IR2110E6

PD - 60065A
IR2110E6
HIGH AND LOW SIDE DRIVER
Product Summary
Features
n Floating channel designed for bootstrap operation
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
n Gate drive supply range from 10 to 20V
n Undervoltage lockout for both channels
n Separate logic supply range from 5 to 20V
Logic and power ground ±5V offset
n CMOS Schmitt-triggered inputs with pull-down
n Cycle by cycle edge-triggered shutdown logic
n Matched propagation delay for both channels
n Outputs in phase with inputs
VOFFSET
600V max.
IO+/-
2A / 2A
VOUT
10 - 20V
ton/off (typ.)
120 & 94 ns
Delay Matching
10 ns
Description
The IR2110E6 is a high voltage, high speed power MOSFET
and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune
CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or
LSTTL outputs. The output drivers feature a high pulse
current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in
high frequency applications. The floating channel can be
used to drive an N-channel power MOSFET or IGBT in the
high side configuration which operates up to 600 volts.
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All
voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown
in Figures 28 through 35.
Symbol
VB
VS
VHO
VCC
VLO
VDD
VSS
VIN
dVS/dt
PD
RthJA
Tj
TS
TL
Parameter
High Side Floating Supply Absolute Voltage
High Side Floating Supply Offset Voltage
High Side Output Voltage
Low Side Fixed Supply Voltage
Low Side Output Voltage
Logic Supply Voltage
Logic Supply Offset Voltage
Logic Input Voltage (HIN, LIN & SD)
Allowable Offset Supply Voltage Transient (Fig. 16)
Package Power Dissipation @ TA ≤ = 25°C (Fig. 19)
Thermal Resistance, Junction to Ambient
Junction Temperature
Storage Temperature
Package Mounting Surface Temperature
Weight
www.irf.com
Min.
Max.
-0.5
VS + 20
—
600
VS -0.5
VB + 0.5
-0.5
20
-0.5
VCC + 0.5
-0.5
VSS + 20
VCC - 20
VCC + 0.5
VSS - 0.5
VDD + 0.5
—
50
—
1.6
—
125
-55
125
-55
150
300 (for 5 seconds)
0.45 (typical)
Units
V
V/ns
W
°C/W
°C
g
1
9/11/98
IR2110E6
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical
ratings at other bias conditions are shown in Figures 36 and 37.
Symbol
VB
VS
VHO
VCC
VLO
VDD
VSS
VIN
Parameter
High Side Floating Supply Absolute Voltage
High Side Floating Supply Offset Voltage
High Side Output Voltage
Low Side Fixed Supply Voltage
Low Side Output Voltage
Logic Supply Voltage
Logic Supply Offset Voltage
Logic Input Voltage (HIN, LIN & SD)
Min.
Max.
VS + 10
-4
VS
10
0
VSS + 5
-5
VSS
VS + 20
600
VB
20
VCC
VSS + 20
5
VDD
Units
V
Dynamic Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, CL = 1000 pF, TA = 25°C and VSS = COM unless otherwise specified.
The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.
Symbol Parameter
Min
Tj = -55 to
125°C
Typ. Max. Min. Max Units
ton
toff
tsd
tr
tf
Mton
Mtoff
DHton
DLton
—
—
—
—
—
—
—
16
16
120
94
110
25
17
—
—
26
26
Tj = 25°C
Turn-On Propagation Delay
Turn-Off Propagation Delay
Shutdown Propagation Delay
Turn-On Rise Time
Turn-Off Fall Time
Delay Matching, HS & LS Turn-On
Delay Matching, HS & LS Turn-Off
Deadtime, LS Turn-Off to HS Turn-On
Deadtime, LS Turn-Off to LS Turn-On
Typical Connection
150
125
140
35
25
10
10
36
36
—
—
—
—
—
—
—
—
—
260
220
235
50
40
—
—
—
—
ns
Test Conditions
VS = 0V
VS = 600V
VS = 600V
CL = 1000pf
CL = 1000pf
(Hton-Lton)
(Htoff-Ltoff)
(Hton-Ltoff)
(Lton-Htoff)
Ref.
Fig. 12
Fig. 13
Fig. 14
Fig. 15
up to 500V
HO
VDD
VDD
VB
HIN
HIN
VS
SD
SD
LIN
LIN
V CC
V SS
VSS
COM
VCC
2
TO
LOAD
LO
www.irf.com
IR2110E6
Static Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters
are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are
referenced to COM and are applicable to the respective output leads: HO or LO.
Tj = -55 to
125°C
Tj = 25°C
Symbol Parameter
Min
VIH
Logic “1” Input Voltage
VIL
Logic “0” Input Voltage
3.1
6.4
9.5
12.6
—
—
—
—
Typ. Max. Min. Max Units
—
—
—
—
—
—
—
—
—
—
—
—
1.8
3.8
6
8.3
3.3
6.8
10
13.3
—
—
—
—
—
—
—
—
1.7
3.6
5.7
7.9
V
V
W
V
Test Conditions
VDD = 5V
VDD = 10V
VDD = 15V
VDD = 20V
VDD = 5V
VDD = 10V
VDD = 15V
VDD = 20
Fig. 4
VOH
High Level Output Voltage, VBIAS - VO
—
0.7
1.2
—
1.5
VOL
Low Level Output Voltage, VO
—
—
0.1
—
0.1
ILK
Offset Supply Leakage Current
—
—
50
—
250
VB = VS = 600V
Fig. 5
IQBS
Quiescent VBS Supply Current
—
125
230
—
500
VIN = VIH or VIL
Fig. 6
IQCC
Quiescent VCC Supply Current
—
180
340
—
600
VIN = VIH or VIL
Fig. 7
IQDD
Quiescent VDD Supply Current
—
5
30
—
60
IIN+
Logic “1” Input Bias Current
—
15
40
—
70
VIN = 15V
IIN-
Logic “0” Input Bias Current
—
—
1
—
10
VIN = 0V
VBSUV+ VBS Supply Undervoltage Positive
Going Threshold
VBSUV- VBS Supply Undervoltage Negative
Going Threshold
VCCUV+ VCC Supply Undervoltage Positive
Going Threshold
VCCUV- VCC Supply Undervoltage Negative
Going Threshold
IO+
Output High Short Circuit Pulsed
Current
IOOutput Low Short Circuit Pulsed
Current
7.5
8.7
9.7
—
—
7.0
8.3
9.4
—
—
7.4
8.6
9.6
—
—
7.0
8.2
9.4
—
—
2
—
—
—
—
2
—
—
—
—
www.irf.com
V
µA
VIN = VIH, IO = 0A
Ref.
VIN = VIL, IO = 0A
VIN = VIH or VIL
Fig. 8
Fig. 9
V
A
Fig. 10
VOUT = 0V, VIN = 15V
PW < = 10 µs
VOUT = 15V, VIN = 0V
PW < = 10 µs
3
IR2110E6
Device Information
Process & Design Rule
Transistor Count
Die Size
Die Outline
Thickness of Gate Oxide
Connections
First
Layer
Second
Layer
Contact Hole Dimension
Insulation Layer
Passivation
(1)
Passivation
(2)
Method of Saw
Method of Die Bond
Wire Bond
Leadframe
Package
Remarks:
4
HVDCMOS 4.0 µm
220
100 X 117 X 26 (mil)
Material
Width
Spacing
Thickness
Material
Width
Spacing
Thickness
Material
Thickness
Material
Thickness
Material
Thickness
Method
Material
Material
Die Area
Lead Plating
Types
Materials
800Å
Poly Silicon
4 µm
6 µm
5000Å
Al - Si (Si: 1.0% ±0.1%)
6 µm
9 µm
20,000Å
8 µm X 8 µm
PSG (SiO2)
1.5 µm
PSG (SiO2)
1.5 µm
Proprietary*
Proprietary*
Full Cut
Ablebond 84 - 1
Thermo Sonic
Au (1.0 mil / 1.3 mil)
Cu
Ag
Pb : Sn (37 : 63)
14 & 16 Lead PDIP / 16 Lead SOIC
EME6300 / MP150 / MP190
* Patent Pending
www.irf.com
IR2110E6
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
50%
50%
HIN
LIN
ton
toff
tr
90%
HO
LO
Figure 3. Switching Time Test Circuit
tf
90%
10%
10%
Figure 4. Switching Time Waveform Definition
HIN
LIN
50%
50%
SD
LO
50%
HO
10%
tsd
HO
LO
MT
MT
90%
90%
LO
Figure 3. Shutdown Waveform Definitions
www.irf.com
HO
Figure 6. Delay Matching Waveform Definitions
5
IR2110E6
250
250
200
200
Turn-On Delay Time (ns)
Turn-On Delay Time (ns)
Max.
150
Max.
100
Typ.
50
150
Typ.
100
50
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
16
18
20
Figure 7B. Turn-On Time vs. Voltage
250
250
200
200
Turn-Off Delay Time (ns)
Turn-Off Delay Time (ns)
Figure 7A. Turn-On Time vs. Temperature
150
Max.
100
Typ.
50
Max.
150
Typ.
100
50
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 8A. Turn-Off Time vs. Temperature
Figure 8B. Turn-Off Time vs. Voltage
250
250
200
200
Max.
Shutdown Delay time (ns)
Shutdown Delay Time (ns)
14
VBIAS Supply Voltage (V)
150
Max.
100
Typ.
50
Typ.
100
50
0
0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 9A. Shutdown Time vs. Temperature
6
150
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 9B. Shutdown Time vs. Voltage
www.irf.com
100
100
80
80
Turn-On Rise Time (ns)
Turn-On Rise Time (ns)
IR2110E6
60
40
Max.
60
Max.
40
Typ.
Typ.
20
20
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
16
18
20
Figure 10B. Turn-On Rise Time vs. Voltage
50
50
40
40
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)
Figure 10A. Turn-On Rise Time vs. Temperature
30
Max.
20
Typ.
10
30
20
Max.
Typ.
10
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 11A. Turn-Off Fall Time vs. Temperature
Figure 11B. Turn-Off Fall Time vs. Voltage
15.0
15.0
12.0
12.0
Logic "1" Input Threshold (V)
Logic "1" Input Threshold (V)
14
VBIAS Supply Voltage (V)
Min.
9.0
6.0
3.0
9.0
6.0
Min.
3.0
0.0
0.0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 12A. Logic “1” Input Threshold vs. Temperature
www.irf.com
5
7.5
10
12.5
15
17.5
20
VDD Logic Supply Voltage (V)
Figure 12B. Logic “1” Input Threshold vs. Voltage
7
15.0
15.0
12.0
12.0
Logic "0" Input Threshold (V)
Logic "0" Input Threshold (V)
IR2110E6
9.0
6.0
Max.
3.0
9.0
6.0
3.0
0.0
Max.
0.0
-50
-25
0
25
50
75
100
125
5
7.5
Temperature (°C)
12.5
15
17.5
20
Figure 13B. Logic “0” Input Threshold vs. Voltage
5.00
5.00
4.00
4.00
High Level Output Voltage (V)
High Level Output Voltage (V)
Figure 13A. Logic “0” Input Threshold vs. Temperature
3.00
2.00
Max.
3.00
2.00
Max.
1.00
1.00
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 14A. High Level Output vs. Temperature
Figure 14B. High Level Output vs. Voltage
1.00
15.0
0.80
12.0
Logic "1" Input Threshold (V)
Low Level Output Voltage (V)
10
VDD Logic Supply Voltage (V)
0.60
0.40
9.0
6.0
Min.
3.0
0.20
Max.
0.0
0.00
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 15A. Low Level Output vs. Temperature
8
125
5
7.5
10
12.5
15
17.5
20
VDD Logic Supply Voltage (V)
Figure 15B. Low Level Output vs. Voltage
www.irf.com
500
500
400
400
Offset Supply Leakage Current (µA)
Offset Supply Leakage Current (µA)
IR2110E6
300
200
100
300
200
100
Max.
Max.
0
0
-50
-25
0
25
50
75
100
125
0
100
Temperature (°C)
Figure 16A. Offset Supply Current vs. Temperature
300
400
500
Figure 16B. Offset Supply Current vs. Voltage
500
500
400
400
VBS Supply Current (µA)
VBS Supply Current (µA)
200
VB Boost Voltage (V)
300
Max.
200
300
200
Max.
Typ.
100
100
0
Typ.
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
Figure 17A. VBS Supply Current vs. Temperature
16
18
20
Figure 17B. VBS Supply Current vs. Voltage
625
625
500
500
VCC Supply Current (µA)
VCC Supply Current (µA)
14
VBS Floating Supply Voltage (V)
375
Max.
250
375
250
Max.
Typ.
125
125
0
Typ.
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 18A. VCC Supply Current vs. Temperature
www.irf.com
10
12
14
16
18
20
VCC Fixed Supply Voltage (V)
Figure 18B. VCC Supply Current vs. Voltage
9
100
100
80
80
VDD Supply Current (µA)
VDD Supply Current (µA)
IR2110E6
60
40
Max.
60
40
Max.
20
20
Typ.
Typ.
0
0
-50
-25
0
25
50
75
100
125
5
7.5
Figure 19A. VDD Supply Current vs. Temperature
12.5
15
17.5
20
Figure 19B. VDD Supply Current vs. Voltage
100
80
80
Logic "1" Input Bias Current (µA)
100
Logic "1" Input Bias Current (µA)
10
VDD Logic Supply Voltage (V)
Temperature (°C)
60
40
Max.
20
60
40
Max.
20
Typ.
T yp.
0
0
-50
-25
0
25
50
75
100
5
125
7.5
5.00
5.00
4.00
4.00
3.00
2.00
Max.
0.00
15
17.5
20
3.00
2.00
Max.
1.00
0.00
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 21A. Logic “0” Input Current vs. Temperature
10
12.5
Figure 20B. Logic “1” Input Current vs. Voltage
Logic "0" Input Bias Current (µA)
Logic "0" Input Bias Current (µA)
Figure 20A. Logic “1” Input Current vs. Temperature
1.00
10
VDD Logic Supply Voltage (V)
Temperature (°C)
5
7.5
10
12.5
15
17.5
20
VDD Logic Supply Voltage (V)
Figure 21B. Logic “0” Input Current vs. Voltage
www.irf.com
IR2110E6
11.0
10.0
10.0
VBS Undervoltage Lockout - (V)
VBS Undervoltage Lockout + (V)
11.0
Max.
9.0
Typ.
8.0
Min.
7.0
Max.
9.0
Typ.
8.0
7.0
6.0
Min.
6.0
-50
-25
0
25
50
75
100
125
-50
-25
0
Temperature (°C)
Figure 22. VBS Undervoltage (+) vs. Temperature
10.0
100
125
10.0
VCC Undervoltage Lockout - (V)
VCC Undervoltage Lockout + (V)
75
11.0
Max.
9.0
Typ.
8.0
Min.
7.0
Max.
9.0
Typ.
8.0
7.0
6.0
Min.
6.0
-50
-25
0
25
50
75
100
125
-50
-25
0
Temperature (°C)
50
75
100
125
Figure 25. VCC Undervoltage (-) vs. Temperature
5.00
4.00
4.00
Output Source Current (A)
5.00
Typ.
Min.
2.00
1.00
0.00
-50
25
Temperature (°C)
Figure 24. VCC Undervoltage (+) vs. Temperature
Output Source Current (A)
50
Figure 23. VBS Undervoltage (-) vs. Temperature
11.0
3.00
25
Temperature (°C)
3.00
2.00
Typ.
1.00
Min.
0.00
-25
0
25
50
75
100
125
Temperature (°C)
Figure 26A. Output Source Current vs. Temperature
www.irf.com
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 26B. Output Source Current vs. Voltage
11
5.00
5.00
4.00
4.00
3.00
Output Sink Current (A)
Output Sink Current (A)
IR2110E6
Typ.
Min.
2.00
1.00
0.00
-50
3.00
2.00
Typ.
1.00
Min.
0.00
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 27A. Output Sink Current vs. Temperature
Figure 27B. Output Sink Current vs. Voltage
320V
150
320V
150
125
125
100
75
10V
50
Junction Temperature (°C)
Junction Temperature (°C)
140V
140V
25
0
1E+2
100
75
10V
50
25
1E+3
1E+4
1E+5
0
1E+2
1E+6
1E+3
Frequency (Hz)
Figure 28. IR2110 TJ vs. Frequency (IRFBC20)
Ω , VCC = 15V
RGATE = 33Ω
320V
150
140V
320V
150
10V
75
50
25
Junction Temperature (°C)
Junction Temperature (°C)
1E+6
140V
125
100
10V
100
75
50
25
1E+3
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 30. IR2110 TJ vs. Frequency (IRFBC40)
Ω , VCC = 15V
RGATE = 15Ω
12
1E+5
Figure 29. IR2110 TJ vs. Frequency (IRFBC30)
Ω , VCC = 15V
RGATE = 22Ω
125
0
1E+2
1E+4
Frequency (Hz)
0
1E+2
1E+3
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 31. IR2110 TJ vs. Frequency (IRFPE50)
Ω , VCC = 15V
RGATE = 10Ω
www.irf.com
IR2110E6
320V
150
140V
100
10V
75
50
25
100
10V
75
50
25
0
1E+2
1E+3
1E+4
1E+5
0
1E+2
1E+6
1E+3
Frequency (Hz)
1E+5
1E+6
Figure 33. IR2110S TJ vs. Frequency (IRFBC30)
Ω , VCC = 15V
RGATE = 22Ω
320V 140V
150
125
320V 140V 10V
150
125
10V
Junction Temperature (°C)
Junction Temperature (°C)
1E+4
Frequency (Hz)
Figure 32. IR2110S TJ vs. Frequency (IRFBC20)
Ω , VCC = 15V
RGATE = 33Ω
100
75
50
25
100
75
50
25
0
1E+2
1E+3
1E+4
1E+5
0
1E+2
1E+6
1E+3
Frequency (Hz)
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 34. IR2110S TJ vs. Frequency (IRFBC40)
Ω , VCC = 15V
RGATE = 15Ω
Figure 35. IR2110S TJ vs. Frequency (IRFPE50)
Ω , VCC = 15V
RGATE = 10Ω
0.0
20.0
VSS Logic Supply Offset Voltage (V)
-2.0
VS Offset Supply Voltage (V)
140V
125
Junction Temperature (°C)
125
Junction Temperature (°C)
320V
150
Typ.
-4.0
-6.0
-8.0
-10.0
16.0
12.0
8.0
Typ.
4.0
0.0
10
12
14
16
18
VBS Floating Supply Voltage (V)
Figure 36. Maximum VS Negative Offset vs.
VBS Supply Voltage
www.irf.com
20
10
12
14
16
18
20
VCC Fixed Supply Voltage (V)
Figure 37. Maximum VSS Positive Offset vs.
VCC Supply Voltage
13
IR2110E6
Functional Block Diagram
VB
UV
DETECT
VDD
R Q
S
HIN
HV
LEVEL
SHIFT
VDD /VCC
LEVEL
SHIFT
PULSE
FILTER
PULSE
GEN
R
R
Q
HO
S
VS
SD
VCC
LIN
S
VDD /VCC
LEVEL
SHIFT
R Q
UV
DETECT
LO
DELAY
COM
VSS
Lead Definitions
Lead
Symbol Description
VDD
Logic supply
HIN
Logic input for high side gate driver output (HO), in phase
SD
Logic input for shutdown
LIN
Logic input for low side gate driver output (LO), in phase
VSS
Logic ground
VB
High side floating supply
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side supply
LO
Low side gate drive output
COM
Low side return
14
www.irf.com
IR2110E6
Case Outline and Dimensions — Leadless Chip Carrier (LCC) Package
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 221 8371
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936
http://www.irf.com/
Data and specifications subject to change without notice.
9/98
www.irf.com
15