dBAP Digital Barometric Air Pressure Sensor IC KP256 Digital Absolute Pressure Sensor Data Sheet Revision 1.0, 2012-01-10 Sense & Control Edition 2012-01-10 Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. KP256 Digital Absolute Pressure Sensor KP256 Digital Absolute Pressure Sensor Revision History: 2012-01-10, Revision 1.0 Previous Revision: Revision 0.9 Page Subjects (major changes since last revision) all Change from Preliminary Data Sheet to Final Data Sheet Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-11-11 Data Sheet 3 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 1.1 1.2 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 2.1 2.2 2.3 2.4 2.4.1 2.4.2 2.5 2.5.1 2.6 2.6.1 2.6.2 2.7 2.7.1 2.7.1.1 2.7.1.2 2.7.1.3 2.7.1.4 2.7.1.5 2.7.1.6 2.7.2 2.7.3 2.8 2.9 2.9.1 2.9.1.1 2.9.1.2 2.9.2 2.9.3 2.9.4 2.9.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Transfer Function Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pressure Transfer Function Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Transfer Function Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Temperature Transfer Function Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Entering Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Exiting Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Command Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Command Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Communication Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Identifier Response Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Single Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Daisy Chain Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Start-up Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Diagnostic Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Reset-bit C12 = ‘0‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Reset-bit C12 = ‘1‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Pressure out of Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Diag1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Diag2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 E²PROM Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 3.1 3.2 3.3 3.4 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Circuit Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1 4.2 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 PG-DSOF-8-16 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Identification Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Data Sheet 4 21 21 22 23 24 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor List of Figures List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Data Sheet Pin configuration (top view, figure not to scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pressure transfer function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Accuracy for pressure acquisition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Temperature transfer function (VDD = 5.0 V). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 SPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 SPI command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 SPI response structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 SPI response structure for identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Acquire pressure command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Acquire temperature command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Trigger power-down command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Trigger diagnosis command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Acquire identifier command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Trigger test mode command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Response after a communication error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Identifier response definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Example for single device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Example for single device signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Example for daisy chain operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Example for daisy chain signal diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Example for reset strategy Reset-bit C12 = ‘0‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Example for reset strategy Reset-bit C12 = ‘1‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Diag1 functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Diag2 functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Application circuit example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Identification code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor List of Tables List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Data Sheet Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pressure transfer function characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Temperature transfer function characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Diagnosis codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Component values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 SPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Product Description KP256 1 Product Description The KP256 is a miniaturized Digital Barometric Air Pressure Sensor IC based on a capacitive principle. It is surface micromachined with a monolithic integrated signal conditioning circuit implemented in BiCMOS technology. The sensor converts a pressure into a 10-bit digital value and sends the information via the SPI interface. In addition, a temperature sensor is integrated on chip. Based on the received SPI command, the 10-bit temperature information will be transmitted via the SPI interface. A special reliability feature is the integrated diagnostic mode, which allows testing the sensor cells as well as the signal path. This diagnosis can be simply triggered with a SPI command. The chip is packaged in a “green” SMD housing. The sensor has been primarily developed for measuring barometric air pressure, but can also be used in other application fields. The high accuracy, high sensitivity and reliability features of the device makes it a perfect fit for advanced automotive applications as well as in industrial and consumer applications. 1.1 Features The following features are supported by the KP256: • • • • • • • • High accuracy pressure sensing (± 1.0 kPa) Real 10-bit pressure resolution Integrated temperature sensor Real 10-bit temperature resolution Power-down mode for reduced power consumption Self diagnosis features “Green” 8 pin SMD housing Automotive qualified 1.2 Target Applications The KP256 is designed for use in the following target applications: • • • • • • Automotive applications Industrial control Consumer applications Medical applications Weather stations Altimeters Product Name Product Type Ordering Code Package Digital Absolute Pressure Sensor KP256 SP000773952 PG-DSOF-8-16 Data Sheet 7 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Functional Description 2 Functional Description 2.1 Pin Configuration Figure 1 shows the pin configuration. NCS 1 8 GND CLK 2 7 NC SDI 3 6 VPROG SDO 4 5 VDD Figure 1 Pin configuration (top view, figure not to scale) 2.2 Pin Description Table 1 shows the pin description. Table 1 Pin description Pin No. Name Function Comment 1 NCS Not-Chip-Select (active-low) Communication is enabled when NCS is low 2 CLK Serial Clock External clock for serial communication 3 SDI Serial Data In Serial data input (e.g. from a controller) 4 SDO Serial Data Out Tri-state serial data output 5 VDD Supply voltage – 6 VPROG Programming Voltage Only required during E²PROM programming 7 NC Not Connected Pin is not bonded 8 GND Ground – Data Sheet 8 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Functional Description 2.3 Block Diagram Figure 2 shows the functional block diagram. Pressure Cells Normal Mode/ Diagnosis Mode NCS ADC Digital Signal Temperature Sensor Digital Core CLK SPI Interface SDI Processing ADC SDO Temperature Compensation Voltage Regulator VDD analog digital E²PROM Interface VDDA VDDD E²PROM VPROG Reset GND NC Figure 2 Functional block diagram 2.4 Transfer Function Pressure output signal [LSB] The KP256 device is fully calibrated on delivery. The sensor has a linear transfer function between the applied pressure and the digital output signal. 1023 Zo o 511 m 0 0 20 40 60 80 100 120 140 160 180 200 pressure [kPa] operating pressure range maximum input pressure range Figure 3 Data Sheet Pressure transfer function 9 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Functional Description 2.4.1 Pressure Transfer Function Characteristics The following calibration is adjusted with the parameters Sp and offsp pamb Table 2 = out p − offs p Sp Pressure transfer function characteristics Pressure Output Code Gain and Offset Symbol Values Unit Symbol Values Unit Symbol Value Unit pIN,1 60 kPa LSBOUT,1 0 LSB Sp 9.74 LSB/kPa pIN,2 165 kPa LSBOUT,2 1023 LSB offsp -584.6 LSB Note: The points pIN,1/LSBOUT,1 and pIN,2/LSBOUT,2 define the calibrated transfer function and not the operating range. The operating pressure range is defined by the parameter 2.8 “Ambient operating pressure range” on Page 23 5.0 4.5 4.5 4.0 4.0 absolute error [kPa] Accuracy error multiplier 2.4.2 3.5 3.0 2.5 2.5 2.0 2.0 Pamb : 60kPa..70kPa or 130kPa..165kPa 1.5 1.0 1.5 1.0 Pamb : 70kPa..130kPa 0.5 0.0 -40 -20 0 85 125 temperature [°C] Figure 4 Data Sheet Accuracy for pressure acquisition 10 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Functional Description 2.5 Transfer Function Temperature output signal [LSB] Triggering the temperature command (see Section 2.7.1.4) the KP256 provides the ambient temperature. 1023 Zo 511 om 0 -40 -20 0 40 20 60 80 120 140 160 temperature [°C] 100 operating temperaturerange Figure 5 Temperature transfer function (VDD = 5.0 V) 2.5.1 Temperature Transfer Function Characteristics The following calibration is adjusted with the parameters ST and offsT: Tamb Table 3 TIN,1_5.0 1) TIN,2_5.0 1) outT − offsT ST Temperature transfer function characteristics Temperature Symbol = Output Code Gain and Offset Values Unit Symbol Values Unit Symbol Value Unit -40 °C LSBOUT,1 0 LSB ST 5.115 LSB/°C 209.6 204.6 LSB LSB 160 °C LSBOUT,2 1023 LSB 2) offsT_3.3 offsT_5.01) 1) Valid for VDD = 5.0 V 2) Valid for VDD = 3.3 V Note: The points TIN,1/LSBOUT,1 and TIN,2/LSBOUT,2 define the calibrated transfer function and not the operating range. The operating temperature range is defined by the parameter 2.7 “Operating temperature” on Page 23 Data Sheet 11 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Functional Description 2.6 Power-Down Mode The KP256 has a special power saving feature called the Power-down mode. The sensor will enter a sleep mode where the power consumption is drastically reduced. 2.6.1 Entering Power-Down Mode To enter the Power-down mode, the Trigger power-down command has to be sent to the sensor via the SPI interface. The sensor will enter the Power-down mode within some µs. 2.6.2 Exiting Power-Down Mode To wake-up the sensor from the Power-down mode the NCS pin needs to be low during the rising edge of the CLK pin. To allow repowering of the sensor, the user needs to wait the time tstart-up before sending the first SPI command (e.g. Acquire pressure command). The response of the sensor during this first command must be ignored. With the next SPI command the pressure value from the previous acquire command will be returned. 2.7 Serial Interface The communication and data transmission is based on a standard 16 bit serial peripheral interface (SPI). NCS t sclch thclcl tclh t cll t sclcl thclch tonncs SCLK t csdv t pcld t pchdz MSB SDO tscld LSB t hcld MSB SDI Figure 6 SPI timing 2.7.1 Commands LSB The following Commands are defined: • • • • • • Acquire identifier Acquire pressure (incl. the diagnosis pressure out of range, E²PROM check and last updated Diag1 & Diag2)1) Acquire temperature (incl. the diagnosis pressure out of range, E²PROM check and last updated Diag1 & Diag2)1) Trigger power-down mode (activates the power-down state) Trigger diagnosis (triggers Diag1 and Diag2) Trigger test mode (entry into test mode only occurs if this is the first command received after power up, in conjunction with a high voltage level (>10V) on pin VPROG) 1) Last updated diagnosis information is only available if the Trigger diagnosis command was sent at any time before and the diagnostic reset is not active (Reset-bit C12 = ‘1‘, see Chapter 2.9.1). Data Sheet 12 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Functional Description 2.7.1.1 Command Behavior The SPI command interpretation is based on following rules: • • • • • • • • The response to command N is the result of the previous command (N-1) The response to the first command is the identifier When a command (N) is sent and the processing of the previous command (N-1) has not finalized, the last command (N) will not interrupt the processing Max. one command is stacked (during processing a command a new received command is stacked; further received commands will overwrite the stack) If a command has finished, the sensor takes the next command from the stack; if no command is in the stack, the sensor goes into the pressure measurement mode The diagnosis command triggers the Diag1 and Diag2 measurement; during this time pressure values (including out of range information) will not be updated Pressure and temperature values can be updated continuously based on a parallel acquisition If the sensor is in the power-down state then the next command triggers the wake-up process (NCS must be low in combination with a rising SCLK edge) 2.7.1.2 Structure The following structure is defined for an SPI command: 15 14 13 12 11 10 9 8 7 6 5 RESET ADDITIONAL BIT REQUEST REQUEST 4 3 2 1 `0` MSB Figure 7 15 LSB SPI command structure 14 13 12 11 10 9 8 7 MSB Data Sheet 6 5 DATA DIAGNOSIS Figure 8 0 4 3 2 1 0 PARIT Y LSB SPI response structure 13 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Functional Description 15 14 13 SUPPLIER 12 11 SILICON VERSION 10 9 8 7 6 5 4 3 2 1 0 ASIC NAME METAL VERSION MSB LSB Figure 9 SPI response structure for identifier 2.7.1.3 Parity Except for the identifier response (see Section 2.7.1.6) every SPI response (including the Communication Error response, see Section 2.7.1.5) includes an odd parity (LSB, [0]). The number of bits with the value one in the 16 bit response is odd (including the parity bit). 2.7.1.4 Command Definition 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 1 X 0 0 0 0 0 0 0 0 0 0 0 0 Figure 10 Acquire pressure command 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 X 0 0 0 0 0 0 0 0 0 0 0 0 Figure 11 Acquire temperature command 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Figure 12 Trigger power-down command 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 Figure 13 Data Sheet Trigger diagnosis command 14 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Functional Description 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 X 0 0 0 0 0 0 0 0 0 0 0 0 Figure 14 Acquire identifier command Note: The Reset-bit (C12) determines how the diagnostic reset is handled. For details about the function of the Reset-bit refer to Chapter 2.9.1. The “trigger test mode” command is only for information. The test mode is only for calibration and E²PROM programming. Both are already done during the supplier’s back-end assembly. The information should serve to avoid command for unintentional test mode operation. Note: Additional safeguards are provided to prevent unintentional test mode operation. For test mode operation, the command must be the first command after power-up in combination with a high voltage level at pin VPROG. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 Figure 15 Trigger test mode command 2.7.1.5 Communication Error In normal operation only the pressure, temperature, diagnosis and identifier commands are valid. Every abnormality of these commands (e.g. unused command, other value of unused bits, number of clocks not equal to 16n with n = 1, 2, 3...) will result in a communication error. The response to a detected communication error is given below. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Figure 16 Response after a communication error 2.7.1.6 Identifier Response Definition The response to an Acquire identifier command is a fixed value as stated below. With this response, the KP256 sensor can be indentified when operated in a bus system with several different parts. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 1 1 1 Figure 17 Data Sheet Identifier response definition 15 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Functional Description 2.7.2 Single Device Operation Figure 18 shows an example on how to connect a singe device to a microcontroller. After NCS is pulled to low, the request command is sent to the sensor with the next 16 cycles of the CLK. The response of the sensor for the previous request command is returned at the same time. The SPI signal timing is shown in Figure 19. MDI MDO NCS CLK µC SDO SDI NCS CLK NCS low for 16 CLK pulses KP25x Figure 18 Example for single device operation NCS CLK 16 CLK cycles ... 16 CLK cycles ... MDO COMMAND_n COMMAND_n+1 MDI ANSWER_n-1 ANSWER_n time Figure 19 Data Sheet Example for single device signal timing 16 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Functional Description 2.7.3 Daisy Chain Operation The sensors can be connected to one SPI connection in daisy chain operation to save microcontroller pins. The number of sensors connected in daisy chain operation is unlimited. MDI NCS_S3 NCS_S2 NCS_S1 CLK MDO µC SDI NCS_S1 CLK NCS_S1 low for 16 CLK pulses SDO KP25x_1.1 CLK SDO SDI KP25x_2.1 NCS_S2 SDI NCS_S2 CLK NCS_S2 low for 32 CLK pulses SDO KP25x_2.2 KP25x_3.1 Figure 20 SDO KP25x_3.2 SDI NCS_S3 SDI CLK CLK SDO NCS_S3 SDI NCS_S3 CLK NCS_S3 low for 48 CLK pulses SDO KP25x_3.3 Example for daisy chain operation Figure 20 shows an example of a combination of daisy chain mode and parallel operation. Note: Not all five sensors in this example could be addressed at once. Only one branch can be addressed at once (e.g. the KP25x_2.x branch). Finally only one NCS line can be low at the same time (NCS_S1, NCS_S2 or NCS_S3). The responding NCS line for the addressed sensor group must be low during the complete communication. During this time the provided number of clock pulses must be the multiplication result of 16 times the number of sensors in a daisy chain (e.g. 32 clock pulses for the KP25x_2.x branch in Figure 20) Figure 21 shows the whole signal diagram. It is important that NCS_S2.1 and NCS_S2.2 stay at the low level during the complete transmission. Therewith the sensor is able after receiving more than 16 clock pulses without a change in the NCS signal to switch automatically in daisy chain mode (in this example the first received 16 bit input data by the sensor S2.1 will be clocked to the output of sensor S2.1 with the last 16 clock pulses). Data Sheet 17 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Functional Description NCS_S2.1 CLK_S2.1 SDI_S2.1 SDO_S2.1 COMMAND_S2.2_n COMMAND_S2.1_n ANSWER_S2.1_n-1 COMMAND_S2.2_n ANSWER_S2.1_n-1 COMMAND_S2.2_n ANSWER_S2.2_n-1 ANSWER_S2.1_n-1 NCS_S2.2 CLK_S2.2 SDI_S2.2 SDO_S2.2 time Figure 21 Example for daisy chain signal diagram It is important that the number of clock pulses is a multiple of 16. Otherwise all commands for a daisy chain branch will be identified as invalid commands and the response of all sensors on this branch will be 01H. 2.8 Start-up Behavior During the start-up phase (tstart-up), there is no response on any commands. 2.9 Diagnosis The sensor is able to detect automatically the following malfunctions: • • • • Pressure out of range Signal path check (Diag1) Sensor cell check (Diag2) E²PROM check If a malfunction is detected, the responding diagnosis code is sent with the next response. Note: The Diag1 and Diag2 test can only be triggered by a separate SPI command. If more than one test fails, only that diagnosis code with the highest priority will be sent. Table 4 Diagnosis codes Failure Priority Diagnosis Code 1 1 0 0 0 0 Acquisition chain failure: Diag1 2 0 1 0 0 0 Sensor cell failure: Diag21) 3 0 0 1 0 0 Pressure out of range: High 4 0 0 0 1 0 Pressure out of range: Low 5 0 0 0 0 1 0 1 0 1 0 E²PROM: FEC error 1) No error 1) Note: This diagnosis code is not valid until a self diagnosis is triggered by sending the Trigger diagnosis command. Data Sheet 18 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Functional Description 2.9.1 Diagnostic Reset The Reset-bit (C12) of a SPI command allows using different reset strategies: • • C12 = ‘0‘: All detected failures will be reset C12 = ‘1‘: A detected failure will not be reset 2.9.1.1 Reset-bit C12 = ‘0‘ A detected failure is only transmitted by the responding diagnosis code as long as the failure is present. The diagnosis code will be reset after once transmitted. Only if the failure is detected again, the diagnosis code will be transmitted again with the next response. pressure sampling e.g. pressure out of range: low failure presence command diagnosis code response 01010 00001 00001 01010 time Figure 22 Example for reset strategy Reset-bit C12 = ‘0‘ 2.9.1.2 Reset-bit C12 = ‘1‘ Once a failure is detected the responding diagnosis code will be transmitted as long as: • • • A failure with a higher priority is not detected The sensor is not reset (power down) Independent of the presence of the failure pressure sampling e.g. pressure out of range: low failure presence command diagnosis code response 01010 00001 00001 00001 time Figure 23 Example for reset strategy Reset-bit C12 = ‘1‘ 2.9.2 Pressure out of Range The measured pressure is internally checked. If the pressure value falls below the lower limit or exceeds the higher limit the responding diagnosis code will be set. The limits are defined in Table 10 “Transfer function” on Page 26. Data Sheet 19 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Functional Description 2.9.3 Diag1 The Diag1 test checks the functionality of the signal path. Therefore the inputs of the sigma delta ADC are shorted. Afterwards, the system response is compared with the expected range (~ 50% of full scale range). If the system response is out of range, the diagnosis code is set. ΣΔ ADC Figure 24 Diag1 functionality 2.9.4 Diag2 Decimation Filter The Diag2 test checks the functionality of the pressure sensor cells. Therefore a malfunction (e.g. broken membrane) can be detected. The KP256 pressure sensing element is made of 2 measuring cells and 2 reference cells. In the normal mode these four cells are connected in a Wheatstone bridge configuration. In the Diag2 mode, the connection of the cells is modified as shown in Figure 25. Diag2 Mode Normal Operation p U = f (p) U = f (p) p p Figure 25 Diag2 functionality 2.9.5 E²PROM Check p During the initialization phase, and after receiving a SPI command, the content of the E²PROM cells is copied into the corresponding E²PROM registers. Thereby, a parity check is done based on the parity row and column. A one bit error is corrected by the forward error correction. Any additional bit error results in an FECerror. In that case the diagnosis code 1 will be transmitted with the next response Data Sheet 20 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Specification 3 Specification 3.1 Application Circuit Example SPI Interface Microcontroller GND CS NCS CLK CLK NC MOSI SDI VPROG MISO SDO KP25x V DD 3.3/5.0V 100nF Figure 26 Application circuit example Table 5 Component values Component Symbol Values Min. 1) Supply Blocking Capacitor 2) C1 30 Unit Typ. Max. 100 – nF 1) The use of a blocking capacitor with a nominal value of 100nF is mandatory; any drift or tolerances in capacity of standard capacitors are already considered. To avoid any measurement inaccuracy the supply blocking capacitor has to be placed as close as possible to the VDD pin, at least the distance must be less than 10 mm. 2) The minimum capacity including any variations or drift over lifetime must not undershoot this value. Data Sheet 21 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Specification 3.2 Absolute Maximum Ratings Table 6 Absolute maximum ratings Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number V V – Limited time: Max. 300 s 1.1 Voltage on any pin Vmax -0.3 – 5.5 6.0 Voltage at output pins Vmax_out -0.3 – VDD + 0.3 V – 1.2 Storage temperature TS -40 – 125 °C – 1.3 – – 180 K/W Thermal resistance between the die and the pins 1.4 10 – 200 600 kPa kPa Thermal resistance Rthj-pin Maximum input pressure pamb_max 1.5 Limited time: Max. 300 s Attention: Stresses above the max. values listed in Table 6 “Absolute maximum ratings” may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Data Sheet 22 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Specification 3.3 Operating Range The following operating conditions must not be exceeded in order to ensure correct operation of the device. All parameters specified in the following sections refer to these operating conditions, unless noted otherwise. Table 7 Operating range Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition Number Supply voltage VDD3.3 VDD5.0 3.135 4.75 – – 3.475 5.25 V V 2.1 Supply voltage power up/power down gradient Vgrad 1E-5 – 1E4 V/ms 2.2 -0.3 – 0.8 V 2.3 2.0 – 5.5 V 2.4 Even with the supply voltage of VDD3.3_min the max. input voltage Vhigh_in is allowed; back biasing will not happen – – 0.4 V Test current at pin SDO 2.5 is 2.0mA VDDx.x - – VDDx.x V Test current at pin SDO 2.6 is 1.5mA Input voltage for low Vlow_in level at pins NCS, CLK & SDI Input voltage for high level at pins NCS, CLK & SDI Vhigh_in Output voltage for Vlow_out low level at pin SDO Output voltage for high level at pin SDO Vhigh_out Operating temperature Ta -40 – +125 °C 2.7 Ambient operating pressure range pamb 60 – 165 kPa 2.8 Lifetime1) tlive 15 – – years 2.9 0.4 1) The life time shall be considered as anticipation with regard to the product that shall not extend the agreed warranty period. Data Sheet 23 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Specification 3.4 Characteristics Product characteristics involve the spread of values guaranteed within the specified voltage and ambient temperature range. Typical characteristics are the median of the production. Table 8 Electrical characteristics Parameter Supply current into VDD Symbol IVDD Supply current into IVDD_PD VDD during Powerdown mode Values Unit Note / Test Condition Number Min. Typ. Max. – – 10.0 mA 3.1a – – 12.0 µA 3.1b Internal pressure update rate fupdate 150 – – kHz 3.2 Pressure signal path settling time tpath_pres – – 5 ms 3.3a Temperature signal tpath_pres path settling time – – 15 ms 3.3b Start-up time tstart-up – – 10 ms Resolution of pressure transmission nres_pres n.a. 10 n.a. bits 3.5 Resolution of temperature transmission nres_temp n.a. 10 n.a. bits 3.6 Capacitive load at pins NCS, CLK & SDI Cload_in – – 14 pF 3.7 Capacitive load at pin SDO Cload_out – – 19 pF 3.8 Tri state leakage current ISDO -5 – 5 µA Hysteresis of input voltage at pins NCS, CLK & SDI VSPI_Hys 200 – – mV Current sink for NCS, CLK & SDI (each pin) ISPI_in -100 – – – -5 5 µA µA Data Sheet 24 no response on SPI commands during the start-up time NCS = high VDD = 5V 3.4 3.9 3.10 @ Vlow_in = 0 V @ Vhigh_in = 5 V no back biasing 3.11 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Specification Table 9 SPI timing Parameter Symbol Clock frequency of SPI interface fSPI Transmission tSDO_trans speed at SDO (20% - 80%) Values Unit Note / Test Condition Number Min. Typ. Max. 0.1 – 5 MHz No limitation with lower 4.1 frequencies, but not subject to production test 5 – 30 ns 5 – 50 ns VSDO = 5V & Cload = 50pF VSDO = 5V & Cload = 150pF 4.2 Clock high time tclh 75 – – ns 4.3 Clock low time tcll 75 – – ns 4.4 tfNCS 10 – 60 ns tcsdv Delay between NCS falling edge and SDO changing from tri-state to low – – 75 ns Delay between CLK tpcld rising edge and start SDO data – – 50 ns Delay between CLK tsclch low and start NCS low 75 – – ns 4.8 thclcl Delay between NCS low and rising edge 1st CLK pulse 75 – – ns 4.9 Time between start tscld SDI data and falling edge CLK 15 – – ns 4.10 thcld 15 – – ns 4.11 tsclcl Delay between falling edge lst CLK pulse and rising edge NCS 100 – – ns 4.12 thclch 100 – – ns 4.13 1) NCS filter time Time between falling edge CLK and end SDI data Delay between rising edge NCS and rising edge CLK pulse Data Sheet 25 Pulses below the NCS filter time will be ignored 4.5 4.6 incl. tSDO_trans 4.7 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Specification Table 9 SPI timing (cont’d) Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition Number Delay between rising edge NCS and end SDO data tpchdz – – 75 ns 4.14 Time between rising edge NCS and falling edge next NCS tonncs 300 – – ns 4.15 1) not subject to production test - verified by characterization/design Table 10 Transfer function Parameter Symbol Sensitivity pressure Sp Values Unit Note / Test Condition Number Min. Typ. Max. – 9.74 – LSB /kPa 5.1 Offset pressure offsp – -584.6 – LSB 5.2 Sensitivity temperature ST – 5.115 – LSB /°C 5.3 Offset temperature offsT_3.3 offsT_5.0 – – 209.6 204.6 – – LSB LSB VDD = 3.3 V VDD = 5.0 V -1.0 -1.5 – – 1.0 1.5 kPa kPa 5.5a 0°C - 85°C pamb: 70 kPa .. 130 kPa pamb: 60 kPa .. 70 kPa or 130 kPa .. 165 kPa -1.5 -2.0 – – 1.5 2.0 kPa kPa 5.5b @-20°C pamb: 70 kPa .. 130 kPa pamb: 60 kPa .. 70 kPa or 130 kPa .. 165 kPa -2.0 -2.5 – – 2.0 2.5 kPa kPa 5.5c @125°C pamb: 70 kPa .. 130 kPa pamb: 60 kPa .. 70 kPa or 130 kPa .. 165 kPa -5.0 – 5.0 °C Accuracy pressure accp_Tmid central temperature range Accuracy pressure low temperature range accp_Tlow Accuracy pressure high temperature range accp_Thigh Accuracy temperature accT Data Sheet 26 5.4 5.6 -40°C - 125°C accuracy is referenced to the ambient temperature Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Specification Table 10 Transfer function (cont’d) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Pressure out of range: Low plow plow_d – – 60 0d – – kPa LSB Accuracy not considered; below/equal the value the diagnosis code is set 5.7 Pressure out of range: High phigh phigh_d – – 165 1023d – – kPa LSB Accuracy not considered; above/equal the value the diagnosis code is set 5.8 Data Sheet 27 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Package Information 4 Package Information For passivation the sensor is covered with a transparent gel. 4.1 PG-DSOF-8-16 Outline Figure 27 Package outline Data Sheet 28 Revision 1.0, 2012-01-10 KP256 Digital Absolute Pressure Sensor Package Information 4.2 Identification Code Figure 28 2 5 6 B: K P B Y Y W W Data Matrix Code 8 x 18 Dots Dot Size: 0.15 mm x 0.15 mm D a te Co d e S a les Co d e The identification code is provided in a machine readable format. The date and sales code are provided in human readable format. YY: WW: BE Location ´M´ = Malacca ´R´ = Regensburg Year Week Identification code The identification code for the KP256 is on the same side of the package as pin 8 (GND). Data Sheet 29 Revision 1.0, 2012-01-10 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG