Data Sheet No. PD-6.085 IR2110L4 HIGH AND LOW SIDE DRIVER Features Product Summary n Floating channel designed for bootstrap operation Fully operational to +400V Tolerant to negative transient voltage dV/dt immune n Gate drive supply range from 10 to 20V n Undervoltage lockout for both channels n Separate logic supply range from 5 to 20V Logic and power ground ±5V offset n CMOS Schmitt-triggered inputs with pull-down n Cycle by cycle edge-triggered shutdown logic n Matched propagation delay for both channels n Outputs in phase with inputs Absolute Maximum Ratings VOFFSET IO+/VOUT ton/off (typ.) Delay Matching 400V max. 2A / 2A 10 - 20V 120 & 94 ns 10 ns Description The IR2110L4 is a high voltage, high speed power MOSFET and IGBT driver with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 400 volts. Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Symbol VB VS VHO V CC VLO V DD VSS V IN dV s/dt PD RthJA TJ TS TL Parameter High Side Floating Supply Voltage High Side Floating Supply Offset Voltage High Side Floating Output Voltage Low Side Fixed Supply Voltage Low Side Output Voltage Logic Supply Voltage Logic Supply Offset Voltage Logic Input Voltage (HIN, LIN & SD) Allowable Offset Supply Voltage Transient (Figure 2) Package Power Dissipation @ TA £ +25°C Thermal Resistance, Junction to Ambient Junction Temperature Storage Temperature Lead Temperature (Soldering, 10 seconds) Weight Min. Max. -0.5 VS + 20 — 400 V S - 0.5 VB + 0.5 -0.5 20 -0.5 VCC + 0.5 -0.5 VSS + 20 VCC - 20 VCC + 0.5 VSS - 0.5 VDD + 0.5 — 50 — 1.6 — 75 -55 125 -55 150 — 300 1.5 (typical) Units V V/ns W °C/W °C g 2/14/97 IR2110L4 Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figures 36 and 37. Symbol Parameter Min. Max. Units VB VS VHO High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage High Side Floating Output Voltage VS + 10 -4 VS VS + 20 400 VB VCC VLO VDD VSS VIN Low Side Fixed Supply Voltage Low Side Output Voltage Logic Supply Voltage Logic Supply Offset Voltage Logic Input Voltage (HIN, LIN & SD) 10 0 VSS + 5 -5 VSS 20 VCC VSS + 20 5 VDD V Dynamic Electrical Characteristics VBIAS (VCC , VBS, VDD) = 15V, and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3. Tj = 25°C Symbol Parameter Min. Typ. 120 150 — Test Conditions ton Turn-On Propagation Delay toff Turn-Off Propagation Delay — 94 125 — 220 t sd Shutdown Propagation Delay — 110 140 — 235 tr Turn-On Rise Time — 25 35 — 50 tf Turn-Off Fall Time — 17 25 — 40 CL = 1000pf Delay Matching, HS & LS Turn-On/Off — — 10 — — |Hton-Lton|/|Htoff-Ltoff| MT — Tj = -55 to 125°C Max. Min. Max. Units 260 VS = 0V ns VS = 400V VS = 400V CL = 1000pf Typical Connection up to 500V 4 HO V DD VDD VB HIN HIN VS SD SD LIN LIN V CC VSS VSS COM VCC LO TO LOAD IR2110L4 Static Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all three logic input pins: HIN, LIN and SD. The VO and IO parameters are referenced to COM or VS and are applicable to the respective output pins: HO or LO. Tj = 25°C Symbol V IH VIL Parameter Logic “1” Input Voltage Logic “0” Input Voltage Tj = -55 to 125°C Max. Min. Max. Units Min. Typ. Test Conditions 3.1 — — 3.3 — 6.4 — — 6.8 — 9.5 — — 10 — 12.5 — — 13.3 — VDD = 20V — — 1.8 — 1.7 VDD = 5V — — 3.8 — 3.6 — — 6 — 5.7 — — 8.3 — 7.9 VDD = 5V VDD = 10V V V VDD = 15V VDD = 10V VDD = 15V VDD = 20V V OH High Level Output Voltage, VBIAS - VO — 0.7 1.2 — 1.5 VIN =VIH, IO = 0A VOL Low Level Output Voltage, VO — — 0.1 — 0.1 VIN =VIH, IO = 0A ILK Offset Supply Leakage Current — — 50 — 250 VB = VS = 400V VIN =0V or VDD IQBS Quiescent VBS Supply Current — 125 230 — 500 IQCC Quiescent VCC Supply Current — 180 340 — 600 IQDD Quiescent VDD Supply Current — 5 30 — 60 VIN =0V, or VDD VIN =0V, or VDD IIN+ Logic “1” Input Bias Current — 15 40 — 70 VIN = VDD IIN- Logic “0” Input Bias Current VBS Supply Undervoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold VCC Supply Undervoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold Output High Short Circuit Pulsed Current Output Low Short Circuit Pulsed Current — 7.5 — 8.6 1.0 9.7 — — 10 — V IN = 0V 7.0 8.2 9.4 — — 7.4 8.5 9.6 — — 7.0 8.2 9.4 — — 2.0 — — — — VBSUV+ VBSUVVCCUV+ V CCUVIO+ IO- µA V A 2.0 — — — — VO = 0V, VIN = VDD PW £ 10 µs VO = 15V, VIN = 0V PW £ 10 µs IR2110L4 HV = 10 to 400V Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit (0 to 400V) 50% 50% HIN LIN ton t off tr 90% HO LO Figure 3. Switching Time Test Circuit tf 90% 10% 10% Figure 4. Switching Time Waveform Definition HIN LIN 50% SD 50% LO 50% HO 10% t sd HO LO MT 90% MT 90% LO Figure 5. Shutdown Waveform Definitions HO Figure 6. Delay Matching Waveform Definitions IR2110L4 250 250 200 200 Turn-On Delay Time (ns) Turn-On Delay Time (ns) Max. 150 Max. 100 Typ. 50 150 Typ. 100 50 0 0 -50 -25 0 25 50 75 100 10 125 12 Temperature (°C) 250 250 200 200 150 Max. 100 Typ. 18 20 Max. 150 Typ. 100 50 50 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 8A. Turn-Off Time vs. Temperature Figure 8B. Turn-Off Time vs. Voltage 250 250 200 200 Shutdown Delay time (ns) Shutdown Delay Time (ns) 16 Figure 7B. Turn-On Time vs. Voltage Turn-Off Delay Time (ns) Turn-Off Delay Time (ns) Figure 7A. Turn-On Time vs. Temperature 150 Max. 100 14 VBIAS Supply Voltage (V) Typ. 50 Max. 150 Typ. 100 50 0 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 9A. Shutdown Time vs. Temperature 125 10 12 14 16 18 VBIAS Supply Voltage (V) Figure 9B. Shutdown Time vs. Voltage 20 100 100 80 80 Turn-On Rise Time (ns) Turn-On Rise Time (ns) IR2110L4 60 40 Max. 60 Max. 40 Typ. Typ. 20 20 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 Figure 10B. Turn-On Rise Time vs. Voltage 50 50 40 40 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) Figure 10A. Turn-On Rise Time vs. Temperature 30 Max. 20 Typ. 10 30 20 Max. Typ. 10 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 11A. Turn-Off Fall Time vs. Temperature Figure 11B. Turn-Off Fall Time vs. Voltage 15.0 15.0 12.0 12.0 Logic "1" Input Threshold (V) Logic "1" Input Threshold (V) 14 VBIAS Supply Voltage (V) Min. 9.0 6.0 3.0 9.0 6.0 Min. 3.0 0.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 12A. Logic “1” Input Threshold vs. Temperature 5 7.5 10 12.5 15 17.5 V DD Logic Supply Voltage (V) Figure 12B. Logic “1” Input Threshold vs. Voltage 20 15.0 15.0 12.0 12.0 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V) IR2110L4 9.0 Max. 6.0 3.0 9.0 6.0 3.0 0.0 Max. 0.0 -50 -25 0 25 50 75 100 125 5 7.5 Temperature (°C) 12.5 15 17.5 20 Figure 13B. Logic “0” Input Threshold vs. Voltage 5.00 5.00 4.00 4.00 High Level Output Voltage (V) High Level Output Voltage (V) Figure 13A. Logic “0” Input Threshold vs. Temperature 3.00 2.00 Max. 1.00 3.00 2.00 Max. 1.00 0.00 -50 0.00 -25 0 25 50 75 100 10 125 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 14A. High Level Output vs. Temperature Figure 14B. High Level Output vs. Voltage 1.00 15.0 0.80 12.0 Logic "1" Input Threshold (V) Low Level Output Voltage (V) 10 V DD Logic Supply Voltage (V) 0.60 0.40 0.20 9.0 6.0 Min. 3.0 Max. 0.0 0.00 -50 -25 0 25 50 75 100 Temperature (°C) Figure 15A. Low Level Output vs. Temperature 125 5 7.5 10 12.5 15 17.5 V DD Logic Supply Voltage (V) Figure 15B. Low Level Output vs. Voltage 20 500 500 400 400 Offset Supply Leakage Current (µA) Offset Supply Leakage Current (µA) IR2110L4 300 200 100 300 200 100 Max. Max. 0 0 -50 -25 0 25 50 75 100 125 0 100 Temperature (°C) Figure 16A. Offset Supply Current vs. Temperature 300 400 500 Figure 16B. Offset Supply Current vs. Voltage 500 500 400 400 V BS S upply Current (µA) V BS S upply Current (µA) 200 V B Boost Voltage (V) 300 Max. 200 300 200 Max. Typ. 100 100 0 Typ. 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) Figure 17A. VBS Supply Current vs. Temperature 16 18 20 Figure 17B. VBS Supply Current vs. Voltage 625 625 500 500 VCC Supply Current (µA) VCC Supply Current (µA) 14 V BS Floating Supply Voltage (V) 375 Max. 250 375 250 Max. Typ. 125 125 0 Typ. 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 18A. VCC Supply Current vs. Temperature 125 10 12 14 16 18 VCC Fixed Supply Voltage (V) Figure 18B. VCC Supply Current vs. Voltage 20 100 100 80 80 VDD Supply Current (µA) VDD Supply Current (µA) IR2110L4 60 40 60 40 Max. Max. 20 20 Typ. Typ. 0 0 -50 -25 0 25 50 75 100 125 5 7.5 Temperature (°C) Figure 19A. VDD Supply Current vs. Temperature 12.5 15 17.5 20 Figure 19B. VDD Supply Current vs. Voltage 100 100 80 80 Logic "1" Input Bias Current (µA) Logic "1" Input Bias Current (µA) 10 V DD Logic Supply Voltage (V) 60 40 Max. 20 60 40 Max. 20 Typ. Typ. 0 0 -50 -25 0 25 50 75 100 125 5 7.5 Temperature (°C) 12.5 15 17.5 20 Figure 20B. Logic “1” Input Current vs. Voltage 5.00 5.00 4.00 4.00 Logic "0" Input Bias Current (µA) Logic "0" Input Bias Current (µA) Figure 20A. Logic “1” Input Current vs. Temperature 3.00 2.00 1.00 10 VDD Logic Supply Voltage (V) Max. 3.00 2.00 Max. 1.00 0.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 21A. Logic “0” Input Current vs. Temperature 5 7.5 10 12.5 15 17.5 V DD Logic Supply Voltage (V) Figure 21B. Logic “0” Input Current vs. Voltage 20 IR2110L4 11.0 10.0 VBS Undervoltage Lockout - (V) VBS Undervoltage Lockout + (V) 11.0 Max. 9.0 Typ. 8.0 Min. 7.0 10.0 Max. 9.0 Typ. 8.0 7.0 6.0 Min. 6.0 -50 -25 0 25 50 75 100 125 -50 -25 0 Temperature (°C) Figure 22. VBS Undervoltage (+) vs. Temperature 10.0 V CC Undervoltage Lockout - (V) VCC Undervoltage Lockout + (V) 75 100 125 11.0 Max. 9.0 Typ. 8.0 Min. 7.0 10.0 Max. 9.0 Typ. 8.0 7.0 6.0 Min. 6.0 -50 -25 0 25 50 75 100 125 -50 -25 0 Temperature (°C) 50 75 100 125 Figure 25. VCC Undervoltage (-) vs. Temperature 5.00 4.00 4.00 Output Source Current (A) 5.00 Typ. Min. 2.00 1.00 0.00 -50 25 Temperature (°C) Figure 24. VCC Undervoltage (+) vs. Temperature Output Source Current (A) 50 Figure 23. VBS Undervoltage (-) vs. Temperature 11.0 3.00 25 Temperature (°C) 3.00 2.00 Typ. 1.00 Min. 0.00 -25 0 25 50 75 100 125 Temperature (°C) Figure 26A. Output Source Current vs. Temperature 10 12 14 16 18 V BIAS Supply Voltage (V) Figure 26B. Output Source Current vs. Voltage 20 5.00 5.00 4.00 4.00 3.00 Output Sink Current (A) Output Sink Current (A) IR2110L4 Typ. Min. 2.00 1.00 0.00 -50 3.00 2.00 Typ. 1.00 Min. 0.00 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 V BIAS Supply Voltage (V) Figure 27A. Output Sink Current vs. Temperature Figure 27B. Output Sink Current vs. Voltage 320V 150 320V 150 125 125 100 75 10V 50 Junction Temperature (°C) Junction Temperature (°C) 140V 140V 25 0 1E+2 100 75 10V 50 25 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) Figure 28. IR2110L6 TJ vs. Frequency (IRFBC20) RGATE = 33W, VCC = 15V 320V 150 140V 1E+6 320V 150 140V 125 100 10V 75 50 25 Junction Temperature (°C) Junction Temperature (°C) 1E+5 Figure 29. IR2110L6 TJ vs. Frequency (IRFBC30) RGATE = 22W, VCC = 15V 125 0 1E+2 1E+4 Frequency (Hz) 10V 100 75 50 25 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Figure 30. IR2110L6 TJ vs. Frequency (IRFBC40) RGATE = 15W, VCC = 15V 0 1E+2 1E+3 1E+4 1E+5 Frequency (Hz) Figure 31. IR2110L6 TJ vs. Frequency (IRFPE50) RGATE = 10W, VCC = 15V 1E+6 IR2110L4 320V 150 140V 100 10V 75 50 25 100 10V 75 50 25 0 1E+2 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) 1E+5 1E+6 Figure 33. IR2110L6S TJ vs. Frequency (IRFBC30) RGATE = 22W, VCC = 15V 320V 140V 150 125 320V 140V 10V 150 125 10V Junction Temperature (°C) Junction Temperature (°C) 1E+4 Frequency (Hz) Figure 32. IR2110L6S T J vs. Frequency (IRFBC20) RGATE = 33W, VCC = 15V 100 75 50 25 100 75 50 25 0 1E+2 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) 1E+4 1E+5 1E+6 Frequency (Hz) Figure 34. IR2110L6S T J vs. Frequency (IRFBC40) RGATE = 15W, VCC = 15V Figure 35. IR2110L6S TJ vs. Frequency (IRFPE50) RGATE = 10W, VCC = 15V 20.0 VSS Logic S upply Offset Voltage (V) 0.0 -2.0 VS Offset S upply Voltage (V) 140V 125 Junction Temperature (°C) 125 Junction Temperature (°C) 320V 150 Typ. -4.0 -6.0 -8.0 -10.0 16.0 12.0 8.0 Typ. 4.0 0.0 10 12 14 16 18 V BS Floating Supply Voltage (V) Figure 36. Maximum VS Negative Offset vs. VBS Supply Voltage 20 10 12 14 16 18 V CC Fixed Supply Voltage (V) Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage 20 IR2110L4 Functional Block Diagram VB UV DETECT VDD R Q S HIN HV LEVEL SHIFT VDD /VCC LEVEL SHIFT PULSE FILTER PULSE GEN R R Q HO S VS SD VCC LIN S VDD /VCC LEVEL SHIFT R Q VSS UV DETECT LO DELAY COM Lead Definitions Lead Symbol Description VDD Logic supply HIN Logic input for high side gate driver output (HO), in phase SD Logic input for shutdown LIN Logic input for low side gate driver output (LO), in phase VSS Logic ground VB High side floating supply HO High side gate drive output VS High side floating supply return VCC Low side supply LO Low side gate drive output COM Low side return IR2110L4 Case Outline and Dimensions — MO-036AB HO VDD VB HIN VS LIN VCC SD VSS LO COM Pin Assignment WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 2/97