Sense & Control Data Sheet TLI4970-D050T5

TLI4970-D050T5
Miniature coreless magnetic current sensor for AC and DC measurements with
digital interface and fast overcurrent detection
Data Sheet
Rev. 1.0, 2015-07-02
Sense & Control
Edition 2015-07-02
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2015 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
TLI4970-D050T5
Revision History
Page or Item
Subjects (major changes since previous revision)
Rev. 1.0, 2015-07-02
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,
CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™,
EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™,
ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™,
PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™,
SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™
of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc.
RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc.
SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden
Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™
of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of
Diodes Zetex Limited.
Last Trademarks Update 2011-02-24
Data Sheet
3
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Table of Contents
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1
1.1
1.2
1.3
1.4
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
2.1
2.2
2.3
2.4
2.5
2.6
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Filter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Increased Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3
3.1
3.2
3.3
3.4
3.5
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fast Over Current Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Isolation Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
15
15
18
19
20
4
4.1
4.1.1
4.1.1.1
4.1.1.2
4.1.1.3
4.1.1.4
4.1.2
4.2
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI Interface Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Logical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description of the SPI Data Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sensor Current Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sensor Status Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Physical SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Serial Inspection and Configuration Interface (SICI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
21
21
21
21
21
21
22
23
24
5
5.1
5.2
5.3
5.4
5.5
Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PG-TISON-8-1 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Footprint Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PCB Layout Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Laser Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
25
26
27
27
28
Data Sheet
4
7
7
7
8
8
Rev. 1.0, 2015-07-02
TLI4970-D050T5
List of Figures
List of Figures
Figure 1-1
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 3-1
Figure 3-2
Figure 4-1
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Data Sheet
TLI4970-D050T5 device in PG-TISON-8-1 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin configuration PG-TISON-8-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Functional block diagram of the TLI4970-D050T5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Transfer function formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Transfer function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Bode plots for different filter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Distribution of the maximum total error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Application circuit for readout of multiple sensors in parallel bus mode . . . . . . . . . . . . . . . . . . . . . 19
SPI interface timing: Readout of sensor data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
PG-TISON-8-1 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Carrier tape of the PG-TISON-8-1 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Footprint recommendation for reflow soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
PCB layout recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Laser marking on the top side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5
Rev. 1.0, 2015-07-02
TLI4970-D050T5
List of Tables
List of Tables
Table 1-1
Table 2-1
Table 2-2
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 4-1
Table 4-2
Data Sheet
Order Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Overview about bandwidth and response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Electrical Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Accuracy Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
OCD Output Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Typical Application Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Isolation Parameters according to IEC 60747-5-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Isolation Parameters according to UL 1577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Interface Timing Parameters (5MHz SPI clock speed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Interface Electrical Characteristics (5MHz SPI clock speed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Product Description
1
Product Description
1.1
Overview
The TLI4970-D050T5 is an accurate coreless magnetic current sensor. Thus, the output signal is highly linear and
without hysteresis. However, a differential measurement principle allows effective stray field suppression.
Due to the integrated primary conductor (current rail), there is no need for external calibration. Additionally, a
separate interface pin (OCD) provides a fast output signal in case a current exceeds a pre-set threshold.
A small leadless package (QFN-like) allows for standard SMD assembly.
Figure 1-1 TLI4970-D050T5 device in PG-TISON-8-1 package
1.2
•
•
•
•
•
•
•
•
Features
AC & DC measurement range up to ±50 A
Accurate over temperature range and lifetime
max. 2.9 % (0 h), 3.5 % (over lifetime) of indicated value
Low offset error (max. 25 mA at room temperature)
High magnetic stray field suppression
Fast over current detection with configurable threshold
Galvanic isolation up to 2.5 kV max. rated isolation voltage
(according to UL 1577)
16 bit digital SPI output (13 bit current value)
Small 7 mm x 7 mm SMD package
Table 1-1
Order Information
Product Name
Product Type
TLI4970-D050T5
Qualified according to industrial standards: For use PG-TISON-8-1
in industrial / consumer applications
Data Sheet
Package
7
Ordering Number
SP001323146
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Product Description
1.3
General Information
The TLI4970-D050T5 is an accurate digital current sensor. The full scale measurement range is ±50 A. The sensor
is based on Infineon's well-established and robust Hall technology.
