TLI4970-D025T4 High precision miniature coreless magnetic current sensor for AC and DC measurements with digital interface and fast overcurrent detection Data Sheet Rev. 1.0, 2015-07-02 Sense & Control Edition 2015-07-02 Published by Infineon Technologies AG 81726 Munich, Germany © 2015 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. TLI4970-D025T4 Revision History Page or Item Subjects (major changes since previous revision) Rev. 1.0, 2015-07-02 Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-02-24 Data Sheet 3 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 1.1 1.2 1.3 1.4 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 2.2 2.3 2.4 2.5 2.6 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Filter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Increased Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 3.1 3.2 3.3 3.4 3.5 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fast Over Current Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Isolation Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 15 15 18 19 20 4 4.1 4.1.1 4.1.1.1 4.1.1.2 4.1.1.3 4.1.1.4 4.1.2 4.2 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI Interface Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of the SPI Data Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sensor Current Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sensor Status Message . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Physical SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Inspection and Configuration Interface (SICI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 21 21 21 21 21 22 23 24 5 5.1 5.2 5.3 5.4 5.5 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PG-TISON-8-1 Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Footprint Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PCB Layout Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Laser Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 25 26 27 27 28 Data Sheet 4 7 7 7 8 8 Rev. 1.0, 2015-07-02 TLI4970-D025T4 List of Figures List of Figures Figure 1-1 Figure 2-1 Figure 2-2 Figure 2-3 Figure 2-4 Figure 2-5 Figure 3-1 Figure 3-2 Figure 4-1 Figure 5-1 Figure 5-2 Figure 5-3 Figure 5-4 Figure 5-5 Data Sheet TLI4970-D025T4 device in PG-TISON-8-1 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin configuration PG-TISON-8-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Functional block diagram of the TLI4970-D025T4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Transfer function formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Transfer function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Bode plots for different filter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Distribution of the maximum total error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Application circuit for readout of multiple sensors in parallel bus mode . . . . . . . . . . . . . . . . . . . . . 19 SPI interface timing: Readout of sensor data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 PG-TISON-8-1 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Carrier tape of the PG-TISON-8-1 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Footprint recommendation for reflow soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 PCB layout recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Laser marking on the top side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 Rev. 1.0, 2015-07-02 TLI4970-D025T4 List of Tables List of Tables Table 1-1 Table 2-1 Table 2-2 Table 3-1 Table 3-2 Table 3-3 Table 3-4 Table 3-5 Table 3-6 Table 3-7 Table 4-1 Table 4-2 Data Sheet Order Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Overview about bandwidth and response time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electrical Operating Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Accuracy Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 OCD Output Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Typical Application Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Isolation Parameters according to IEC 60747-5-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Isolation Parameters according to UL 1577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Interface Timing Parameters (5MHz SPI clock speed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Interface Electrical Characteristics (5MHz SPI clock speed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Product Description 1 Product Description 1.1 Overview The TLI4970-D025T4 is a highly accurate coreless magnetic current sensor. Thus, the output signal is highly linear and without hysteresis. However, a differential measurement principle allows effective stray field suppression. Due to the integrated primary conductor (current rail), there is no need for external calibration. Additionally, a separate interface pin (OCD) provides a fast output signal in case a current exceeds a pre-set threshold. A small leadless package (QFN-like) allows for standard SMD assembly. Figure 1-1 TLI4970-D025T4 device in PG-TISON-8-1 package 1.2 • • • • • • • • Features AC & DC measurement range up to ±25 A Highly accurate over temperature range and lifetime max. 1.0 % (0 h), max.1.6 % (over lifetime) of indicated value Low offset error (max. 25 mA at room temperature) High magnetic stray field suppression Fast over current detection with configurable threshold Galvanic isolation up to 2.5 kV max. rated isolation voltage (according to UL 1577) 16 bit digital SPI output (13 bit current value) Small 7 mm x 7 mm SMD package Table 1-1 Order Information Product Name Product Type TLI4970-D025T4 Qualified according to industrial standards: For use PG-TISON-8-1 in industrial / consumer applications Data Sheet Package 7 Ordering Number SP001323154 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Product Description 1.3 General Information The TLI4970-D025T4 is a high-precision digital current sensor. The full scale measurement range is ±25 A. The sensor is based on Infineon's well-established and robust Hall technology. The measurement principle allows galvanic isolation (functional isolation) between the primary conductor and the secondary interface side. The coreless concept without a flux concentrator allows significant miniaturization. It shows no hysteresis effects and has enhanced linearity and over current capability compared to existing solutions. The differential measurement principle achieves best-in-class suppression of magnetic stray fields. The sensor is fully calibrated; no need for any additional calibration after PCB assembly is necessary. Thus, the overall implementation effort and costs are significantly reduced. It is a plug-and-play solution, easy to use in industrial and consumer applications. The accuracy of the TLI4970-D025T4 is comparable to closed-loop current measurement systems and even better than open-loop systems with magnetic core. But in comparison to the open- and closed-loop system the TLI4970D025T4 enables a significantly smaller footprint and less power consumption. Infineon's patented stress compensation circuit provides outstanding long-term stability of the output signal. Proprietary dynamic offset cancellation techniques guarantee particularly low zero point error. Hereby, the TLI4970-D025T4 offers superior performance. The TLI4970-D025T4 is based on a digital concept. Thus, signal processing, compensation and calibration is already integrated. No further external measurements for compensation are needed. The sensor is provided in a small 7 mm x 7 mm SMD package. 1.4 Target Applications The TLI4970-D025T4 is suitable for AC as well as DC current measurement applications: • • • • • • Current monitoring Chargers Photovoltaic & general purpose inverters Power supplies (SMPS) Electrical drive etc. With its implemented magnetic interference suppression, it is extremely robust when exposed to external magnetic fields. It is also suitable for fast over current detection with a configurable threshold level. This allows the control unit to switch off and protect the affected system from damage, independently of the main measurement path. Data Sheet 8 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Functional Description 2 Functional Description 2.1 Pin Configuration 1 2 3 4 5 6 8 7 Figure 2-1 Pin configuration PG-TISON-8-1 Table 2-1 Pin Definition and Function Pin No. Symbol Function 1 GND Ground 2 VDD Supply voltage 3 DOUT SPI data out 4 SCLK Serial clock input 5 CS Chip select input (low-active) 6 OCD Over current detection output (open drain output) 7 IP+ Positive current terminal pin (current-in) 8 IP- Negative current terminal pin (current-out) Data Sheet 9 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Functional Description 2.2 Block Diagram Figure 2-2 Functional block diagram of the TLI4970-D025T4 2.3 Functional Description The current, flowing through the current rail on the primary side, induces a magnetic field. This is measured by two differential Hall probes. The signal from the two Hall probes is directly digitalized by a Sigma-Delta-A/D converter (ADC). After the programmable digital low-pass filter, the raw current signal is fed into the DSP. The differential measurement principle of the magnetic field provides a very good suppression of any ambient magnetic stray fields. The temperature (T) and the mechanical stress (S) of the chip are measured and converted independently of the primary current by a second ADC. The Digital Signal Processing Unit (DSP) uses both temperature and stress information to compensate the raw current signal according to internally stored calibration tables. The interface unit (IF) transmits the fully compensated value via the SPI interface. Furthermore several parameters like low pass filter settings or over current detection (OCD) levels can be programmed via a Serial Inspection and Configuration Interface (SICI) which are described in the TLI4970 programming guide. For fast over current detection, the raw analog signal from the Hall probes is fed into a programmable comparator. This comparator has a programmable glitch filter to suppress fast switching transients in the signal and to avoid false triggers. The open-drain output of the OCD-Pin allows readout of over current signals for several TLI4970D025T4 sensors by only one microcontroller input pin. Data Sheet 10 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Functional Description 2.4 Transfer Function The transfer function is given by the formula shown in Figure 2-3. I out [ A] = out[ LSBD ] − 4096[ LSBD ] 160[ LSBA D ] out[ LSBD ] = I [ A] ⋅160[ LSBA D ] + 4096[ LSBD ] Figure 2-3 Transfer function formula 8191 1 1111 1111 1111 7168 1 1100 0000 0000 6144 1 1000 0000 0000 5120 1 0100 0000 0000 4096 1 0000 0000 0000 3072 0 1100 0000 0000 2048 0 1000 0000 0000 1024 0 0100 0000 0000 0 Output [LSB B] Output [LSB B] The basic point are defined by the value 0D (-25.6000A) and 8191D (25.59375A). Outside this current range, the sensor status message will be sent instead of the sensor current message (see Figure 2-4). 0 0000 0000 0000 -25 -20 -15 -10 -5 0 5 10 15 20 25 Current [A] Sensor current message Sensor status message Figure 2-4 Transfer function Data Sheet 11 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Functional Description 2.5 Filter Settings The transfer function of the TLI4970-D025T4 can be influenced by different filter settings. Finally the combination of a high-pass filter, a prediction filter and a low-pass filter determines the overall transfer function. Figure 2-5 shows the Bode plots for different filter settings. The filter settings can be changed by EEPROM programming. The manual for EEPROM programming can be found in the TLI4970 programming guide (application note). Table 2-2 gives an overview about the different filter settings. Table 2-2 Overview about bandwidth and response time High-pass filter Prediction filter Low-pass filter Bandwidth Response time1) 1 1 7 70 Hz 6.2 ms 1 1 6 130 Hz 3.1 ms 1 1 5 260 Hz 1.6 ms 1 1 4 530 Hz 781 µs 1 1 3 1.1 kHz 394 µs 1 1 2 2.4 kHz 201 µs 1 1 1 5.2 kHz 109 µs 1 1 0 6.9 kHz 92 µs 0 0 0 10 kHz 70 µs 0 1 0 18 kHz 57 µs 1) 90% of final value based on 25 A step function Data Sheet 12 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Functional Description 90 5 90 45 45 0 0 0 -225 Filter Settings: HP = 1 (00H[11] = 1B) PR = 1 (00H[10] = 1B) LP = 7 (00H[9:7] = 111B) -20 1E+0 10E+0 -10 -270 -15 -315 100E+0 1E+3 Frequency [Hz] 10E+3 -360 100E+3 5 -180 -225 Filter Settings: HP = 1 (00H[11] = 1B) PR = 1 (00H[10] = 1B) LP = 6 (00H[9:7] = 110B) -20 1E+0 90 -135 10E+0 -270 -315 100E+0 1E+3 Frequency [Hz] 10E+3 5 45 0 0 0 -135 -180 10E+0 -5 -270 -15 -315 100E+0 1E+3 Frequency [Hz] 10E+3 -360 100E+3 5 -135 -180 -225 Filter Settings: HP = 1 (00H[11] = 1B) PR = 1 (00H[10] = 1B) LP = 4 (00H[9:7] = 100B) -20 1E+0 90 -90 Gain Phase -10 -225 Filter Settings: HP = 1 (00H[11] = 1B) PR = 1 (00H[10] = 1B) LP = 5 (00H[9:7] = 101B) -20 1E+0 -45 Phase [°] Gain Phase -10 -15 -90 Gain [dB] Gain [dB] -45 -5 10E+0 -270 -315 100E+0 1E+3 Frequency [Hz] 10E+3 5 45 0 0 0 -135 -180 10E+0 -5 -270 -15 -315 100E+0 1E+3 Frequency [Hz] 10E+3 -360 100E+3 5 -135 -180 -225 Filter Settings: HP = 1 (00H[11] = 1B) PR = 1 (00H[10] = 1B) LP = 2 (00H[9:7] = 010B) -20 1E+0 90 -90 Gain Phase -10 -225 Filter Settings: HP = 1 (00H[11] = 1B) PR = 1 (00H[10] = 1B) LP = 3 (00H[9:7] = 011B) -20 1E+0 -45 Phase [°] Gain Phase -10 -15 -90 Gain [dB] Gain [dB] -45 -5 10E+0 -270 -315 100E+0 1E+3 Frequency [Hz] 10E+3 5 45 0 0 0 -135 -180 10E+0 -5 -270 -15 -315 100E+0 1E+3 Frequency [Hz] 10E+3 -360 100E+3 5 -135 -180 -225 Filter Settings: HP = 1 (00H[11] = 1B) PR = 1 (00H[10] = 1B) LP = 0 (00H[9:7] = 000B) -20 1E+0 90 -90 Gain Phase -10 -225 Filter Settings: HP = 1 (00H[11] = 1B) PR = 1 (00H[10] = 1B) LP = 1 (00H[9:7] = 001B) -20 1E+0 -45 Phase [°] Gain Phase -10 -15 -90 Gain [dB] Gain [dB] -45 -5 10E+0 -270 -315 100E+0 1E+3 Frequency [Hz] 10E+3 5 45 0 0 0 -135 -180 10E+0 -5 -270 -315 100E+0 1E+3 Frequency [Hz] 10E+3 -360 100E+3 -15 -90 Gain Phase -10 -225 Filter Settings: HP = 0 (00H[11] = 0B) PR = 0 (00H[10] = 0B) LP = 0 (00H[9:7] = 000B) -20 1E+0 -45 Phase [°] Gain Phase -10 -15 -90 Gain [dB] Gain [dB] -45 -5 -360 100E+3 90 45 0 -360 100E+3 90 45 0 -360 100E+3 90 45 0 -360 100E+3 90 45 0 Phase [°] -180 -90 Gain Phase Phase [°] -135 -45 -5 Phase [°] Gain Phase -10 -15 -90 Phase [°] -5 Gain [dB] Gain [dB] -45 Phase [°] 0 -135 -180 -225 Filter Settings: HP = 0 (00H[11] = 0B) PR = 1 (00H[10] = 1B) LP = 0 (00H[9:7] = 000B) -20 1E+0 10E+0 Phase [°] 5 -270 -315 100E+0 1E+3 Frequency [Hz] 10E+3 -360 100E+3 Figure 2-5 Bode plots for different filter settings Data Sheet 13 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Functional Description 2.6 Increased Temperature Range The max. specified ambient operating temperature of 85°C is limited due to the power dissipation in the current rail. The thermal loss finally increases the junction temperature which has to be limited to 125°C. Reducing the current through the current rail decreases the thermal loss and therewith a higher ambient operating temperature is possible. Data Sheet 14 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Specification 3 Specification 3.1 Absolute Maximum Ratings Table 3-1 Absolute Maximum Ratings General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C Parameter Symbol Supply voltage VDD Maximum primary current IP Values Unit Note / Test Condition Min. Typ. Max. -0.3 - +3.6 V -60 - +60 A TA = TContact_IP_IN1) Max. 3 pulses, 200 ms each; tested with 105 µm Cu layer on PCB Maximum primary pulse current IP_PULSE - - 150 A Voltage on interface pins DOUT, SCLK & OCD VIO -0.3 - +3.6 V Voltage on interface pin CS VIO_CS -0.3 - +21.0 V ESD voltage2) VESD_HBM - - ±2 kV Maximum junction temperature TJ_max - - +125 °C Storage temperature TA_STORE -40 - +125 °C Not connected 1) TContact_IP_IN: Temperature of current rail on PCB at solder joint. 2) According to standard EIA / JESD22-A114-E Human Body Model (HBM) Attention: Stresses above the limit values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. 3.2 Operating Conditions Table 3-2 Electrical Operating Parameters General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition Supply voltage VDD 3.1 3.3 +3.5 V Voltage on interface pin CS VIO_CS VIO_PROG -0.3 +20.5 - +3.6 +20.7 V V Normal operation Only during programming Current consumption IDD 5 12 20 mA Secondary side -25 - +25 A Full-scale primary current IPFSR measurement range Data Sheet 15 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Specification Table 3-2 Electrical Operating Parameters (cont’d) General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C Parameter Symbol Primary resistance Values Min. Typ. Max. - 0.6 - 1.0 Note / Test Condition mΩ mΩ TA = 25°C TJ_max °C TA = TContact_IP_IN1) RP Resistance of current rail Ambient temperature TA -40 +85 1) TContact_IP_IN: Temperature of current rail on PCB at solder joint. Table 3-3 Unit Accuracy Parameters General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C Parameter Relative offset error Symbol εROE Values Min. Typ. Max. -0.1 - +0.1 -0.15 - +0.15 -0.3 - +0.3 Unit Note / Test Condition % of IPFSR % of IPFSR % of IPFSR @ 0A DC & TA = 25°C @ 0A DC & TA = -40°C @ 0A DC & TA = 85°C Absolute offset error εAOE -25.0 -37.5 -75.0 - +25.0 +37.5 +75.0 mA mA mA Relative total error (gain, offset, linearity) incl. lifetime-drift and whole temperature range1) εRTE -1.6 - +1.6 % of IP Percentage of indicated value -16.0 - +16.0 mA/A Absolute total error (gain, εATE offset, linearity) incl. lifetime-drift and whole temperature range1) @ 0A DC & TA = 25°C @ 0A DC & TA = -40°C @ 0A DC & TA = 85°C Absolute total error proportional to IP Update rate fUPDATE - 80 - kSPS2) Resolution G - 6.25 - mA / LSB 13-Bit current value via SPI Noise3) INOISE - 10 - mARMS @ TA = 25°C & BWI = 1.1 kHz4) Bandwidth of current measurement path BWI_min BWI_max - 70 18 - Hz kHz -3 dB cutoff; see Section 2.5 for filter settings - - 15 ms To stable and accurate output data Power-on time 1) 2) 3) 4) Valid for soldered parts on PCB based on the footprint recommendation in Figure 5-3 and a copper thickness of 70 µm kSPS: Thousand samples per second Characterized in the laboratory for small signals; IP = 0 mA Bandwidth settings will affect noise Data Sheet 16 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Specification current [% of full scale] -80 -60 -40 -20 0 20 40 60 80 100 400 1.2 300 0.8 200 0.4 100 0 0 -0.4 -100 -0.8 -200 -1.2 -300 -400 -1.6 -25 -20 accuracy 0h 1) error [mA] error [% of full scale] -100 1.6 -15 -10 -5 0 5 10 15 20 accuracy over lifetime1) 25 current [A] according to performed stress tests during qualification; soldered parts on PCB based on the footprint recommendation and a copper thickness of 70 µm Figure 3-1 Distribution of the maximum total error Data Sheet 17 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Specification 3.3 Fast Over Current Output The Fast Over Current (OCD) pin allows fast detection of an over current in the measurement path. The OCD signal path is independent from the bandwidth limited current signal path and has a programmable glitch filter to avoid false triggers by noise spikes on the current rail. The symmetric threshold level of the OCD output is adjustable and triggers an over current event in case of a positive or negative over current. In addition a zero-crossing functionality can be programmed (in this case the over current detection is disabled). If connected via an external pull-up resistor to a logic input pin of the microcontroller, it can be used to trigger an interrupt in the microcontroller and quickly shut off the system to avoid damage from the over current event. The OCD pin has an open-drain output that allows monitoring of several current sensors via only one microcontroller input pin. For details, please refer to the application circuit shown in Figure 3-2. The instruction for the settings can be found in the TLI4970 programming guide. Table 3-4 OCD Output Parameter General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C Parameter Symbol 1) Values Min. Typ. Max. Unit Note / Test Condition Programmable (EEPROM) Threshold level ITHR 6 - 90 A Accuracy XOCD - 20 - % IPFSR Response time of fast over current detection2)3) tD_OC - 1.8 3.5 μs Only valid for ∆I/∆t < 500 kA/s Load capacitance CL - - 1 nF To GND Open-drain current IOD_on - - 1 mA Resistive to VDD; VOD_on ≤ 0.2 x VDD Pull-up resistor RPU 4.7 - - kΩ To VDD 1) Symmetric threshold level for positive and negative currents 2) Falling edge level of OCD-pin <0,5VDD 3) Characterized in lab under worst case test conditions: RPU = 4.7kΩ to VDD; CL = 1 nF to GND Data Sheet 18 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Specification 3.4 Application Circuit µC +3.3 V Sensor 1 VDD CS GND GND RL RPU SPI-Data-IN SCLK SCLK CS1 Interface controller DOUT CS Power VDD CS2 Logic I/O Interrupt-IN OCD Sensor 2 VDD GND CS DOUT SCLK CS OCD Figure 3-2 Application circuit for readout of multiple sensors in parallel bus mode Table 3-5 Typical Application Values Name Value RPU 47 kΩ RL 100 kΩ CS 100 nF Data Sheet 19 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Specification 3.5 Isolation Characteristics The TLI4970-D025T4 is qualified and tested according IEC and UL standards (functional isolation). Table 3-6 Isolation Parameters according to IEC 60747-5-2 Description Symbol Characteristic Unit UIOWM 424 VRMS UIORM 600 Vpeak UIOTM 3600 Vpeak Apparent charge test voltage (Method B) Partial discharge < 5pC Upd,b 900 Vpeak Isolation test voltage (1 sec)1) UISO 2546 VRMS UIOSM 3600 Vpeak Minimum external creepage distance CPG 3.0 mm Minimum external clearance distance CLR 3.0 mm Minimum comparative tracking index CTI 575 (Material group II) Isolation resistance, UIO = 500 V 4) RIO > 1010 1)2)3) Maximum rated working voltage (sine wave) 1)3) Maximum repetitive isolation voltage (max. DC-voltage) 1)3) Maximum transient over voltage 1)3) Maximum surge voltage (1.2 / 50 μs) 1) 2) 3) 4) 1) Ω Refer to IEC 60747-5-2 for a detailed description of voltages and partial discharge tests The given value is just an example based on pollution degree 2 According to performed stress test (85°C, 85% relative humidity, 1000 h test time & 600 V applied insulation voltage) Not subject to production test - verified by design/characterization Table 3-7 Isolation Parameters according to UL 1577 Description Symbol Characteristic Unit Maximum rated isolation voltage (1 min.) UISO 2546 VRMS Isolation test voltage (1 sec) UISO 2546 VRMS Data Sheet 20 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Interfaces 4 Interfaces 4.1 SPI Interface Definition The TLI4970-D025T4 has a 3-pin serial peripheral interface (SPI). A standard unidirectional 16-bit SPI protocol is used. Several sensors can be connected to a parallel SPI bus. An example on how to connect multiple sensors is given in Figure 3-2. The timing parameters are given in Table 4-1. 4.1.1 Logical Interface All SPI frames are based on a 16-bit word. A parity bit in each SPI frame allows the detection of transmission errors and increases the reliability of the measured data. The transmission of the data is triggered by the CS-pin. 4.1.1.1 Protocol Description The internal data register is continuously updated with the internal update rate fUPDATE. When CS is pulled to low, the actual value from the data register is written into the SPI output register. Like in standard SPI protocol, the sensor starts to transmit the data when clock pulses are applied to the SCLK pin and the CS-pin is still low. With the next 16 clock pulses, the data word is sent out via the DOUT pin. If more than 16 clock pulses are sent by the SPI-Master and the CS-pin stays low, the sensor sends 0’s for all additional clock pulses. If a new sample should be read from the sensor, the CS-pin has to return to the high state for at least the time tCSON before pulling it to low again in order to trigger the next sample readout. The clock pulses are ignored and the DOUT pin is in high ohmic state, when the CS-pin is in “high” state. Therefore multiple chips can be readout on the same data bus by sequentially selecting the addressed sensor via the CS-pin. 4.1.1.2 Description of the SPI Data Frames There are two different types of SPI frames sent from the sensor. The “Sensor Status Message” and the “Sensor Value Message”. The two types are distinguished by the STATUS Bit. The DATA section contains different information. For details see below. General structure of the 16-bit SPI data frame GENERAL Offset 16-bit SPI data frame 15 14 00H 13 4000H 0 STAT PAR r Reset Value DATA r r Note: All fields marked as “r” are read-only values. 4.1.1.3 Sensor Current Message The actual measurement current value is returned in the Sensor Value Message. Data Sheet 21 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Interfaces Structure of the Sensor Value Message VALUE Offset Value of the actual current measurement 15 0 14 13 01H 12 r 4000H 0 PAR OCD r Reset Value CURRENT r r Field Bits Type Description 0 15 r Status Status identifier of a Sensor Value Word PAR 14 r Parity Bit Odd parity of current value. This bit is set in a way that the sum of all bits in the Value Word is odd. OCD 13 r OCD-state Over current comparator value 0B No over current 1B Over current detected CURRENT 12:0 r Current value Actual measured current value. 4.1.1.4 Sensor Status Message The Sensor Status Word contains information about temperature and load conditions and is sent under the following conditions: • • • Once after start-up (“Sensor restarted”) During the sensor start-up phase when a command is sent (“Sensor busy”) If an internal error occurred (“Sensor fail”) Structure of the Sensor Status Message STATUS Offset Sensor status message 02H 15 14 13 12 11 10 1 PAR HW OL OT COM RESERVED r r r r r r r Data Sheet 9 Reset Value 8000H 0 22 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Interfaces Field Bits Type Description 1 15 r Status Status identifier of a Sensor Status Word PAR 14 r Parity Bit Odd parity of current value. This bit is set in a way that the sum of all bits in the Status Word is odd. HW 13 r Hardware error 0B OK 1B Internal error; sensor not usable OL 12 r Overload error 0B OK 1B Overload (Current outside IPFSR range) OT 11 r Temperature error 0B OK 1B Temperature out of range COM 10 r Communication error 0B OK 1B No multiple of 16 SCLK cycles detected in last frame RESERVED 9:0 r Reserved Don’t care - Reserved for future use 4.1.2 Physical SPI Interface The TLI4970-D025T4 has a 3-pin unidirectional SPI interface. This interface can be driven with a clock up to 5 MHz. The timing parameters are given in Table 4-1. Electrical characteristics are given in Table 4-2. CS tCSON tSPI t CSS tCLH t CSH t CLL SCLK tDZ t DS DOUT MSB LSB Figure 4-1 SPI interface timing: Readout of sensor data Data Sheet 23 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Interfaces Table 4-1 Interface Timing Parameters1) (5MHz SPI clock speed) General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Duty cycle ratio 45% ... 55% SPI speed (1 / bit time) fSPI - - 5 MHz SPI period tSPI 200 - - ns SCLK duty cycle tCLH / tCLL 45 - 55 % CS setup time tCSS 95 - - ns RL ≥ 100 kΩ CL ≤ 50 pF to GND CS hold time tCSH 95 - - ns RL ≥ 100 kΩ CL ≤ 50 pF to GND Data setup time tDS - - 65 ns Delay between CS rising edge and end of DOUT data tDZ - - 75 ns CS high time tCSON 300 - - ns 1) All timing parameters are valid on the sensor pin with the specified test load only. Different loading due to PCB mounting might result in different timing. Table 4-2 Interface Electrical Characteristics (5MHz SPI clock speed) General conditions (unless otherwise specified): VDD = 3.3 V; TA = -40 °C ... +85 °C Parameter Symbol Values Unit Min. Typ. Max. - 0.2 x VDD V Resistive load; 1 mA to GND Resistive load; 1 mA to GND Output level low (SPI) VOL - Output level high (SPI) VOH 0.8 x VDD - - Input level low (SPI) VIL -0.1 0.3 x VDD V Input level high (SPI) VIH 0.7 x VDD - VDD V 0.05 x - - V Input level hysteresis (SPI) Note / Test Condition - ns VDD Input capacitance CI - - 100 pF For all digital input pins Input resistance RI 100 - - kΩ For all digital input pins Load capacitance CL - - 50 pF To GND; For all digital output pins Load resistance RL 100 - - kΩ To VDD; For all digital output pins 4.2 Serial Inspection and Configuration Interface (SICI) The serial inspection and configuration interface is only used for EEPROM programming. This interface is a one wire interface provided by a double seizure of the OCD pin. To guarantee a proper SICI communication current must not flow through the primary conductor (to avoid interferences with potential over current detection). The instruction for the serial inspection and configuration interface can be found in the TLI4970 programming guide. Data Sheet 24 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Package 5 Package The TLI4970-D025T4 is packaged in a RoHS compliant, halogen-free leadless package (QFN-like). 5.1 PG-TISON-8-1 Package Outline ALL DIMENSIONS IN MILLIMETER Figure 5-1 PG-TISON-8-1 package dimensions Data Sheet 25 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Package 5.2 Packing ALL DIMENSIONS IN MILLIMETER Figure 5-2 Carrier tape of the PG-TISON-8-1 package Data Sheet 26 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Package 5.3 Footprint Recommendation ALL DIMENSIONS IN MILLIMETER Figure 5-3 Footprint recommendation for reflow soldering 5.4 PCB Layout Recommendation The PCB layout recommendation shown in Figure 5.4 leads to the preferred current flow through the housing to achieve the highest accuracy. Figure 5-4 PCB layout recommendation Data Sheet 27 Rev. 1.0, 2015-07-02 TLI4970-D025T4 Package 5.5 Laser Marking Infineon Marker for Orientation (Pin 1 is below) TLI4970 D025T4 XX Lot No. XXXX Sales Code H Y Y WW Internal Tracking No. (Subject to change without notice) Date Code YY: Year WW: Week Information: Green Package (RoHS compliant and halogen-free) Figure 5-5 Laser marking on the top side Data Sheet 28 Rev. 1.0, 2015-07-02 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG