IRF IR2110L

Data Sheet No. PD-6.085
IR2110L4
HIGH AND LOW SIDE DRIVER
Features
Product Summary
n Floating channel designed for bootstrap
operation
Fully operational to +400V
Tolerant to negative transient voltage
dV/dt immune
n Gate drive supply range from 10 to 20V
n Undervoltage lockout for both channels
n Separate logic supply range from 5 to 20V
Logic and power ground ±5V offset
n CMOS Schmitt-triggered inputs with pull-down
n Cycle by cycle edge-triggered shutdown logic
n Matched propagation delay for both channels
n Outputs in phase with inputs
Absolute Maximum Ratings
VOFFSET
IO+/VOUT
ton/off (typ.)
Delay Matching
400V max.
2A / 2A
10 - 20V
120 & 94 ns
10 ns
Description
The IR2110L4 is a high voltage, high speed power MOSFET
and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic
construction. Logic inputs are compatible with standard
CMOS or LSTTL outputs. The output drivers feature a
high pulse current buffer stage designed for minimum
driver cross-conduction. Propagation delays are matched
to simplify use in high frequency applications. The floating
channel can be used to drive an N-channel power MOSFET
or IGBT in the high side configuration which operates up
to 400 volts.
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage
parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings
are measured under board mounted and still air conditions.
Symbol
VB
VS
VHO
V CC
VLO
V DD
VSS
V IN
dV s/dt
PD
RthJA
TJ
TS
TL
Parameter
High Side Floating Supply Voltage
High Side Floating Supply Offset Voltage
High Side Floating Output Voltage
Low Side Fixed Supply Voltage
Low Side Output Voltage
Logic Supply Voltage
Logic Supply Offset Voltage
Logic Input Voltage (HIN, LIN & SD)
Allowable Offset Supply Voltage Transient (Figure 2)
Package Power Dissipation @ TA £ +25°C
Thermal Resistance, Junction to Ambient
Junction Temperature
Storage Temperature
Lead Temperature (Soldering, 10 seconds)
Weight
Min.
Max.
-0.5
VS + 20
—
400
V S - 0.5
VB + 0.5
-0.5
20
-0.5
VCC + 0.5
-0.5
VSS + 20
VCC - 20
VCC + 0.5
VSS - 0.5
VDD + 0.5
—
50
—
1.6
—
75
-55
125
-55
150
—
300
1.5 (typical)
Units
V
V/ns
W
°C/W
°C
g
2/14/97
IR2110L4
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be
used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies
biased at 15V differential. Typical ratings at other bias conditions are shown in Figures 36 and 37.
Symbol
Parameter
Min.
Max.
Units
VB
VS
VHO
High Side Floating Supply Absolute Voltage
High Side Floating Supply Offset Voltage
High Side Floating Output Voltage
VS + 10
-4
VS
VS + 20
400
VB
VCC
VLO
VDD
VSS
VIN
Low Side Fixed Supply Voltage
Low Side Output Voltage
Logic Supply Voltage
Logic Supply Offset Voltage
Logic Input Voltage (HIN, LIN & SD)
10
0
VSS + 5
-5
VSS
20
VCC
VSS + 20
5
VDD
V
Dynamic Electrical Characteristics
VBIAS (VCC , VBS, VDD) = 15V, and VSS = COM unless otherwise specified. The dynamic electrical
characteristics are measured using the test circuit shown in Figure 3.
Tj = 25°C
Symbol
Parameter
Min.
Typ.
120
150
—
Test Conditions
ton
Turn-On Propagation Delay
toff
Turn-Off Propagation Delay
—
94
125
—
220
t sd
Shutdown Propagation Delay
—
110
140
—
235
tr
Turn-On Rise Time
—
25
35
—
50
tf
Turn-Off Fall Time
—
17
25
—
40
CL = 1000pf
Delay Matching, HS & LS Turn-On/Off
—
—
10
—
—
|Hton-Lton|/|Htoff-Ltoff|
MT
—
Tj =
-55 to 125°C
Max. Min. Max. Units
260
VS = 0V
ns
VS = 400V
VS = 400V
CL = 1000pf
Typical Connection
up to 500V
4
HO
V DD
VDD
VB
HIN
HIN
VS
SD
SD
LIN
LIN
V CC
VSS
VSS
COM
VCC
LO
TO
LOAD
IR2110L4
Static Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all three logic input pins: HIN, LIN and SD. The VO and IO parameters
are referenced to COM or VS and are applicable to the respective output pins: HO or LO.
Tj = 25°C
Symbol
V IH
VIL
Parameter
Logic “1” Input Voltage
Logic “0” Input Voltage
Tj =
-55 to 125°C
Max. Min. Max. Units
Min.
Typ.
Test Conditions
3.1
—
—
3.3
—
6.4
—
—
6.8
—
9.5
—
—
10
—
12.5
—
—
13.3
—
VDD = 20V
—
—
1.8
—
1.7
VDD = 5V
—
—
3.8
—
3.6
—
—
6
—
5.7
—
—
8.3
—
7.9
VDD = 5V
VDD = 10V
V
V
VDD = 15V
VDD = 10V
VDD = 15V
VDD = 20V
V OH
High Level Output Voltage, VBIAS - VO
—
0.7
1.2
—
1.5
VIN =VIH, IO = 0A
VOL
Low Level Output Voltage, VO
—
—
0.1
—
0.1
VIN =VIH, IO = 0A
ILK
Offset Supply Leakage Current
—
—
50
—
250
VB = VS = 400V
VIN =0V or VDD
IQBS
Quiescent VBS Supply Current
—
125
230
—
500
IQCC
Quiescent VCC Supply Current
—
180
340
—
600
IQDD
Quiescent VDD Supply Current
—
5
30
—
60
VIN =0V, or VDD
VIN =0V, or VDD
IIN+
Logic “1” Input Bias Current
—
15
40
—
70
VIN = VDD
IIN-
Logic “0” Input Bias Current
VBS Supply Undervoltage Positive
Going Threshold
VBS Supply Undervoltage Negative
Going Threshold
VCC Supply Undervoltage Positive
Going Threshold
VCC Supply Undervoltage Negative
Going Threshold
Output High Short Circuit Pulsed
Current
Output Low Short Circuit Pulsed
Current
—
7.5
—
8.6
1.0
9.7
—
—
10
—
V IN = 0V
7.0
8.2
9.4
—
—
7.4
8.5
9.6
—
—
7.0
8.2
9.4
—
—
2.0
—
—
—
—
VBSUV+
VBSUVVCCUV+
V CCUVIO+
IO-
µA
V
A
2.0
—
—
—
—
VO = 0V, VIN = VDD
PW £ 10 µs
VO = 15V, VIN = 0V
PW £ 10 µs
IR2110L4
HV = 10 to 400V
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
(0
to
400V)
50%
50%
HIN
LIN
ton
t off
tr
90%
HO
LO
Figure 3. Switching Time Test Circuit
tf
90%
10%
10%
Figure 4. Switching Time Waveform Definition
HIN
LIN
50%
SD
50%
LO
50%
HO
10%
t sd
HO
LO
MT
90%
MT
90%
LO
Figure 5. Shutdown Waveform Definitions
HO
Figure 6. Delay Matching Waveform Definitions
IR2110L4
250
250
200
200
Turn-On Delay Time (ns)
Turn-On Delay Time (ns)
Max.
150
Max.
100
Typ.
50
150
Typ.
100
50
0
0
-50
-25
0
25
50
75
100
10
125
12
Temperature (°C)
250
250
200
200
150
Max.
100
Typ.
18
20
Max.
150
Typ.
100
50
50
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 8A. Turn-Off Time vs. Temperature
Figure 8B. Turn-Off Time vs. Voltage
250
250
200
200
Shutdown Delay time (ns)
Shutdown Delay Time (ns)
16
Figure 7B. Turn-On Time vs. Voltage
Turn-Off Delay Time (ns)
Turn-Off Delay Time (ns)
Figure 7A. Turn-On Time vs. Temperature
150
Max.
100
14
VBIAS Supply Voltage (V)
Typ.
50
Max.
150
Typ.
100
50
0
0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 9A. Shutdown Time vs. Temperature
125
10
12
14
16
18
VBIAS Supply Voltage (V)
Figure 9B. Shutdown Time vs. Voltage
20
100
100
80
80
Turn-On Rise Time (ns)
Turn-On Rise Time (ns)
IR2110L4
60
40
Max.
60
Max.
40
Typ.
Typ.
20
20
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
16
18
20
Figure 10B. Turn-On Rise Time vs. Voltage
50
50
40
40
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)
Figure 10A. Turn-On Rise Time vs. Temperature
30
Max.
20
Typ.
10
30
20
Max.
Typ.
10
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 11A. Turn-Off Fall Time vs. Temperature
Figure 11B. Turn-Off Fall Time vs. Voltage
15.0
15.0
12.0
12.0
Logic "1" Input Threshold (V)
Logic "1" Input Threshold (V)
14
VBIAS Supply Voltage (V)
Min.
9.0
6.0
3.0
9.0
6.0
Min.
3.0
0.0
0.0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 12A. Logic “1” Input Threshold vs. Temperature
5
7.5
10
12.5
15
17.5
V DD Logic Supply Voltage (V)
Figure 12B. Logic “1” Input Threshold vs. Voltage
20
15.0
15.0
12.0
12.0
Logic "0" Input Threshold (V)
Logic "0" Input Threshold (V)
IR2110L4
9.0
Max.
6.0
3.0
9.0
6.0
3.0
0.0
Max.
0.0
-50
-25
0
25
50
75
100
125
5
7.5
Temperature (°C)
12.5
15
17.5
20
Figure 13B. Logic “0” Input Threshold vs. Voltage
5.00
5.00
4.00
4.00
High Level Output Voltage (V)
High Level Output Voltage (V)
Figure 13A. Logic “0” Input Threshold vs. Temperature
3.00
2.00
Max.
1.00
3.00
2.00
Max.
1.00
0.00
-50
0.00
-25
0
25
50
75
100
10
125
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 14A. High Level Output vs. Temperature
Figure 14B. High Level Output vs. Voltage
1.00
15.0
0.80
12.0
Logic "1" Input Threshold (V)
Low Level Output Voltage (V)
10
V DD Logic Supply Voltage (V)
0.60
0.40
0.20
9.0
6.0
Min.
3.0
Max.
0.0
0.00
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 15A. Low Level Output vs. Temperature
125
5
7.5
10
12.5
15
17.5
V DD Logic Supply Voltage (V)
Figure 15B. Low Level Output vs. Voltage
20
500
500
400
400
Offset Supply Leakage Current (µA)
Offset Supply Leakage Current (µA)
IR2110L4
300
200
100
300
200
100
Max.
Max.
0
0
-50
-25
0
25
50
75
100
125
0
100
Temperature (°C)
Figure 16A. Offset Supply Current vs. Temperature
300
400
500
Figure 16B. Offset Supply Current vs. Voltage
500
500
400
400
V BS S upply Current (µA)
V BS S upply Current (µA)
200
V B Boost Voltage (V)
300
Max.
200
300
200
Max.
Typ.
100
100
0
Typ.
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
Figure 17A. VBS Supply Current vs. Temperature
16
18
20
Figure 17B. VBS Supply Current vs. Voltage
625
625
500
500
VCC Supply Current (µA)
VCC Supply Current (µA)
14
V BS Floating Supply Voltage (V)
375
Max.
250
375
250
Max.
Typ.
125
125
0
Typ.
0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 18A. VCC Supply Current vs. Temperature
125
10
12
14
16
18
VCC Fixed Supply Voltage (V)
Figure 18B. VCC Supply Current vs. Voltage
20
100
100
80
80
VDD Supply Current (µA)
VDD Supply Current (µA)
IR2110L4
60
40
60
40
Max.
Max.
20
20
Typ.
Typ.
0
0
-50
-25
0
25
50
75
100
125
5
7.5
Temperature (°C)
Figure 19A. VDD Supply Current vs. Temperature
12.5
15
17.5
20
Figure 19B. VDD Supply Current vs. Voltage
100
100
80
80
Logic "1" Input Bias Current (µA)
Logic "1" Input Bias Current (µA)
10
V DD Logic Supply Voltage (V)
60
40
Max.
20
60
40
Max.
20
Typ.
Typ.
0
0
-50
-25
0
25
50
75
100
125
5
7.5
Temperature (°C)
12.5
15
17.5
20
Figure 20B. Logic “1” Input Current vs. Voltage
5.00
5.00
4.00
4.00
Logic "0" Input Bias Current (µA)
Logic "0" Input Bias Current (µA)
Figure 20A. Logic “1” Input Current vs. Temperature
3.00
2.00
1.00
10
VDD Logic Supply Voltage (V)
Max.
3.00
2.00
Max.
1.00
0.00
0.00
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 21A. Logic “0” Input Current vs. Temperature
5
7.5
10
12.5
15
17.5
V DD Logic Supply Voltage (V)
Figure 21B. Logic “0” Input Current vs. Voltage
20
IR2110L4
11.0
10.0
VBS Undervoltage Lockout - (V)
VBS Undervoltage Lockout + (V)
11.0
Max.
9.0
Typ.
8.0
Min.
7.0
10.0
Max.
9.0
Typ.
8.0
7.0
6.0
Min.
6.0
-50
-25
0
25
50
75
100
125
-50
-25
0
Temperature (°C)
Figure 22. VBS Undervoltage (+) vs. Temperature
10.0
V CC Undervoltage Lockout - (V)
VCC Undervoltage Lockout + (V)
75
100
125
11.0
Max.
9.0
Typ.
8.0
Min.
7.0
10.0
Max.
9.0
Typ.
8.0
7.0
6.0
Min.
6.0
-50
-25
0
25
50
75
100
125
-50
-25
0
Temperature (°C)
50
75
100
125
Figure 25. VCC Undervoltage (-) vs. Temperature
5.00
4.00
4.00
Output Source Current (A)
5.00
Typ.
Min.
2.00
1.00
0.00
-50
25
Temperature (°C)
Figure 24. VCC Undervoltage (+) vs. Temperature
Output Source Current (A)
50
Figure 23. VBS Undervoltage (-) vs. Temperature
11.0
3.00
25
Temperature (°C)
3.00
2.00
Typ.
1.00
Min.
0.00
-25
0
25
50
75
100
125
Temperature (°C)
Figure 26A. Output Source Current vs. Temperature
10
12
14
16
18
V BIAS Supply Voltage (V)
Figure 26B. Output Source Current vs. Voltage
20
5.00
5.00
4.00
4.00
3.00
Output Sink Current (A)
Output Sink Current (A)
IR2110L4
Typ.
Min.
2.00
1.00
0.00
-50
3.00
2.00
Typ.
1.00
Min.
0.00
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
V BIAS Supply Voltage (V)
Figure 27A. Output Sink Current vs. Temperature
Figure 27B. Output Sink Current vs. Voltage
320V
150
320V
150
125
125
100
75
10V
50
Junction Temperature (°C)
Junction Temperature (°C)
140V
140V
25
0
1E+2
100
75
10V
50
25
1E+3
1E+4
1E+5
0
1E+2
1E+6
1E+3
Frequency (Hz)
Figure 28. IR2110L6 TJ vs. Frequency (IRFBC20)
RGATE = 33W, VCC = 15V
320V
150
140V
1E+6
320V
150
140V
125
100
10V
75
50
25
Junction Temperature (°C)
Junction Temperature (°C)
1E+5
Figure 29. IR2110L6 TJ vs. Frequency (IRFBC30)
RGATE = 22W, VCC = 15V
125
0
1E+2
1E+4
Frequency (Hz)
10V
100
75
50
25
1E+3
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 30. IR2110L6 TJ vs. Frequency (IRFBC40)
RGATE = 15W, VCC = 15V
0
1E+2
1E+3
1E+4
1E+5
Frequency (Hz)
Figure 31. IR2110L6 TJ vs. Frequency (IRFPE50)
RGATE = 10W, VCC = 15V
1E+6
IR2110L4
320V
150
140V
100
10V
75
50
25
100
10V
75
50
25
0
1E+2
1E+3
1E+4
1E+5
0
1E+2
1E+6
1E+3
Frequency (Hz)
1E+5
1E+6
Figure 33. IR2110L6S TJ vs. Frequency (IRFBC30)
RGATE = 22W, VCC = 15V
320V 140V
150
125
320V 140V 10V
150
125
10V
Junction Temperature (°C)
Junction Temperature (°C)
1E+4
Frequency (Hz)
Figure 32. IR2110L6S T J vs. Frequency (IRFBC20)
RGATE = 33W, VCC = 15V
100
75
50
25
100
75
50
25
0
1E+2
1E+3
1E+4
1E+5
0
1E+2
1E+6
1E+3
Frequency (Hz)
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 34. IR2110L6S T J vs. Frequency (IRFBC40)
RGATE = 15W, VCC = 15V
Figure 35. IR2110L6S TJ vs. Frequency (IRFPE50)
RGATE = 10W, VCC = 15V
20.0
VSS Logic S upply Offset Voltage (V)
0.0
-2.0
VS Offset S upply Voltage (V)
140V
125
Junction Temperature (°C)
125
Junction Temperature (°C)
320V
150
Typ.
-4.0
-6.0
-8.0
-10.0
16.0
12.0
8.0
Typ.
4.0
0.0
10
12
14
16
18
V BS Floating Supply Voltage (V)
Figure 36. Maximum VS Negative Offset vs.
VBS Supply Voltage
20
10
12
14
16
18
V CC Fixed Supply Voltage (V)
Figure 37. Maximum VSS Positive Offset vs.
VCC Supply Voltage
20
IR2110L4
Functional Block Diagram
VB
UV
DETECT
VDD
R Q
S
HIN
HV
LEVEL
SHIFT
VDD /VCC
LEVEL
SHIFT
PULSE
FILTER
PULSE
GEN
R
R
Q
HO
S
VS
SD
VCC
LIN
S
VDD /VCC
LEVEL
SHIFT
R Q
VSS
UV
DETECT
LO
DELAY
COM
Lead Definitions
Lead
Symbol Description
VDD
Logic supply
HIN
Logic input for high side gate driver output (HO), in phase
SD
Logic input for shutdown
LIN
Logic input for low side gate driver output (LO), in phase
VSS
Logic ground
VB
High side floating supply
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side supply
LO
Low side gate drive output
COM
Low side return
IR2110L4
Case Outline and Dimensions — MO-036AB
HO
VDD
VB
HIN
VS
LIN
VCC
SD
VSS
LO
COM
Pin Assignment
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/
Data and specifications subject to change without notice.
2/97