The measurement principle allows galvanic isolation (functional isolation) between the primary conductor and the
secondary interface side.
The coreless concept without a flux concentrator allows significant miniaturization. It shows no hysteresis effects
and has enhanced linearity and over current capability compared to existing solutions. The differential
measurement principle achieves best-in-class suppression of magnetic stray fields. The sensor is fully calibrated;
no need for any additional calibration after PCB assembly is necessary. Thus, the overall implementation effort
and costs are significantly reduced. It is a plug-and-play solution, easy to use in industrial and consumer
applications.
The accuracy of the TLI4970-D050T5 is comparable to closed-loop current measurement systems and even better
than open-loop systems with magnetic core. But in comparison to the open- and closed-loop system the TLI4970D050T5 enables a significantly smaller footprint and less power consumption.
Infineon's patented stress compensation circuit provides outstanding long-term stability of the output signal.
Proprietary dynamic offset cancellation techniques guarantee particularly low zero point error. Hereby, the
TLI4970-D050T5 offers superior performance.
The TLI4970-D050T5 is based on a digital concept. Thus, signal processing, compensation and calibration is
already integrated. No further external measurements for compensation are needed.
The sensor is provided in a small 7 mm x 7 mm SMD package.
1.4
Target Applications
The TLI4970-D050T5 is suitable for AC as well as DC current measurement applications:
•
•
•
•
•
•
Current monitoring
Chargers
Photovoltaic & general purpose inverters
Power supplies (SMPS)
Electrical drive
etc.
With its implemented magnetic interference suppression, it is extremely robust when exposed to external magnetic
fields. It is also suitable for fast over current detection with a configurable threshold level. This allows the control
unit to switch off and protect the affected system from damage, independently of the main measurement path.
Data Sheet
8
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Functional Description
2
Functional Description
2.1
Pin Configuration
1
2
3
4
5
6
8
7
Figure 2-1 Pin configuration PG-TISON-8-1
Table 2-1
Pin Definition and Function
Pin No.
Symbol
Function
1
GND
Ground
2
VDD
Supply voltage
3
DOUT
SPI data out
4
SCLK
Serial clock input
5
CS
Chip select input (low-active)
6
OCD
Over current detection output (open drain output)
7
IP+
Positive current terminal pin (current-in)
8
IP-
Negative current terminal pin (current-out)
Data Sheet
9
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Functional Description
2.2
Block Diagram
Figure 2-2 Functional block diagram of the TLI4970-D050T5
2.3
Functional Description
The current, flowing through the current rail on the primary side, induces a magnetic field. This is measured by two
differential Hall probes. The signal from the two Hall probes is directly digitalized by a Sigma-Delta-A/D converter
(ADC). After the programmable digital low-pass filter, the raw current signal is fed into the DSP. The differential
measurement principle of the magnetic field provides a very good suppression of any ambient magnetic stray
fields.
The temperature (T) and the mechanical stress (S) of the chip are measured and converted independently of the
primary current by a second ADC. The Digital Signal Processing Unit (DSP) uses both temperature and stress
information to compensate the raw current signal according to internally stored calibration tables. The interface
unit (IF) transmits the fully compensated value via the SPI interface.
Furthermore several parameters like low pass filter settings or over current detection (OCD) levels can be
programmed via a Serial Inspection and Configuration Interface (SICI) which are described in the TLI4970
programming guide.
For fast over current detection, the raw analog signal from the Hall probes is fed into a programmable comparator.
This comparator has a programmable glitch filter to suppress fast switching transients in the signal and to avoid
false triggers. The open-drain output of the OCD-Pin allows readout of over current signals for several TLI4970D050T5 sensors by only one microcontroller input pin.
Data Sheet
10
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Functional Description
2.4
Transfer Function
The transfer function is given by the formula shown in Figure 2-3.
I out [ A] =
out[ LSBD ] − 4096[ LSBD ]
80[ LSBA D ]
out[ LSBD ] = I [ A] ⋅ 80[ LSBA D ] + 4096[ LSBD ]
Figure 2-3 Transfer function formula
The basic point are defined by the value 0D (-51.200A) and 8191D (51.1875A). Outside this current range, the
sensor status message will be sent instead of the sensor current message (see Figure 2-4).
x I PN
-1.5
-1.0
-0.5
0
0.5
1.0
1.5
2.0
1 1111 1111 1111
7168
1 1100 0000 0000
6144
1 1000 0000 0000
5120
1 0100 0000 0000
4096
1 0000 0000 0000
3072
0 1100 0000 0000
2048
0 1000 0000 0000
1024
0 0100 0000 0000
0
Output [LSB B]
Output [LSB B]
-2.0
8191
0 0000 0000 0000
-50
-40
-30
-20
-10
0
10
20
30
40
50
Current [A]
Sensor current message
Sensor status message
Figure 2-4 Transfer function
Data Sheet
11
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Functional Description
2.5
Filter Settings
The transfer function of the TLI4970-D050T5 can be influenced by different filter settings. Finally the combination
of a high-pass filter, a prediction filter and a low-pass filter determines the overall transfer function. Figure 2-5
shows the Bode plots for different filter settings. The filter settings can be changed by EEPROM programming.
The manual for EEPROM programming can be found in the TLI4970 programming guide (application note).
Table 2-2 gives an overview about the different filter settings.
Table 2-2
Overview about bandwidth and response time
High-pass filter Prediction filter
Low-pass filter
Bandwidth
Response time1)
1
1
7
70 Hz
6.2 ms
1
1
6
130 Hz
3.1 ms
1
1
5
260 Hz
1.6 ms
1
1
4
530 Hz
781 µs
1
1
3
1.1 kHz
394 µs
1
1
2
2.4 kHz
201 µs
1
1
1
5.2 kHz
109 µs
1
1
0
6.9 kHz
92 µs
0
0
0
10 kHz
70 µs
0
1
0
18 kHz
57 µs
1) 90% of final value based on 50 A step function
Data Sheet
12
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Functional Description
90
5
90
45
45
0
0
0
-225
Filter Settings:
HP = 1 (00H[11] = 1B)
PR = 1 (00H[10] = 1B)
LP = 7 (00H[9:7] = 111B)
-20
1E+0
10E+0
-10
-270
-15
-315
100E+0
1E+3
Frequency [Hz]
10E+3
-360
100E+3
5
-180
-225
Filter Settings:
HP = 1 (00H[11] = 1B)
PR = 1 (00H[10] = 1B)
LP = 6 (00H[9:7] = 110B)
-20
1E+0
90
-135
10E+0
-270
-315
100E+0
1E+3
Frequency [Hz]
10E+3
5
45
0
0
0
-135
-180
10E+0
-5
-270
-15
-315
100E+0
1E+3
Frequency [Hz]
10E+3
-360
100E+3
5
-135
-180
-225
Filter Settings:
HP = 1 (00H[11] = 1B)
PR = 1 (00H[10] = 1B)
LP = 4 (00H[9:7] = 100B)
-20
1E+0
90
-90
Gain
Phase
-10
-225
Filter Settings:
HP = 1 (00H[11] = 1B)
PR = 1 (00H[10] = 1B)
LP = 5 (00H[9:7] = 101B)
-20
1E+0
-45
Phase [°]
Gain
Phase
-10
-15
-90
Gain [dB]
Gain [dB]
-45
-5
10E+0
-270
-315
100E+0
1E+3
Frequency [Hz]
10E+3
5
45
0
0
0
-135
-180
10E+0
-5
-270
-15
-315
100E+0
1E+3
Frequency [Hz]
10E+3
-360
100E+3
5
-135
-180
-225
Filter Settings:
HP = 1 (00H[11] = 1B)
PR = 1 (00H[10] = 1B)
LP = 2 (00H[9:7] = 010B)
-20
1E+0
90
-90
Gain
Phase
-10
-225
Filter Settings:
HP = 1 (00H[11] = 1B)
PR = 1 (00H[10] = 1B)
LP = 3 (00H[9:7] = 011B)
-20
1E+0
-45
Phase [°]
Gain
Phase
-10
-15
-90
Gain [dB]
Gain [dB]
-45
-5
10E+0
-270
-315
100E+0
1E+3
Frequency [Hz]
10E+3
5
45
0
0
0
-135
-180
10E+0
-5
-270
-15
-315
100E+0
1E+3
Frequency [Hz]
10E+3
-360
100E+3
5
-135
-180
-225
Filter Settings:
HP = 1 (00H[11] = 1B)
PR = 1 (00H[10] = 1B)
LP = 0 (00H[9:7] = 000B)
-20
1E+0
90
-90
Gain
Phase
-10
-225
Filter Settings:
HP = 1 (00H[11] = 1B)
PR = 1 (00H[10] = 1B)
LP = 1 (00H[9:7] = 001B)
-20
1E+0
-45
Phase [°]
Gain
Phase
-10
-15
-90
Gain [dB]
Gain [dB]
-45
-5
10E+0
-270
-315
100E+0
1E+3
Frequency [Hz]
10E+3
5
45
0
0
0
-135
-180
10E+0
-5
-270
-315
100E+0
1E+3
Frequency [Hz]
10E+3
-360
100E+3
-15
-90
Gain
Phase
-10
-225
Filter Settings:
HP = 0 (00H[11] = 0B)
PR = 0 (00H[10] = 0B)
LP = 0 (00H[9:7] = 000B)
-20
1E+0
-45
Phase [°]
Gain
Phase
-10
-15
-90
Gain [dB]
Gain [dB]
-45
-5
-360
100E+3
90
45
0
-360
100E+3
90
45
0
-360
100E+3
90
45
0
-360
100E+3
90
45
0
Phase [°]
-180
-90
Gain
Phase
Phase [°]
-135
-45
-5
Phase [°]
Gain
Phase
-10
-15
-90
Phase [°]
-5
Gain [dB]
Gain [dB]
-45
Phase [°]
0
-135
-180
-225
Filter Settings:
HP = 0 (00H[11] = 0B)
PR = 1 (00H[10] = 1B)
LP = 0 (00H[9:7] = 000B)
-20
1E+0
10E+0
Phase [°]
5
-270
-315
100E+0
1E+3
Frequency [Hz]
10E+3
-360
100E+3
Figure 2-5 Bode plots for different filter settings
Data Sheet
13
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Functional Description
2.6
Increased Temperature Range
The max. specified ambient operating temperature of 85°C is limited due to the power dissipation in the current
rail. The thermal loss finally increases the junction temperature which has to be limited to 125°C.
Reducing the current through the current rail decreases the thermal loss and therewith a higher ambient operating
temperature is possible.
Data Sheet
14
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Specification
3
Specification
3.1
Absolute Maximum Ratings
Table 3-1
Absolute Maximum Ratings
General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C
Parameter
Symbol
Supply voltage
VDD
Maximum primary current IP
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-0.3
-
+3.6
V
-60
-
+60
A
TA = TContact_IP_IN1)
Max. 3 pulses, 200 ms each;
tested with 105 µm Cu layer on
PCB
Maximum primary pulse
current
IP_PULSE
-
-
150
A
Voltage on interface pins
DOUT, SCLK & OCD
VIO
-0.3
-
+3.6
V
Voltage on interface pin
CS
VIO_CS
-0.3
-
+21.0
V
ESD voltage2)
VESD_HBM
-
-
±2
kV
Maximum junction
temperature
TJ_max
-
-
+125
°C
Storage temperature
TA_STORE
-40
-
+125
°C
Not connected
1) TContact_IP_IN: Temperature of current rail on PCB at solder joint.
2) According to standard EIA / JESD22-A114-E Human Body Model (HBM)
Attention: Stresses above the limit values listed here may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may
cause irreversible damage to the integrated circuit.
3.2
Operating Conditions
Table 3-2
Electrical Operating Parameters
General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Supply voltage
VDD
3.1
3.3
+3.5
V
Voltage on interface pin
CS
VIO_CS
VIO_PROG
-0.3
+20.5
-
+3.6
+20.7
V
V
Normal operation
Only during programming
Current consumption
IDD
5
12
20
mA
Secondary side
-50
-
+50
A
Full-scale primary current IPFSR
measurement range
Data Sheet
15
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Specification
Table 3-2
Electrical Operating Parameters (cont’d)
General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C
Parameter
Symbol
Primary resistance
Ambient temperature
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
0.6
-
1.0
mΩ
mΩ
TA = 25°C
TJ_max
-40
-
+85
°C
TA = TContact_IP_IN1)
RP
TA
Resistance of current rail
1) TContact_IP_IN: Temperature of current rail on PCB at solder joint.
Table 3-3
Accuracy Parameters
General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C
Parameter
Relative offset error
Symbol
εROE
Values
Min.
Typ.
Max.
-0.05
-
+0.05
-0.075
-
+0.075
-0.15
-
+0.15
Unit
Note / Test Condition
% of
IPFSR
% of
IPFSR
% of
IPFSR
@ 0A DC & TA = 25°C
@ 0A DC & TA = -40°C
@ 0A DC & TA = 85°C
Absolute offset error
εAOE
-25.0
-37.5
-75.0
-
+25.0
+37.5
+75.0
mA
mA
mA
Relative total error (gain,
offset, linearity) incl.
lifetime-drift and whole
temperature range1)
εRTE
-3.5
-
+3.5
% of IP Percentage of indicated value
-35.0
-
+35.0
mA/A
Absolute total error (gain, εATE
offset, linearity) incl.
lifetime-drift and whole
temperature range1)
@ 0A DC & TA = 25°C
@ 0A DC & TA = -40°C
@ 0A DC & TA = 85°C
Absolute total error proportional to
IP
Update rate
fUPDATE
-
80
-
kSPS2)
Resolution
G
-
12.5
-
mA /
LSB
13-Bit current value via SPI
Noise3)
INOISE
-
10
-
mARMS
@ TA = 25°C & BWI = 1.1 kHz4)
Bandwidth of current
measurement path
BWI_min
BWI_max
-
70
18
-
Hz
kHz
-3 dB cutoff; see Section 2.5 for
filter settings
-
-
15
ms
To stable and accurate output
data
Power-on time
1)
2)
3)
4)
Valid for soldered parts on PCB based on the footprint recommendation in Figure 5-3 and a copper thickness of 70 µm
kSPS: Thousand samples per second
Characterized in lab for small signals; IP = 0 mA
Bandwidth settings will affect noise
Data Sheet
16
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Specification
current [% of full scale]
-100
-80
-60
-40
-20
0
20
40
60
80
100
1750
3.0
1500
2.5
1250
2.0
1000
1.5
750
1.0
500
0.5
250
0
0
-0.5
-250
-1.0
-500
-1.5
-750
-2.0
-1000
-2.5
-1250
-3.0
-1500
-3.5
error [mA]
error [% of full scale]
3.5
-1750
-50
-40
accuracy 0h
-30
-20
-10
0
accuracy over lifetime 1)
10
20
30
40
50
current [A]
1)
according to performed stress tests during qualification; soldered parts on PCB
based on the footprint recommendation and a copper thickness of 70 µm
Figure 3-1 Distribution of the maximum total error
Data Sheet
17
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Specification
3.3
Fast Over Current Output
The Fast Over Current (OCD) pin allows fast detection of an over current in the measurement path. The OCD
signal path is independent from the bandwidth limited current signal path and has a programmable glitch filter to
avoid false triggers by noise spikes on the current rail. The symmetric threshold level of the OCD output is
adjustable and triggers an over current event in case of a positive or negative over current.
In addition a zero-crossing functionality can be programmed (in this case the over current detection is disabled).
If connected via an external pull-up resistor to a logic input pin of the microcontroller, it can be used to trigger an
interrupt in the microcontroller and quickly shut off the system to avoid damage from the over current event. The
OCD pin has an open-drain output that allows monitoring of several current sensors via only one microcontroller
input pin. For details, please refer to the application circuit shown in Figure 3-2.
The instruction for the settings can be found in the TLI4970 programming guide.
Table 3-4
OCD Output Parameter
General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C
Parameter
Symbol
1)
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Programmable (EEPROM)
Threshold level
ITHR
3
-
90
A
Accuracy
XOCD
-
10
-
% IPFSR
Response time of fast
over current detection2)3)
tD_OC
-
1.8
3.5
μs
Only valid for ∆I/∆t < 500 kA/s
Load capacitance
CL
-
-
1
nF
To GND
Open-drain current
IOD_on
-
-
1
mA
Resistive to VDD;
VOD_on ≤ 0.2 x VDD
Pull-up resistor
RPU
4.7
-
-
kΩ
To VDD
1) Symmetric threshold level for positive and negative currents
2) Falling edge level of OCD-pin <0,5VDD
3) Characterized in lab under worst case test conditions: RPU = 4.7kΩ to VDD; CL = 1 nF to GND
Data Sheet
18
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Specification
3.4
Application Circuit
µC
+3.3 V
Sensor 1
VDD
CS
GND
GND
RL
RPU
SPI-Data-IN
SCLK
SCLK
CS1
Interface controller
DOUT
CS
Power
VDD
CS2
Logic I/O
Interrupt-IN
OCD
Sensor 2
VDD
GND
CS
DOUT
SCLK
CS
OCD
Figure 3-2 Application circuit for readout of multiple sensors in parallel bus mode
Table 3-5
Typical Application Values
Name
Value
RPU
47 kΩ
RL
100 kΩ
CS
100 nF
Data Sheet
19
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Specification
3.5
Isolation Characteristics
The TLI4970-D050T5 is qualified and tested according IEC and UL standards (functional isolation).
Table 3-6
Isolation Parameters according to IEC 60747-5-2
Description
Symbol
Characteristic
Unit
UIOWM
424
VRMS
UIORM
600
Vpeak
UIOTM
3600
Vpeak
Apparent charge test voltage (Method B)
Partial discharge < 5pC
Upd,b
900
Vpeak
Isolation test voltage (1 sec)1)
UISO
2546
VRMS
UIOSM
3600
Vpeak
Minimum external creepage distance
CPG
3.0
mm
Minimum external clearance distance
CLR
3.0
mm
Minimum comparative tracking index
CTI
575
(Material group II)
Isolation resistance, UIO = 500 V 4)
RIO
> 1010
1)2)3)
Maximum rated working voltage (sine wave)
1)3)
Maximum repetitive isolation voltage (max. DC-voltage)
1)3)
Maximum transient over voltage
1)3)
Maximum surge voltage (1.2 / 50 μs)
1)
2)
3)
4)
1)
Ω
Refer to IEC 60747-5-2 for a detailed description of voltages and partial discharge tests
The given value is just an example based on pollution degree 2
According to performed stress test (85°C, 85% relative humidity, 1000 h test time & 600 V applied insulation voltage)
Not subject to production test - verified by design/characterization
Table 3-7
Isolation Parameters according to UL 1577
Description
Symbol
Characteristic
Unit
Maximum rated isolation voltage (1 min.)
UISO
2546
VRMS
Isolation test voltage (1 sec)
UISO
2546
VRMS
Data Sheet
20
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Interfaces
4
Interfaces
4.1
SPI Interface Definition
The TLI4970-D050T5 has a 3-pin serial peripheral interface (SPI). A standard unidirectional 16-bit SPI protocol is
used. Several sensors can be connected to a parallel SPI bus. An example on how to connect multiple sensors is
given in Figure 3-2. The timing parameters are given in Table 4-1.
4.1.1
Logical Interface
All SPI frames are based on a 16-bit word. A parity bit in each SPI frame allows the detection of transmission errors
and increases the reliability of the measured data. The transmission of the data is triggered by the CS-pin.
4.1.1.1
Protocol Description
The internal data register is continuously updated with the internal update rate fUPDATE. When CS is pulled to low,
the actual value from the data register is written into the SPI output register. Like in standard SPI protocol, the
sensor starts to transmit the data when clock pulses are applied to the SCLK pin and the CS-pin is still low. With
the next 16 clock pulses, the data word is sent out via the DOUT pin. If more than 16 clock pulses are sent by the
SPI-Master and the CS-pin stays low, the sensor sends 0’s for all additional clock pulses. If a new sample should
be read from the sensor, the CS-pin has to return to the high state for at least the time tCSON before pulling it to low
again in order to trigger the next sample readout.
The clock pulses are ignored and the DOUT pin is in high ohmic state, when the CS-pin is in “high” state. Therefore
multiple chips can be readout on the same data bus by sequentially selecting the addressed sensor via the CS-pin.
4.1.1.2
Description of the SPI Data Frames
There are two different types of SPI frames sent from the sensor. The “Sensor Status Message” and the “Sensor
Value Message”. The two types are distinguished by the STATUS Bit. The DATA section contains different
information. For details see below.
General structure of the 16-bit SPI data frame
GENERAL
Offset
16-bit SPI data frame
15
14
00H
13
4000H
0
STAT PAR
r
Reset Value
DATA
r
r
Note: All fields marked as “r” are read-only values.
4.1.1.3
Sensor Current Message
The actual measurement current value is returned in the Sensor Value Message.
Data Sheet
21
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Interfaces
Structure of the Sensor Value Message
VALUE
Offset
Value of the actual current measurement
15
0
14
13
01H
12
r
4000H
0
PAR OCD
r
Reset Value
CURRENT
r
r
Field
Bits
Type
Description
0
15
r
Status
Status identifier of a Sensor Value Word
PAR
14
r
Parity Bit
Odd parity of current value.
This bit is set in a way that the sum of all bits in the Value Word is odd.
OCD
13
r
OCD-state
Over current comparator value
0B
No over current
1B
Over current detected
CURRENT
12:0
r
Current value
Actual measured current value.
4.1.1.4
Sensor Status Message
The Sensor Status Word contains information about temperature and load conditions and is sent under the
following conditions:
•
•
•
Once after start-up (“Sensor restarted”)
During the sensor start-up phase when a command is sent (“Sensor busy”)
If an internal error occurred (“Sensor fail”)
Structure of the Sensor Status Message
STATUS
Offset
Sensor status message
02H
15
14
13
12
11
10
1
PAR
HW
OL
OT
COM
RESERVED
r
r
r
r
r
r
r
Data Sheet
9
Reset Value
8000H
0
22
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Interfaces
Field
Bits
Type
Description
1
15
r
Status
Status identifier of a Sensor Status Word
PAR
14
r
Parity Bit
Odd parity of current value.
This bit is set in a way that the sum of all bits in the Status Word is odd.
HW
13
r
Hardware error
0B
OK
1B
Internal error; sensor not usable
OL
12
r
Overload error
0B
OK
1B
Overload (Current outside IPFSR range)
OT
11
r
Temperature error
0B
OK
1B
Temperature out of range
COM
10
r
Communication error
0B
OK
1B
No multiple of 16 SCLK cycles detected in last frame
RESERVED
9:0
r
Reserved
Don’t care - Reserved for future use
4.1.2
Physical SPI Interface
The TLI4970-D050T5 has a 3-pin unidirectional SPI interface. This interface can be driven with a clock up to
5 MHz. The timing parameters are given in Table 4-1. Electrical characteristics are given in Table 4-2.
CS
tCSON
tSPI
t CSS
tCLH
t CSH
t CLL
SCLK
tDZ
t DS
DOUT
MSB
LSB
Figure 4-1 SPI interface timing: Readout of sensor data
Data Sheet
23
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Interfaces
Table 4-1
Interface Timing Parameters1) (5MHz SPI clock speed)
General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Duty cycle ratio 45% ... 55%
SPI speed (1 / bit time)
fSPI
-
-
5
MHz
SPI period
tSPI
200
-
-
ns
SCLK duty cycle
tCLH / tCLL
45
-
55
%
CS setup time
tCSS
95
-
-
ns
RL ≥ 100 kΩ
CL ≤ 50 pF to GND
CS hold time
tCSH
95
-
-
ns
RL ≥ 100 kΩ
CL ≤ 50 pF to GND
Data setup time
tDS
-
-
65
ns
Delay between CS rising
edge and end of DOUT
data
tDZ
-
-
75
ns
CS high time
tCSON
300
-
-
ns
1) All timing parameters are valid on the sensor pin with the specified test load only. Different loading due to PCB mounting
might result in different timing.
Table 4-2
Interface Electrical Characteristics (5MHz SPI clock speed)
General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
-
0.2 x VDD V
Resistive load; 1 mA to GND
Resistive load; 1 mA to GND
Output level low (SPI)
VOL
-
Output level high (SPI)
VOH
0.8 x VDD -
-
Input level low (SPI)
VIL
-0.1
0.3 x VDD V
Input level high (SPI)
VIH
0.7 x VDD -
VDD
V
0.05 x
-
-
V
Input level hysteresis
(SPI)
Note / Test Condition
-
ns
VDD
Input capacitance
CI
-
-
100
pF
For all digital input pins
Input resistance
RI
100
-
-
kΩ
For all digital input pins
Load capacitance
CL
-
-
50
pF
To GND; For all digital output pins
Load resistance
RL
100
-
-
kΩ
To VDD; For all digital output pins
4.2
Serial Inspection and Configuration Interface (SICI)
The serial inspection and configuration interface is only used for EEPROM programming. This interface is a one
wire interface provided by a double seizure of the OCD pin. To guarantee a proper SICI communication current
must not flow through the primary conductor (to avoid interferences with potential over current detection). The
instruction for the serial inspection and configuration interface can be found in the TLI4970 programming guide.
Data Sheet
24
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Package
5
Package
The TLI4970-D050T5 is packaged in a RoHS compliant, halogen-free leadless package (QFN-like).
5.1
PG-TISON-8-1 Package Outline
ALL DIMENSIONS IN MILLIMETER
Figure 5-1 PG-TISON-8-1 package dimensions
Data Sheet
25
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Package
5.2
Packing
ALL DIMENSIONS IN MILLIMETER
Figure 5-2 Carrier tape of the PG-TISON-8-1 package
Data Sheet
26
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Package
5.3
Footprint Recommendation
ALL DIMENSIONS IN MILLIMETER
Figure 5-3 Footprint recommendation for reflow soldering
5.4
PCB Layout Recommendation
The PCB layout recommendation shown in Figure 5.4 leads to the preferred current flow through the housing to
achieve the highest accuracy.
Figure 5-4 PCB layout recommendation
Data Sheet
27
Rev. 1.0, 2015-07-02
TLI4970-D050T5
Package
5.5
Laser Marking
Infineon
Marker for
Orientation
(Pin 1 is
below)
TLI4970
D050T5
XX
Lot No.
XXXX
Sales Code
H Y Y WW
Internal Tracking No.
(Subject to change
without notice)
Date Code
YY: Year
WW: Week
Information:
Green Package
(RoHS compliant
and halogen-free)
Figure 5-5 Laser marking on the top side
Data Sheet
28
Rev. 1.0, 2015-07-02
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG