PD - 60065A IR2110E6 HIGH AND LOW SIDE DRIVER Product Summary Features n Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune n Gate drive supply range from 10 to 20V n Undervoltage lockout for both channels n Separate logic supply range from 5 to 20V Logic and power ground ±5V offset n CMOS Schmitt-triggered inputs with pull-down n Cycle by cycle edge-triggered shutdown logic n Matched propagation delay for both channels n Outputs in phase with inputs VOFFSET 600V max. IO+/- 2A / 2A VOUT 10 - 20V ton/off (typ.) 120 & 94 ns Delay Matching 10 ns Description The IR2110E6 is a high voltage, high speed power MOSFET and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 28 through 35. Symbol VB VS VHO VCC VLO VDD VSS VIN dVS/dt PD RthJA Tj TS TL Parameter High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage High Side Output Voltage Low Side Fixed Supply Voltage Low Side Output Voltage Logic Supply Voltage Logic Supply Offset Voltage Logic Input Voltage (HIN, LIN & SD) Allowable Offset Supply Voltage Transient (Fig. 16) Package Power Dissipation @ TA ≤ = 25°C (Fig. 19) Thermal Resistance, Junction to Ambient Junction Temperature Storage Temperature Package Mounting Surface Temperature Weight www.irf.com Min. Max. -0.5 VS + 20 — 600 VS -0.5 VB + 0.5 -0.5 20 -0.5 VCC + 0.5 -0.5 VSS + 20 VCC - 20 VCC + 0.5 VSS - 0.5 VDD + 0.5 — 50 — 1.6 — 125 -55 125 -55 150 300 (for 5 seconds) 0.45 (typical) Units V V/ns W °C/W °C g 1 9/11/98 IR2110E6 Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figures 36 and 37. Symbol VB VS VHO VCC VLO VDD VSS VIN Parameter High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage High Side Output Voltage Low Side Fixed Supply Voltage Low Side Output Voltage Logic Supply Voltage Logic Supply Offset Voltage Logic Input Voltage (HIN, LIN & SD) Min. Max. VS + 10 -4 VS 10 0 VSS + 5 -5 VSS VS + 20 600 VB 20 VCC VSS + 20 5 VDD Units V Dynamic Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, CL = 1000 pF, TA = 25°C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3. Symbol Parameter Min Tj = -55 to 125°C Typ. Max. Min. Max Units ton toff tsd tr tf Mton Mtoff DHton DLton — — — — — — — 16 16 120 94 110 25 17 — — 26 26 Tj = 25°C Turn-On Propagation Delay Turn-Off Propagation Delay Shutdown Propagation Delay Turn-On Rise Time Turn-Off Fall Time Delay Matching, HS & LS Turn-On Delay Matching, HS & LS Turn-Off Deadtime, LS Turn-Off to HS Turn-On Deadtime, LS Turn-Off to LS Turn-On Typical Connection 150 125 140 35 25 10 10 36 36 — — — — — — — — — 260 220 235 50 40 — — — — ns Test Conditions VS = 0V VS = 600V VS = 600V CL = 1000pf CL = 1000pf (Hton-Lton) (Htoff-Ltoff) (Hton-Ltoff) (Lton-Htoff) Ref. Fig. 12 Fig. 13 Fig. 14 Fig. 15 up to 500V HO VDD VDD VB HIN HIN VS SD SD LIN LIN V CC V SS VSS COM VCC 2 TO LOAD LO www.irf.com IR2110E6 Static Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Tj = -55 to 125°C Tj = 25°C Symbol Parameter Min VIH Logic “1” Input Voltage VIL Logic “0” Input Voltage 3.1 6.4 9.5 12.6 — — — — Typ. Max. Min. Max Units — — — — — — — — — — — — 1.8 3.8 6 8.3 3.3 6.8 10 13.3 — — — — — — — — 1.7 3.6 5.7 7.9 V V W V Test Conditions VDD = 5V VDD = 10V VDD = 15V VDD = 20V VDD = 5V VDD = 10V VDD = 15V VDD = 20 Fig. 4 VOH High Level Output Voltage, VBIAS - VO — 0.7 1.2 — 1.5 VOL Low Level Output Voltage, VO — — 0.1 — 0.1 ILK Offset Supply Leakage Current — — 50 — 250 VB = VS = 600V Fig. 5 IQBS Quiescent VBS Supply Current — 125 230 — 500 VIN = VIH or VIL Fig. 6 IQCC Quiescent VCC Supply Current — 180 340 — 600 VIN = VIH or VIL Fig. 7 IQDD Quiescent VDD Supply Current — 5 30 — 60 IIN+ Logic “1” Input Bias Current — 15 40 — 70 VIN = 15V IIN- Logic “0” Input Bias Current — — 1 — 10 VIN = 0V VBSUV+ VBS Supply Undervoltage Positive Going Threshold VBSUV- VBS Supply Undervoltage Negative Going Threshold VCCUV+ VCC Supply Undervoltage Positive Going Threshold VCCUV- VCC Supply Undervoltage Negative Going Threshold IO+ Output High Short Circuit Pulsed Current IOOutput Low Short Circuit Pulsed Current 7.5 8.7 9.7 — — 7.0 8.3 9.4 — — 7.4 8.6 9.6 — — 7.0 8.2 9.4 — — 2 — — — — 2 — — — — www.irf.com V µA VIN = VIH, IO = 0A Ref. VIN = VIL, IO = 0A VIN = VIH or VIL Fig. 8 Fig. 9 V A Fig. 10 VOUT = 0V, VIN = 15V PW < = 10 µs VOUT = 15V, VIN = 0V PW < = 10 µs 3 IR2110E6 Device Information Process & Design Rule Transistor Count Die Size Die Outline Thickness of Gate Oxide Connections First Layer Second Layer Contact Hole Dimension Insulation Layer Passivation (1) Passivation (2) Method of Saw Method of Die Bond Wire Bond Leadframe Package Remarks: 4 HVDCMOS 4.0 µm 220 100 X 117 X 26 (mil) Material Width Spacing Thickness Material Width Spacing Thickness Material Thickness Material Thickness Material Thickness Method Material Material Die Area Lead Plating Types Materials 800Å Poly Silicon 4 µm 6 µm 5000Å Al - Si (Si: 1.0% ±0.1%) 6 µm 9 µm 20,000Å 8 µm X 8 µm PSG (SiO2) 1.5 µm PSG (SiO2) 1.5 µm Proprietary* Proprietary* Full Cut Ablebond 84 - 1 Thermo Sonic Au (1.0 mil / 1.3 mil) Cu Ag Pb : Sn (37 : 63) 14 & 16 Lead PDIP / 16 Lead SOIC EME6300 / MP150 / MP190 * Patent Pending www.irf.com IR2110E6 Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit 50% 50% HIN LIN ton toff tr 90% HO LO Figure 3. Switching Time Test Circuit tf 90% 10% 10% Figure 4. Switching Time Waveform Definition HIN LIN 50% 50% SD LO 50% HO 10% tsd HO LO MT MT 90% 90% LO Figure 3. Shutdown Waveform Definitions www.irf.com HO Figure 6. Delay Matching Waveform Definitions 5 IR2110E6 250 250 200 200 Turn-On Delay Time (ns) Turn-On Delay Time (ns) Max. 150 Max. 100 Typ. 50 150 Typ. 100 50 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 Figure 7B. Turn-On Time vs. Voltage 250 250 200 200 Turn-Off Delay Time (ns) Turn-Off Delay Time (ns) Figure 7A. Turn-On Time vs. Temperature 150 Max. 100 Typ. 50 Max. 150 Typ. 100 50 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 8A. Turn-Off Time vs. Temperature Figure 8B. Turn-Off Time vs. Voltage 250 250 200 200 Max. Shutdown Delay time (ns) Shutdown Delay Time (ns) 14 VBIAS Supply Voltage (V) 150 Max. 100 Typ. 50 Typ. 100 50 0 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 9A. Shutdown Time vs. Temperature 6 150 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 9B. Shutdown Time vs. Voltage www.irf.com 100 100 80 80 Turn-On Rise Time (ns) Turn-On Rise Time (ns) IR2110E6 60 40 Max. 60 Max. 40 Typ. Typ. 20 20 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 Figure 10B. Turn-On Rise Time vs. Voltage 50 50 40 40 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) Figure 10A. Turn-On Rise Time vs. Temperature 30 Max. 20 Typ. 10 30 20 Max. Typ. 10 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 11A. Turn-Off Fall Time vs. Temperature Figure 11B. Turn-Off Fall Time vs. Voltage 15.0 15.0 12.0 12.0 Logic "1" Input Threshold (V) Logic "1" Input Threshold (V) 14 VBIAS Supply Voltage (V) Min. 9.0 6.0 3.0 9.0 6.0 Min. 3.0 0.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 12A. Logic “1” Input Threshold vs. Temperature www.irf.com 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) Figure 12B. Logic “1” Input Threshold vs. Voltage 7 15.0 15.0 12.0 12.0 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V) IR2110E6 9.0 6.0 Max. 3.0 9.0 6.0 3.0 0.0 Max. 0.0 -50 -25 0 25 50 75 100 125 5 7.5 Temperature (°C) 12.5 15 17.5 20 Figure 13B. Logic “0” Input Threshold vs. Voltage 5.00 5.00 4.00 4.00 High Level Output Voltage (V) High Level Output Voltage (V) Figure 13A. Logic “0” Input Threshold vs. Temperature 3.00 2.00 Max. 3.00 2.00 Max. 1.00 1.00 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 14A. High Level Output vs. Temperature Figure 14B. High Level Output vs. Voltage 1.00 15.0 0.80 12.0 Logic "1" Input Threshold (V) Low Level Output Voltage (V) 10 VDD Logic Supply Voltage (V) 0.60 0.40 9.0 6.0 Min. 3.0 0.20 Max. 0.0 0.00 -50 -25 0 25 50 75 100 Temperature (°C) Figure 15A. Low Level Output vs. Temperature 8 125 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) Figure 15B. Low Level Output vs. Voltage www.irf.com 500 500 400 400 Offset Supply Leakage Current (µA) Offset Supply Leakage Current (µA) IR2110E6 300 200 100 300 200 100 Max. Max. 0 0 -50 -25 0 25 50 75 100 125 0 100 Temperature (°C) Figure 16A. Offset Supply Current vs. Temperature 300 400 500 Figure 16B. Offset Supply Current vs. Voltage 500 500 400 400 VBS Supply Current (µA) VBS Supply Current (µA) 200 VB Boost Voltage (V) 300 Max. 200 300 200 Max. Typ. 100 100 0 Typ. 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) Figure 17A. VBS Supply Current vs. Temperature 16 18 20 Figure 17B. VBS Supply Current vs. Voltage 625 625 500 500 VCC Supply Current (µA) VCC Supply Current (µA) 14 VBS Floating Supply Voltage (V) 375 Max. 250 375 250 Max. Typ. 125 125 0 Typ. 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 18A. VCC Supply Current vs. Temperature www.irf.com 10 12 14 16 18 20 VCC Fixed Supply Voltage (V) Figure 18B. VCC Supply Current vs. Voltage 9 100 100 80 80 VDD Supply Current (µA) VDD Supply Current (µA) IR2110E6 60 40 Max. 60 40 Max. 20 20 Typ. Typ. 0 0 -50 -25 0 25 50 75 100 125 5 7.5 Figure 19A. VDD Supply Current vs. Temperature 12.5 15 17.5 20 Figure 19B. VDD Supply Current vs. Voltage 100 80 80 Logic "1" Input Bias Current (µA) 100 Logic "1" Input Bias Current (µA) 10 VDD Logic Supply Voltage (V) Temperature (°C) 60 40 Max. 20 60 40 Max. 20 Typ. T yp. 0 0 -50 -25 0 25 50 75 100 5 125 7.5 5.00 5.00 4.00 4.00 3.00 2.00 Max. 0.00 15 17.5 20 3.00 2.00 Max. 1.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 21A. Logic “0” Input Current vs. Temperature 10 12.5 Figure 20B. Logic “1” Input Current vs. Voltage Logic "0" Input Bias Current (µA) Logic "0" Input Bias Current (µA) Figure 20A. Logic “1” Input Current vs. Temperature 1.00 10 VDD Logic Supply Voltage (V) Temperature (°C) 5 7.5 10 12.5 15 17.5 20 VDD Logic Supply Voltage (V) Figure 21B. Logic “0” Input Current vs. Voltage www.irf.com IR2110E6 11.0 10.0 10.0 VBS Undervoltage Lockout - (V) VBS Undervoltage Lockout + (V) 11.0 Max. 9.0 Typ. 8.0 Min. 7.0 Max. 9.0 Typ. 8.0 7.0 6.0 Min. 6.0 -50 -25 0 25 50 75 100 125 -50 -25 0 Temperature (°C) Figure 22. VBS Undervoltage (+) vs. Temperature 10.0 100 125 10.0 VCC Undervoltage Lockout - (V) VCC Undervoltage Lockout + (V) 75 11.0 Max. 9.0 Typ. 8.0 Min. 7.0 Max. 9.0 Typ. 8.0 7.0 6.0 Min. 6.0 -50 -25 0 25 50 75 100 125 -50 -25 0 Temperature (°C) 50 75 100 125 Figure 25. VCC Undervoltage (-) vs. Temperature 5.00 4.00 4.00 Output Source Current (A) 5.00 Typ. Min. 2.00 1.00 0.00 -50 25 Temperature (°C) Figure 24. VCC Undervoltage (+) vs. Temperature Output Source Current (A) 50 Figure 23. VBS Undervoltage (-) vs. Temperature 11.0 3.00 25 Temperature (°C) 3.00 2.00 Typ. 1.00 Min. 0.00 -25 0 25 50 75 100 125 Temperature (°C) Figure 26A. Output Source Current vs. Temperature www.irf.com 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 26B. Output Source Current vs. Voltage 11 5.00 5.00 4.00 4.00 3.00 Output Sink Current (A) Output Sink Current (A) IR2110E6 Typ. Min. 2.00 1.00 0.00 -50 3.00 2.00 Typ. 1.00 Min. 0.00 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 27A. Output Sink Current vs. Temperature Figure 27B. Output Sink Current vs. Voltage 320V 150 320V 150 125 125 100 75 10V 50 Junction Temperature (°C) Junction Temperature (°C) 140V 140V 25 0 1E+2 100 75 10V 50 25 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) Figure 28. IR2110 TJ vs. Frequency (IRFBC20) Ω , VCC = 15V RGATE = 33Ω 320V 150 140V 320V 150 10V 75 50 25 Junction Temperature (°C) Junction Temperature (°C) 1E+6 140V 125 100 10V 100 75 50 25 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Figure 30. IR2110 TJ vs. Frequency (IRFBC40) Ω , VCC = 15V RGATE = 15Ω 12 1E+5 Figure 29. IR2110 TJ vs. Frequency (IRFBC30) Ω , VCC = 15V RGATE = 22Ω 125 0 1E+2 1E+4 Frequency (Hz) 0 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Figure 31. IR2110 TJ vs. Frequency (IRFPE50) Ω , VCC = 15V RGATE = 10Ω www.irf.com IR2110E6 320V 150 140V 100 10V 75 50 25 100 10V 75 50 25 0 1E+2 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) 1E+5 1E+6 Figure 33. IR2110S TJ vs. Frequency (IRFBC30) Ω , VCC = 15V RGATE = 22Ω 320V 140V 150 125 320V 140V 10V 150 125 10V Junction Temperature (°C) Junction Temperature (°C) 1E+4 Frequency (Hz) Figure 32. IR2110S TJ vs. Frequency (IRFBC20) Ω , VCC = 15V RGATE = 33Ω 100 75 50 25 100 75 50 25 0 1E+2 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) 1E+4 1E+5 1E+6 Frequency (Hz) Figure 34. IR2110S TJ vs. Frequency (IRFBC40) Ω , VCC = 15V RGATE = 15Ω Figure 35. IR2110S TJ vs. Frequency (IRFPE50) Ω , VCC = 15V RGATE = 10Ω 0.0 20.0 VSS Logic Supply Offset Voltage (V) -2.0 VS Offset Supply Voltage (V) 140V 125 Junction Temperature (°C) 125 Junction Temperature (°C) 320V 150 Typ. -4.0 -6.0 -8.0 -10.0 16.0 12.0 8.0 Typ. 4.0 0.0 10 12 14 16 18 VBS Floating Supply Voltage (V) Figure 36. Maximum VS Negative Offset vs. VBS Supply Voltage www.irf.com 20 10 12 14 16 18 20 VCC Fixed Supply Voltage (V) Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage 13 IR2110E6 Functional Block Diagram VB UV DETECT VDD R Q S HIN HV LEVEL SHIFT VDD /VCC LEVEL SHIFT PULSE FILTER PULSE GEN R R Q HO S VS SD VCC LIN S VDD /VCC LEVEL SHIFT R Q UV DETECT LO DELAY COM VSS Lead Definitions Lead Symbol Description VDD Logic supply HIN Logic input for high side gate driver output (HO), in phase SD Logic input for shutdown LIN Logic input for low side gate driver output (LO), in phase VSS Logic ground VB High side floating supply HO High side gate drive output VS High side floating supply return VCC Low side supply LO Low side gate drive output COM Low side return 14 www.irf.com IR2110E6 Case Outline and Dimensions — Leadless Chip Carrier (LCC) Package WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 221 8371 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice. 9/98 www.irf.com 15