L ow Po we r 3 D Digital Output M a g n e ti c 3D Magnetic Sensor with Digital Output 3D Magnetic Sensor TLV493D-A1B6 3D Magnetic Sensor Technical Product Description Rev 1.0, 2015-05-26 Sense & Control Sensor with 3D Magnetic Sensor TLV493D-A1B6 Table of Contents 1 1.1 1.2 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 2.1 2.1.1 2.1.2 2.1.3 2.2 2.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Power mode control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Sensing part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Communication Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Pin Configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 3.1 3.2 3.3 3.4 3.5 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Magnetic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Temperature Measurement (only if activated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.4 4.5 4.6 I²C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Interface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 I²C format description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Timing Diagrams and Access Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 I²C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Power Up and Power Down Mode I²C Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Fast mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Low Power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Ultra Low Power Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Master-controlled mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Interface and Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 I²C read register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 I²C write register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 5.1 Typical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Current Consumption vs. Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Technical Product Description 2 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Overview of Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 TSOP-6 pin description and configuration (see Figure 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Magnetic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Conversion table for 12Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Conversion table for 8Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Temperature Measurement Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Overview of modes and its corresponding current consumption with sample rates . . . . . . . . . . 19 Interface and timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 I²C read register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 I²C write register Configuration Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Technical Product Description 3 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Image of TLV493D-A1B6 in TSOP-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Application circuit with external power supply and µC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 General I²C format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Read example with default setting ADDR=1 (=BD; Write = BC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Read example with ADDR=0 (3F; Write = 3E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 I²C Timing Diagram, see also Table 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Current consumption during power up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Fast Mode (/w and w/o temp. measurement) in relation to /INT output . . . . . . . . . . . . . . . . . . . . . 16 Synchronous, low-power I²C readout using an /INT wake-up pulse . . . . . . . . . . . . . . . . . . . . . . . . . 17 Synchronous, fast I²C access using a periodic I²C read-out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Synchronous, fast I²C access using an /INT trigger for I²C readout . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Typical Current Consumption versus Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Image of TLV493D-A1B6 in TSOP-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Package Outlines (all dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Packing (all dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Technical Product Description 4 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 Product Description 1 Product Description 1.1 Target Applications This product is suitable for e.g. joystick, controll elements in white goods or anti tampering functionality in electric meter applications. Figure 1 Image of TLV493D-A1B6 in TSOP-6 1.2 Features • 3D magnetic sensing • Very low power consumption = 10µA during operations (10Hz) • Power down mode with 7nA power consumption • Digital output via 2-wire standard I²C interface • 12 bit data resolution for each measurement direction • Bx, By and Bz linear field measurement up to +150mT • Excellent matching of X/Y measurement for accurate angle sensing • Variable update frequencies and power modes (configurable during operation) • Supply voltage range= 2.7V…3.5V; Temperature range Tj= -40°C…125°C • Small, industrial 6 pin TSOP package • Triggering by external µC possible Table 1 Overview of Modes Mode Update Rate / Hz IDD (25°C) Power Down - 7 nA Ultra Low Power 10 10 µA Low Power 100 100 µA Fast Mode 3300 3.7 mA Table 2 Ordering Information Product Name Marking Ordering Code Package 3D Magnetic Sensor SA (eng. samples) VA (serie) SP001286056 PG-TSOP-6-6-5 Technical Product Description 5 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 Functional Description 2 Functional Description 2.1 General Description of the Block diagram and its functions. F-OSC Power Mode Control LP-OSC VDD GND Bias Spinning vertical-Hall plates X-Direction SCL; /INT Spinning lat. Hall plates Z-Direction Comparator z ADC Digital tracking, demodulation & I²C interface SDA MUX Spinning vertical -Hall plates Y-Direction Temperature Figure 2 Block Diagram The IC consists of three main function units containing the following building blocks: • The power mode control system, containing a low-power oscillator, basic biasing, accurate reset, undervoltage detection and a fast oscillator. • The sensing part, containing the HALL biasing, HALL probes with multiplexers and successive tracking ADC. Furthermore a temperature sensor is implemented. • The I²C interface, containing the register file and I/O pads, see Chapter 4. 2.1.1 Power mode control The power mode control provides power distribution in the IC, a power-on reset function and a specialized low-power oscillator as clock source. Additionally it is handling the start-up behavior. • On start-up this unit: – activates the biasing, provides an accurate reset detector and fast oscillator – reads out the voltage level on ADDR pin. The applied voltage represents the address. See also Chapter 4.2. – initiates sensor power down mode (needs to be configured via I²C interface) Note: The sensor is in power down mode after power up • After re-configuration a measurement cycle is performed, regularly containing of: Technical Product Description 6 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 Functional Description – the internal biasing, checks for reset condition and provides the the fast oscillator – the HALL biasing – three HALL probe channels sequentially incl. temperature (if activated) • It then enters the configured mode again In any case functions are only executed if the supply voltage is high enough, otherwise the reset circuit will halt the state machine until the level is reached and continues its operation afterwards. The functions are also restarted if a reset event occurs in between. 2.1.2 Sensing part Performs measurements of the magnetic field in X, Y and Z directions. Each X, Y and Z-Hall probe is connected sequentially to a multiplexer, which is then connected to an Analog to Digital Converter (ADC). Optionally, the temperature is determined after the three Hall channels. The current consumption decreases by -25% when temperature measurement is deactivated. 2.1.3 Communication Unit See Chapter 4 for detailled information on communication. 2.2 Pin Configuration (top view) G N D S (A D A DD R ) Y G V DD G N D S (/I C L N T) ND Z X Figure 3 Pin Configuration Table 3 TSOP-6 pin description and configuration (see Figure 3) Pin No. Name Description 1 SCL /INT Interface serial clock pin (input) Interrupt pin, signals a finished measurement cycle 2 GND connect to GND (recommended) 3 GND Ground Pin 4 VDD Supply Pin 5 GND connect to GND (recommended) 6 SDA ADDR Interface serial data pin (input/output), open drain Sensor ID configuration during power up (see Chapter 4.2) Technical Product Description 7 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 Functional Description 2.3 Application circuit The use of an interrupt line is optional, but highly recommended to ensure proper and efficient readout of the sensor data. The pull-up resistors of the I²C bus have to be set in a way to keep the rise- and fall time specification of the interface bus parameters (see specification section) with the parasitic capacitive load of the actual setup. Please note: too small resistive values have to be prevented to avoid unnecessary power consumption during interface transmissions, especially for low-power applications. Additionally, 100nF decreases the emission. R1 = 4.7k R2 = 4.7k C1 = 100nF VDD Power Supply R1 R2 GND VDD SDA C1 Microcontroller e.g. TLV493D XMC 1100 SCL GND Figure 4 CBuf (/INT) Application circuit with external power supply and µC Technical Product Description 8 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 Specification 3 Specification 3.1 Absolute Maximum Ratings Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Furthermore, only single error cases are assumed. More than one stress/error case may also damage the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions the voltage on VDD pins with respect to ground (VSS) must not exceed the values defined by the absolute maximum ratings. Table 4 Absolute maximum ratings Parameter Symbol min Junction temperature Tj Voltage on VDD VDD Magnetic field Bmax Voltage range on any pin to GND 3.2 Operating Range Table 5 Operating Range Parameter Symbol Operating temperature Tj Supply voltage VDD Reset level Vres Technical Product Description typ max unit -40 125 °C -0.3 3.5 V 1 T 3.5 V max unit Note/Condition 125 °C Tj = Ta + 3K in fast mode 3.5 V -0.1 min typ -40 2.7 3.3 2.2 Note/Condition open-drain outputs are not current limited when forced by a voltage in enabled state! V 9 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 Specification 3.3 Electrical Characteristics Note: All specification parameters refer to 3.3V +5% nominal supply Vdd on the pins directly. Typical values refer to 25°C and to 3.3V +5% nominal supply. Table 6 Electrical setup Parameter min Supply current IDD1) Maximum supply current IDD_max Input voltage low threshold typ max unit Note/Condition 7 nA power down mode (default after power on), all off 10 µA ultra low power mode, see Chapter 4.3.3 100 µA low power mode, see Chapter 4.3.4 3.7 mA fast mode, see Chapter 4.3.4.1 3.7 mA peak in ULP mode for about 300µs2) %Vdd all input pads 70 %Vdd all input pads 20 %Vdd all output pads, static load 0.3 µs 0.3µs for 400kHz mode (or may require less C load) 30 Input voltage high threshold Output voltage low level @ 3 mA load 3) Fall time SDA/SCL signal (tFALL) 0.25 Rise time SDA/SCL signal (tRISE)3) 0.54) µs R=4.7k Output high level VDD V given by ext. pull-up resistor 1) 2) 3) 4) 4) Average values During power down mode the current consumption is about 7nA Dependent on used R-C-combination For given AppCircuit; Capacitive load for each bus line = 400pF (SDA, SCL) Technical Product Description 10 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 Specification 3.4 Magnetic Characteristics Typical values for 25°C and VS = 3.3V +5% Table 7 Magnetic Characteristics Parameter min Usable magnetic linear range typ max +150 unit Note/Condition mT Bx, By and Bz Bx, By and Bz @ RT Magnetic offset error -1 +0.2 +1 mT Magnetic gain error -20 +5 +20 % X to Y static channel matching X/Y to Z static channel matching % +2 -20 +5 +20 % Magnetic noise (rms) 0.1 mT rms = 1 sigma Resolution 12bit readout 98 µT/ LSB Resolution 8bit readout 1.56 mT/ LSB Temperature compensation 01) ppm/K factory setting for external magnet Magnetic hysteresis 1 LSB12 only due to quantization effects DNL +2 LSB12 Differential Non-Linearity INL 0.1 % Integral Non-Linearity 1) Can be changed by programming; further values are -2000, -1000, +500 ppm/K Conversion register value to magnetic field value: The conversion is realized by the two’s complement. Please use following table for transformation: Table 8 e.g. Conversion table for 12Bit Bit11 Bit10 Bit9 Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 LSB -2048 1024 512 256 128 64 32 16 8 4 2 1 1 1 1 1 0 0 0 0 1 1 1 1 Example for 12Bit read out: 1111 0000 1111: -2048 + 1024 + 512 + 256 + 0 + 0 + 0 + 0 + 8 + 4 + 2 +1 = -241 LSB Calculation to mT: -241 LSB * 0.098 mT/LSB = -23.6mT Table 9 e.g. Conversion table for 8Bit Bit8 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 LSB -128 64 32 16 8 4 2 1 0 1 0 1 1 1 0 1 Example for 8-Bit read out: 0101 1101: 0 + 64 + 0 + 16 + 8 + 4 + 0 + 1 = 93 LSB Calculation to mT: 93 LSB * 1.56 mT/LSB = 145.1 mT Technical Product Description 11 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 Specification 3.5 Temperature Measurement (only if activated) Table 10 Temperature Measurement Characteristics Parameter min 1) typ max unit Digital value @ 25°C 340 LSB Resolution 12bit 1.1 °C/LSB Resolution 8bit 17 °C/LSB Accuracy +5 °C Note/Condition not recommended 1) Theoretical possible measurement range from -50°C to 150°C Technical Product Description 12 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 I²C Interface 4 I²C Interface 4.1 Interface Description • The I²C interface requires two pins: – A serial clock (SCL) input pin. – A serial data pin (SDA) for in- & output (open drain) • The interface does not require the internal oscillators to be active, thus it can operate in any power mode. • The values of all three axis are stored in separate registers. After a power-on reset these registers will read zero. • A reset event (operated during an ADC conversion) does not reset these values but only inhibits the ADC conversion. Only a complete supply failure, which is detected by the “zero current” reset block will reset this registers and initiate a new power-on cycle to be executed. • A 2 bit frame counter checks for a “frozen” sensor condition (e.g. the power unit did not initiate a measurement cycle - which means the frame counter does not get incremented anymore). 4.2 I²C format description The interface can be accessed in any power mode. It conforms to the I2C fast mode specification (400kBit/sec max.) but allows operation up to at least 1 Mbit/sec in case the electrical setup of the bus is lean enough (which means the amount of devices and thus the parasitic load of the bus line is limited to keep rise/fall time conditions small). The allowed max. clock rate above 400kHz has to be defined on demand given a specific electrical setup. The protocol uses a standard 7 bit address followed by data bytes to be sent or received. 12bit addressing or any sub-addressing is not implemented, so each start condition always begins with writing the address, followed by reading (or writing) the first byte of the bitmap and continues with reading (or writing) the next byte until all bytes are read (or written) or the communication is simply terminated by a stop condition. The basic initiator for the protocol is the falling SDA edge. A(6) A(5) A(4) A(3) A(2) A(1) A(0) R/W ACK D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0) ACK 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 SDA SCL Figure 5 P opt. further frames S General I²C format Note: A reset can be triggered with general I²C address 0x00. After this command the sensor will do an power up sequence. (See Chapter 4.3.2) Technical Product Description 13 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 I²C Interface The default setting after startup for a read operation is shown below for ADDR=1 and ADDR=0. ADDR=1 is defined by Pin SDA at power up to be high according AppCircuit Figure 4. In order to set ADDR=0 SDA must pulled down to low during power up. To set the address the high or low level must be kept 200µs after supplying the sensor. A(6) A(5) A(4) A(3) A(2) A(1) A(0) R/W ACK D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0) ACK 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 SDA SCL Figure 6 P opt. further frames S Read example with default setting ADDR=1 (=BD; Write = BC) For ADDR=1 bit A(6)=1 and A(0)=NOT(Addr) = 0 is used. After configuration to ADDR=0 following sequence is used. A(6) A(5) A(4) A(3) A(2) A(1) A(0) R/W ACK D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0) ACK 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 SDA SCL Figure 7 P opt. further frames S Read example with ADDR=0 (3F; Write = 3E) For ADDR=0 bit A(6)=0 and A(0)=NOT(Addr) = 1 is used. Technical Product Description 14 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 I²C Interface 4.3 Timing Diagrams and Access Modes 4.3.1 I²C Timing tSTOP tWAIT tSTA tRISE tSU tHOLD tFALL tH tFALL tL tRISE SDA SCL STOP START R/W BIT Figure 8 I²C Timing Diagram, see also Table 12 4.3.2 Power Up and Power Down Mode I²C Bus R/W BIT R/W BIT At power up the sensor starts with the factory configuration and uses this as default mode (= power down). After power up, the sensor reads out the voltage applied on ADDR pin for 200µs. If the voltage level on ADDR=high then the address is set to “1”. If the voltage level on ADDR = low the address is set to “0”. For a short period of time the power consumption increases to 3.7mA. During this short period all functional blocks are active. After this the sensor enters the “power- down mode”. In this power down mode all functional blocks are off. Even the low power oscillator is switched off. No magnetic measurement takes place now. VDD IDD I peak = 3.7mA Power down mode = 7 nA Figure 9 Current consumption during power up Technical Product Description 15 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 I²C Interface 4.3.3 Fast mode Settings: fastmode=1, lp_mode=0, int_out=1 (byte settings [hex] = 00, x6, xx, xx; keep certain bits) tS (including T measurement) tINT tRD1 tRDn tINT /INT FRM & CH (IIC reg .) 0000 ADC sample T0 0001 read sample BX 0 ADC sample BX 1 read sample BY0 0010 ADC sample BY1 read sample BZ0 0011 ADC sample BZ1 0100 read sample T0 ADC sample T1 read sample BX 1 tS (excluding T measurement) tINT tRD1 tRDn tINT /INT FRM & CH (IIC reg .) 0000 ADC sample BZ0 Figure 10 0001 read sample BX 0 ADC sample BX 1 read sample BY0 0010 ADC sample BY1 read sample BZ0 0100 ADC sample BZ1 0101 read sample BX1 ADC sample BX 2 read sample BY 1 Fast Mode (/w and w/o temp. measurement) in relation to /INT output It is possible to optimize the readout in a way that the sample of the last conversion can be read while the next conversion is performed. To achieve this, the readout from I²C has to be done faster than the given time when the next value gets overwritten, including any possible clock variance between sensor and master (µC). Note: This read mode assumes to read only first three 8 bit values via I²C after an /INT pulse. To read out the 8 bit values for Bx, By and Bz the I²C address write and first byte read needs to be done within tRD1 (minus the w.c. accuracy of the sensor clock and the µC clock) after the rising interrupt clock edge. The next byte needs to be read latest within an additional tRDn timeframe (minus tolerances) and so on. Assuming all 3 values are read directly in one I²C sequence, the time for readout of the first byte is the most critical (as two I²C frames are required), reading the remaining bytes should not be a timing issue as here nevertheless more time is available. Note: Thus, this mode requires a non-standard 1MHz I²C clock to be used to read the data fast enough. Technical Product Description 16 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 I²C Interface 4.3.4 Low Power mode Settings: fastmode=0, lp_mode=1, int_out=1 (byte settings [hex]: 00, x5, xx, 4x; keep certain bits) tS (low power modes) /INT IIC idle or other comm . a d r b 0 b 1 b 2 b 3 b 4 b 5 b 6 idle or other comm . b 7 a d r b 0 b 1 power down ADC b 2 b 3 b 4 b 5 b 6 b 7 power down LPOSC Figure 11 Synchronous, low-power I²C readout using an /INT wake-up pulse In this low-power mode the sensor goes into power-down mode until it wakes up by itself to perform the next conversion. After the conversion the interrupt line will be pulled (if activated). This means for the low power modes the time window to read out all registers after the rising edge of the /INT pulse is equal one over the sample rate of this low power mode minus the conversion time. 4.3.5 Ultra Low Power Mode Settings: fastmode=0, lp_mode=1, int_out=1 (byte settings [hex]: 00, x5, xx, 0x; keep certain bits) In this mode an excellent combination of ultra low power consumption and internal regular wake up function is reached. The basic function is equal to Low Power Mode, but Low Power Mode has about 8 times higher current consumption than Ultra Low Power Mode. As well the interrupt is available, if an even lower power consumption is needed. Technical Product Description 17 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 I²C Interface 4.3.6 Master-controlled mode Settings: fastmode=1, lp_mode=1, int_out=0/1 (byte settings: 00, x7, xx, xx) • The fast oscillator is constantly enabled • One measurement cycle is performed and /INT is pulsed. • Measurement data is available for read out of the registers. • The sensor is waiting for read-out and no other measurements are done. • As soon as the master performs a read-out a new measurment cycle is internally started by the sensor and new values will be stored in the registers. If no further read out takes place no new measurement cycle is initiated. In the simplest case, periodic read-out of I²C causes a re-run of a new measurement cycle. It only needs to be ensured that the read-out time is larger than the time for the I²C read frame plus the sensor conversion time. constant time interval for IIC readouts (e.g. using a µC timer) tS (fast mode) µC internal IIC readout periodically initiated µC internal IIC readout periodically initiated IIC ADC idle or other comm . a d r b 0 (T) Figure 12 b 1 b 2 b 3 b 4 b 5 b 6 idle or other comm . b 7 Bx wait By Bz a d r b 0 b 1 (T) b 2 b 3 b 4 b 5 b 6 b 7 Bx wait Synchronous, fast I²C access using a periodic I²C read-out If possible, the /INT output should be activated and used in this mode as well. This will provide the fastest and safest way to read out all axis with a 12bit resolution value, as to be shown next. This allows a read-out of the sensor to the master (µC) using an interrupt service routine. The sample rate is now basically determined by the ADC conversion time plus the I²C readout time only, and fully avoids the read of inconsistent values. The possible sample rate for this mode at regular 400kHz I²C speed is given in the specification section. tS (fast mode) /INT IIC ADC idle or other comm . (T) Figure 13 a d r b 0 b 1 b 2 wait b 3 b 4 b 5 b 6 idle or other comm . b 7 Bx By Bz (T) a d r b 0 b 1 b 2 wait b 3 b 4 b 5 b 6 b 7 Bx Synchronous, fast I²C access using an /INT trigger for I²C readout Technical Product Description 18 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 I²C Interface Please be aware that this modes does not switch off the internal biasing and oscillator, it should therefore not be used for low-power operation with large time intervals between measurements. Table 11 Overview of modes and its corresponding current consumption with sample rates Mode Bytehex 0,1,2,31) Update Rate / Hz Idd (25°C) Remark Power Down - - 7 nA default after power on2) Ultra Low Power 00, 01, 00, 00 10 10 µA temp measurement4) Low Power 00, 05, 00, 40 100 100 µA temp measurement 00, 06, 00, 00 3300 3.7 mA temp measurement 00, 07, 00, 00 variable up to f = 2.2kHz Fast Mode 5) Master controlled 3) temp measurement 1) Please use logical Operation: byte 7, 8, 9 (from read out) OR byte 1,2, 3 --> command for mode 2) Configurable after power on via I²C interface. Settings will be lost after power down. Any temporary overwrite via the I²C interface will be lost on a power-on reset. 3) Factory setting, can be changed to any other mode on request 4) IDD increases by +33% for enabled temperature measurement 5) In master controlled mode the oscillator is constantly enabled. For smaller current consumptions the sensor can be set in power down mode after read out. Technical Product Description 19 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 I²C Interface 4.4 Interface and Timing Description This chapter refers to howthe boundary conditions are set in order to establish a proper interface communication. Table 12 Interface and timing Parameter min unit Note/Condition 3.3 kHz continuous mode (temp. off) 2.2 kHz Sample rate defined by I²C master Update rate (all axis), ultra low p. 10 Hz triggered internally, incl. T Update rate (all axis), low p. 100 Hz triggered internally, incl. T End-of-Conversion /INT pulse (tINT) 1.2 µs low-active (when activated) Time window to read first value (tRD1) 32.8 µs read after rising /INT edge Time window to read next value. (tRDn) 33.6 µs consecutive reads +25 % all above timing parameters 1000 kHz 400kHz is I²C fast mode Update rate X, Y, Z in fast mode Update rate I²C master controlled mode Internal clock accuracy 0 typ max -25 Allowed I²C bit clock frequency 400 Low period of SCL clock (tL) 0.5 µs 1.3µs for 400kHz mode High period of SCL clock (tH) 0.4 µs 0.6µs for 400kHz mode SDA fall to SCL fall hold time (tSTA) (hold time start condition to clock) 0.4 µs 0.6µs for 400kHz mode SCL rise to SDA rise su. time (tSTOP) (setup time clock to stop condition) 0.4 µs 0.6µs for 400kHz mode SDA rise to SDA fall hold time (tWAIT) (wait time from stop to start cond.) 0.4 µs 0.6µs for 400kHz mode SDA setup before SCL rising (tSU) 0.1 µs SDA hold after SCL falling (tHOLD) 0 µs Technical Product Description 20 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 I²C Interface 4.5 I²C read register The I²C registers can be read at any time. To avoid reading inconsistent values, especially when running the fast mode with significantly changing magnetic input signals, it is recommended to use the sensor interrupt and read the data after an interrupt occurred. Additionally, several flags can be checked to ensure the data values are consistent and the ADC was not running at the time of readout. Table 13 I²C read register Description of I²C read register Byte No. D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0) Bx value – vertical HALL probe (MSBs) 0 Bx(11…4) By value – vertical HALL probe (MSBs) 1 By(11…4) 2 Bz(11…4) Bz value – lateral HALL probe (MSBs) 1) Selected channel (must be “00” at readout) Frame counter, increments for each X/Y/Z sample CH(1…0) 3 Temperature values (MSB’s, only when enabled) FRM(1…0) Temp (11..8) By value – vertical HALL probe (remaining LSBs) Bx value – vertical HALL probe (remaining LSBs) By(3…0) 4 Bx(3…0) Bz value – lateral HALL probe (remaining LSBs) Bz(3…0) Power-down PD flag (must be “0” at readout) 5 Temperature values (only when enabled) 6 Temp (7..0) Factory settings 7 to be read out and stored Factory settings 8 to be read out and stored Factory settings 1) If not “00”, a further read-out is necessary 9 to be read out and stored only internal PD The factory settings (byte7 .. byte 9) should be read out once and stored. Those values are needed for further writing commands and are not allowed to change. Technical Product Description 21 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 I²C Interface 4.6 I²C write register Configuration Map: Table 14 I²C write register Configuration Map Description of I²C write register Keep 0x00 Byte D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0) No. 0 00000000 1=low power mode activated (0=lowp. mode off) 0/1 1=fast mode activated (0=fast mode off) 0/1 1=/INT pad activated (0=no /INT pulse given) Keep factory setting (set same as “read” byte 7 D(3)) 0/1 1 keep Keep factory setting (set same as “read” byte 7 D(4)) keep Keep factory setting (se same values as byte 7 D(5) & D(6)) keep keep Parity of configuration map (sum of all 24 bits == odd)1) Keep factory setting (set same as “read” as byte 8) 0/1 2 keep value Keep factory setting (set same as “read” as byte 9 D(0) .. D(4)) 1=enable parity test (0=disable); 1=12ms LP period (0=100ms ULP period) keep value 0/1 3 1=disable T measurement (0=enable T meas.) 0/1 0/1 1) Parity needs to be calculated and set accordingly before a write command is executed. After the write command the sensor ( =slave) verifies the parity with the bits in the register. If the parity fails then the sensor sets ACK=high at the next read command Technical Product Description 22 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 Typical Characteristics 5 Typical Characteristics 5.1 Current Consumption vs. Temperature Figure 14 Typical Current Consumption versus Temperature Technical Product Description 23 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 Package Information 6 Package Information Figure 15 Image of TLV493D-A1B6 in TSOP-6 Figure 16 Package Outlines (all dimensions in mm) Technical Product Description 24 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 Package Information Figure 17 Packing (all dimensions in mm) Technical Product Description 25 Rev 1.0, 2015-05-26 3D Magnetic Sensor TLV493D-A1B6 Revision History 7 Revision History Revision Date Changes 1.0 Initial version 2015-05-26 Technical Product Description 26 Rev 1.0 2015-05-26 Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, myd™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SPOC™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-11-11 www.infineon.com Edition 2015-05-26 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: [email protected] Document reference Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of noninfringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.