SMPS Switched and Averaged PSpice Models

Version 1.0 , June 2001
Application Note
AN-PSM-11
Switched and Averaged PSPICE Models
Authors: Horst Edel
Daniel Lindenmeyer
Published by Infineon Technologies AG
www.infineon.com/simulate
www.infineon.com/coolset
Support: [email protected]
Power Management & Supply
N e v e r
Titel:
(Infineon Logo 4c.eps)
Erstellt von:
Adobe Illustrator(R) 8.0
Vorschau:
Diese EPS-Grafik wurde nicht gespeichert
mit einer enthaltenen Vorschau.
Kommentar:
Diese EPS-Grafik wird an einen
PostScript-Drucker gedruckt, aber nicht
an andere Druckertypen.
s t o p
t h i n k i n g
Switched and Averaged Pspice Models
Serial number:9101-20-P1-1-----
This work is protected by copyright. All rights reserved. Neither the complete work nor extracts
therefrom may be copied or reproduced, regardless of the means employed, without the permission of
the publisher.
Text, illustrations and examples were produced with great care. Nevertheless, errors cannot be
completely excluded. The author can assume neither a legal responsibility nor any form of liability for
any possibly remaining incorrect details and their consequences.
PSPICE is a registered trademark of MicroSim Corp. USA.
© 2000 by Ing. Büro Horst Edel
Page 2 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
Contents
1 Preliminary remarks
4
1.1 Description of the converter symbols
1.2 General notes
2 Flyback converter with electrical isolation, 1 output
2.1
2.2
2.3
2.4
2.5
Linearized circuit
Averaged model
Time-domain characteristic with current loop
DC operating points
Frequency-domain characteristic
3 Flyback converter with electrical isolation, 2 outputs
3.1
3.2
3.3
3.4
3.5
Linearized circuit
Averaged model
Time-domain characteristic with current loop
DC operating points
Frequency-domain characteristic
4
5
8
8
8
9
10
11
12
12
12
13
14
15
A Convergence aids
16
B Notes on the subcircuits
16
B.1 Activation
B.2 Adapting the averaged models
Page 3 / 20
16
17
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
1 Preliminary remarks
The simulations described in this document were carried out with PSpice V8.0
Version V2.0.
1.1 Description of the converter symbols
All the symbols used in the converter circuits have the same structure.
Inputs
ue: Connection for the input voltage.
d1: Input of the averaged pulse control factor d1 for controlling the converter.
CAUTION: This input is not restricted to values between 0 and 1. Meaningless
pulse control factors (e.g. d1 = −0.5) can therefore be specified. (Limiting occurs
in the pulse-width modulator).
Outputs
ua: Connection(s) for the output voltage(s).
Ud: Drain connection of the external switching transistor.
d3: Output for display of the operating mode and length of the interval d3Ts (inductor
current iL = 0). d3 = 0 means the converter is operating continuously. For
example, d3 = 0.3 means the converter is operating discontinuously and the
time duration of the interval is d3Ts =0.3 * Ts (Ts is the switching period).
dis: Output which describes the slope of the switch current in the interval d1Ts. This
quantity is necessary for current loop operation. In the case of a “singleinductor-converter”, dis is equal to the slope of the inductor current iL in the
interval d1Ts. In the case of a converter with several inductors, however, it is a
weighted linear combination of the inductor currents.
iL: Output for the averaged inductor current. In the case of a converter with one
inductor it is the mean value of the current through this inductor. This quantity is
important for current loop operation.
eta: Output which indicates the efficiency of the circuit. CAUTION: The output
supplies meaningful values only in the steady-state condition and with DC
analysis. Moreover, it serves only as a point of reference, as, of course, the
switching losses of the real converter are not taken into account.
With all models, variable parameters are represented in the symbol and can be
edited by double-clicking. The variable values can be either figures (e.g. L = 50uH) or
parameter values (e.g. L ={L1}). For latter, the parameter values must be defined in
the circuit by a PARAM block.
Every averaged model has a null parameter. This parameter serves as a
convergence aid. PSPICE experiences difficulties if an expression in an EVALUE
source in IF commands is to become zero. Example:
E3
IF (V(dss)-Dmin>0, V(dss),Dmin)
Page 4 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
It makes sense here to replace the 0 by a very small value (1u = 10-6; 1m = 10-3).
-1m< null < 1m
It is by no means certain that a value with a large magnitude is always favorable. It is
possible that a circuit with null=100u does not converge, but does with null=10u.
Unfortunately a little experimentation is unavoidable.
The control inputs and outputs are each referred to the ground of input Ue. In the
case of the circuits with electrical isolation, the outputs can be connected in any way,
i.e. also connected in series. They must have only one, albeit very high-resistance
path to the primary ground.
1.2 General notes
Both converters are intended for operation with pulse-width modulators with
integrated switching transistors. The test circuits are identical for both. The
TDA1683x is used for driving the flyback converter with one output (1004i_LIN) and
the TDA16822 for the converter with two outputs (1005i_LIN). Both are Infineon
products. The averaged circuit will be presented first, then the averaged model
derived from it. A simulation in the time domain follows in order to demonstrate the
accuracy of the model. It compares the transient responses when a pulse-width
modulator with current loop is used. The curves show the comparison of the inductor
current iL and the output voltage ua of the switched and the averaged circuits.
Quantity
iL
ua
Switched
model
I(L1)
V(uazt)
Averaged model
V(iL)
V(ua)
The table shows the assignment of the quantities used to the models.
The curve V(d3) of the averaged model shows the temporal response of the length of
d3. This quantity can assume a value between zero and one. V(d3) = 0 means that
the interval d3Ts = 0, i.e. the converter operates continuously. V(d3) = 1 means that
the inductor current is always zero. This can be the case, for instance, if the
controller in a converter with feedback disconnects as a consequence of an
excessive output voltage (actual value).
The transformer ratios V1 and V2 in the case of the converter with two outputs
represent the ratio of the number of primary turns w1 to the respective secondary
winding w2 and w3:
V1 = w1 / w2
V2 = w1 / w3
Page 5 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
The diode forward voltage drops can be arbitrarily chosen in the case of the
averaged models (including zero, for instance). In order that the results from the
switched model agree with those of the averaged model during the comparison
simulation in the time domain, the diode forward voltage drops must in each case be
assumed as ud = 0.8V, since the forward voltage of the SPICE diode is preset at
approximately 0.8V. The differences compared to the switched model depend very
strongly on the chosen time increment and the ripple of the inductor current. The
larger the two are chosen, the greater the differences become.
The subsequent simulations can be performed only with the averaged model, since
only with that is SPICE able to calculate operating points which differ from zero. The
first simulation shows an analysis of the DC operating points. It can be seen how the
efficiency η = V(eta) and the length of the interval d3 = V(d3) change when the control
voltage is increased from 0 to 4V.
The second diagram shows the comparison of the output voltage ua = V(ua) with the
theoretical value V(uas). This value is calculated in the simulation by an EVALUE
source. Since no internal resistances are taken into account in this calculation, the
deviations naturally become greater as the load current increases.
The last simulation shows the characteristic in the frequency domain. In each case
the response characteristic of pulse control factor d1 to the output voltage ua, i.e.
ua/d1, is shown in Bode diagrams. The upper diagram shows the amplitude response
A = 20 log Re 2 + Im 2
and the lower the phase response
ϕ = arctan
Im
Re
with
ua
= F ( jω ) = Re( jω ) + j Im( jω )
ud
In the process the load resistor Ra is varied logarithmically with three values per
decade. It can be readily seen that at a certain resistance value the converter
changes from continuous to discontinuous operating mode.
SPICE calculates the operating point before every frequency response analysis. Six
operating point calculations (DC analyses) are therefore performed for each run. The
results of these calculations are available in the SPICE output file.
Page 6 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
Example of a SPICE output file:
Operating points from the frequency response analysis of converter 1004i fq
**** SMALL SIGNAL BIAS SOLUTION
PARAM RA = 10
******************************************************************************
NODE
VOLTAGE
NODE
VOLTAGE
NODE
VOLTAGE
NODE
VOLTAGE
( d1)
.0662 ( d3) 126.1E-18
( FB)
2.0000
( iL)
.6688
( Tj) 23.0000 ( ua)
6.2452
( Ud)
99.9550 ( ue)
100.0000
(dis) 1.000E+06 ( eta)
.8804
( Vcc) 20.0000 (X U1.3) -.0450
**** SMALL SIGNAL BIAS SOLUTION
PARAM RA = 21.544
******************************************************************************
NODE
VOLTAGE
NODE
VOLTAGE
NODE
VOLTAGE
NODE
VOLTAGE
( d1)
.0976 ( d3)
0.0000
( FB)
2.0000
( iL)
.5121
( Tj) 23.0000 ( ua)
9.9567
( Ud) 99.9500
( ue) 100.0000
(dis)1.000E+06 ( eta)
.9208
( Vcc) 20.0000 (X U1.3) -.0505
**** SMALL SIGNAL BIAS SOLUTION
PARAM RA = 100
******************************************************************************
NODE
VOLTAGE
NODE
VOLTAGE
NODE
VOLTAGE
NODE
VOLTAGE
( d1)
.1003 ( d3)
.4605
( FB)
2.0000
( iL)
.4987
( Tj) 23.0000 ( ua) 21.9080
( Ud) 99.9500
( ue) 100.0000
(dis)1.000E+06 ( eta)
.9599
( Vcc) 20.0000 (X U1.3) -.0505
**** SMALL SIGNAL BIAS SOLUTION
PARAM RA = 215.44
******************************************************************************
NODE
VOLTAGE
NODE
VOLTAGE
NODE
VOLTAGE
NODE
VOLTAGE
( d1)
.1003
( d3)
.5988
( FB)
2.0000
( iL)
.4987
( Tj) 23.0000
( ua) 32.3400
( Ud) 99.9500
( ue) 100.0000
(dis)1.000E+06 ( eta)
.9709
( Vcc) 20.0000 (X U1.3) -.0505
**** SMALL SIGNAL BIAS SOLUTION
PARAM RA = 464.16
******************************************************************************
NODE
VOLTAGE
NODE
VOLTAGE
NODE
VOLTAGE
NODE
VOLTAGE
( d1)
.1003
( d3)
.6939
( FB)
2.0000
( iL)
.4987
( Tj) 23.0000
( ua) 47.6540
( Ud) 99.9500
( ue) 100.0000
(dis)1.000E+06 ( eta)
.9785
( Vcc) 20.0000 (X U1.3) -.0505
**** SMALL SIGNAL BIAS SOLUTION
PARAM RA = 1.0000E+03
******************************************************************************
NODE
VOLTAGE
NODE
VOLTAGE
NODE
VOLTAGE
NODE
VOLTAGE
( d1)
.1003
( d3)
.7591
( FB)
2.0000
( iL)
.4987
( Tj) 23.0000
( ua) 70.1330
( Ud) 99.9500
( ue) 100.0000
(dis)1.000E+06 ( eta)
.9837
( Vcc) 20.0000 (X U1.3) -.0505
Page 7 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
2
Flyback converter with electrical isolation, 1 output
2.1 Averaged circuit
Ts: Cycle time
Ud1: Forward voltage of D1
Rds: Forward resistance of S1
Although no switch is integrated, the
parameter Rds is required in order to
determine the damping in the
converter.
(File: 1004i_sch.sch)
2.2 Averaged model
D1*(-Ua1+Ue/V1)-(1-D1-D3)*Ud1
V(8,100)*(-V(5,101)+V(2,100)/V1)-(1-V(8,100)-V(207,100))*V(30,100)
V8
0
RDS*D1*IL
RDS*V(8,100)*I(L1)
+
0
R15
Eed
-I(VU1)/V1
21
R5
------>
100MEG
6
80
Gtr
E5
Eed
V(207,100)*V(5,101)
D3*Ua1
VU1
40
Etr1
Eed
Rxx6
5
V7
C2
1k
0
{CA1}
15
Ged
D3*I(L1)
Ged
G6
L1
E2
V(4,80)/V1
V(207,100)*I(L1)
{L}
Ud
Rxx8
Eed
-
-I(VU1)/V1
{RL}
Ue
------>
Up/V1
Ua1
R9
{RCA1}
Rxx7
101
1k
Rxx1
1k
22
12
+
+
3
E14
1k
-
4
2
-
Rxx3
1k
dis
0
Rxx2
E2b
+
+
E
1MEG
252
1k
PARAMETERS:
Ls
{L*1MEG}
LT
{L/TS}
251
E2a
V(2,100)/Ls
UE/Ls
Eed
100
IF(1-V(8,100)-V(206,100)>null,V(206,100),1-V(8,100))
d2 = 2*iLg*LT/((-Ua1+Ud1)*V1)
R22
202
(-V(5,101)+V(30,100))*V1
E202
1MEG
E203
2*V(14,100)*LT
Rxx4
8
D1
1k
203
R23
204
1MEG
205
1MEG
R12
206
E205
E204
1MEG
E206
D3'=1-D1-D2
1-V(8,100)-V(204,100)
Eed
IF(V(202,100)>null, V(203,100)/V(202,100) ,1)
R11
100
D3
207
E207
Eed D3=D3'>0 ? D3' : 0
D3<1-D1 ? D3 : 1-D1
Eed
IF(V(205,100)>null,V(205,100),0)
eta
223
E223
ETA=(UA1*IA1+UA2*IA2)/(UE*IE+0.001)
R18
30
R20
222
1MEG
Eud1
220
1MEG
E222
R3
V(2,100)*I(V8)
100
1MEG
R16
1MEG
14
E220
ud1 = V1>0 ? ud1 : -ud1
V(5,101)*I(V7)
100
Eed
iL
E8
IF(V1>null, UD1, -UD1)
I(L1)
iLg
Eed
IF(V(222,100)>null, V(220,100)/V(222,100), 0)
(File: 1004i_md.sch)
Page 8 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
2.3 Time-domain characteristic with current loop
(File: 1004i_zp.sch)
(G) 1004i_zp
1.0V
0V
V(X_U5.gtdrv)/12
V(d1)
V(d3)
5.0
1
2
0
0.8+40*0.03*V(iL)+0.5*V(d1)*10u*40*0.03*V(dis)
4.0
V(X_U5.pwmrmp)
V(FB)
0
V(iL)
I(L1)
V(ua)
V(uazt)
20V
SEL>>
-0V
0s
0.5ms
1.0ms
1.5ms
2.0ms
V(Vcc)
Time
Datum: November 11, 2000
Zeit: 20:08:06
Switch-on characteristic with sawtooth controller voltage V(FB).The second curve shows the
comparison of the inductor peak current iLs in the switched model with the calculation in the averaged
model:
iLs ∼ mean value of iL + half current rise dis * Ts.
iLs = 0.8 + 40RsiL + 1/2d1Ts40Rsdis
Page 9 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
At marking 1 the current is limited by the maximum pulse control factor Dmax = 0.5. At marking 2 the
PWM is switched off by the drop in the supply voltage Vcc.
Page 10 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
2.4 DC operating points
E1 calculated for comparison of the output voltage ua
(File:1004i_gl.sch)
(B) 1004i_gl
200V
150V
100V
50V
0V
V(ua)
V(uas)
1.0V
0.5V
SEL>>
0V
0V
1.0V
V(eta)
2.0V
3.0V
4.0V
V(d3)
V_VFB
Datum: November 11, 2000
Zeit: 18:50:50
Logarithmic variation of Ra from 10Ω ... 1kΩ with 3 values per decade, with Ue = 100V and Ud1 = 0.8V.
The TDA 1683x is switched on only after V(FB) > 0.8V.
Page 11 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
2.5 Frequency-domain characteristic
(File:1004i_fq.sch)
(D) 1004i_fq
100
50
0
SEL>>
-50
DB(V(ua)/V(d1))
0d
-50d
-100d
-150d
-200d
10Hz
100Hz
P(V(ua)/V(d1))
1.0KHz
10KHz
100KHz
Frequency
Datum: November 11, 2000
Zeit: 19:02:09
Response characteristic of ua/d1. Variation of Ra from 10Ω ... 1kΩ with 3 values per decade.
Page 12 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
3
Flyback converter with electrical isolation, 2 outputs
3.1 Averaged circuit
Ts: Elementary period
Rds: Forward resistance of S1
Although no switch is integrated, the
parameter Rds is required in order to
determine the attenuation in the
converter.
Ud1: Forward voltage of D1
Ud2: Forward voltage of D2
(File: 1005i_sch.sch)
3.2 Averaged model
D1*(-Ua1+Ue/V1)-(1-D1-D3)*Ud1
V(8,100)*(-V(5,101)+V(2,100)/V1)-(1-V(8,100)-V(207,100))*V(30,100)
0
-I(VU1)/V1-I(VU2)/V2
RDS*D1*IL
RDS*V(8,100)*I(L1)
100MEG
Gtr
1k
E2b
+
+E
1MEG
252
Rxx7
101
D1*(-Ua2+Ue/V2)-(1-D1-D3)*Ud2
251
V(8,100)*(-V(7,102)+V(2,100)/V2)-(1-V(8,100)-V(207,100))*V(31,100)
IF(V2*I(E2c)>-null, 1k*I(E2c), 0)
7
52
50
51
53
VU2
E2a
+
V(2,100)/Ls
E5a
Eed
Eed E2c
V(207,100)*V(7,102)
54
D3*Ua2
Eed
100
1k
{CA2}
V(4,80)/V2
Etr2
Eed
PARAMETERS:
Ls
{L*1MEG}
LT
{L/TS}
55
------>
Ua2
Up/V2
R9a
{RCA2}
0
Rxx8
d2 = 2*iLg*LT/((-Ua1+Ud1)*V1)
(-V(5,101)+V(30,100))*V1
202
R22
E202
1MEG
102
1k
R23
203
E203
204
205
E204
1MEG
R11
IF(1-V(8,100)-V(206,100)>null,V(206,100),1-V(8,100))
1MEG
206
E205
E206
D3'=1-D1-D2
IF(V(202,100)>null, V(203,100)/V(202,100), 1)
2*V(14,100)*LT
Rxx4
8
eta
223
R3
Eed
R12
1MEG 207
E207
D3<1-D1 ? D3 : 1-D1
D3=D3'>0 ? D3' : 0
1-V(8,100)-V(204,100)
Eed
Eed
D3
IF(V(205,100)>null,V(205,100),0)
100
D1
1k
Rxx5
1k
V11 0
C2a
E24a
-
0
UE/Ls
Rxx1
R9
{RCA1}
Ged
G6
80
------>
Ua1
Up/V1
D3*I(L1)
L1
1k
dis
1k
{CA1}
15
1k
Rxx2
E24
D3*Ua1
V(207,100)*I(L1)
{L}
Ud
Rxx6
V7 0
C2
Ged
Etr1
Eed
6
Rxx10
Eed
V(4,80)/V1
R5
{RL}
Ue
E5
V(207,100)*V(5,101)
VU1
40
21
------>
E2
-
0
-I(VU1)/V1-I(VU2)/V2
R15
Eed
Eed
5
-
V8
+
IF(V1*I(E2)>-null, 1k*I(E2), 0)
22
10
+
1k
12
-
3
E14
-
4
+
2
+
Rxx3
E223
ETA=(UA1*IA1+UA2*IA2)/UE*IE
R18
1MEG
222
E222
30
R19
R20
221
1MEG
E221
1MEG
220
Eud1
E220
1MEG
100
IF(V(222,100)>null, (V(220,100)+V(221,100))/V(222,100), 0)
V(7,102)*I(V11)
V(5,101)*I(V7)
R16
R17
1MEG
31
1MEG
14
IF(V2>null, UD2, -UD2)
IF(V1>null, UD1, -UD1)
ud1 = V1>0 ?-ud1 : -ud1
Eed
100
iL
E8
Eud2
ud2 = V2>0 ? ud2 : -ud2
Eed
I(L1)
iLg
Eed
V(2,100)*I(V8)
(File: 1005i_md.sch)
Page 13 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
3.3 Time-domain characteristic with current loop
(File: 1005i_zp.sch)
(A) 1005i_zp
5.0V
SEL>>
0V
V(X_U16.pwmrmp)
V(FB)
V(SoftS)
500m
0
-500m
I(L1)
V(iL)
20V
10V
0V
-10V
0s
0.5ms
V(ua1)
V(uazt1)
V(ua2)
1.0ms
V(uazt2)
Time
Datum: November 11, 2000
1.5ms
2.0ms
Zeit: 18:44:19
Switch-on characteristic with current loop for a step change of the control voltage V(FB) from V(FB) =
0 to V(FB) = 3V. The top curve shows how the inductor peak current is limited, first by the soft-start
voltage and then by the controller voltage V(FB).
Page 14 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
3.4 DC operating points
Calculate E1 and E2 for comparison of the output voltages ua1 and ua2
(File: 1005i_gl.sch)
(E) 1005i_gl
20V
10V
0V
-10V
V(ua2)
V(ua2s)
V(ua1)
V(ua1s)
20V
0V
-20V
-40V
1.0V
0.5V
SEL>>
0V
0V
1.0V
V(eta)
2.0V
3.0V
4.0V
V(d3)
V_VFB
Datum: November 11, 2000
Zeit: 19:03:47
Logarithmic variation of Ra from 1Ω ... 100Ω with 3 values per decade, with Ue = 100V and Ud1 = Ud2 =
0.8V. The TDA 16822 is switched on only after V(FB) > 0.8V.
Page 15 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
3.5 Frequency-domain characteristic
(File: 1005i_fq.sch)
(F) 1005i_fq
50
0
SEL>>
-50
DB(V(ua2)/V(d1))
0d
-100d
-200d
-300d
10Hz
100Hz
P(V(ua2)/V(d1))
1.0KHz
10KHz
100KHz
Frequency
Datum: November 11, 2000
Zeit: 19:04:38
Response characteristic of ua2/d1. Variation of Ra from 1Ω ... 100Ω with 3 values per decade. The
phase response begins at 0 because the transformer ratio V2 is negative.
Page 16 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
A
Convergence aids
As SPICE was originally developed for simulation of integrated circuits, it makes sense to adapt the
OPTIONS to the needs and conditions of switched mode power supplies. Experience shows that the
following extreme values are adequate:
Minimum voltage of interest in the circuit:
Minimum current of interest in the circuit:
Greatest resistance in the circuit:
Umin = 1 mV.
Imin = 1 mA.
Rmax = 100MΩ.
If the preset relative tolerance (RELTOL) of 0.001 is retained, the following is obtained for the
transient analysis:
RELTOL = 0.001 (preset)
VNTOL=RELTOL*Umin ⇒ VNTOL = 1 uV (preset)
ABSTOL = RELTOL *Imin ⇒ ABSTOL = 1uA
In addition, it is advantageous to increase the number of iterations per time increment in the transient
analysis;
ITL4 = 40 ... 100.
In the DC analysis, i.e. to determine the operating point, SPICE automatically connects a very small
conductance in parallel with the switching components. This conductance should be adapted to the
circuit:
GMIN = 1/Rmax ⇒ GMIN = 0.01u
In addition, the number of iterations for determining the operating point should be increased:
ITL1 = 500
This results in the following changes to the OPTIONS:
ABSTOL = 1uA
GMIN = 0.01u
ITL1 = 500
ITL4 = 40
B
Notes on the subcircuits
B.1 Activation
All subcircuits are located in the infineon library which can be found in the subdirectory ..\lib. The
library consists of two files:
Infineon1.slb
Infineon1.lib
In order to link the library, the following needs to be entered into SCHEMATICS before the first
simulation is carried out:
File / Edit Library / File / Open... / infineon1.slb / Save
Page 17 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
The circuits in SCHEMATICS can be called with the commands Draw / Get New Part / Browse /
infineon.slb.
The subcircuit description is located in ...\lib\infineon1.lib. You therefore have to make this library
known in SCHEMATICS:
Analysis / Library and Include Files... / infineon.lib / Add Library*
The circuits contained in directory ...\SMPS_examples are executable only under PSPICE version 7.1
or higher.
In order to use the subcircuits, the grid size must be set in SCHEMATICS:
Options / Display Options / Grid Size 00.05in or Grid Size 01.25 mm
B.2 Adapting the averaged models
The averaged models (files *_mod.sch) of the subcircuits can be customized. To this end, the netlist
must be regenerated following the modification:
Analysis / Create Netlist
This netlist can now be opened with the PSPICE text editor:
Analysis / Examine Netlist
All resistors beginning with Rxx must now be removed. This is done most easily with the Search
command of the editor. Finally, the netlist must be copied into the subcircuit in infineon.lib.
Page 18 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
Attention please!
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts
stated herein. Simulation models provided by INFINEON are not warranted by INFINEON as fully representing all of the specifications and
operating characteristics of the semiconductor product to which the model relates. The model describe the characteristics of a typical device. In all
cases, the current data sheet information for a given device is the final design guideline and the only actual performance specification. Although
models can be a useful tool in evaluating device performance, they cannot model exact device performance under all conditions, nor are they
intended to replace bread-boarding for final verification. INFINEON therefore does not assume any liability arising from their use. INFINEON
reserves the right to change models without prior notice.
Information
For information on simulation-related issues, please check out the INFINEON simulation web page: www.infineon.com/simulate or
email to: [email protected] . For information on technology, delivery terms and conditions and prices of INFINEON devices please
contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your
nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon
Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the
safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be
endangered.
Page 19 / 20
AN-PSM-11
V1.0
Switched and Averaged Pspice Models
Infineon Technologies AG sales offices worldwide –
partly represented by Siemens AG
A
F
J
RC
Siemens AG Österreich
Erdberger Lände 26
A-1031 Wien
T (+43)1-17 07-3 56 11
Fax (+43)1-17 07-5 59 73
Infineon Technologies France,
39/47,Bd.Ornano
F-93527 Saint-Denis CEDEX2
T (+33)1-49 22 31 00
Fax (+33)1-49 22 28 01
AUS
FIN
Siemens Ltd.
885 Mountain Highway
Bayswater,Victoria 3153
T (+61)3-97 21 21 11
Fax (+61)3-97 21 72 75
Siemens Components
Scandinavia
P.O .Bo x 6 0
FIN-02601 Espoo (Helsinki)
T (+3 58)10-5 11 51 51
Fax (+3 58)10-5 11 24 95
Email:
[email protected]
Siemens Components K.K.
Talanawa Park Tower 12F &17F
3-20-14,Higashi-Gotanda,
Shinagawa-ku
Tokyo
T (+81)3-54 49 64 11
Fax (+81)3 -54 49 64 01
Infineon Technologies
Asia Pacific Pte.Ltd.
Taiwan Branch
10F,No.136 Nan King East Road
Section 23,Taipei
T (+8 86)2-27 73 66 06
Fax (+8 86)2-27 71 20 76
MAL
SGP
Infineon Technologies AG
Sdn Bhd
Bayan Lepas Free Industrial Zone1
11900 Penang
T (+60)4 -6 44 99 75
Fax (+60)4 -6 41 48 72
Infineon Technologies Asia
Pacific,Pte.Ltd.
168 Kallang Way
Singapore 349 253
T (+65)8 40 06 10
Fax (+65)7 42 62 39
GB
N
USA
Infineon Technologies
Siemens House
Oldbury
GB-Bracknell,Berkshire
RG12 8FZ
T (+44)13 44-39 66 18
Fax (+44)13 44-39 66 32
Siemens Components
Scandinavia
Østre Aker vei 24
Postboks 10,Veitvet
N-0518 Oslo
T (+47)22-63 30 00
Fax (+47)22-68 49 13
Email:
[email protected]
Infineon Technologies Corporation
1730 North First Street
San Jose,CA 95112
T (+1)4 08-5 01 60 00
Fax (+1)4 08-5 01 24 24
Siemens Components,Inc.
Optoelectronics Division
19000 Homestead Road
Cupertino,CA 95014
T (+1)4 08-2 57 79 10
Fax (+1)4 08-7 25 34 39
Siemens Components,Inc.
Special Products Division
186 Wood Avenue South
Iselin,NJ 08830-2770
T (+1)7 32-9 06 43 00
Fax (+1)7 32-6 32 28 30
B
Siemens Electronic Components
Benelux
Charleroisesteenweg 116/
Chaussée de Charleroi 116
B-1060 Brussel/Bruxelles
T (+32)2-5 36 69 05
Fax (+32)2-5 36 28 57
Email:[email protected]
BR
Siemens Ltda.
Semiconductores
Avenida Mutinga,3800-Pirituba
05110-901 São Paulo-SP
T (+55)11-39 08 25 64
Fax (+55)11-39 08 27 28
CDN
Infineon Technologies Corporation
320 March Road,Suite 604
Canada,Ontario K2K 2E2
T (+1)6 13-5 91 63 86
Fax (+1)6 13-5 91 63 89
CH
Siemens Schweiz AG
Bauelemente
Freilagerstrasse 40
CH-8047 Zürich
T (+41)1-4 953065
Fax (+41)1-4 955050
D
Infineon Technologies AG
Völklinger Str.2
D-40219 Düsseldorf
T (+49)2 11-3 99 29 30
Fax (+49)2 11-3 99 14 81
Infineon Technologies AG
Werner-von-Siemens-Platz 1
D-30880 Laatzen (Hannover)
T (+49)5 11-8 77 22 22
Fax (+49)5 11-8 77 15 20
Infineon Technologies AG
Von-der-Tann-Straße 30
D-90439 Nürnberg
T (+49)9 11-6 54 76 99
Fax (+49)9 11-6 54 76 24
Infineon Technologies AG
Weissacher Straße 11
D-70499 Stuttgart
T (+49)7 11-1 37 33 14
Fax (+49)7 11-1 37 24 48
D
Infineon Technologies AG
Halbleiter Distribution
Richard-Strauss-Straße 76
D-81679 München
T (+49)89-92 21 40 86
Fax (+49)89-92 21 20 71
DK
Siemens A/S
Borupvang 3
DK-2750 Ballerup
T (+45)44 77-44 77
Fax (+45)44 77-40 17
E
Siemens S.A.
Dpto.Componentes
Ronda de Europa,5
E-28760 Tres Cantos-Madrid
T (+34)91-5 14 71 51
Fax (+34)91-5 14 70 13
H
Simacomp Kft.
Lajos u.103
H-1036 Budapest
T (+36)1-4 57 16 90
Fax (+36)1-4 57 16 92
NL
Siemens Electronic Components
Benelux
Postbus 16068
NL-2500 BB Den Haag
T (+31)70-3 33 20 65
Fax (+31)70-3 33 28 15
Email:[email protected]
HK
Infineon Technologies
Hong Kong Ltd.
Suite 302,Level 3,
Festival Walk,
80 Tat Chee Avenue,
Yam Yat Tsuen,
Kowloon Tong
Hong Kong
T (+8 52)28 32 05 00
Fax (+8 52)28 27 97 62
NZ
Siemens Auckland
300 Great South Road
Greenland
Auckland
T (+64)9-5 20 30 33
Fax (+64)9-5 20 15 56
I
P
Siemens S..A.
Semiconductor Sales
Via Piero e Alberto Pirelli,10
I-20126 Milano
T (+39)02-66 76 -1
Fax (+39)02-66 76 43 95
Siemens S.A.
an Componentes Electronicos
R.Irmaos Siemens,1
Alfragide
P-2720-093 Amadora
T (+351)1-4 17 85 90
Fax (+351)1-4 17 80 83
IND
Siemens Ltd.
Components Division
No.84 Keonics Electronic City
Hosur Road
Bangalore 561 229
T (+91)80-8 52 11 22
Fax (+91)80-8 52 11 80
Siemens Ltd.
CMP Div,5th Floor
4A Ring Road,IP Estate
New Delhi 110 002
T (+91)11-3 31 99 12
Fax (+91)11-3 31 96 04
Siemens Ltd.
CMP Div,4th Floor
130,Pandurang Budhkar Marg,
Worli
Mumbai 400 018
T (+91)22-4 96 21 99
Fax (+91)22-4 96 22 01
IRL
Siemens Ltd.
Electronic Components Division
8,Raglan Road
IRL-Dublin 4
T (+3 53)1-2 16 23 42
Fax (+3 53)1-2 16 23 49
IL
Nisko Ltd.
2A,Habarzel St.
P.O.Box 58151
61580 Tel Aviv –Isreal
T (+9 72)3 -7 65 73 00
Fax (+9 72)3 -7 65 73 33
PK
Siemens Pakistan Engineering
Co.Ltd.
PO Box 1129,Islamabad 44000
23 West Jinnah Ave
Islamabad
T (+92)51-21 22 00
Fax (+92)51-21 16 10
PL
Siemens SP.z.o.o.
ul.Zupnicza 11
PL-03-821 Warszawa
T (+48)22-8 70 91 50
Fax (+48)22-8 70 91 59
ROK
Siemens Ltd.
Asia Tower,10th Floor
726 Yeoksam-dong,Kang-nam Ku
CPO Box 3001
Seoul 135-080
T (+82)2-5 27 77 00
Fax (+82)2-5 27 77 79
RUS
INTECH electronics
ul.Smolnaya,24/1203
RUS-125 445 Moskva
T (+7)0 95 -4 51 97 37
Fax (+7)0 95 -4 51 86 08
S
Siemens Components Scandinavia
Österögatan 1,Box 46
S-164 93 Kista
T (+46)8-7 03 35 00
Fax (+46)8-7 03 35 01
Email:
[email protected]
Page 20 / 20
VRC
Infineon Technologies
Hong Kong Ltd.
Beijing Office
Room 2106,Building A
Vantone New World Plaza
No.2 Fu Cheng Men Wai Da Jie
Jie
100037 Beijing
T (+86)10 -68 57 90 -06,-07
Fax (+86)10 -68 57 90 08
Infineon Technologies
Hong Kong Ltd.
Chengdu Office
Room14J1,Jinyang Mansion
58 Tidu Street
Chengdu,
Sichuan Province 610 016
T (+86)28-6 61 54 46 /79 51
Fax (+86)28 -6 61 01 59
Infineon Technologies
Hong Kong Ltd.
Shanghai Office
Room1101,Lucky Target Square
No.500 Chengdu Road North
Shanghai 200003
T (+86)21-63 6126 18 /19
Fax (+86)21-63 61 11 67
Infineon Technologies
Hong Kong Ltd.
Shenzhen Office
Room 1502,Block A
Tian An International Building
Renim South Road
Shenzhen 518 005
T (+86)7 55 -2 28 91 04
Fax (+86)7 55-2 28 02 17
ZA
Siemens Ltd.
Components Division
P.O.B.3438
Halfway House 1685
T (+27)11-6 52 -27 02
Fax (+27)11-6 52 20 42
AN-PSM-11
V1.0