TLE4964-2M High Precision Automotive Hall Effect Switch Data Sheet Revision 1.0, 2012-07-20 Sense & Control Edition 2012-07-20 Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. TLE4964-2M Revision History Page or Item Subjects (major changes since previous revision) Revision 1.0, 2012-07-20 Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-02-24 Data Sheet 3 Revision 1.0, 2012-07-20 TLE4964-2M Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 1.1 1.2 1.3 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 2.2 2.3 2.4 2.5 2.6 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin Configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Default Start-up Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 3.1 3.2 3.3 3.4 3.5 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical and Magnetic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electro Magnetic Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 13 14 14 16 4 4.1 4.2 4.3 4.4 4.5 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline PG-SOT23-3-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Packing Information PG-SOT23-3-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Footprint PG-SC59-3-5 and PG-SOT23-3-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PG-SOT23-3-15 Distance between Chip and Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 17 17 18 18 18 5 Graphs of the Magnetic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6 Graphs of the Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Data Sheet 4 7 7 7 7 Revision 1.0, 2012-07-20 TLE4964-2M List of Figures List of Figures Figure 1-1 Figure 2-1 Figure 2-2 Figure 2-3 Figure 2-4 Figure 2-5 Figure 3-1 Figure 3-2 Figure 3-3 Figure 3-4 Figure 4-1 Figure 4-2 Figure 4-3 Figure 4-4 Figure 4-5 Figure 5-1 Figure 5-2 Figure 5-3 Figure 6-1 Figure 6-2 Figure 6-3 Figure 6-4 Figure 6-5 Figure 6-6 Figure 6-7 Figure 6-8 Figure 6-9 Figure 6-10 Figure 6-11 Figure 6-12 Figure 6-13 Figure 6-14 Figure 6-15 Image of TLE4964-2M in the PG-SOT23-3-15 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Configuration and Center of Sensitive Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Functional Block Diagram TLE4964-2M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Timing Diagram TLE4964-2M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Output Signal TLE4964-2M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Illustration of the Start-up Behavior of the TLE4964-2M. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Application Circuit 1: With External Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Application Circuit 2: Without External Resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Definition of Magnetic Field Direction PG-SOT23-3-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 EMC Test Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 PG-SOT23-3-15 Package Outline (All Dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Packing of the PG-SOT23-3-15 in a Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Footprint PG-SC59-3-5 and PG-SOT23-3-15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Distance between Chip and Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Marking of TLE4964-2M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Operating Point (BOP) of the TLE4964-2M over Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Release Point (BRP) of the TLE4964-2M over Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Hysteresis (BHys) of the TLE4964-2M over Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Power On Time tPON of the TLE4964-2M over Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Signal Delay Time of the TLE4964-2M over Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Supply Current of the TLE4964-2M over Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Supply Current of the TLE4964-2M over Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Output Current Limit of the TLE4964-2M over Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Output Current Limit of the TLE4964-2M over applied Pull-up Voltage . . . . . . . . . . . . . . . . . . . . . 22 Output Fall Time of the TLE4964-2M over Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Output Fall Time of the TLE4964-2M over applied Pull-up Voltage . . . . . . . . . . . . . . . . . . . . . . . . 23 Output Rise Time of the TLE4964-2M over Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Output Rise Time of the TLE4964-2M over applied Pull-up Voltage . . . . . . . . . . . . . . . . . . . . . . . 23 Output Leakage Current of the TLE4964-2M over Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Saturation Voltage of the TLE4964-2M over Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Saturation Voltage of the TLE4964-2M over Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Effective Noise of the TLE4964-2M Thresholds over Temperature . . . . . . . . . . . . . . . . . . . . . . . . 25 Output Signal Jitter of the TLE4964-2M over Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Data Sheet 5 Revision 1.0, 2012-07-20 TLE4964-2M List of Tables List of Tables Table 1-1 Table 2-1 Table 3-1 Table 3-2 Table 3-3 Table 3-4 Table 3-5 Table 3-6 Table 3-7 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Description PG-SOT23-3-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Absolute Maximum Rating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 ESD Protection (TA = 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Operating Conditions Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 General Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Magnetic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Magnetic Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electro Magnetic Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Data Sheet 6 Revision 1.0, 2012-07-20 TLE4964-2M Product Description 1 Product Description 1.1 Overview Characteristic Supply Voltage Supply Current Sensitivity Interface Temperature Unipolar Hall Effect Switch 3.0~32 V 1.6 mA Low BOP:28 mT BRP:22.5 mT Open Drain Output -40°C to 170°C Figure 1-1 1.2 • • • • • • • • • • Image of TLE4964-2M in the PG-SOT23-3-15 Package Features 3.0 V to 32 V operating supply voltage Operation from unregulated power supply Reverse polarity protection (-18 V) Overvoltage capability up to 42 V without external resistor Output overcurrent & overtemperature protection Active error compensation High stability of magnetic thresholds Low jitter (typ. 0.35 μs) High ESD performance Small SMD package PG-SOT23-3-15 (TLE4964-2M) 1.3 Target Applications Target applications for the TLE496x Hall switch family are all applications which require a high precision Hall switch with an operating temperature range from -40°C to 170°C. Its superior supply voltage range from 3.0 V to 32 V with overvoltage capability (e.g. load-dump) up to 42 V without external resistor makes it ideally suited for automotive and industrial applications. The TLE4964-2M is a unipolar switch with a typical operating point BOP = 28 mT and a hysteresis of BHYS = 5.5 mT. It is ideally suited for various position detection applications. Table 1-1 Ordering Information Product Name Product Type Ordering Code Package TLE4964-2M Unipolar Hall Switch SP000923330 PG-SOT23-3-15 Data Sheet 7 Revision 1.0, 2012-07-20 TLE4964-2M Functional Description 2 Functional Description 2.1 General The TLE4964-2M is an integrated Hall effect switch designed specifically for highly accurate applications with superior supply voltage capability, operating temperature range and temperature stability of the magnetic thresholds. 2.2 Pin Configuration (top view) Center of Sensitive Area 3 0.65± 0.1 1 2 1.45± 0.1 SOT23 Figure 2-1 2.3 Pin Configuration and Center of Sensitive Area Pin Description Table 2-1 Pin Description PG-SOT23-3-15 Pin No. Symbol Function 1 VDD Supply voltage 2 Q Output 3 GND Ground Data Sheet 8 Revision 1.0, 2012-07-20 TLE4964-2M Functional Description 2.4 Block Diagram VDD To All Subcircuits Voltage Regulator Oscillator and Sequencer Bias and Compensation Circuits Spinning Hall Probe Amplifier Demodulator Chopper Multiplexer Reference Q Control Low Pass Filter Comparator with Hysteresis Overtemperature & overcurrent protection GND Figure 2-2 2.5 Functional Block Diagram TLE4964-2M Functional Block Description The chopped Hall IC switch comprises a Hall probe, bias generator, compensation circuits, oscillator and output transistor. The bias generator provides currents for the Hall probe and the active circuits. Compensation circuits stabilize the temperature behavior and reduce influence of technology variations. The active error compensation (chopping technique) rejects offsets in the signal path and the influence of mechanical stress to the Hall probe caused by molding and soldering processes and other thermal stress in the package. The chopped measurement principle together with the threshold generator and the comparator ensures highly accurate and temperature stable magnetic thresholds. The output transistor has an integrated overcurrent and overtemperature protection. Data Sheet 9 Revision 1.0, 2012-07-20 TLE4964-2M Functional Description B OP Applied Magnetic Field BR P td td tf tr VQ 90% 10% Figure 2-3 Timing Diagram TLE4964-2M VQ B 0 BRP Figure 2-4 Data Sheet BOP Output Signal TLE4964-2M 10 Revision 1.0, 2012-07-20 TLE4964-2M Functional Description 2.6 Default Start-up Behavior The magnetic thresholds exhibit a hysteresis BHYS = BOP - BRP. In case of a power-on with a magnetic field B within hysteresis (BOP > B > BRP) the output of the sensor is set to the pull up voltage level (VQ) per default. After the first crossing of BOP or BRP of the magnetic field the internal decision logic is set to the corresponding magnetic input value. VDDA is the internal supply voltage which is following the external supply voltage VDD. This means for B > BOP the output is switching, for B < BRP and BOP > B > BRP the output stays at VQ. VDDA t Pon 3V The device always applies VQ level at start -up Power on ramp VQ t independent from the applied magnetic field ! Magnetic field above threshold B > BOP t VQ Magnetic field below threshold B < BRP t VQ Magnetic field in hysteresis BOP > B > BRP t Figure 2-5 Data Sheet Illustration of the Start-up Behavior of the TLE4964-2M 11 Revision 1.0, 2012-07-20 TLE4964-2M Specification 3 Specification 3.1 Application Circuit The following Figure 3-1 shows one option of an application circuit. As explained above the resistor RS can be left out (see Figure 3-2). The resistor RQ has to be in a dimension to match the applied VS to keep IQ limited to the operating range of maximum 25 mA. e.g.: VS = 12 V IQ = 12 V/1200 Ω = 10 mA Vs R S = 100Ω CDD = 47nF TLE496x VDD R Q = 1.2kΩ Q TVS diode e.g. ESD24VS2U GND Figure 3-1 Application Circuit 1: With External Resistor Vs CDD = 47nF TLE496x VDD RQ = 1.2kΩ Q TVS diode e.g. ESD24VS2U GND Figure 3-2 Data Sheet Application Circuit 2: Without External Resistor 12 Revision 1.0, 2012-07-20 TLE4964-2M Specification 3.2 Absolute Maximum Ratings Table 3-1 Absolute Maximum Rating Parameters Parameter Symbol Values Min. 1) Supply voltage VDD Output voltage Typ. Note / Test Condition Max. -18 VQ Unit -0.5 32 42 V 32 V 10h, no external resistor required Reverse output current IQ -70 Junction temperature1) TJ -40 155 165 175 195 °C Storage temperature TS -40 150 °C Thermal resistance Junction ambient RthJA 300 K/W for PG-SOT23-3-15 (2s2p) Thermal resistance Junction lead RthJL 100 K/W for PG-SOT23-3-15 mA for 2000h (not additive) for 1000h (not additive) for 168h (not additive) for 3 x 1h (additive) 1) This lifetime statement is an anticipation based on an extrapolation of Infineon’s qualification test results. The actual lifetime of a component depends on its form of application and type of use etc. and may deviate from such statement. The lifetime statement shall in no event extend the agreed warranty period. Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Calculation of the dissipated power PDIS and junction temperature TJ of the chip (SOT23 example): e.g for: VDD = 12 V, IS = 2.5 mA, VQSAT = 0.5 V, IQ = 20 mA Power dissipation: PDIS = 12 V x 2.5 mA + 0.5 V x 20 mA = 30 mW + 10 mW = 40 mW Temperature ∆T = RthJA x PDIS = 300 K/W x 40 mW = 12 K For TA = 150 °C: TJ = TA + ∆T = 150 °C + 12 K = 162 °C Table 3-2 ESD Protection1) (TA = 25°C) Parameter Symbol Values Min. 2) ESD voltage (HBM) VESD 3) ESD voltage (SDM) 4) ESD voltage (system level) 1) 2) 3) 4) Typ. Unit Note / Test Condition kV R = 1.5 kΩ, C = 100 pF Max. -7 7 -1 1 -15 15 with circuit shown in Figure 3-1 & Figure 3-2 Characterization of ESD is carried out on a sample basis, not subject to production test. Human Body Model (HBM) tests according to EIA/JESD22-A114. Socket device model (SDM) tests according to EOS/ESD-DS5.3-1993. Gun test (2kΩ / 330pF or 330Ω / 150pF) according to ISO 10605-2008. Data Sheet 13 Revision 1.0, 2012-07-20 TLE4964-2M Specification 3.3 Operating Range The following operating conditions must not be exceeded in order to ensure correct operation of the TLE4964-2M. All parameters specified in the following sections refer to these operating conditions unless otherwise mentioned. Table 3-3 Operating Conditions Parameters Parameter Symbol Values Min. Typ. Unit Max. Supply voltage VDD 3.0 321) V Output voltage VQ -0.3 32 V Junction temperature Tj -40 170 °C IQ 0 25 mA fSW 0 10 kHz Output current Magnetic signal input frequency 2) Note / Test Condition 1) Latch-up test with factor 1.5 is not covered. Please see max ratings also. 2) For operation at the maximum switching frequency the magnetic input signal must be 1.4 times higher than for static fields. This is due to the -3dB corner frequency of the internal low-pass filter in the signal path. 3.4 Electrical and Magnetic Characteristics Product characteristics involve the spread of values guaranteed within the specified voltage and ambient temperature range. Typical characteristics are the median of the production and correspond to VDD = 12 V and TA = 25°C. The below listed specification is valid in combination with the application circuit shown in Figure 3-1 and Figure 3-2 Table 3-4 General Electrical Characteristics Parameter Symbol Values Unit Min. Typ. Max. 1.1 1.6 2.5 mA Note / Test Condition Supply current IS Reverse current ISR 0.05 1 mA for VDD = -18 V Output saturation voltage VQSAT 0.2 0.5 V IQ = 20 mA 0.24 0.6 V IQ = 25 mA Output leakage current IQLEAK 10 μA Output current limitation IQLIMIT 30 56 70 mA internally limited & thermal shutdown tf 0.17 0.4 1 μs 1.2 kΩ / 50 pF, see Figure 2-3 tr 0.4 0.5 1 μs 1.2 kΩ / 50 pF, see Figure 2-3 0.35 1 μs For square wave signal with 1 kHz 15 30 μs see Figure 2-3 150 μs VDD = 3 V, B ≤ BRP - 0.5 mT or B ≥ BOP + 0.5 mT Output fall time1) 1) Output rise time 1)2) Output jitter Delay time tQJ 1)3) td 1)4) 12 Power-on time tPON 80 Chopper frequency1) fOSC 350 1) 2) 3) 4) kHz Not subject to production test, verified by design/characterization. Output jitter is the 1σ value of the output switching distribution. Systematic delay between magnetic threshold reached and output switching. Time from applying VDD = 3.0 V to the sensor until the output is valid. Data Sheet 14 Revision 1.0, 2012-07-20 TLE4964-2M Specification Table 3-5 Magnetic Characteristics Parameter Symbol Operating point BOP Release point BRP Hysteresis BHYS Effective noise value of the magnetic switching points1) BNeff Temperature compensation of magnetic thresholds2) TC T (°C) Values Unit Min. Typ. Max. -40 21.6 30.2 38.8 25 20.0 28.0 36.0 170 16.3 23.1 29.9 -40 17.1 24.2 31.2 25 15.9 22.5 29.1 170 12.9 18.6 24.3 -40 4.4 5.9 8.0 25 4.1 5.5 7.5 170 3.4 4.6 6.3 25 Note / Test Condition mT mT mT 62 μT -1200 ppm/K 1) The magnetic noise is normal distributed and can be assumed as nearly independent to frequency without sampling noise or digital noise effects. The typical value represents a the rms-value and corresponds therefore to a 1 σ probability of normal distribution. Consequently a 3 σ value corresponds to 99.7% probability of appearance. 2) Not subject to production test, verified by design/characterization. Field Direction Definition Positive magnetic fields are defined with the south pole of the magnet to the branded side of package. N S Figure 3-3 Data Sheet Branded Side Definition of Magnetic Field Direction PG-SOT23-3-15 15 Revision 1.0, 2012-07-20 TLE4964-2M Specification 3.5 Electro Magnetic Compatibility Characterization of Electro Magnetic Compatibility is carried out on a sample basis from one qualification lot. Not all specification parameters have been monitored during EMC exposure. +5V Vs Rs RQ = 1.2kΩ CDD = 10nF TLE496x VDD Q CQ = 10nF GND Figure 3-4 EMC Test Circuit Ref: ISO 7637-2 (Version 2004), test circuit Figure 3.4 (with external resistor, RS = 100 Ω) Table 3-6 Magnetic Compatibility Parameter Symbol Level / Type Status Testpulse 1 Testpulse 2a1) Testpulse 2b Testpulse 3a Testpulse 3b Testpulse 42) Testpulse 5b3) VEMC -100 V 60 V/110 V 10 V -150 V 100 V -7 V / -5.5 V US = 86.5 V / US* = 28.5 V C A/C C A A A A 1) ISO 7637-2 (2004) describes internal resistance = 2 Ω (former 10 Ω). 2) According to 7637-2 for test pulse 4 the test voltage shall be 12 V +/- 0.2 V. 3) A central load dump protection of 42 V is used. Us* = 42 V-13.5 V. Ref: ISO 7637-2 (Version 2004), test circuit Figure 3.4 (without external resistor, RS = 0Ω) Table 3-7 Electro Magnetic Compatibility Parameter Symbol Level / Type Status Testpulse 1 Testpulse 2a1) Testpulse 2b Testpulse 3a Testpulse 3b Testpulse 42) Testpulse 5b3) VEMC -50 V 50 V 10 V -150 V 100 V -7 V / 5.5 V US = 86.5 V / US* = 28.5 V C A C A A A A 1) ISO 7637-2 (2004) describes internal resistance = 2 Ω (former 10 Ω). 2) According to 7637-2 for test pulse 4 the test voltage shall be 12 V +/- 0.2 V. 3) A central load dump protection of 42 V is used. Us* = 42 V-13.5 V. Data Sheet 16 Revision 1.0, 2012-07-20 TLE4964-2M Package Information 4 Package Information The TLE4964-2M is available in the small halogen free SMD package PG-SOT23-3-15. Package Outline PG-SOT23-3-15 +0.1 1) 0.4 -0.05 2 C 0.95 0.08...0.1 5 1.3 ±0.1 1 2.4 ±0.15 3 0.1 MAX. 10° MAX. B 1 ±0.1 10° MAX. 2.9 ±0.1 0.15 MIN. 4.1 A 0...8° 1.9 0.2 0.25 M B C M A 1) Lead width can be 0.6 max. in dambar area Figure 4-1 4.2 PG-SOT23-3-15 Package Outline (All Dimensions in mm) Packing Information PG-SOT23-3-15 4 0.2 8 2.65 2.13 0.9 Pin 1 3.15 1.15 SOT23-TP V02 Figure 4-2 Data Sheet Packing of the PG-SOT23-3-15 in a Tape 17 Revision 1.0, 2012-07-20 TLE4964-2M Package Information 4.3 Footprint PG-SC59-3-5 and PG-SOT23-3-15 0.8 1.4 min 0.9 1.6 1.3 0.9 1.4 min 0.8 1.2 0.8 1.2 0.8 Reflow Soldering Figure 4-3 Footprint PG-SC59-3-5 and PG-SOT23-3-15 PG-SOT23-3-15 Distance between Chip and Package Figure 4-4 4.5 Distance between Chip and Package Package Marking M42 Figure 4-5 Data Sheet ym 4.4 Wave Soldering Year (y) = 0...9 Month (m) = 1...9, o - October n - November d - December Marking of TLE4964-2M 18 Revision 1.0, 2012-07-20 TLE4964-2M Graphs of the Magnetic Parameters 5 Graphs of the Magnetic Parameters 45 40 35 BOP[mT] 30 25 Typ 20 Min 15 Max 10 5 0 50,00 0,00 50,00 100,00 150,00 TA[°C] Figure 5-1 Operating Point (BOP) of the TLE4964-2M over Temperature 35 30 BRP[mT] 25 20 Typ 15 Min 10 Max 5 0 50,00 0,00 50,00 100,00 150,00 TA[°C] Figure 5-2 Release Point (BRP) of the TLE4964-2M over Temperature 9 8 7 BHys[mT] 6 5 Typ 4 Min 3 Max 2 1 0 50,00 0,00 50,00 100,00 150,00 TA[°C] Figure 5-3 Data Sheet Hysteresis (BHys) of the TLE4964-2M over Temperature 19 Revision 1.0, 2012-07-20 TLE4964-2M Graphs of the Electrical Parameters 6 Graphs of the Electrical Parameters 80 75 tPON_max [μs] 70 65 3V 60 55 50 50 30 10 10 30 50 70 90 110 130 150 T[°C] Figure 6-1 Power On Time tPON of the TLE4964-2M over Temperature 15,5 15 tD [µs] 14,5 14 3V 12V 13,5 13 12,5 -50 -30 -10 10 30 50 70 90 110 130 150 T [°C] Figure 6-2 Data Sheet Signal Delay Time of the TLE4964-2M over Temperature 20 Revision 1.0, 2012-07-20 TLE4964-2M Graphs of the Electrical Parameters 2 1,9 1,8 Vs=3V 1,7 IS [mA] 1,6 Vs=12V 1,5 Vs=32V 1,4 1,3 Vs=42V 1,2 1,1 1 -50 -30 -10 10 30 50 70 90 110 130 150 T [°C] Figure 6-3 Supply Current of the TLE4964-2M over Temperature 2 1,9 1,8 IS [mA] 1,7 1,6 -40°C 1,5 25°C 1,4 150°C 1,3 1,2 1,1 1 0 5 10 15 20 25 30 35 40 45 VS [V] Figure 6-4 Data Sheet Supply Current of the TLE4964-2M over Supply Voltage 21 Revision 1.0, 2012-07-20 TLE4964-2M Graphs of the Electrical Parameters 63,0 62,0 IQLIMIT [mA] 61,0 60,0 5V 59,0 12V 58,0 32V 57,0 56,0 55,0 54,0 50 30 10 10 30 50 70 90 110 130 150 T[°C] Figure 6-5 Output Current Limit of the TLE4964-2M over Temperature 63,0 62,0 IQLIMIT [mA] 61,0 60,0 40°C 59,0 25°C 58,0 150°C 57,0 56,0 55,0 54,0 0 5 10 15 20 25 30 35 VQ [V] Figure 6-6 Output Current Limit of the TLE4964-2M over applied Pull-up Voltage 700 600 tf [ns] 500 3V 12V 400 32V 300 200 100 -50 -30 -10 10 30 50 70 90 110 130 150 T [°C] Figure 6-7 Data Sheet Output Fall Time of the TLE4964-2M over Temperature 22 Revision 1.0, 2012-07-20 TLE4964-2M Graphs of the Electrical Parameters 700 600 tf [ns] 500 -40°C 25°C 400 150°C 300 200 100 0 5 10 15 20 25 30 35 VQ [V] Figure 6-8 Output Fall Time of the TLE4964-2M over applied Pull-up Voltage 700 600 tr [ns] 3V 12V 500 32V 400 300 -50 -30 -10 10 30 50 70 90 110 130 150 T [°C] Figure 6-9 Output Rise Time of the TLE4964-2M over Temperature 700 600 tf [ns] 500 -40°C 25°C 400 150°C 300 200 100 0 5 10 15 20 25 30 35 VQ [V] Figure 6-10 Data Sheet Output Rise Time of the TLE4964-2M over applied Pull-up Voltage 23 Revision 1.0, 2012-07-20 TLE4964-2M Graphs of the Electrical Parameters 10 IQLEAK [µA] 1 32V 0,1 0,01 0,001 80 90 100 110 120 130 140 150 160 170 180 T [°C] Figure 6-11 Output Leakage Current of the TLE4964-2M over Temperature 400 350 300 VQSAT [mV] 10mA 250 15mA 200 20mA 150 25mA 100 50 0 -50 -30 -10 10 30 50 70 90 110 130 150 T [°C] Figure 6-12 Saturation Voltage of the TLE4964-2M over Temperature 400 350 VQSAT [mV] 300 250 -40°C 200 25°C 150°C 150 100 50 0 8 10 12 14 16 18 20 22 24 26 IQ [mA] Figure 6-13 Data Sheet Saturation Voltage of the TLE4964-2M over Output Current 24 Revision 1.0, 2012-07-20 TLE4964-2M Graphs of the Electrical Parameters 120 110 100 BNNeff [µT(rms)] 90 80 70 12V 60 50 40 30 20 -50 -30 -10 10 30 50 70 90 110 130 150 T [°C] Figure 6-14 Effective Noise of the TLE4964-2M Thresholds over Temperature 0,8 0,7 tQJ [µs(rms)] 0,6 0,5 0,4 12V 03 0,3 0,2 0,1 0 -50 -30 -10 10 30 50 70 90 110 130 150 T [°C] Figure 6-15 Data Sheet Output Signal Jitter of the TLE4964-2M over Temperature 25 Revision 1.0, 2012-07-20 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG