78P7200 E3/DS3/STS-1 Line Interface Unit DATA SHEET JULY 2005 DESCRIPTION FEATURES The 78P7200 is a line interface transceiver IC intended for STS-1 (51.84 Mbit/s), DS3 (44.736 Mbit/s) and E3 (34.368 Mbit/s) applications. The receiver has a very wide dynamic range and is designed to accept either HDB3 or B3ZS-encoded Alternate-Mark Inversion (AMI) inputs; it provides CMOS logic level clock, positive data, negative data and low-level signal detector outputs. An on-chip equalizer improves the intersymbol interference tolerance on the receive path. The transmitter converts CMOS logic level clock, positive data and negative data input signals into AMI pulses of the appropriate shape for transmission. A line buildout (LBO) equalizer may be selected to shape the outgoing pulses for shorter line lengths. The 78P7200 requires a single 5 volt supply and is available in a surface mount package. • Single chip transmit and receive interface for STS-1 (51.84 Mbit/s), E3 (34.368 Mbit/s) or DS3 (44.736 Mbit/s) applications • On-chip Receive Equalizer • Unique clock recovery circuit, requires no crystals, tuned components or external clock • Selectable transmit line buildout (LBO) to accommodate shorter line lengths • Compliant with ANSI T1.102-1993, Bellcore TRNWT-000499 and GR-253-CORE, ITU-T G.703 and G.823_1991 • Low-level input signal indication • Available in a 28 PLCC surface mount package • -40°C to +85°C operating range BLOCK DIAGRAM LOWSIG RVcc CPD RVcc RLF2 RLF1 CLF1 RVcc Low-Level Signal Detection RFO Clock Recovery RCLK DVcc LIN+ Signal Acquisition Eq. INPUT Data Detection LIN- RPOS RNEG DGND TVcc LOUT+ OUTPUT LOUT- Output Driver, Line Buildout OPT@ Page: 1 of 11 LBO Pulse Shaper Pulse Generator TCLK TPOS TNEG OPT! © 2005 Teridian Semiconductor Corporation Rev 3.0 78P7200 E3/DS3/STS-1 Line Interface Unit FUNCTIONAL DESCRIPTION The 78P7200 is a single chip line interface IC designed to work with either a 51.84 Mbit/s STS-1, 44.736 Mbit/s DS3 or 34.368 Mbit/s E3 signal. The receiver recovers clock, positive data and negative data from an Alternate Mark Inversion (AMI) signal. The input signal should be B3ZS or HDB3 coded. The transmitter accepts CMOS level logical clock, positive data and negative data and converts them to the AMI signal to drive a 75Ω coaxial cable. Programmable internal Line Buildout (LBO) circuitry eliminates the need for external LBO networks. When the option pins are properly selected, the shape of the transmitted signal through any cable length of 0 to 450 feet complies with the published templates of ANSI T1.102, ITU-T G.703, Bellcore TR-NWT-000499 and GR-253-CORE. The 78P7200 is designed to work with a B3ZS or HDB3 coded signal. The B3ZS or HDB3 encoding and decoding functions are normally included in the framer ICs or can easily be implemented in a PAL. RECEIVER The receiver input is normally transformer-coupled to the AMI signal. The inputs to the IC are internally referenced to RVCC. Since the input impedance of the 78P7200 is high, the AMI line must be terminated in 75Ω. The input signal to the 78P7200 must be limited to a maximum of three consecutive zeros using a coding scheme such as B3ZS or HDB3. The AMI signal first enters a fixed equalizer, which is designed to overcome the intersymbol interference caused by long cable lengths and crosstalk. This fixed equalizer is optimized for DS3 application and its effect should be compensated by an external filter circuit similar to Figure 1, for all square shaped signals such as DS3-high or 34 Mbit/s E3. For all new designs, the addition of the filter for DS3 and STS-1 as well as E3 rate allows the circuit to work with sharp pulses such as DS3-high. The signal is then input to a variable gain differential amplifier whose output is maintained at a constant voltage level regardless of the input voltage level. The gain of this amplifier is adjusted by detecting the peak of the signal and comparing it to a fixed reference. Page: 2 of 11 The output of the variable gain amplifier is compared to a threshold value, which is a fixed percentage of the signal peak. In this way, even though the input signal amplitude may fall below the minimum value that can be regulated by the variable gain circuit, the proper detection threshold is maintained. Outputs of the data comparators are connected to the clock recovery circuits. The clock recovery system employs a unique phase locked loop, which has an auxiliary frequency-sensitive acquisition loop, which becomes active only when cycle-slipping occurs between the received signal rate and the internal oscillator. This system permits the loop to independently lock to the frequency and phase of the incoming data stream without the need for high precision and/or adjustable oscillator or tuned circuits. The frequency characteristic for the phase locked loop is established by external filter components, RLF1, RLF2 and CLF1. The values of these components are specified such that the bandwidth of the phase locked loop is greater than 200 kHz. The jitter tolerance of the 78P7200 exceeds the requirements of TR-NWT-000499 for Category II equipment for DS3 rate and exceeds the requirements of ITU-T G.823 for E3 rate. The jitter transfer function is maximally flat so the IC doesn't add any significant jitter to the system. Figure 2 shows the recovered clock (RCLK), positive data (RPOS) and negative data (RNEG) signals timing. The data is valid on the rising edge of the clock. The minimum setup and hold times allow easy interface to framer circuits. These signals are CMOS-level outputs. Should the input signal fall below a minimum value, the LOWSIG pin goes active low. A time delay is provided before this output is active so that transient interruptions do not cause false indications. This signal should be used as one of many indications to the cable disconnect; the framer device should count the number of zeros to declare the loss of signal. The RPOS and RNEG signals generate random data following a silence period. The framer device should ignore RPOS and RNEG data if the LOWSIG pin is active low. © 2005 Teridian Semiconductor Corporation Rev 3.0 78P7200 E3/DS3/STS-1 Line Interface Unit TRANSMITTER The transmitter accepts CMOS logic level clock (TCLK), positive data (TPOS) and negative data (TNEG) signals and generates high current drive pulses on the LOUT+ and LOUT- pins. When properly connected to a center tapped transformer, an AMI pulse is generated which can drive a 75Ω coaxial cable. Figure 3 shows the timing for the transmitter logic signals. The output pulse width is internally set and is not sensitive to input clock (TCLK) pulse width. When a recommended transformer is used and option pins are properly set, the transmitted pulse shape at the end of a 75Ω terminated cable of 0 to 450 feet will fit the template for DSX3 pulse published in ANSI T1.102-1993, Bellcore TR-NWT-000499 documents. For 51.84 Mbit/s STS-1 application the transmitted pulse for a short cable meets the requirements of Bellcore GR-253-CORE. For 34 Mbit/s E3 application, the transmitted pulse for a short cable meets the requirements of ITU-T G.703 when both LBO and OPT! pins are set LOW. Page: 3 of 11 The 78P7200 incorporates a selectable Line Buildout (LBO) pulse shaper in the transmitter path. For STS-1 and DS3 applications, the LBO pin should be set HIGH if the cable is shorter than 225 feet and set LOW for longer cable lengths. For E3 application, LBO pin should be set LOW regardless of cable length. The OPT! pin is set HIGH for DS3 and STS-1 operation. The OPT! pin should be set LOW for E3 applications. The OPT@ pin should be set HIGH for normal operation. By setting the OPT@ pin to LOW it disables the transmitter drivers and reduces the power consumption of the circuit by approximately 125 mW. Recommended settings for OPT! and LBO pins SPEED CABLE OPT! LBO DS3/STS1 < 225' HI HI DS3/STS1 > 225' HI LOW E3 ALL LOW LOW © 2005 Teridian Semiconductor Corporation Rev 3.0 Page: 4 of 11 Note: © 2005 Teridian Semiconductor Corporation NC pins should be tied to the ground pin indicated by the trailing letter. OUTPUT DRIVER PULSE SHAPER 2 PULSE SHAPER 1 REFERENCE CURRENT GENERATOR VAR AMP GAIN FIGURE 1: Functional Diagram PULSE GEN. PULSE GEN. VR1 AMP 78P7200 E3/DS3/STS-1 Line Interface Unit Rev 3.0 78P7200 E3/DS3/STS-1 Line Interface Unit PIN DESCRIPTION RECEIVER NAME TYPE DESCRIPTION LIN+, LIN- I Differential inputs, transformer-coupled from coax cable. RPOS O Unipolar receiver output, active as result of positive pulse at inputs. RNEG O Unipolar receiver output, active as result of negative pulse at inputs. RCLK O Recovered Clock from line data. LOWSIG O Low signal logic output indicating that input signal is less than threshold value. TPOS I Unipolar transmitter data input, active high. TNEG I Unipolar transmitter data input, active high. TCLK I Transmitter clock input, active high. LOUT+ O Output to transformer for positive data pulses. LOUT- O Output to transformer for negative data pulses. LBO I Transmitter line buildout control. Set low for all E3 or for DS3/STS-1 cable of 225' or longer. Set high for short DS3/ STS-1 cable. OPT! I Transmit option 1. Set high for DS3/STS-1 and set low for E3. OPT@ I Transmit option 2. Disables output driver and reduces output bias current when low. Set high for normal transmit operation. TRANSMITTER EXTERNAL COMPONENT CONNECTION RFO I Resistor connected to RGND adjusts the center frequency of receiver phase locked loop oscillator and the transmitter pulse width and amplitude. LF1, LF2 - Resistor-capacitor loop filter network to establish bandwidth of phase locked loop. CPD - Capacitor to RVcc that is connected to peak detector node to reduce signaldependent ripple on that node. TVcc - 5V power supply for transmit circuits. RVcc - 5V power supply for receive circuits. DVcc - 5V power supply for receive logic circuits. TGND - Ground return for transmit circuits. RGND - Ground return for receive circuits. DGND - Ground return for receive logic circuits. NCR - No connect, Tie to Receiver Ground (RGND). NCT - No connect, Tie to Transmitter Ground (TGND). NCD - No connect, Tie to Digital Ground. POWER Page: 5 of 11 © 2005 Teridian Semiconductor Corporation Rev 3.0 78P7200 E3/DS3/STS-1 Line Interface Unit ELECTRICAL SPECIFICATIONS (TA = -40°C to 85°C, Vcc = 5V ±5%, unless otherwise noted.) Currents flowing into the chip are positive. Current maximums are currents with the largest absolute value. Operation above absolute maximum ratings may permanently damage the device. ABSOLUTE MAXIMUM RATINGS PARAMETER RATING Positive 5V supply: TVcc, RVcc, DVcc 6V Storage Temperature -65 to 150°C Soldering Temperature (10 sec.) 260 °C Ambient Operating Temperature, TA -40 to +85°C Pin Ratings: LOUT+, LOUT- Vcc -2 to Vcc +2V LIN+, LIN-, TPOS, TNEG, TCLK, LBO, RFO, LF2, LF1, OPT!, OPT@ Pins -0.3 to Vcc +0.3V RPOS, RNEG, RCLK, LOWSIG Pins -0.3 to Vcc +0.3V or +12 mA SUPPLY CURRENTS AND POWER PARAMETER Supply Current Power Dissipation CONDITIONS ICC P Outputs unloaded, normal operation, transmit and receive all 1's pattern MIN NOM MAX UNIT 155 190 mA 0.93 W Outputs unloaded, TA = 85°C EXTERNAL COMPONENTS (Common to STS-1/DS3/E3, nominal value) Loop filter resistor RLF1 1% tolerance 6.04 kΩ Loop filter resistor RLF2 1% 100 kΩ Loop filter capacitor CLF1 5% 0.22 µF CPD 10% 0.022 µF Peak detector capacitor Input Filter R1, R2 1% 75 Ω Input Filter C1 5% 1000 pF Input Filter C2 5% 82 pF Input Filter C3 20% (See Note) Input Filter L1 5% 0.47 µH Input Filter L2 5% 6.8 µH T1, T2 3% 1:2 Receiver Termination ResistorRTR 1% 422 Transformer Turns Ratio 0.01 µF Ω Note: Optional capacitor to reduce common mode noise. Page: 6 of 11 © 2005 Teridian Semiconductor Corporation Rev 3.0 78P7200 E3/DS3/STS-1 Line Interface Unit EXTERNAL COMPONENTS (Dependent on speed, nominal Value) STS-1 DS3 E3 Loop center frequency resistor RFO 1% tolerance 4.53 5.23 6.81 kΩ Transmit termination capacitor CTT 5% (Note 2) 10 10 3 pF Transmit termination resistor 1% 301 301 604 Ω RTT Note 1: Optional capacitor to reduce common mode noise. Note 2: CTT value depends on the PC board design. Nominal values are selected for 78P7200 Demo Board. DIGITAL INPUTS AND OUTPUTS (CMOS-compatible pins: LOWSIG, RPOS, RNEG, RCLK, TPOS, TNEG, TCLK, LBO, OPT!.) Currents flowing into the chip are positive. Current maximums are currents with the largest absolute value. PARAMETER CONDITIONS MIN NOM MAX UNIT Input low voltage VIL -0.3 1.5 V Input high voltage VIH 3.5 Vcc +0.3 V Input low current IIL VIL = 1.5V -5 5 µA Input high current IIH VIH = 3.5V -5 5 µA 0.4 V Output low voltage VOL IOL = 0.1 mA Output high voltage VOH IOH = -0.1 mA 4 V OPT@ CHARACTERISTICS Input low voltage VIL Input high voltage VIH IIL = 0.4 mA 0.5 2 V V RECEIVER All of the measurements for the receiver are made with the following conditions unless otherwise stated: 1. The input signal is transformer coupled as shown in Figure 1. 2. RFO = 5.23 kΩ for DS3, 6.81 kΩ for E3 and 4.53 kΩ for STS-1. Input signal voltage Short cable (3’) Input Resistance VIN RIN Receive data detection threshold VDTH Receive data low signal threshold VLOW Receive data low signal delay TLOW Page: 7 of 11 Input AC-Coupled CPD = 0.022 µF ±0.045 ±1.2 V CPD not used ±0.090 ±1.2 V 30 kΩ Input at device's common mode voltage 15 Relative to peak amplitude for 22.37/17.18/25.92 MHz sinusoidal input 20 50 ±20 CPD = 0.022 µF CPD not used VIN(max) = ±250 mV © 2005 Teridian Semiconductor Corporation % ±50 500 0.5 mV µs 3 µs Rev 3.0 78P7200 E3/DS3/STS-1 Line Interface Unit RECEIVER (continued) PARAMETER CONDITIONS Receive clock period TRCF Receive clock pulse width TRC MIN NOM MAX UNIT DS3 22.35 ns STS-1 19.29 ns E3 29.1 ns DS3 12.24 ns STS-1 9.65 ns E3 14.55 ns Receive clock positive transition time TRCPT CL = 15 pF 4.5 6 ns Receive clock negative transition time TRCNT CL = 15 pF 4.5 6 ns Positive or negative TRDP/ TRDN receive data pulse width Receive data set-up timeTRDPS/ TRDNS DS3 22.35 ns STS-1 19.29 ns E3 29.1 ns DS3 5 STS-1 Receive data hold timeTRDPH/ TRDNH DS3 5 11.18 Clock Recovery Phase Detector Gain Clock Recovery Phase Locked Oscillator Gain KD 13.7 ns 9.65 ns 14.55 ns 60 - 300 kHz DS3 STS-1 0.3 UIPP 10 - 800 kHz E3 0.15 UIPP 0.20 UIPP 10 Hz to 2.3 kHz STS-1, DS3 10 UIPP 100 Hz to 10 kHz E3 10 UIPP DS3 72 10 - 800 kHz E3 VIN (min) = ±90 mV, short cable Receive input jitter tolerance low frequency (See Note) ns 14.55 5 ns ns 5 E3 13.7 9.65 E3 STS-1 Receive input jitter tolerance high frequency (See Note) 11.18 All 1's data pattern, KD = 0.418/RFO 80 88 µA/Rad STS-1 92 µA/Rad E3 62 µA/Rad KO 12 14.5 17 Mrad/ sec. -Volt Note: UI (Unit Interval) defined as 22.35 ns for DS3, 29.1 ns for E3 and 19.29 ns for STS-1. Page: 8 of 11 © 2005 Teridian Semiconductor Corporation Rev 3.0 78P7200 E3/DS3/STS-1 Line Interface Unit TRANSMITTER All of the measurements for the transmitter are made with the following conditions unless otherwise stated: 1. Transmit pulse characteristics are obtained using a line transformer which has the characteristics, similar to Pulse Engineering PE-65969, Mini circuit T4-1, Valor PT5045. 2. The circuit is connected as in Figure 1. PARAMETER Transmit clock repetition Transmit clock pulse width CONDITIONS TTCF TTC MIN NOM MAX UNIT DS3 22.35 ns STS-1 19.29 ns E3 29.1 ns DS3 11.18 ns STS-1 9.65 ns E3 14.55 ns Transmit clock negative transition time TTCNT 4.5 6 ns Transmit clock positive transition time TTCPT 4.5 6 ns Transmit data set-up time TTPDS Transmit data hold time Transmit negative line pulse width 3.5 11.18 ns STS-1 3.5 9.65 ns TTNDS E3 3.5 14.55 ns TTPDH DS3 3.5 11.18 ns STS-1 3.5 9.65 ns E3 3.5 14.55 ns 10.62 11.18 TTNDH Transmit positive line pulse width DS3 TTPL TTNL Transmit line pulse waveshape Measured at transformer, Measured at transformer, LBO = High DS3 12 ns LBO = High STS-1 9.65 ns LBO = Low E3 14.5 ns LBO = High DS3 10.62 11.18 12 ns LBO = High STS-1 9.65 ns LBO = Low 14.5 ns E3 See Note 1 for DS3 See Note 2 for E3 See Note 3 for STS-1 Note 1: Characteristics are in accordance with ANSI T1.102 - 1993 Table 4 and Figure 4. Note 2: Characteristics are in accordance with ITU-T G.703 - 1991 Figure 17. Note 3: Characteristics are in accordance with ANSI T1.102 - 1993 Figure A.1. Page: 9 of 11 © 2005 Teridian Semiconductor Corporation Rev 3.0 78P7200 E3/DS3/STS-1 Line Interface Unit RECEIVE LINE INPUT (REF) TRCF TRC TRCPT TRCNT REC CLOCK RCLK TRDPS REC POS OUT RPOS TRDPH TRDP TRDNS REC NEG OUT RNEG TRDNH TRDN FIGURE 2: Receive Waveforms TTCF TTC TTCPT TTCNT TRANSMIT CLOCK IN TCLK TTPDS TTPDH TRANSMIT POS IN TPOS TTNDS TRANSMIT NEG IN TNEG TTNDH TTPL VP TRANSMIT LINE OUTPUT 0.5VP 0.5VN VN TTNL FIGURE 3: Transmit Waveforms Page: 10 of 11 © 2005 Teridian Semiconductor Corporation Rev 3.0 78P7200 E3/DS3/STS-1 Line Interface Unit PACKAGE PIN DESIGNATIONS LIN- NCR LIN+ CPD LOWSIG NCR DVCC CAUTION: Use handling procedures necessary for a static sensitive component. (Top View) 4 3 2 1 28 27 26 RFO 5 25 RPOS RGND 6 24 RNEG RVCC 7 23 RCLK TGND 8 22 DGND LOUT+ 9 21 NCD NCT 10 20 LF2 LOUT- 11 19 LF1 OPT@ TVCC TCLK TNEG TPOS OPT! LBO 12 13 14 15 16 17 18 78P7200 28-Pin PLCC ORDERING INFORMATION PART DESCRIPTION 28-Pin PLCC, Silicon Revision A04 28-Pin PLCC – Lead-Free, Silicon Revision A04 ORDER NUMBER 78P7200-IH 78P7200-IH/F PACKAGE MARK 78P7200-IH xxxxxxP4 78P7200-IH xxxxxxP4F No responsibility is assumed by Teridian Semiconductor Corporation for use of this product nor for any infringements of patents and trademarks or other rights of third parties resulting from its use. No license is granted under any patents, patent rights or trademarks of Teridian Semiconductor Corporation and the company reserves the right to make changes in specifications at any time without notice. Accordingly, the reader is cautioned to verify that you are referencing the most current data sheet before placing orders. To do so, see our web site at http://www.teridiansemi.com or contact your local Teridian Semiconductor representative. Teridian Semiconductor Corp., 6440 Oak Canyon Rd., Irvine, CA 92618-5201 TEL (714) 508-8800, FAX (714) 508-8877, http://www.teridiansemi.com Page: 11 of 11 © 2005 Teridian Semiconductor Corporation Rev 3.0