Sense & Control Data Sheet KP256 dBAP

dBAP
Digital Barometric Air Pressure Sensor IC
KP256
Digital Absolute Pressure Sensor
Data Sheet
Revision 1.0, 2012-01-10
Sense & Control
Edition 2012-01-10
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2012 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
KP256
Digital Absolute Pressure Sensor
KP256 Digital Absolute Pressure Sensor
Revision History: 2012-01-10, Revision 1.0
Previous Revision: Revision 0.9
Page
Subjects (major changes since last revision)
all
Change from Preliminary Data Sheet to Final Data Sheet
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,
POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of
OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF
Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™
of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co.
TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™
of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes
Zetex Limited.
Last Trademarks Update 2011-11-11
Data Sheet
3
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Table of Contents
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1
1.1
1.2
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2
2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.5
2.5.1
2.6
2.6.1
2.6.2
2.7
2.7.1
2.7.1.1
2.7.1.2
2.7.1.3
2.7.1.4
2.7.1.5
2.7.1.6
2.7.2
2.7.3
2.8
2.9
2.9.1
2.9.1.1
2.9.1.2
2.9.2
2.9.3
2.9.4
2.9.5
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Transfer Function Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pressure Transfer Function Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Transfer Function Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Temperature Transfer Function Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Entering Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Exiting Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Command Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Command Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Communication Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Identifier Response Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Single Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Daisy Chain Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Start-up Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Diagnostic Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Reset-bit C12 = ‘0‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Reset-bit C12 = ‘1‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Pressure out of Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Diag1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Diag2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
E²PROM Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3
3.1
3.2
3.3
3.4
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Circuit Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
4.1
4.2
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
PG-DSOF-8-16 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Identification Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Data Sheet
4
21
21
22
23
24
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
List of Figures
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Data Sheet
Pin configuration (top view, figure not to scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pressure transfer function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Accuracy for pressure acquisition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Temperature transfer function (VDD = 5.0 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
SPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
SPI command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
SPI response structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
SPI response structure for identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Acquire pressure command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Acquire temperature command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Trigger power-down command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Trigger diagnosis command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Acquire identifier command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Trigger test mode command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Response after a communication error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Identifier response definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Example for single device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Example for single device signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Example for daisy chain operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Example for daisy chain signal diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Example for reset strategy Reset-bit C12 = ‘0‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Example for reset strategy Reset-bit C12 = ‘1‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Diag1 functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Diag2 functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Application circuit example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Identification code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
List of Tables
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Data Sheet
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Pressure transfer function characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Temperature transfer function characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Diagnosis codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Component values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
SPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Product Description
KP256
1
Product Description
The KP256 is a miniaturized Digital Barometric Air Pressure Sensor IC
based on a capacitive principle. It is surface micromachined with a
monolithic integrated signal conditioning circuit implemented in BiCMOS
technology.
The sensor converts a pressure into a 10-bit digital value and sends the
information via the SPI interface. In addition, a temperature sensor is
integrated on chip. Based on the received SPI command, the 10-bit
temperature information will be transmitted via the SPI interface.
A special reliability feature is the integrated diagnostic mode, which allows
testing the sensor cells as well as the signal path. This diagnosis can be
simply triggered with a SPI command.
The chip is packaged in a “green” SMD housing. The sensor has been primarily developed for measuring
barometric air pressure, but can also be used in other application fields. The high accuracy, high sensitivity and
reliability features of the device makes it a perfect fit for advanced automotive applications as well as in industrial
and consumer applications.
1.1
Features
The following features are supported by the KP256:
•
•
•
•
•
•
•
•
High accuracy pressure sensing (± 1.0 kPa)
Real 10-bit pressure resolution
Integrated temperature sensor
Real 10-bit temperature resolution
Power-down mode for reduced power consumption
Self diagnosis features
“Green” 8 pin SMD housing
Automotive qualified
1.2
Target Applications
The KP256 is designed for use in the following target applications:
•
•
•
•
•
•
Automotive applications
Industrial control
Consumer applications
Medical applications
Weather stations
Altimeters
Product Name
Product Type
Ordering Code
Package
Digital Absolute Pressure Sensor
KP256
SP000773952
PG-DSOF-8-16
Data Sheet
7
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Functional Description
2
Functional Description
2.1
Pin Configuration
Figure 1 shows the pin configuration.
NCS
1
8
GND
CLK
2
7
NC
SDI
3
6
VPROG
SDO
4
5
VDD
Figure 1
Pin configuration (top view, figure not to scale)
2.2
Pin Description
Table 1 shows the pin description.
Table 1
Pin description
Pin No.
Name
Function
Comment
1
NCS
Not-Chip-Select (active-low)
Communication is enabled when NCS is low
2
CLK
Serial Clock
External clock for serial communication
3
SDI
Serial Data In
Serial data input (e.g. from a controller)
4
SDO
Serial Data Out
Tri-state serial data output
5
VDD
Supply voltage
–
6
VPROG
Programming Voltage
Only required during E²PROM programming
7
NC
Not Connected
Pin is not bonded
8
GND
Ground
–
Data Sheet
8
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Functional Description
2.3
Block Diagram
Figure 2 shows the functional block diagram.
Pressure
Cells
Normal Mode/
Diagnosis Mode
NCS
ADC
Digital
Signal
Temperature
Sensor
Digital Core
CLK
SPI
Interface
SDI
Processing
ADC
SDO
Temperature
Compensation
Voltage
Regulator
VDD
analog
digital
E²PROM
Interface
VDDA
VDDD
E²PROM
VPROG
Reset
GND
NC
Figure 2
Functional block diagram
2.4
Transfer Function Pressure
output signal [LSB]
The KP256 device is fully calibrated on delivery. The sensor has a linear transfer function between the applied
pressure and the digital output signal.
1023
Zo
o
511
m
0
0
20
40
60
80
100
120
140
160
180
200
pressure [kPa]
operating pressure range
maximum input pressure range
Figure 3
Data Sheet
Pressure transfer function
9
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Functional Description
2.4.1
Pressure Transfer Function Characteristics
The following calibration is adjusted with the parameters Sp and offsp
pamb
Table 2
=
out p − offs p
Sp
Pressure transfer function characteristics
Pressure
Output Code
Gain and Offset
Symbol
Values
Unit
Symbol
Values
Unit
Symbol
Value
Unit
pIN,1
60
kPa
LSBOUT,1
0
LSB
Sp
9.74
LSB/kPa
pIN,2
165
kPa
LSBOUT,2
1023
LSB
offsp
-584.6
LSB
Note: The points pIN,1/LSBOUT,1 and pIN,2/LSBOUT,2 define the calibrated transfer function and not the operating
range. The operating pressure range is defined by the parameter 2.8 “Ambient operating pressure range”
on Page 23
5.0
4.5
4.5
4.0
4.0
absolute error [kPa]
Accuracy
error multiplier
2.4.2
3.5
3.0
2.5
2.5
2.0
2.0
Pamb : 60kPa..70kPa or
130kPa..165kPa
1.5
1.0
1.5
1.0
Pamb : 70kPa..130kPa
0.5
0.0
-40
-20
0
85
125
temperature [°C]
Figure 4
Data Sheet
Accuracy for pressure acquisition
10
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Functional Description
2.5
Transfer Function Temperature
output signal [LSB]
Triggering the temperature command (see Section 2.7.1.4) the KP256 provides the ambient temperature.
1023
Zo
511
om
0
-40
-20
0
40
20
60
80
120
140
160
temperature [°C]
100
operating temperaturerange
Figure 5
Temperature transfer function (VDD = 5.0 V)
2.5.1
Temperature Transfer Function Characteristics
The following calibration is adjusted with the parameters ST and offsT:
Tamb
Table 3
TIN,1_5.0
1)
TIN,2_5.0
1)
outT − offsT
ST
Temperature transfer function characteristics
Temperature
Symbol
=
Output Code
Gain and Offset
Values
Unit
Symbol
Values
Unit
Symbol
Value
Unit
-40
°C
LSBOUT,1
0
LSB
ST
5.115
LSB/°C
209.6
204.6
LSB
LSB
160
°C
LSBOUT,2
1023
LSB
2)
offsT_3.3
offsT_5.01)
1) Valid for VDD = 5.0 V
2) Valid for VDD = 3.3 V
Note: The points TIN,1/LSBOUT,1 and TIN,2/LSBOUT,2 define the calibrated transfer function and not the operating
range. The operating temperature range is defined by the parameter 2.7 “Operating temperature” on
Page 23
Data Sheet
11
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Functional Description
2.6
Power-Down Mode
The KP256 has a special power saving feature called the Power-down mode. The sensor will enter a sleep mode
where the power consumption is drastically reduced.
2.6.1
Entering Power-Down Mode
To enter the Power-down mode, the Trigger power-down command has to be sent to the sensor via the SPI
interface. The sensor will enter the Power-down mode within some µs.
2.6.2
Exiting Power-Down Mode
To wake-up the sensor from the Power-down mode the NCS pin needs to be low during the rising edge of the CLK
pin. To allow repowering of the sensor, the user needs to wait the time tstart-up before sending the first SPI command
(e.g. Acquire pressure command). The response of the sensor during this first command must be ignored.
With the next SPI command the pressure value from the previous acquire command will be returned.
2.7
Serial Interface
The communication and data transmission is based on a standard 16 bit serial peripheral interface (SPI).
NCS
t sclch thclcl
tclh
t cll
t sclcl thclch
tonncs
SCLK
t csdv
t pcld
t pchdz
MSB
SDO
tscld
LSB
t hcld
MSB
SDI
Figure 6
SPI timing
2.7.1
Commands
LSB
The following Commands are defined:
•
•
•
•
•
•
Acquire identifier
Acquire pressure (incl. the diagnosis pressure out of range, E²PROM check and last updated Diag1 & Diag2)1)
Acquire temperature (incl. the diagnosis pressure out of range, E²PROM check and last updated Diag1 &
Diag2)1)
Trigger power-down mode (activates the power-down state)
Trigger diagnosis (triggers Diag1 and Diag2)
Trigger test mode (entry into test mode only occurs if this is the first command received after power up, in
conjunction with a high voltage level (>10V) on pin VPROG)
1) Last updated diagnosis information is only available if the Trigger diagnosis command was sent at any time before and
the diagnostic reset is not active (Reset-bit C12 = ‘1‘, see Chapter 2.9.1).
Data Sheet
12
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Functional Description
2.7.1.1
Command Behavior
The SPI command interpretation is based on following rules:
•
•
•
•
•
•
•
•
The response to command N is the result of the previous command (N-1)
The response to the first command is the identifier
When a command (N) is sent and the processing of the previous command (N-1) has not finalized, the last
command (N) will not interrupt the processing
Max. one command is stacked (during processing a command a new received command is stacked; further
received commands will overwrite the stack)
If a command has finished, the sensor takes the next command from the stack; if no command is in the stack,
the sensor goes into the pressure measurement mode
The diagnosis command triggers the Diag1 and Diag2 measurement; during this time pressure values
(including out of range information) will not be updated
Pressure and temperature values can be updated continuously based on a parallel acquisition
If the sensor is in the power-down state then the next command triggers the wake-up process (NCS must be
low in combination with a rising SCLK edge)
2.7.1.2
Structure
The following structure is defined for an SPI command:
15
14
13
12
11
10
9
8
7
6
5
RESET ADDITIONAL
BIT
REQUEST
REQUEST
4
3
2
1
`0`
MSB
Figure 7
15
LSB
SPI command structure
14
13
12
11
10
9
8
7
MSB
Data Sheet
6
5
DATA
DIAGNOSIS
Figure 8
0
4
3
2
1
0
PARIT
Y
LSB
SPI response structure
13
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Functional Description
15
14
13
SUPPLIER
12
11
SILICON VERSION
10
9
8
7
6
5
4
3
2
1
0
ASIC NAME
METAL VERSION
MSB
LSB
Figure 9
SPI response structure for identifier
2.7.1.3
Parity
Except for the identifier response (see Section 2.7.1.6) every SPI response (including the Communication Error
response, see Section 2.7.1.5) includes an odd parity (LSB, [0]). The number of bits with the value one in the 16
bit response is odd (including the parity bit).
2.7.1.4
Command Definition
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
1
X
0
0
0
0
0
0
0
0
0
0
0
0
Figure 10
Acquire pressure command
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
1
0
X
0
0
0
0
0
0
0
0
0
0
0
0
Figure 11
Acquire temperature command
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 12
Trigger power-down command
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
1
0
0
X
0
0
0
0
0
0
0
0
0
0
0
0
Figure 13
Data Sheet
Trigger diagnosis command
14
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Functional Description
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
1
1
1
X
0
0
0
0
0
0
0
0
0
0
0
0
Figure 14
Acquire identifier command
Note: The Reset-bit (C12) determines how the diagnostic reset is handled. For details about the function of the
Reset-bit refer to Chapter 2.9.1.
The “trigger test mode” command is only for information. The test mode is only for calibration and E²PROM
programming. Both are already done during the supplier’s back-end assembly. The information should serve to
avoid command for unintentional test mode operation.
Note: Additional safeguards are provided to prevent unintentional test mode operation. For test mode operation,
the command must be the first command after power-up in combination with a high voltage level at pin
VPROG.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
Figure 15
Trigger test mode command
2.7.1.5
Communication Error
In normal operation only the pressure, temperature, diagnosis and identifier commands are valid. Every
abnormality of these commands (e.g. unused command, other value of unused bits, number of clocks not equal
to 16n with n = 1, 2, 3...) will result in a communication error. The response to a detected communication error is
given below.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Figure 16
Response after a communication error
2.7.1.6
Identifier Response Definition
The response to an Acquire identifier command is a fixed value as stated below. With this response, the KP256
sensor can be indentified when operated in a bus system with several different parts.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
1
0
1
0
0
0
1
0
0
1
1
0
1
1
1
Figure 17
Data Sheet
Identifier response definition
15
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Functional Description
2.7.2
Single Device Operation
Figure 18 shows an example on how to connect a singe device to a microcontroller.
After NCS is pulled to low, the request command is sent to the sensor with the next 16 cycles of the CLK. The
response of the sensor for the previous request command is returned at the same time. The SPI signal timing is
shown in Figure 19.
MDI
MDO
NCS
CLK
µC
SDO
SDI
NCS
CLK
NCS low for 16 CLK pulses
KP25x
Figure 18
Example for single device operation
NCS
CLK
16 CLK cycles
...
16 CLK cycles
...
MDO
COMMAND_n
COMMAND_n+1
MDI
ANSWER_n-1
ANSWER_n
time
Figure 19
Data Sheet
Example for single device signal timing
16
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Functional Description
2.7.3
Daisy Chain Operation
The sensors can be connected to one SPI connection in daisy chain operation to save microcontroller pins. The
number of sensors connected in daisy chain operation is unlimited.
MDI
NCS_S3
NCS_S2
NCS_S1
CLK
MDO
µC
SDI
NCS_S1
CLK
NCS_S1 low for 16 CLK pulses
SDO
KP25x_1.1
CLK
SDO
SDI
KP25x_2.1
NCS_S2
SDI
NCS_S2
CLK
NCS_S2 low for 32 CLK pulses
SDO
KP25x_2.2
KP25x_3.1
Figure 20
SDO
KP25x_3.2
SDI
NCS_S3
SDI
CLK
CLK
SDO
NCS_S3
SDI
NCS_S3
CLK
NCS_S3 low for 48 CLK pulses
SDO
KP25x_3.3
Example for daisy chain operation
Figure 20 shows an example of a combination of daisy chain mode and parallel operation.
Note: Not all five sensors in this example could be addressed at once. Only one branch can be addressed at once
(e.g. the KP25x_2.x branch). Finally only one NCS line can be low at the same time (NCS_S1, NCS_S2 or
NCS_S3).
The responding NCS line for the addressed sensor group must be low during the complete communication. During
this time the provided number of clock pulses must be the multiplication result of 16 times the number of sensors
in a daisy chain (e.g. 32 clock pulses for the KP25x_2.x branch in Figure 20)
Figure 21 shows the whole signal diagram. It is important that NCS_S2.1 and NCS_S2.2 stay at the low level
during the complete transmission. Therewith the sensor is able after receiving more than 16 clock pulses without
a change in the NCS signal to switch automatically in daisy chain mode (in this example the first received 16 bit
input data by the sensor S2.1 will be clocked to the output of sensor S2.1 with the last 16 clock pulses).
Data Sheet
17
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Functional Description
NCS_S2.1
CLK_S2.1
SDI_S2.1
SDO_S2.1
COMMAND_S2.2_n
COMMAND_S2.1_n
ANSWER_S2.1_n-1
COMMAND_S2.2_n
ANSWER_S2.1_n-1
COMMAND_S2.2_n
ANSWER_S2.2_n-1
ANSWER_S2.1_n-1
NCS_S2.2
CLK_S2.2
SDI_S2.2
SDO_S2.2
time
Figure 21
Example for daisy chain signal diagram
It is important that the number of clock pulses is a multiple of 16. Otherwise all commands for a daisy chain branch
will be identified as invalid commands and the response of all sensors on this branch will be 01H.
2.8
Start-up Behavior
During the start-up phase (tstart-up), there is no response on any commands.
2.9
Diagnosis
The sensor is able to detect automatically the following malfunctions:
•
•
•
•
Pressure out of range
Signal path check (Diag1)
Sensor cell check (Diag2)
E²PROM check
If a malfunction is detected, the responding diagnosis code is sent with the next response.
Note: The Diag1 and Diag2 test can only be triggered by a separate SPI command.
If more than one test fails, only that diagnosis code with the highest priority will be sent.
Table 4
Diagnosis codes
Failure
Priority
Diagnosis Code
1
1
0
0
0
0
Acquisition chain failure: Diag1
2
0
1
0
0
0
Sensor cell failure: Diag21)
3
0
0
1
0
0
Pressure out of range: High
4
0
0
0
1
0
Pressure out of range: Low
5
0
0
0
0
1
0
1
0
1
0
E²PROM: FEC error
1)
No error
1) Note: This diagnosis code is not valid until a self diagnosis is triggered by sending the Trigger diagnosis command.
Data Sheet
18
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Functional Description
2.9.1
Diagnostic Reset
The Reset-bit (C12) of a SPI command allows using different reset strategies:
•
•
C12 = ‘0‘: All detected failures will be reset
C12 = ‘1‘: A detected failure will not be reset
2.9.1.1
Reset-bit C12 = ‘0‘
A detected failure is only transmitted by the responding diagnosis code as long as the failure is present. The
diagnosis code will be reset after once transmitted. Only if the failure is detected again, the diagnosis code will be
transmitted again with the next response.
pressure sampling
e.g. pressure out of range: low
failure presence
command
diagnosis code response
01010
00001
00001
01010
time
Figure 22
Example for reset strategy Reset-bit C12 = ‘0‘
2.9.1.2
Reset-bit C12 = ‘1‘
Once a failure is detected the responding diagnosis code will be transmitted as long as:
•
•
•
A failure with a higher priority is not detected
The sensor is not reset (power down)
Independent of the presence of the failure
pressure sampling
e.g. pressure out of range: low
failure presence
command
diagnosis code response
01010
00001
00001
00001
time
Figure 23
Example for reset strategy Reset-bit C12 = ‘1‘
2.9.2
Pressure out of Range
The measured pressure is internally checked. If the pressure value falls below the lower limit or exceeds the higher
limit the responding diagnosis code will be set. The limits are defined in Table 10 “Transfer function” on
Page 26.
Data Sheet
19
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Functional Description
2.9.3
Diag1
The Diag1 test checks the functionality of the signal path. Therefore the inputs of the sigma delta ADC are shorted.
Afterwards, the system response is compared with the expected range (~ 50% of full scale range). If the system
response is out of range, the diagnosis code is set.
ΣΔ ADC
Figure 24
Diag1 functionality
2.9.4
Diag2
Decimation
Filter
The Diag2 test checks the functionality of the pressure sensor cells. Therefore a malfunction (e.g. broken
membrane) can be detected. The KP256 pressure sensing element is made of 2 measuring cells and 2 reference
cells. In the normal mode these four cells are connected in a Wheatstone bridge configuration. In the Diag2 mode,
the connection of the cells is modified as shown in Figure 25.
Diag2 Mode
Normal Operation
p
U = f (p)
U = f (p)
p
p
Figure 25
Diag2 functionality
2.9.5
E²PROM Check
p
During the initialization phase, and after receiving a SPI command, the content of the E²PROM cells is copied into
the corresponding E²PROM registers. Thereby, a parity check is done based on the parity row and column. A one
bit error is corrected by the forward error correction. Any additional bit error results in an FECerror. In that case
the diagnosis code 1 will be transmitted with the next response
Data Sheet
20
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Specification
3
Specification
3.1
Application Circuit Example
SPI Interface
Microcontroller
GND
CS
NCS
CLK
CLK
NC
MOSI
SDI
VPROG
MISO
SDO
KP25x
V DD
3.3/5.0V
100nF
Figure 26
Application circuit example
Table 5
Component values
Component
Symbol
Values
Min.
1)
Supply Blocking Capacitor
2)
C1
30
Unit
Typ.
Max.
100
–
nF
1) The use of a blocking capacitor with a nominal value of 100nF is mandatory; any drift or tolerances in capacity of standard
capacitors are already considered. To avoid any measurement inaccuracy the supply blocking capacitor has to be placed
as close as possible to the VDD pin, at least the distance must be less than 10 mm.
2) The minimum capacity including any variations or drift over lifetime must not undershoot this value.
Data Sheet
21
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Specification
3.2
Absolute Maximum Ratings
Table 6
Absolute maximum ratings
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition Number
V
V
–
Limited time:
Max. 300 s
1.1
Voltage on any pin
Vmax
-0.3
–
5.5
6.0
Voltage at output
pins
Vmax_out
-0.3
–
VDD + 0.3 V
–
1.2
Storage
temperature
TS
-40
–
125
°C
–
1.3
–
–
180
K/W
Thermal resistance
between the die and
the pins
1.4
10
–
200
600
kPa
kPa
Thermal resistance Rthj-pin
Maximum input
pressure
pamb_max
1.5
Limited time:
Max. 300 s
Attention: Stresses above the max. values listed in Table 6 “Absolute maximum ratings” may cause
permanent damage to the device. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability. Maximum ratings are absolute ratings;
exceeding only one of these values may cause irreversible damage to the integrated circuit.
Data Sheet
22
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Specification
3.3
Operating Range
The following operating conditions must not be exceeded in order to ensure correct operation of the device. All
parameters specified in the following sections refer to these operating conditions, unless noted otherwise.
Table 7
Operating range
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition Number
Supply voltage
VDD3.3
VDD5.0
3.135
4.75
–
–
3.475
5.25
V
V
2.1
Supply voltage
power up/power
down gradient
Vgrad
1E-5
–
1E4
V/ms
2.2
-0.3
–
0.8
V
2.3
2.0
–
5.5
V
2.4
Even with the supply
voltage of VDD3.3_min the
max. input voltage
Vhigh_in is allowed; back
biasing will not happen
–
–
0.4
V
Test current at pin SDO 2.5
is 2.0mA
VDDx.x -
–
VDDx.x
V
Test current at pin SDO 2.6
is 1.5mA
Input voltage for low Vlow_in
level at pins NCS,
CLK & SDI
Input voltage for
high level at pins
NCS, CLK & SDI
Vhigh_in
Output voltage for Vlow_out
low level at pin SDO
Output voltage for
high level at pin
SDO
Vhigh_out
Operating
temperature
Ta
-40
–
+125
°C
2.7
Ambient operating
pressure range
pamb
60
–
165
kPa
2.8
Lifetime1)
tlive
15
–
–
years
2.9
0.4
1) The life time shall be considered as anticipation with regard to the product that shall not extend the agreed warranty period.
Data Sheet
23
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Specification
3.4
Characteristics
Product characteristics involve the spread of values guaranteed within the specified voltage and ambient
temperature range. Typical characteristics are the median of the production.
Table 8
Electrical characteristics
Parameter
Supply current into
VDD
Symbol
IVDD
Supply current into IVDD_PD
VDD during Powerdown mode
Values
Unit
Note / Test Condition Number
Min.
Typ.
Max.
–
–
10.0
mA
3.1a
–
–
12.0
µA
3.1b
Internal pressure
update rate
fupdate
150
–
–
kHz
3.2
Pressure signal
path settling time
tpath_pres
–
–
5
ms
3.3a
Temperature signal tpath_pres
path settling time
–
–
15
ms
3.3b
Start-up time
tstart-up
–
–
10
ms
Resolution of
pressure
transmission
nres_pres
n.a.
10
n.a.
bits
3.5
Resolution of
temperature
transmission
nres_temp
n.a.
10
n.a.
bits
3.6
Capacitive load at
pins NCS, CLK &
SDI
Cload_in
–
–
14
pF
3.7
Capacitive load at
pin SDO
Cload_out
–
–
19
pF
3.8
Tri state leakage
current
ISDO
-5
–
5
µA
Hysteresis of input
voltage at pins
NCS, CLK & SDI
VSPI_Hys
200
–
–
mV
Current sink for
NCS, CLK & SDI
(each pin)
ISPI_in
-100
–
–
–
-5
5
µA
µA
Data Sheet
24
no response on SPI
commands during the
start-up time
NCS = high
VDD = 5V
3.4
3.9
3.10
@ Vlow_in = 0 V
@ Vhigh_in = 5 V
no back biasing
3.11
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Specification
Table 9
SPI timing
Parameter
Symbol
Clock frequency of
SPI interface
fSPI
Transmission
tSDO_trans
speed at SDO (20%
- 80%)
Values
Unit
Note / Test Condition Number
Min.
Typ.
Max.
0.1
–
5
MHz
No limitation with lower 4.1
frequencies, but not
subject to production
test
5
–
30
ns
5
–
50
ns
VSDO = 5V &
Cload = 50pF
VSDO = 5V &
Cload = 150pF
4.2
Clock high time
tclh
75
–
–
ns
4.3
Clock low time
tcll
75
–
–
ns
4.4
tfNCS
10
–
60
ns
tcsdv
Delay between
NCS falling edge
and SDO changing
from tri-state to low
–
–
75
ns
Delay between CLK tpcld
rising edge and
start SDO data
–
–
50
ns
Delay between CLK tsclch
low and start NCS
low
75
–
–
ns
4.8
thclcl
Delay between
NCS low and rising
edge 1st CLK pulse
75
–
–
ns
4.9
Time between start tscld
SDI data and falling
edge CLK
15
–
–
ns
4.10
thcld
15
–
–
ns
4.11
tsclcl
Delay between
falling edge lst CLK
pulse and rising
edge NCS
100
–
–
ns
4.12
thclch
100
–
–
ns
4.13
1)
NCS filter time
Time between
falling edge CLK
and end SDI data
Delay between
rising edge NCS
and rising edge
CLK pulse
Data Sheet
25
Pulses below the NCS
filter time will be
ignored
4.5
4.6
incl. tSDO_trans
4.7
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Specification
Table 9
SPI timing (cont’d)
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition Number
Delay between
rising edge NCS
and end SDO data
tpchdz
–
–
75
ns
4.14
Time between
rising edge NCS
and falling edge
next NCS
tonncs
300
–
–
ns
4.15
1) not subject to production test - verified by characterization/design
Table 10
Transfer function
Parameter
Symbol
Sensitivity pressure Sp
Values
Unit
Note / Test Condition Number
Min.
Typ.
Max.
–
9.74
–
LSB
/kPa
5.1
Offset pressure
offsp
–
-584.6
–
LSB
5.2
Sensitivity
temperature
ST
–
5.115
–
LSB
/°C
5.3
Offset temperature
offsT_3.3
offsT_5.0
–
–
209.6
204.6
–
–
LSB
LSB
VDD = 3.3 V
VDD = 5.0 V
-1.0
-1.5
–
–
1.0
1.5
kPa
kPa
5.5a
0°C - 85°C
pamb: 70 kPa .. 130 kPa
pamb: 60 kPa .. 70 kPa
or 130 kPa .. 165 kPa
-1.5
-2.0
–
–
1.5
2.0
kPa
kPa
5.5b
@-20°C
pamb: 70 kPa .. 130 kPa
pamb: 60 kPa .. 70 kPa
or 130 kPa .. 165 kPa
-2.0
-2.5
–
–
2.0
2.5
kPa
kPa
5.5c
@125°C
pamb: 70 kPa .. 130 kPa
pamb: 60 kPa .. 70 kPa
or 130 kPa .. 165 kPa
-5.0
–
5.0
°C
Accuracy pressure accp_Tmid
central temperature
range
Accuracy pressure
low temperature
range
accp_Tlow
Accuracy pressure
high temperature
range
accp_Thigh
Accuracy
temperature
accT
Data Sheet
26
5.4
5.6
-40°C - 125°C
accuracy is referenced
to the ambient
temperature
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Specification
Table 10
Transfer function (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition Number
Pressure out of
range: Low
plow
plow_d
–
–
60
0d
–
–
kPa
LSB
Accuracy not
considered;
below/equal the value
the diagnosis code is
set
5.7
Pressure out of
range: High
phigh
phigh_d
–
–
165
1023d
–
–
kPa
LSB
Accuracy not
considered;
above/equal the value
the diagnosis code is
set
5.8
Data Sheet
27
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Package Information
4
Package Information
For passivation the sensor is covered with a transparent gel.
4.1
PG-DSOF-8-16 Outline
Figure 27
Package outline
Data Sheet
28
Revision 1.0, 2012-01-10
KP256
Digital Absolute Pressure Sensor
Package Information
4.2
Identification Code
Figure 28
2 5 6
B:
K P
B Y Y W W
Data Matrix Code
8 x 18 Dots
Dot Size:
0.15 mm x 0.15 mm
D a te Co d e
S a les Co d e
The identification code is provided in a machine readable format. The date and sales code are provided in human
readable format.
YY:
WW:
BE Location
´M´ = Malacca
´R´ = Regensburg
Year
Week
Identification code
The identification code for the KP256 is on the same side of the package as pin 8 (GND).
Data Sheet
29
Revision 1.0, 2012-01-10
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG