HD74LV2G53A 2–channel Analog Multiplexer / Demultiplexer REJ03D0094–0400Z (Previous ADE-205-567C (Z)) Rev.4.00 Sep.25.2003 Description The HD74LV2G53A has 2–channel analog multiplexer / demultiplexer in an 8 pin package. Applications include signal gating, chopping, modulation, or demodulation (modem), and signal multiplexing for analog to digital and digital to analog conversion systems. Low voltage and high-speed operation is suitable for the battery powered products (e.g., notebook computers), and the low power consumption extends the battery life. Features • The basic gate function is lined up as Renesas uni logic series. • Supplied on emboss taping for high-speed automatic mounting. • Electrical characteristics equivalent to the HD74LV4053A Supply voltage range : 1.65 to 5.5 V Operating temperature range : –40 to +85°C • Control inputs VIH (Max.) = 5.5 V (@VCC = 0 V to 5.5 V) • Control inputs have hysteresis voltage for the slow transition. • Ordering Information Part Name Package Type Package Code Package Abbreviation Taping Abbreviation (Quantity) HD74LV2G53AUSE SSOP-8 pin TTP-8DBV US E (3,000 pcs/reel) Rev.4.00, Sep.25.2003, page 1 of 11 HD74LV2G53A Outline and Article Indication • HD74LV2G53A Index band Lot No. Y M W L 5 3 SSOP–8 Marking Function Table Control inputs On channel INH A H X None L H Y1 L L Y0 H : High level L : Low level X : Immaterial Rev.4.00, Sep.25.2003, page 2 of 11 Y : Year code (the last digit of year) M : Month code W : Week code HD74LV2G53A Pin Arrangement COM 1 INH 2 O GND 3 O GND 4 C C 8 VCC I 7 Y0 I 6 Y1 5 A (Top view) Absolute Maximum Ratings Item Symbol Ratings Unit Supply voltage range VCC –0.5 to 7.0 V Input voltage range *1 VI –0.5 to 7.0 V VO –0.5 to VCC + 0.5 V Output : H or L Input clamp current IIK –20 mA VI < 0 Output clamp current IOK ±50 mA VO < 0 or VO > VCC Continuous output current IO ±25 mA VO = 0 to VCC Continuous current through VCC or GND ICC or IGND ±50 mA Maximum power dissipation *3 at Ta = 25°C (in still air) PT 200 mW Storage temperature Tstg –65 to 150 °C Output voltage range Notes: *1, 2 Test Conditions The absolute maximum ratings are values, which must not individually be exceeded, and furthermore no two of which may be realized at the same time. 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. 2. This value is limited to 5.5 V maximum. 3. The maximum package power dissipation was calculated using a junction temperature of 150°C. Rev.4.00, Sep.25.2003, page 3 of 11 HD74LV2G53A Recommended Operating Conditions Item Symbol Min Max Unit Supply voltage range VCC 1.65 5.5 V Input voltage range VI 0 5.5 V Input / output voltage range VI/O 0 VCC V 0 300 ns / V 0 200 VCC = 2.3 to 2.7 V 0 100 VCC = 3.0 to 3.6 V 0 20 VCC = 4.5 to 5.5 V –40 85 Input transition rise or fall rate ∆t / ∆v Operating free-air temperature Ta Note: Unused or floating control inputs must be held high or low. Rev.4.00, Sep.25.2003, page 4 of 11 °C Conditions VCC = 1.65 to 1.95 V HD74LV2G53A Electrical Characteristic Item Symbol VCC (V) * Ta = 25°C Ta = –40 to 85°C Min Typ Max Min Input voltage VIH VIL Hysteresis voltage VH On-state switch RON resistance Peak on resistance Difference of on- state resistance between switches RON (P) ∆RON Typ Max 1.65 to 1.95 — — — VCC×0.75 — — 2.3 to 2.7 — — — VCC×0.7 — — 3.0 to 3.6 — — — VCC×0.7 — — 4.5 to 5.5 — — — VCC×0.7 — — 1.65 to 1.95 — — — — — VCC×0.25 2.3 to 2.7 — — — — — VCC×0.3 3.0 to 3.6 — — — — — VCC×0.3 VCC×0.3 4.5 to 5.5 — — — — — 1.8 — — — — 0.25 — 2.5 — — — — 0.30 — 3.3 — — — — 0.35 — 5.0 — — — — 0.45 — 1.65 — 120 360 — — 450 2.3 — 60 180 — — 225 3.0 — 50 150 — — 190 4.5 — 40 75 — — 100 1.65 — 400 1100 — — 1400 2.3 — 200 500 — — 600 3.0 — 90 180 — — 225 4.5 — 50 100 — — 125 1.65 — 40 120 — — 160 2.3 — 20 30 — — 40 3.0 — 10 20 — — 30 Unit Test Conditions V Control input only V VT+ – VT– Ω VIN = VCC or GND VINH = VIL IT = 2 mA Ω VIN = VCC to GND VINH = VIL IT = 2 mA Ω VIN = VCC to GND VINH = VIL IT = 2 mA 4.5 — 7 15 — — 20 Off-state switch Is (OFF) leakage current 5.5 — — ±0.1 — — ±1.0 µA VIN = VCC, VOUT = GND or VIN = GND, VO = VCC, VINH = VIH On-state switch Is (ON) leakage current 5.5 — — ±0.1 — — ±1.0 µA VIN = VCC or GND VINH = VIL Input current IIN 0 to 5.5 — — ±0.1 — — ±1.0 µA VIN = 5.5 V or GND Quiescent supply current ICC 5.5 — — — — — 10 µA VIN = VCC or GND Control input capacitance CIC — — 3.5 — — — — pF Switch terminal CIN / OUT — capacitance — 6.0 — — — — pF Feed through capacitance — 0.5 — — — — pF CIN–OUT — Rev.4.00, Sep.25.2003, page 5 of 11 HD74LV2G53A Switching Characteristics • VCC = 1.8 ± 0.15 V Item Symbol Ta = 25°C Ta = –40 to 85°C Min Typ Max Min Max Propagation delay time tPLH tPHL — 4.5 13.0 — 19.0 — 11.0 23.0 — 29.0 Enable time tZH tZL — 13.0 30.0 — 35.0 — 18.0 47.0 — 54.0 tHZ tLZ — 13.0 25.0 — 30.0 — 20.0 38.0 — 45.0 Disable time Unit Test FROM Conditions (Input) ns CL = 15 pF ns CL = 15 pF CL = 50 pF COM or Yn or Yn COM INH COM or Yn INH COM or Yn CL = 50 pF ns CL = 15 pF TO (Output) CL = 50 pF • VCC = 2.5 ± 0.2 V Item Symbol Ta = 25°C Ta = –40 to 85°C Min Typ Max Min Max Propagation delay time tPLH tPHL — 2.5 10.0 — 16.0 — 5.0 12.0 — 18.0 Enable time tZH tZL — 7.0 18.0 — 23.0 — 9.0 28.0 — 35.0 tHZ tLZ — 9.0 18.0 — 23.0 — 13.0 28.0 — 35.0 Disable time Unit Test FROM Conditions (Input) ns CL = 15 pF CL = 50 pF ns CL = 15 pF COM or Yn or Yn COM INH COM or Yn INH COM or Yn CL = 50 pF ns CL = 15 pF TO (Output) CL = 50 pF • VCC = 3.3 ± 0.3 V Item Symbol Ta = 25°C Ta = –40 to 85°C Min Typ Max Min Max Propagation delay time tPLH tPHL — 2.0 6.0 — 10.0 — 4.0 9.0 — 12.0 Enable time tZH tZL — 5.0 12.0 — 15.0 — 7.0 20.0 — 25.0 tHZ tLZ — 7.0 12.0 — 15.0 — 10.0 20.0 — 25.0 Disable time Rev.4.00, Sep.25.2003, page 6 of 11 Unit Test FROM Conditions (Input) ns CL = 15 pF CL = 50 pF ns CL = 15 pF COM or Yn or Yn COM INH COM or Yn INH COM or Yn CL = 50 pF ns CL = 15 pF CL = 50 pF TO (Output) HD74LV2G53A Switching Characteristics (cont) • VCC = 5.0 ± 0.5 V Item Symbol Ta = 25°C Ta = –40 to 85°C Min Typ Max Min Max Propagation delay time tPLH tPHL — 1.5 4.0 — 7.0 — 3.0 6.0 — 8.0 Enable time tZH tZL — 4.0 8.0 — 10.0 — 5.0 14.0 — 18.0 tHZ tLZ — 5.0 8.0 — 10.0 — 8.0 14.0 — 18.0 Disable time Unit Test FROM Conditions (Input) ns CL = 15 pF CL = 50 pF ns CL = 15 pF COM or Yn or Yn COM INH COM or Yn INH COM or Yn CL = 50 pF ns CL = 15 pF TO (Output) CL = 50 pF Operating Characteristics • CL = 50 pF Item Power dissipation capacitance Symbol CPD VCC (V) Ta = 25°C Min Typ Max 3.3 — 7.5 — 5.0 — 8.0 — Rev.4.00, Sep.25.2003, page 7 of 11 Unit Test Conditions pF f = 10 MHz HD74LV2G53A Test Circuit • R ON VCC VINH =VIL VCC VIN =VCC (ON) VOUT R ON = GND 2.0 mA + V VIN–OUT 2 × 10 -3 (Ω) – VIN–OUT • I S (off), I S (on) VCC VCC VINH =VIL VINH =VIH VCC A VIN =VCC or GND VCC A (OFF) GND Rev.4.00, Sep.25.2003, page 8 of 11 VOUT =GND or VCC VIN =VCC or GND (ON) GND VOUT OPEN HD74LV2G53A • t PLH ,t PHL VCC VINH =VIL tf tr VIN (ON) VOUT CL= 15 or 50 pF GND VCC 90% 90% 50% 50% VIN VCC 10% 10% t PHL t PLH VOUT 50% GND VOH 50% VOL Notes: 1. Input waveform : PRR ≤ 1 MHz, Zo = 50 Ω, tr ≤ 3 ns, tf ≤ 3 ns. 2. The output are measured one at a time with one transition per measurement. • t ZH ,t ZL / t HZ ,t LZ VCC VINH S1 VIN R L= 1kΩ VCC VOUT GND Item t ZH t ZL t HZ t LZ S1 VCC GND VCC GND CL=15 or 50 pF S2 GND VCC tf VINH S2 tr 90% 50% 10% t ZH R L= 1kΩ 10% 90% 50% GND t HZ VOH –0.3 V 50% VOUT VOH GND t ZL t LZ 50% VCC VOL +0.3 V GND VCC Notes: 1. Input waveform : PRR ≤ 1 MHz, Zo = 50 Ω, tr ≤ 3 ns, tf ≤ 3 ns. 2. Waveform – A is for an output with internal conditions such that the output is low except when disabled by the output control. 3. Waveform – B is for an output with internal conditions such that the output is high except when disabled by the output control. 4. The output are measured one at a time with one transition per measurement. Rev.4.00, Sep.25.2003, page 9 of 11 VCC VOL HD74LV2G53A • C IN/OUT , C IN–OUT CIN–OUT VINH = VIH VCC VCC (OFF) CIN/OUT Rev.4.00, Sep.25.2003, page 10 of 11 GND CIN/OUT HD74LV2G53A Package Dimensions 2.0 ± 0.2 1.5 ± 0.2 + 0.1 (0.17) 8 − 0.2 − 0.05 Package Code JEDEC JEITA Mass (reference value) Rev.4.00, Sep.25.2003, page 11 of 11 + 0.1 0.13 − 0.05 0 − 0.1 0.7 ± 0.1 (0.4) 2.3 ± 0.1 (0.5) (0.5) (0.5) 3.1 ± 0.3 (0.4) Unit: mm TTP–8DBV 0.010 g Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein. http://www.renesas.com RENESAS SALES OFFICES Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501 Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900 Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11 Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836 Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952 Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 © 2003. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon 1.0