (output)
59
GP114
SPI_2_RXD
GPIO, SPI2 receive data (input)
46
GP131
UART_1_TX
GPIO, UART1 transmit (output)
61
GP130
UART_1_RX
GPIO, UART1 receive data (input)
63
GP129
UART_1_RTS
GPIO, UART1 ready to send (output)
65
GP128
UART_1_CTS
GPIO, UART1 clear to send (input)
44
GP84
SD_0_CLK_FB
GPIO, SD clock feedback
58
GP78
SD_0_CLK
GPIO, SD clock output
60
GP77
SD_0_CD#
GPIO, SD card detect input (active low)
62
GP79
SD_0_CMD
GPIO, SD command
66
GP80
SD_0_DAT0
GPIO, SD data 0
70
GP81
SD_0_DAT1
GPIO, SD data 1
64
GP82
SD_0_DAT2
GPIO, SD data 2
68
GP83
SD_0_DAT3
67
OSC_CLK_OUT_0
19.2 MHz high speed clock output
31
RCVR_MODE
Firmware recovery mode
69
FW_RCVR
Firmware recovery (active high on boot)
29,38,40,49
Unused.
GPIO, SD data
§
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
15
External Interface Pins and Electrical Characteristics
4
External Interface Pins and Electrical
Characteristics
Every Intel® Edison I/O (with the exception of USB) uses 1.8 V signaling.
4.1
Clocks
Intel® Edison has two clock outputs. A 32 kHz sleep clock connected to pin 7 and a high frequency 19.2 MHz clock
connected to pin 67. The sleep clock has ±5 mA drive capability, and may be programmed to provide an output
when the SoC is in a sleep state. Refer to the GPIO buffer (1.8 V) DC specification, mentioned in Table 28.
You might need to buffer the clocks, depending on external trace lengths.
4.1.1
19.2 MHz OSC clock output specification
Table 6 provides specifications for clocks labeled OSC_CLK[4:0].
Table 6
Symbol
19.2 MHz OSC_Clock output
Parameter
Min
Frequency
Typ
Max
Unit
19.2
–
MHz
Figure
Notes
2, 4
1, 3
TRISE/TFALL
Rise and fall time
1
–
5
ns
Duty cycle
Duty cycle
45
–
55
%
C2C-J
Cycle to cycle jitter (peak)
–
–
300
ps
Figure 4
2, 5
PJ
Period Jitter (peak to peak)
–
–
350
ps
Figure 4, Figure 5
2, 6
Long term accuracy
–100
0
+100 ppm
2
7
NOTE:
1. Edge rate is measured from 20 to 80% of 1.8 V supply.
2. Frequency and duty cycle are measured with respect to 50% of the 1.8 V supply. Duty cycle is measured over three
measurements of the of 10 K cycles.
3. Output is based on trace length of 25 to 200 mm, Far End Load of 2 to 5 pF, ESD of 10 pF, and board impedance of 30 to
75 ohm.
4. Divide by two (to achieve frequency of 9.6 MHz) and divide by four (to achieve frequency of 4.8 MHz) options available.
Refer to Merrifield Platform Firmware Architecture Specification (FAS) for Selected Targeted Accounts for more details.
5. Cycle-to-cycle jitter represents how much the clock period changes between any two adjacent cycles. It can be found by
applying a first-order difference operation to the period jitter, as shown by C2 and C3 in Figure 4.The peak cycle-to-cycle
jitter is the maximum over 10 measurements of absolute values of 1000 cycles, per JEDEC Specification (JESD65B)
Definition of Skew Specifications for Standard Logic Devices.
6. Period jitter value is measured by adjusting an oscilloscope to display a little more than one complete clock cycle with the
display set to infinite persistence. Scope trigger is set on the first edge, and the period jitter is captured by measuring
spread/peak-peak value of the second edge. Period jitter is the maximum over three measurements of the 10,000 cycles,
per JEDEC Specification (JESD65B) Definition of Skew Specifications for Standard Logic Devices.
7. Long-term accuracy is a function of crystal and platform design. Meeting short term accuracy of ±50 ppm satisfies long
term accuracy specification.
Intel® Edison Compute Module
Hardware Guide
16
January 2015
Document Number: 331189-004
External Interface Pins and Electrical Characteristics
Figure 4
Clock jitter definitions
Measured
Waveform
P1
P2
P3
Period Jitter (PJ)
C2 = P2 – P1
C3 = P3 – P2
Cycle-to-Cycle Jitter (C2C-J)
Figure 5
Period jitter measurement methodology
0.5(*)VDD
Period Jitter
Trigger
Position
4.1.2
RTC clock specification
Table 7 shows the 32.768 kHz clock specifications to the SoC driven by PMIC.
Table 7
Symbol
RTC clock input specification
Parameter
Min
Typ
Frequency
–
32.768
Long term accuracy
-100
0
January 2015
Document Number: 331189-004
Max
Unit
+100
ppm
Notes
kHz
Intel® Edison Compute Module
Hardware Guide
17
External Interface Pins and Electrical Characteristics
I2C Interfaces
4.2
Intel® Edison has two available I2C interfaces, I2C1 and I2C6. I2C1 on pins 41 and 43 is a general purpose I2C
interface that connects directly to the IA cores. I2C6 on pins 45 and 47 can be configured as I2C6 which connects
to the IA cores or as I2C8 which connects to a system controller fabric (controlled by MCU). For the initial release of
Intel® Edison, only I2C1 and I2C6 are available. Both of these interfaces are open collector when configured as I2C.
When configured as GPIO, they can be standard push pull outputs.
The I2C module can operate in the following modes:
•
Standard mode (with data rates up to 100 kbps).
•
Fast mode (with data rates up to 400 kbps).
•
High-speed mode (with data rates up to 3.4 Mbps).
•
The SoC is always I2C master, it does not support multimaster mode.
•
The SoC can support clock stretching by slave devices.
•
Both 7-bit and 10-bit addressing modes are supported.
When I2C6 is configured as I2C8, it can only run in standard or fast mode.
4.2.1
•
Standards specification compliance
I2C–Bus Specification and User Manual Revision 03 dated June 2007.
4.2.2
I2C standard/fast mode electrical characteristics
4.2.2.1
I2C standard/fast mode AC specification
Table 8
AC specification for standard/fast mode I2C bus devices
Symbol
Parameter
Standard
fSCL
SCL clock frequency
tHD: STA
Hold time (repeated) START condition. After this period, 4.0
the first clock pulse is generated
tLOW
LOW period of the SCL clock
4.7
–
tHIGH
HIGH period of the SCL clock
4.0
–
tSU: STA
setup time for a repeated START condition
4.7
–
tHD: DAT
Data hold time: I2C-bus devices
0
–
tSU: DAT
Data setup time
250
tr
Rise time of both SDA and SCL signals
tf
Fall time of both SDA and SCL signals
tSU: STO
Setup time for STOP condition
tBUF
Bus free time between a STOP and START condition
Cb
Capacitive load for each bus line (=trace capacitance +
device load)
VnL
VnH
Fast
Unit
Notes
Min
Max
Min
0
100
0
Max
400
KHz
–
0.6
–
µs
1.3
–
µs
0.6
–
µs
0.6
–
µs
0
–
ns
–
100
–
ns
1
–
1000
20 + 0.1Cb 300
ns
2, Table 9
10
300
1
300
ns
4, Table 9
4.0
–
0.6
–
µs
4.7
–
1.3
–
µs
–
400
–
400
pF
Noise margin at the LOW level for each connected
device (including hysteresis)
0.1 VDD
–
0.1 VDD
–
V
Noise margin at the HIGH level for each connected
device (including hysteresis)
0.2 VDD
–
0.2 VDD
–
V
3
I
NOTE:
1. A fast-mode I2C-bus device can be used in a standard mode I2C-bus system, but the requirement tSU; DAT ≥ 250 ns must
then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a
device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tSU; DAT =
1000 + 250 = 1250 ns (according to the standard-mode I2C-bus specification) before the SCL line is released.
Intel® Edison Compute Module
Hardware Guide
18
January 2015
Document Number: 331189-004
External Interface Pins and Electrical Characteristics
2.
3.
4.
Cb = total capacitance of one bus line, in picofarads.
The maximum tHD;DAT could be 3.45 µs and 0.9 µs for standard-mode and fast-mode, but must be less than the
maximum of tVD;DAT or tVD;ACK by a transition time. This maximum must only be met if the device does not stretch the
LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the data must be valid by the setup time before it
releases the clock.
Deviates from the I2C specification, which has a minimum fall time of 20 + 0.1 Cb.
Table 9
I2C standard/fast mode pullup strength settings for SCL and SDA
Cb
Internal pullup value
Current assist setting
Cb ≤ 14 pF
20,000
NA
Note
1
14 pF ≤ Cb ≤ 144 pF
2000
NA
1
40 pF ≤ Cb ≤ 400 pF
910
NA
1, 2
NOTE:
1. The internal pullup values need to be programmed in the MIP Header of the firmware depending on the value of Cb.
2. Cb greater than 350 pF may require external pulls on the board. Contact your Intel Representative for further guidance.
30%
30%
30%
30%
70%
70%
30%
30%
tLOW
70%
70%
70%
30%
70%
70%
30%
Definition of timing for standard/fast mode devices on I2C bus
70%
Figure 6
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
19
External Interface Pins and Electrical Characteristics
4.2.2.2
I2C standard/fast mode DC specification
Table 10
DC specification for I2C standard/fast mode devices
Standard (100 kHz)
Fast (400 kHz)
Unit Notes1
Symbol
Parameter
Min
Typ
Max
Min
Typ
Max
TSP
Pulse width of the spikes which are suppressed
by the input filter.
0
–
54
0
–
54
VOL
Output low voltage.
–
–
VDD * –
0.2
–
VDD * V
0.2
Ports 0 to 2
and 4 to7
–
NA
mV
Port 3
–
V
VOL
Output low voltage.
–
–
90
–
VOH
Output high voltage.
VDD *
0.9
–
–
VDD * –
0.9
ns
2
NOTE:
1. For all other DC specifications, refer to the GPIO buffer DC specification mentioned in Table 28.
2. Deviates from the I2C specification, which states maximum TSP of 50 ns for fast mode.
4.2.2.3
Note:
I2C high speed mode electrical characteristics
I2C high speed mode AC specification based on Cb ≤ 100 pF, where Cb = trace capacitance + device load.
AC specification for high speed mode I2C bus devices
Table 11
Symbol
High speed mode Unit
Parameter
Min
Max
Figure
fSCL
SCL clock frequency
0
2.8
MHz
tSU:STA
Setup time for a repeated START condition
160
–
ns
tHD:STA
Hold time (repeated) START condition
160
–
ns
tLOW
LOW period of the SCL clock
160
–
ns
tHIGH
HIGH period of the SCL clock
60
–
ns
tHD:DAT
Data hold time: I2C-bus devices
0
–
ns
tSU:DAT
Data setup time
10
–
ns
tr CL
Rise time of SCL signals
10
40
ns
tf CL
Fall time of SCL signals
1
40
ns
trCL1
Rise time of SCL signal after repeated START condition and after
acknowledge bit
10
40
ns
tr DA
Rise time of SDAH signals
10
80
ns
Table 12
tf DA
Fall time of SDAH signals
1
80
ns
Table 12
tSU:STO
Setup time for STOP condition
160
–
ns
VnL
Noise margin at the LOW level for each connected device
(including hysteresis)
0.1 VDD
–
V
VnH
Noise margin at the HIGH level for each connected device
(including hysteresis)
0.2 VDD
–
V
NOTE:
1.
Notes
1
Deviates from the I2C Specification, which has a minimum fall time of 20 + 0.1 Cb.
Table 12
I2C high speed mode pullup strength settings for SDA
Cb
Internal pullup value
Current assist settings
Cb < 40 pF
2 kohm
NA
40 pF ≤ Cb ≤ 100 pF
910 ohm
NA
NOTE:
1.
Internal pullup values must be programmed in the MIP Header of the firmware depending on the Cb for
the SDA signals.
Intel® Edison Compute Module
Hardware Guide
20
January 2015
Document Number: 331189-004
External Interface Pins and Electrical Characteristics
I2C high speed mode pullup strength settings for SCL
Table 13
Internal pullup value
Current assist settings 1
Cb< 30pF
2 kohm
0x1
30 pF ≤ Cb ≤ 40 pF
2 kohm
0x4
40 pF ≤ Cb ≤ 70 pF
2 kohm
0x5
70 pF ≤ Cb ≤ 90 pF
2 kohm
0xD
90 pF ≤ Cb ≤ 100 pF
2 kohm
0xE
Cb
Notes
2
NOTE:
1. The internal pullup values and current assist setting need to be programmed in the MIP Header of the firmware depending
on the Cb.
2. This setting would apply to I2C Port 0 used to communicate to PMIC.
Definition of timing for high speed-mode devices on I2C bus
Figure 7
Sr
trDA
Sr
tfDA
70%
SDAH
70%
70%
30%
30%
P
30%
tSU;STA
tSU;STO
tHD;DAT
tHD;STA
tSU;DAT
70%
70%
70%
70%
30%
30%
30%
tfCL
SCLH
trCL1
trCL
(1)
tLOW
trCL1
tLOW
tHIGH
(1)
tHIGH
= MCS current source pull-up
= Rp resistor pull-up
(1) First rising edge of the SCLH signal after Sr and after each acknowledge bit.
4.2.2.4
I2C high speed mode DC specification
Table 14
DC specification for high-speed mode—I2C bus device
Notes1
ns
2
Parameter
Min
Typ
TSP
Pulse width of the spikes, which are suppressed by the input filter.
–
–
12
VOL
Output low voltage.
–
–
VDD * 0.2 V
VOH
Output high voltage.
VDD * 0.9 –
NOTE:
1.
2.
For all other DC Specifications, refer to GPIO Buffer DC Specification, mentioned in Table 28.
Deviates from the I2C Specification, which has a max TSP = 10 ns.
January 2015
Document Number: 331189-004
High speed 2.8 MHz
Unit
Symbol
Max
–
V
Intel® Edison Compute Module
Hardware Guide
21
External Interface Pins and Electrical Characteristics
4.3
SD card interface
An SD 3.0 compliant interface is available on pins 44, 58, 60, 62, 64, 66, 68, and 70. SD memory key features:
•
Host clock up to 50 MHz.
•
Supports card detection (insertion/removal) with dedicated card detection signal only.
•
Meets SD Host Controller Standard Specification version 3.0.
•
Only supports SD memory.
•
Requires external level shifter for support of 2.85 V devices.
4.3.1
•
Standards specification compliance
SD Specifications Physical Layer Specification—v3.01
4.3.2
SD/SDIO AC specification
Table 15
SD AC specification
Symbol
Parameter
Port 0 (SD)
Port 1 (SDIO) Unit Figure
Min
Max
Min
Max
Twc(DDR50)
CLK cycle time for DDR50 mode
20
–
20
–
ns
Figure 8.
Twc(SDR25)
CLK cycle time for SDR25 mode
20
–
20
–
ns
Figure 9.
Twc(SDR12)
CLK cycle time for SDR12 mode
40
–
40
–
ns
Notes
TDC
Clock duty cycle
45
55
45
55
%
TODLY(DDR50)
SD_CLK transitioning edge to SDIO_D
1.9
4.6
2.0
4.5
ns
Figure 8.
4
TODLY(SDR25)
SD_CLK rising edge to SDIO_D
1.9
11.6
3.2
11.5
ns
Figure 9.
4
TODLY(SDR12)
SD_CLK rising edge to SDIO_D
1.9
11.6
3.2
11.5
ns
4
TSU_SOC
SoC setup time (data valid before clock 2.4
launched)
–
1.3
–
ns
SDR12/25: Figure 10 4
DDR50: Figure 8
THD_SOC
SoC hold time (data valid after clock
launched)
1.7
–
2.2
–
ns
SDR12/25: Figure 10 4
DDR50: Figure 8
0.5
4
0.5
4
ns
TRISE CLK/TFALL CLK Clock rise and fall time
1, 2, 3, 5
NOTE:
1. Based on trace length of 0.25 to 4.0 inch, 2 to 5 pF far end load for Port 0, AND 2 to 10 pF far end load (for Port 1) and
board impedance of 25 to 75 ohm. This corresponds to a lump load of 35 pF on Port 0 and 40 pF on Port 1.
2. Minimum time deviates from SDIO Specification 3.0, which is not defined in the specification.
3. Measured from 0.58 to 1.27 V.
4. Measured at SoC.
5. Measured at level shifter for Port 0 and at end device for Port 1.
Figure 8
SD/SDIO timing diagram (DDR50)
min (VIH)
CLK
TWC DDR50
max (VIL)
THD_SOC
TSU_SOC
THD_SOC
TSU_SOC
min (VIH)
DATA
INPUT
DATA
DATA
INVALID
max (VIL)
TODLY(DDR50) - MAX
TODLY(DDR50) - MAX
TODLY(DDR50) - MIN
TODLY(DDR50) - MIN
min (VOH )
OUTPUT
DATA
DATA
DATA
max (VOL )
Intel® Edison Compute Module
Hardware Guide
22
January 2015
Document Number: 331189-004
External Interface Pins and Electrical Characteristics
Figure 9
SD/SDIO output timing diagram (SDR 12/25)
TWC SDR 12 / 25
½ VDD
CLK
TODLY(SDR 12 /25)
VIH
DATA/CMD
VIL
Figure 10
SD/SDIO input timing diagram (SDR12/25)
½ VDD
CLK
THD_SOC
DATA/CMD
VIH
TSU_SOC
VIL
4.3.3
SD/SDIO DC specification
Table 16 provides the SD/SDIO DC specification. For all other DC specifications not listed here, refer to Table 28.
Table 16
Symbol
SD/SDIO DC specification
Parameter
Min
Typ
–
Max
Unit
Notes
1, 2. Port 0.
VOL
Output low voltage.
–
0.125*VDD1
V
VOH
Output high voltage.
0.75*VDD1 –
–
V
1, 2. Port 0.
VOL
Output low voltage.
–
–
0.45
V
1, 2. Port 1.
VOH
Output high voltage.
1.4
–
–
V
1, 2. Port 1.
NOTE:
1. Assuming a IOH/IOL of 2 mA.
2. Measured at level shifter for port 0 and at end device for port 1.
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
23
External Interface Pins and Electrical Characteristics
4.4
UART interfaces
There are two UARTs available: UART1 with flow control and UART2 without flow control. The UART1 interface is
available on pins 46, 63, 61, and 54. UART2 is on pins 22 and 27. The UARTs are:
•
16550 compliant
•
64-byte buffer size
•
Baud rate from 300 bps to 3.686 Mbps.
The UART2 alternate function is as the Linux* debug serial port.
The SoC supports three instances of a 16550 compliant UART controller (The buffering for this IP is 64 bytes,
which makes it 16750 compliant. The register set remains compatible with the 16550.).
Each of the UART interfaces supports the following baud rates (TBAUD): 3.6864 M, 921.6 k, 460.8 K, 307.2 K, 230.4 K,
184.32 K, 153.6 K, 115.2 K, 57.6 K, 38.4 K, 19.2 K, 9.6 K, 7.2 K, 4.8 K, 3.6 K, 2.4 K, 1.8 K, 1.2 K, 600, and 300.
4.4.1
UART AC specification
Table 17
UART AC specification
Symbol
Parameter
Unit
Notes
TRISE
Maximum Rise Time
5
Min
25
Max
ns
1, 2
TFALL
Maximum Fall Time
5
25
ns
1, 2
TUARTFIL
UART Sampling Filter Period
26
–
ns
3
NOTE:
1. Based on total load capacitance of 5 to 65 pF (trace length up to 100 mm) and board impedance of 25 to 75 ohm.
2. Measured from 10 to 90%.
3. Each bit including start and stop bit are sampled at one-quarter of the prescalar value. Each prescalar cycle has a period of
TUARTFIL.
Figure 11
UART timing diagram
TBAUD
UART_TX
Start Bit
Data and Parity Bit
Stop Bit
UART_RX
TUARTFILL
4.4.2
UART DC specification
Refer to the GPIO buffer (1.8 V) DC specification, mentioned in Table 28.
Intel® Edison Compute Module
Hardware Guide
24
January 2015
Document Number: 331189-004
External Interface Pins and Electrical Characteristics
I2S interface
4.5
An I2S interface is available on pins 50, 52, 54, and 56. All of the I2S modes below have not been verified and are
subject to change. Table 18 lists the available formats available on the I2S port.
Table 18
Mode
Intel® Edison I2S available formats
Priority
Frame rate
Bits/
sample
Number of
slots
Frame- Frame
to-data polarity
offset
1
0-left,
1-right
Frame rate Notes
inaccuracy
50/50
0%
Standard I2S
protocol. 50% duty
cycle on frame.
High
1 bit
clockwide
0%
Rising edge frame
sensitive. Design
supports more frameto-data offset
options.
0
High
1-bit to
n-bit
clocks
0%
n is the width of one
slot. Design supports
width > 1 slot.
2
0
0-left,
1-right
50/50
0%
Design supports
flipping polarity on
the frame signal.
16, 24
2
0
0-left,
1-right
50/50
0%
16, 24
2
0
0-left,
1-right
50/50
0%
I2S master
1
192K, 96K,
16, 24
48K, 16K, 8K
2
PCM slave
- SFS
1
192K, 96K,
48K, 44.1K,
16K, 8K
16, 24
192 kHz: 2
96 kHz: 4
All else: 1 to 6
0
High
PCM slave
- LFS
1
192K, 96K,
48K, 44.1K,
16K, 8K
16, 24
192 kHz: 2
96 kHz: 4
All else: 1 to 6
0
High
PCM master
- SFS
1
192K, 96K,
16, 24
48K, 16K, 8K
192 kHz: 2
All else: 1 to 4
0
PCM master
- LFS
1
192K, 96K,
16, 24
48K, 16K, 8K
192 kHz: 2
All else: 1 to 4
Left justified
master
2
192K, 96K,
48K
16, 24
I2S slave
3
192K, 96K,
48K, 44.1K
Left justified
slave
3
192K, 96K,
48K
Right
justified
Frame
width
Not supported.
The SoC has three I2S ports (labeled I2S 0, 1, 2).
Table 19
I2S ports overview (reference design implementation)
Port #
Mode supported
Nominal
voltage
Max operational Notes
frequency
0
Master and Slave
1.8 V
9.6 MHz
Used to interface with the Modem on Reference Design
and is used in Slave Mode. Modem uses PCM Short
Frame Mode.
1
Master and Slave
1.8 V
9.6 MHz
Used to interface with Bluetooth*/FM Module on
Reference Design in Slave Mode.
2
Master and Slave
1.8 V
9.6 MHz
Used to interface with Audio codec in Reference Design
and used in Slave Mode.
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
25
External Interface Pins and Electrical Characteristics
4.5.1
I2S AC specification
4.5.1.1
I2S master mode AC specification
Table 20
I2S master AC timings
Symbol
Parameter
Min
Max
Unit
Figure
TDC
Clock duty cycle
45
55
%
I, I, I
Notes
TI2S
Clock frequency
–
9.6
MHz
I, I, I
TS-RXD
Setup for RXD with respect to the I2S CLK active edge.
10
–
ns
I, I, I
1, 2, 3, 4
TH_RXD
Hold for RXD with respect to the I S CLK active edge.
10
–
ns
I, I, I
1, 2, 3, 4
TCO_TXD
Tco of TXD with respect to I2S CLK active edge at the SoC.
–
10
ns
I, I, I
1, 2, 3, 4
TCO-FS
Tco of FS with respect to CLK at the SoC.
–
10
ns
I, I, I
1, 2, 3, 4
NOTE:
1.
2.
2
Active edge refers to the mode selected.
For I2S mode:
a.
b.
3.
For PCM mode SoC:
a.
b.
4.
I2S_TXD - SoC launches data after falling clock edge.
I2S_RXD - SoC latches data on rising clock edge.
I2S_TXD - SoC launches after rising clock edge.
I2S_RXD - SoC latches data on falling clock edge.
PCM Mode has two different modes, Short Frame Mode and Long Frame Mode:
a.
b.
Short Frame Mode - Master asserts I2S-FS one clock before it drives data.
Long Frame Mode - Master asserts I2S_FS and data on the same clock
I2S master port timings in I2S mode
Figure 12
I2S MODE
TCO-FS
I2S_FS
TDC
TDC
I2S_CLK
TS-RXD
TH-RXD
I2S_RXD
TCO-TXD
I2S_TXD
Intel® Edison Compute Module
Hardware Guide
26
January 2015
Document Number: 331189-004
External Interface Pins and Electrical Characteristics
Figure 13
I2S master port timings in PCM short frame mode
PCM Short Frame Mode
I2S_FS
(Short Frame Mode)
TDC
TDC
I2S_CLK
TCO_TXD
I2S_TXD
TH-RXD
I2S_RXD
Figure 14
I2S master port timings in PCM long frame mode
PCM Long Frame Mode
I2S_FS
TDC
TDC
I2S_CLK
TCO_TXD
I2S_TXD
TH-RXD
I2S_RXD
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
27
External Interface Pins and Electrical Characteristics
4.5.1.2
I2S slave mode AC specification
Table 21
I2S slave mode AC timing parameters
Symbol
Parameter
Min
Max
Unit
Figure
Notes
TDC
Clock Duty Cycle
40
60
%
Figure 15, Figure 16, Figure 17
TI2S
Clock Frequency
–
9.6
MHz
Figure 15, Figure 16, Figure 17
TS-RXD
Setup for RXD with respect to the I2S CLK active edge. 18
–
ns
Figure 15, Figure 16, Figure 17 1, 2, 3, 4
TH_RXD
Hold for RXD with respect to the I2S CLK active edge.
0
–
ns
Figure 15, Figure 16, Figure 17 1, 2, 3, 4
TS-FS
Setup for FS with respect to the I2S CLK active edge.
5.1
–
ns
Figure 15, Figure 16, Figure 17 1, 2, 3, 4
TH_FS
Hold for FS with respect to I2S CLK active edge.
5.1
–
ns
Figure 15, Figure 16, Figure 17 1, 2, 3, 4
TCO_TXD
Tco of TXD with respect to I2S CLK active edge at the
host
3.3
29.2
ns
Figure 15, Figure 16, Figure 17 1, 2,3, 4
TCO-FS
Tco of TXD with respect to FS at the host
3.3
29.2
ns
Figure 15, Figure 17
1, 2, 3, 4,
5
NOTE:
1. Active edge refers to the mode configuration.
2. For I2S mode:
a.
b.
3.
For PCM mode SoC:
a.
b.
4.
I2S_TXD – SoC launches after rising clock edge.
I2S_RXD – SoC latches data on falling clock edge.
PCM Mode has two different modes, Short Frame Mode and Long Frame Mode:
a.
b.
5.
I2S_TXD – SoC launches data after falling clock edge.
I2S_RXD – SoC latches data on rising clock edge.
Short Frame Mode – Master asserts I2S-FS one clock before it drives data.
Long Frame Mode – Master asserts I2S_FS and data on the same clock.
TCO-FS does not apply to I2S mode and PCM-short frame mode.
Figure 15
I2S slave port timing parameters in I2S mode
I2S MODE
I2S_FS
TDC
TDC
I2S_CLK
TCO_TXD
I2S_TXD
I2S_RXD
Intel® Edison Compute Module
Hardware Guide
28
January 2015
Document Number: 331189-004
External Interface Pins and Electrical Characteristics
I2S slave port timing parameters in PCM short frame mode
Figure 16
PCM Short Frame Mode
I2S_FS
(Short Frame Mode)
TDC
TDC
I2S_CLK
TCO_TXD
I2S_TXD
TH-RXD
I2S_RXD
I2S slave port timing parameters in PCM long frame mode
Figure 17
PCM Long Frame Mode
I2S_FS
TDC
TDC
I2S_CLK
TCO_TXD
I2S_TXD
TH-RXD
I2S_RXD
4.5.2
I2S DC specifications
For I2S DC specifications not listed in Table 22, refer to GPIO buffer DC specifications listed in Table 28.
Table 22
I2S buffer DC specification
Symbol
Parameter
Min
Typ Max
Unit
Notes
VOH
Output high voltage
0.8 * VDD
–
–
V
Measured at IOH maximum.
VOL
Output low voltage
–
–
0.2 * VDD V
Measured at IOL maximum.
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
29
External Interface Pins and Electrical Characteristics
4.6
SPI interface
An SPI interface is available on pins 51, 53, 55, 57, and 59. The interface has two available chip selects.
•
In a single-frame transfer, the SoC supports all four possible combinations for the serial clock phase and polarity.
•
In multiple frame transfer, the SoC supports SPH=1 and SPO= 0 or 1.
•
The SoC may toggle the slave select signal between each data frame for SPH=0.
•
25 MHz Master mode, 16.67 MHz slave mode.
The SoC contains four SPI ports: SPI 0, 1, 2, and 3.
Table 23
SPI ports overview
Port #
Mode
Nominal voltage
Max frequency
0 to 3
Master and slave
1.8 V
25 MHz (master mode)
16.67 MHz (slave mode)
Table 24
SPI modes
Port #
SPO
SPH
0
0
0
1
0
1
2
1
0
3
1
1
Note:
SPO and SPH can be configured by SSP Control Register CTRL1 (SSCR1).
4.6.1
SPI master AC specification
Table 25
SPI master AC timings
Symbol
Parameter
t180
Serial clock frequency
t182
SPI clock duty cycle at the host
t183
Tco of SPI_SDO (SPI_MOSI) with respect to serial clock edge at the host.
0
5.4
ns
Figure 18 3
t184
Setup of SPI_SDI (SPI_MISO) with respect to the serial clock edge at the host.
5.2
–
ns
Figure 18 3
t185
Hold of SPI_SDI (SPI_MISO) with respect to serial clock edge at the host.
14.3
–
ns
Figure 18 3
t186
Setup of SPI_SS assertion with respect to serial clock edge at the host.
5.2
–
ns
Figure 18 3
t187
Hold of SPI_SS deassertion with respect to serial clock edge at the host.
14.3
–
ns
Figure 18 3
TRISE/TFALL Maximum rise/fall time
0.85
10
ns
1
TRISE/TFALL Maximum rise/fall time
0.6
3
ns
2
NOTE:
1.
Figure
25
MHz
Figure 18
45
55
%
Figure 18
Notes
Trace length of up to six inches
Board impedance of 25–75 ohm.
Total maximum far end capacitance of 40 pF (4 loads at 10 pF per load)
Measured from 35–65%
Based on:
a.
b.
c.
d.
3.
Max Unit
Based on:
a.
b.
c.
d.
2.
Min
Trace length of up to four inches
Board impedance of 25–75 

Total maximum far end capacitance of 10 pF
Measured from 35 to 65%
Clock edge depends on the mode being used on SPI ports.
Intel® Edison Compute Module
Hardware Guide
30
January 2015
Document Number: 331189-004
External Interface Pins and Electrical Characteristics
SPI master timing
4.6.2
Table 26
t184
Data Valid
SPH=1
SPI_SDI
SPI_SDO
SPI_SDI
SPH=0
SPI_SDO
SPI_CLK
SPI_SS
SPO =0
SPO=1
t184
t183
t185
t182
t180
t182
Data Valid
t187
Figure 18
SPI slave AC specification
SPI slave AC timings
Symbol
Parameter
Min Typ
t190
Serial clock frequency
–
–
16.67 MHz
Figure 19
t191
Clock duty cycle
45
–
55
%
Figure 19
t193
Setup of SPI_SDI (MOSI) with respect to the serial clock edge.
5
–
–
ns
Figure 19 1
t194
Hold of SPI_SDI (MOSI) with respect to serial clock edge.
5
–
–
ns
Figure 19 1
t195
TCO of SPI_SDO (MISO) with respect to the serial clock edge.
5
–
21
ns
Figure 19 1
t197
Setup of SPI_SS assertion with respect to serial clock edge.
5
–
–
ns
Figure 19 1
t198
Hold of SPI_SS deassertion with respect to serial clock edge.
5
–
–
ns
Figure 19 1
NOTE:
1.
Clock edge depends on the mode being used.
January 2015
Document Number: 331189-004
Max
Unit
Figure
Notes
Intel® Edison Compute Module
Hardware Guide
31
External Interface Pins and Electrical Characteristics
SPI slave timing
t191
t191
Figure 19
4.6.3
SPI DC Specification
For SPI master and slave DC Specifications, refer to Table 28.
Intel® Edison Compute Module
Hardware Guide
32
January 2015
Document Number: 331189-004
External Interface Pins and Electrical Characteristics
4.7
GPIO
A number of general purpose I/Os are available on the external interface. These are found on pins: 24, 25, 26, 28,
30, 32, 34, 42, and 48. Some of these serve alternate functions of interrupts for external sensor support. All the
interfaces listed in Section 4 (I2C, I2S, UART, etc.) if not used, can be turned into general purpose I/Os.
When the pin mode is chosen as GPIO, it can be programmed as an output or input. When programmed as an input,
a GPIO can serve as an interrupt or wake source. Inputs have programmable pullups or pulldowns. Pullup value can
be 2, 20, or 50 kohm. I2C pins also have an additional 910 ohm value. When in general purpose mode, input GPIO
signals enter a glitch filter by default, before reaching the edge detection registers.
To ensure that a pulse is detected by the edge detection register, the pulse should be five clock cycles long.
•
100 ns for a 50 MHz clock when SoC is in S0 state.
•
260 ns for 19.2 MHz clock when SoC is in S0i1 or S0i2 State.
•
155.5 µs for 32 kHz clock (RTC) when SoC is in S0i3 State.
Most GPIO-capable pins are configured as GPIO inputs during the assertion of all resets, and they remain inputs
until configured otherwise. As outputs, the GPIOs can be individually cleared or set. They can be preprogrammed to
either state when entering standby. Output drive is ±3 mA.
GPIO buffer is used across various interfaces on the SoC such as, GPIOs, I2C, I2S, MIPI PTI, SPI, SDIO, SVID, UART,
PWM, CAMERA SB, JTAG and ULPI, FAST-INT, OSC_CLK_OUT, OSC_CLK_CLTRL.
4.7.1
GPIO AC specification
GPIO buffer AC specifications, AC specifications apply to signals when used as GPIOs.
Table 27
GPIO buffer AC specifications
Symbol
Parameter
TRISE
Maximum rise time
5
Min
45
ns
1, 2
TFALL
Maximum fall time
5
45
ns
1, 2
NOTE:
1.
2.
Based on total maximum capacitance of 150 pF.
Measured from 10 to 90%.
4.7.2
GPIO DC specification
Table 28
GPIO buffer DC specifications
Symbol
Parameter
Min
VDD
Supply voltage
1.71
1.8
Typ
1.89
Max
V
Unit
VIH
Input high voltage
0.65 * VDD
–
–
V
VIL
Input low voltage
–
–
0.35 * VDD
V
Max
Unit
Notes
VOH
Output high voltage
VDD – 0.45
–
–
V
Measured at IOH maximum.
VOL
Output low voltage
–
–
0.45
V
Measured at IOL maximum.
VHYSTERESIS
Input hysteresis
100
–
–
mv
IOH/IOL
Current at VOL/VOH
-3
–
3
mA
ILI
Input leakage current
-2
–
2
µA
ILO
Output leakage current
-2
–
2
µA
C pin
Input pin load capacitance
2
–
5
pF
January 2015
Document Number: 331189-004
Notes
Intel® Edison Compute Module
Hardware Guide
33
External Interface Pins and Electrical Characteristics
Figure 20
GPIO buffer input range
max VIH
Valid 1
min VIH
100 mv Hysteresis min
max VIL
Valid 0
min VIL
4.7.3
GPIO pullup and pulldown specification
Table 29
GPIO pullup and pulldown specification
Pullup and pulldown options
Tolerance
Notes
2 kohm, 20 kohm, 50 kohm
±30%
Available for all pins which can be used as GPIOs.
910 ohm
±30%
Available only for I2C pins.
Intel® Edison Compute Module
Hardware Guide
34
January 2015
Document Number: 331189-004
External Interface Pins and Electrical Characteristics
4.8
PWM
There are four available GPIO that can be configured as PWM outputs. These are found on pins 33, 35, 37, and 39.
The PWM resolution is 8 bits.
The main PWM variables that control PWM output are:
•
The PWM output frequency and duty cycle can be estimated by the equations:
−
Target frequency ~= 19.2 MHz * Base_unit value/256
−
Target PWM duty cycle ~= PWM_on_time_divisor / 256
Table 30 shows some examples of PWM programming.
Table 30
Integer part of
PWM_base_unit
(bits 29:22)
Intel® Edison PWM programming examples
Fractional part of
PWM_base_unit
(bits 21:8)
Decimal base unit
value
Base unit
type
PWM
frequency
(Hz)
PWM
period
(µs)
Bits of
resolution
PWM
steps
0000_0000b
00_0100_0000_0000b
0.0625
fractional
4,688
213
8
0.39%
0000_0000b
00_0010_0000_0000b
0.03125
fractional
2,344
427
8
0.39%
0000_0000b
00_0001_0000_0000b
0.015625
fractional
1,172
853
8
0.39%
0000_0000b
00_0000_1000_0000b
0.0078125
fractional
586
1,707
8
0.39%
0000_0000b
00_0000_0100_0000b
0.00390625
fractional
293
3,413
8
0.39%
0000_0000b
00_0000_0010_0000b
0.00195325
fractional
146
6827
8
0.39%
0000_0000b
00_0000_0001_0000b
0.0009765625
fractional
73.2
13,653
8
0.39%
0000_0000b
00_0000_0000_1000b
0.00048828125
fractional
36.6
27,307
8
0.39%
0000_0000b
00_0000_0000_0100b
0.000244140625
fractional
18.3
54,613
8
0.39%
0000_0000b
00_0000_0000_0010b
0.0001220703125
fractional
9.2
109,227
8
0.39%
0000_0000b
00_0000_0000_0001b
0.00006103515625 fractional
4.6
218,453
8
0.39%
0000_0000b
00_0000_0010_0001b
0.00201416015625 fractional
151
6619
8
0.39%
The SoC consists of four PWM drivers with programmable frequency and duty cycle, operating at 1.8 V.
The operating frequency can be set from 0 to 9.6 MHz. The frequency selection is based on system clock
(19.2 MHz). Refer to the SoC technical reference manual for the PWM registers configuration.
4.8.1
PWM AC specification
For PWM AC specifications, refer to Table 27.
4.8.2
PWM DC specification
For PWM DC specifications, refer to Table 28.
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
35
External Interface Pins and Electrical Characteristics
4.9
USB
The Intel® Edison Compute Module has a single USB 2.0 interface. This interface is the primary method for
downloading code. The interface is found on pins: 3, 16, 18, and 20.
Note:
The USB_VBUS signal should be applied to pin 20. This signal is only used to alert the Intel® Edison that it
has been connected to a host port.
The Intel® Edison compute module does not use power applied to pin 20 to power the device. Intel® Edison is
designed to support OTG, using the ID signal on pin 3. The OTG power function is offboard. Two signals PSW (pin
21), and FAULT (pin 19) from the ULPI controller are used to control the external power switch and monitor the
overcurrent condition on VBUS. Figure 21 shows the configuration of the external hardware.
Figure 21
Example Intel® Edison external USB design
The PSW signal is active high and controls an external VBUS power switch or charge pump.
The FAULT signal is active low. FAULT should be connected to GND if USB host mode is not used.
The SoC contains one ULPI interface with labeled ULPI which is used for OTG operation.
The SoC features a 12-bit UTMI+ Low Pin Interface Specification (ULPI) interface with a USB 2.0 OTG v2.0
transceiver that is a discrete component external to the SoC on the platform.
4.9.1
•
Standards specification compliance
On-the-Go Supplement to the USB 2.0 Specification, Revision 2.0 (May 2009).
4.10
System reset
Intel® Edison has two system reset signals PWRBTN# (pin 17) and RESET_OUT# (pin 36). The PWRBTN# pin is an
active low input which can cause the Intel® Edison module to transition into and out of sleep, or cause a power-off ,
depending on the configuration of the software. RESET_OUT# is open-drain, and driven low by default out of
system reset. This signal can be used by external hardware to indicate system reset. The Intel® Edison I/Os are
undefined until RESET_OUT# transitions high.
4.11
Software recovery (FWR_RCVR and RCVR_MODE)
The Intel® Edison board has two signals, used during boot, to cause the SoC to force firmware and OS image
download. These are for factory use only.
Intel® Edison Compute Module
Hardware Guide
36
January 2015
Document Number: 331189-004
External Interface Pins and Electrical Characteristics
4.12
Power input and output
There are five power rails on the Intel® Edison: VSYS, 3.3 V, 1.8 V, USB_VBUS, and V_VBAT_BKUP. VSYS is the only
input power rail to the Intel® Edison module, and the voltage range is 3.15 to 4.5 V. USB_VBUS is a standard USB
VBUS input from 4.75 to 5.25 V. This rail is not used to power the device; it is only used by the USB ULPI PHY to
determine a host device has attached to the Intel® Edison device. The 3.3 and 1.8 V are power outputs from the
Intel® Edison module that source a maximum of 100 mA each.
DCIN is a signal that indicates whether the Intel® Edison device is being powered from a battery or from an external
power source. DCIN also sets the voltage level required on VSYS in order to boot. When DCIN is floating or tied to
ground, the voltage on VSYS MUST rise from 2.5 to 3.5 V in 100 ms, otherwise the boot is aborted. When the boot
is aborted, power must be cycled below 2.5 V. If DCIN is connected to VSYS, the Intel® Edison device will start to
boot when VSYS is above 2.5 V for 100 ms.
Note:
4.13
The absolute minimum voltage to assure Wi-Fi and Bluetooth functionality is 3.15 V.
V_VBAT_BKUP
The PMIC has a dedicated charging subsystem for a backup battery supply that could be either a rechargeable coin
cell batteries or super-capacitors. This backup subsystem allows for interruption of the main supply for a short
period of time, such as changing a main system battery. The external cell should be connected to pin 23,
V_VBAT_BKUP. The PMIC can be programmed with a charge voltage of 2.5, 3.0, 3.15, or 3.3 V. The charge current is
programmable to 10, 50, 100, or 500 µA. The default settings are 2.5 V and 10 µA.
To change these settings, the BBCHGRCFG register (Table 31) will need to be modified. To read and write the 8-bit
value of the BBCHGRCFG register from within the Linux kernel using the following functions that are provided by
the drivers/platform/x86/intel_scu_pmic.c driver:
// Read BBCHGRCFG into bbchgrcfg_value
uint8_t bbchgrcfg_value;
int ret;
ret = intel_scu_ipc_ioread8(0x52, &bbchgrcfg_value);
if (ret)
error;
// Set BBCHGRCFG to NEW_BBCHGRCFG_VALUE
int ret;
ret = intel_scu_ipc_iowrite8(0x52, NEW_BBCHGRCFG_VALUE);
if (ret)
error;
D5, D6, and D7 should remain 0.
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
37
External Interface Pins and Electrical Characteristics
Table 31
Register name
BBCHGRCFG
BBCHGRCFG - Backup battery charger and main battery charger IC configuration registers
R/W
R/W
D7
D6
RSVD
D5
CHGDIS_ACT
D4
D3
BBCHGI[1:0]
D2
D1
BBCHGV[1:0]
D0
BBCHGEN
Initial
0x01
Address
0x52 (0x5E)
Bit
Name
Function
Default
D[7:6]
RSVD
Reserved.
00
D5
CHGDIS_ACT
Charger IC disable pin action. Set according to how the main battery charger
IC responds to the CHGDIS pin being asserted. What this bit’s tile value is set
to depends entirely on charger IC selection. This bit is read only.
0 = The main battery charger IC is disabled when asserted. (Power-path is not
available.)
1 = Only the battery charging function within the main battery charger IC will
be disabled when asserted. (Power-path is still available.)
0
(NVM)
D[4:3]
BBCHGI[1:0]
Sets the backup supply charger current limit.
00 = 10 µA
01 = 50 µA
10 = 100 µA
11 = 500 µA
00
(NVM)
D[2:1]
BBCHGV[1:0]
Sets the backup supply charging limit.
00 = 2.5 V
01 = 3.0 V
10 = 3.15 V
11 = 3.3 V
00
(NVM)
D0
BBCHGEN
0 = Disable charging of backup supply.
1 = Enable charging of backup supply.
1
(NVM)
Example implementation:
•
Register setting: BBCHGRCFG=19
•
Voltage: 2.5 V (default value)
•
Current: 500 µA
•
Charging current: 500 µA
•
Discharge current (consumption): 8.0 µA
•
Charge voltage: 2.5 V
•
Minimum RTC retention voltage: 2.05 V
•
Capacitance of supercap: 0.014F (PAS3225P2R6143/Taiyo Yuden)
•
Theoretical backup times = 0.014F * (2.5 to 2.05) V / 8 µA = 787.5 s = 13 min
•
Measured (actual) backup time = 15 min 20 sec
•
Measured chargeup time (0 to 2.5 V) = 2 min 24 sec
4.14
Electrostatic discharge (ESD) specification
Table 32
ESD performance
Model
Passing voltages
Human body model (HBM)
±1 kV
Notes
Charged device model (CDM)
±500 V
For all pins, other than mentioned below.
Charged device model (CDM)
±250 V
For USB3, HDMI, DSI, CSI, and LPDDR3 pins.
Note:
Passing voltage applies to all signal and power pins.
§
Intel® Edison Compute Module
Hardware Guide
38
January 2015
Document Number: 331189-004
Powering Intel® Edison
5
Powering Intel® Edison
Intel® Edison may be embedded in a number of devices either battery powered, or AC wall powered. Therefore,
Intel® Edison was designed not to support a specific power delivery method or specific battery chemistry and
capacity range. This portion of the design is left to the end-user. With the interfaces available, smart battery
coulomb counters and smart rechargers could be placed onto one of the available I2C buses. Porting of the
software to the specific bus would be the responsibility of the end-user.
5.1
Main power supply VSYS
Intel® Edison uses VSYS (pins 2, 4, and 6) as the only power input path. Internal to Intel® Edison, this signal is also
connected to the VBAT path. Application of power to VSYS is interpreted as a battery insertion and will cause
Intel® Edison to boot. The VSYS power range is 3.15 min to 4.5 V max (see section 4.12). This allows VSYS to run off
a standard lithium-ion battery. There are a number of possible power configurations for Intel® Edison, based on
the size and cost sensitivity of the end-user’s product.
5.2
Lithium-polymer battery direct attach
The simplest battery power connection to Intel® Edison is to directly attach a battery to VSYS, as shown in
Figure 22. We do not recommend this configuration as the charging system cannot distinguish between charge
current and total system current.
Note:
If Intel® Edison is prevented from booting by holding the power button signal PWRBTN# (pin 17) low, then
the power input can be assumed to be the battery charging current.
Figure 22
Example Intel® Edison lithium-polymer battery direct attach
END USER PRODUCT
EDISON MODULE
VBUS
VBUS
2
1
2
1
USB
PHY
CHARGER
VSYS
PMIC
Battery
1
VOUT
GATE
VBAT
VBAT
2
DCIN
.
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
39
Powering Intel® Edison
5.3
Lithium-polymer battery with diode or FET isolation
In this configuration, Intel® Edison will see a diode drop during normal operation. This configuration allows the
system to boot even with a dead battery. This configuration requires an additional pin to the external world to
control the charging. Replacing the diode with a PFET, and pulling the gate low will remove the diode drop power
loss. The external charger would require a gate control pin for an external PFET. This function is found on
rechargers like the Texas Instruments* BQ24073.
Figure 23
Example Intel® Edison lithium-polymer battery with FET isolation
END USER PRODUCT
EDISON MODULE
VBUS
VBUS
2
1
USB
PHY
CHARGER
2
1
VSYS
VOUT
1
PMIC
3
DCIN
VBAT
1
2
GATE
1
2
Battery
2
VBAT
.
5.4
Connection to USB VBUS
It is not possible to run an Intel® Edison compute module directly off a USB power supply. The maximum input
voltage to VSYS should be less than 4.5 V. The USB power supply specification (4.75 to 5.25 V) exceeds the safe
operational range of Intel® Edison. USB power must be down converted with an LDO or small buck switching
converter or a recharger like the Texas Instruments* BQ24074.
Intel® Edison Compute Module
Hardware Guide
40
January 2015
Document Number: 331189-004
Powering Intel® Edison
5.5
Cold boot sequence
Figure 24 shows the signal sequence from a cold boot.
Note:
The reset# signal in Figure 24 is accessible on the 70-pin connectors as RESET_OUT# on pin 36.
Figure 24
Intel® Edison cold boot sequence
§
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
41
Intel® Edison Mechanicals
6
Intel® Edison Mechanicals
Figure 25 shows the dimensions (in millimeters) of the Intel® Edison module.
Figure 25
Intel® Edison mechanical dimensions (top view through PCB)
The location for pin 1 of the 70-pin connector is the lower right corner of the connector. The location of pin 2 is
across the connector at the lower left corner. Consequently, the location of pin 69 is the upper right corner of the
connector and the location of pin 70 is the upper left corner of the connector. The center point of the connector is
specified in the drawing.
The diameters of the two mounting holes are 2.0 mm. Screw heads should be less than 3.0 mm. The mounting
holes were designed for a T1.6 mm screw.
Note:
The onboard chip antenna is in the lower right corner of Intel® Edison is denoted in the drawing as
“ANTENNA KOZ”. User-designed expansion PCBs should not place components or metallic objects close
to the antenna keepout zone.
Most components on both sides of Intel® Edison will be covered with a shield. The height of the shields on both
sides of the board, as measured from the surface of the PCB, is approximately 1.5 mm. The PCB thickness is
specified as 0.8 mm ±0.1 mm. Therefore, the total maximum thickness of Intel® Edison is 3.9 mm. These values are
verified with DVT modules.
§
Intel® Edison Compute Module
Hardware Guide
42
January 2015
Document Number: 331189-004
Layout
7
Layout
7.1
Antenna keepout
The area under and around the antenna should be kept free of all components, routes, and ground plane. An
example is shown here with the Intel® Edison Compute Module DXF in white with antenna keepout shown in the
Intel® Edison Kit for Arduino* trace layers. See Figure 26.
Figure 26
Area around antenna
7.2
Layout SD card, I2S, SPI, I2C
Table 33
Layout SD card
Signal parameter
Metric (mm)
Standard (mils)
Total length L1
0.254 to 101.6 mm
10 to 4000 mils
DATA/CMD/CTRL to CLK maximum pin-to-pin length mismatch
±2.54 mm
±100 mils
Minimum main route spacing ratio
60 × 60 µm. 1:1 trace width/space.
CLK to DATA/CMD/CTRL matching
±200 mils
Characteristic single ended impedance
42 to 45 ohm (±10%)
Load capacitance
2 to 5 pF
Note:
1) For SPI, total length is 6000 mils.
2) For I2C, total length is 8000 mils.
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
43
Layout
7.3
Layout DXF
The following embedded file is a DXF of the Intel® Edison compute module as shown in Figure 27.
Note:
KOZ stands for “keepout zone”.
Figure 27
Layout DXF
(See attachment:
Edison_DVT.dxf)
7.4
Layout PTC EMN files
Figure 28
PTC EMN graphic
H38489-005_R02 _emn.emn
(See attachment:
H38489-005_R02 _emn.emn)
H38489-005_R02 _emn.emp
(See attachment:
H38489-005_R02 _emn.emp)
Intel® Edison Compute Module
Hardware Guide
44
January 2015
Document Number: 331189-004
Layout
Figure 29
H383485-300
Adobe Acrobat
Document
(See attachment:
H383485-300.pdf)
§
January 2015
Document Number: 331189-004
Intel® Edison Compute Module
Hardware Guide
45
Handling
8
Handling
When assembling an Intel® Edison Compute Module to a carrier board such as the Intel® Edison Arduino* board,
handle the Intel® Edison Compute Module by the PCB edges. Avoid holding or exerting pressure to the shields. To
mate the Intel® Edison Compute Module to the Intel® Edison Arduino* board, apply pressure directly above the
connector and to the left corner, as shown in Figure 30.
Figure 30
Inserting an Intel® Edison module
§
Intel® Edison Compute Module
Hardware Guide
46
January 2015
Document Number: 331189-004