MAX3612 Evaluation Kit Data Sheet

19-5295; Rev 0; 6/10
EVALUATION KIT AVAILABLE
MAX3612 Evaluation Kit
The MAX3612 evaluation kit (EV kit) is a fully assembled
and tested demonstration board that simplifies evaluation of the MAX3612 low-jitter clock generator. The EV
kit includes an on-board 25MHz crystal and switches
for selecting different modes of operation. The reference
inputs and clock outputs use SMA connectors and are
AC-coupled to simplify connection to test equipment.
EV Kit Contents
S MAX3612 EV Kit Board
Features
S Fully Assembled and Tested
S On-Board 25MHz Crystal
S Switches for Selecting Modes of Operation
S SMA Connectors and AC-Coupled Clock I/Os
Ordering Information
PART
TYPE
MAX3612EVKIT+
EV Kit
+Denotes lead(Pb)-free and RoHS compliant.
Component List
DESIGNATION
QTY
DESCRIPTION
C1–C10, C14,
C15, C16, C18–
C24, C27–C32,
C35, C36, C37
29
0.1µF ±10% ceramic capacitors
(0402)
C11
1
2.2µF ±10% ceramic capacitor
(0603)
C12
1
0.1µF ±10% ceramic capacitor
(0603)
C13
1
33µF ±10% tantalum capacitor
(B case)
AVX TAJB336K010R
DESIGNATION
QTY
L2, L3, L6, L7,
L10, L12, L14,
L15, L18, L19,
L22, L23, L26,
L27, L30, L31,
L33, L34
DESCRIPTION
18
4.7µH ±10% inductors (0805)
Murata LQM21NN4R7K10
R1–R10, R12,
R15–R18, R20,
R21, R22
18
150ω ±1% resistors (0402)
R11
1
49.9ω ±1% resistor (0402)
R13
1
10.5ω ±1% resistor (0402)
S1, S2, S9,
S11, S13–S17
9
Switches, SP3T, slide
Alps SSS211900
S3, S6,
S18–S21
6
Switches, SPDT, slide
E-Switch EG1218
C17
1
27pF ±5% ceramic capacitor
(0402)
C25
1
33pF ±5% ceramic capacitor
(0402)
C26
1
10µF ±20% ceramic capacitor
(0603)
TP1, TP2
2
Test points
Keystone 5000
J1–J9, J11,
J13–J20, J22,
J23, J24
U1
1
21
SMA connectors, edge-mount,
tab-contact
Johnson 142-0701-851
Clock generator (48 TQFN-EP*)
Microsemi
Maxim MAX3612ETM+
U2
1
25MHz crystal
NDK EXS00A-AT00429
J10, J12
2
––
1
PCB: MAX3612 EVALUATION
BOARD+ REV B
L1, L4, L5, L8,
L9, L11, L13,
L16, L17, L20,
L21, L24, L25,
L28, L29, L32,
L35, L36
Test points
Keystone 5000
*EP = Exposed pad.
18
Ferrite beads (0402)
Murata BLM15HD102SN1
1
Evaluates: MAX3612
General Description
Evaluates: MAX3612
MAX3612 Evaluation Kit
Quick Start
1) Set the switches to the following settings to generate
a 156.25MHz LVDS output from the 25MHz crystal
reference:
IN_SEL = XO
PLL_BP = LOW
DM = LOW
DF = LOW
DA = LOW
DB = LOW
DC = LOW
QA_CTRL1 = LVDS
QA_CTRL2 = DISABLED
QB_CTRL = DISABLED
QC_CTRL = DISABLED
QA_TERM1 = LVDS
QA_TERM2 = LVDS
QB_TERM = LVDS
QC_TERM = LVDS
Differential Clock Input
The differential clock input (DIN) is AC-coupled at the
SMA connectors and has an internal 100ω differential
termination. For optimal performance, it is important to
use a low-jitter, differential, square-wave clock source.
Clock signals should be applied to DIN only when the
switch IN_SEL is set to DIN.
LVDS/LVPECL Clock Outputs
The LVDS/LVPECL clock outputs (QA[4:0], QB[2:0], QC)
are configured using switches S14–S21. Each output has
an on-board bias-T, which provides DC-bias when configured as LVPECL and AC-coupling for direct connection to 50ω-terminated test equipment. Unused outputs
should be disabled (using switches S14–S17) or have
50ω terminations placed on the SMA connectors. For
optimal jitter measurements, a balun is recommended for
differential to single-ended conversion when connected
to single-ended test equipment such as a phase noise
analyzer. See Figure 1 for the measurement setup.
PHASE NOISE
ANALYZER
2) Connect a +3.3V supply to VCC (J10) and GND (J12).
3) Set the supply current limit to 500mA. Using SMA
cables, connect QA0 and QA0 to a phase noise analyzer or scope. Terminate all unused enabled outputs
(QA1, QA1, QA2, QA2).
MAX3612
EVALUATION BOARD
Q_
BALUN
Q_
Detailed Description
The MAX3612 evaluation kit (EV kit) simplifies evaluation
by providing the hardware needed to evaluate all the
MAX3612 functions. Table 1 contains functional descriptions for the switches. Table 2 provides the divider settings for various frequency configurations.
LVCMOS Clock Input
The LVCMOS clock input (CIN) is AC-coupled at the
SMA connector and has an on-board 50ω termination.
For optimal performance, it is important to use a lowjitter square-wave clock source. Clock signals should be
applied to CIN only when the switch IN_SEL is set to CIN.
2 _
SCOPE
MAX3612
EVALUATION BOARD
Q_
Q_
Figure 1. Measurement Setup
MAX3612 Evaluation Kit
Evaluates: MAX3612
Table 1. Switch Descriptions
COMPONENT
NAME
FUNCTION
IN_SEL
Selects input reference clock source.
DIN = Differential input DIN, DIN
CIN = LVCMOS input CIN
XO = Crystal reference (25MHz on-board)
S2
PLL_BP
Selects PLL bypass mode.
HIGH = All outputs PLL bypass
OPEN = C output bank PLL bypass
LOW = All outputs PLL enabled
S3
DM
Selects input divider M. See Table 2.
S6
DF
Selects feedback divider F. See Table 2.
S9
DA
Selects output divider A. See Table 2.
S11
DB
Selects output divider B. See Table 2.
S13
DC
Selects output divider C. See Table 2.
S14
QA_CTRL1
Selects QA[2:0] output interface (LVPECL, LVDS, or DISABLED).
S15
QA_CTRL2
Selects QA[4:3] output interface (LVPECL, LVDS, or DISABLED).
S16
QB_CTRL
Selects QB[2:0] output interface (LVPECL, LVDS, or DISABLED).
S17
QC_CTRL
Selects QC output interface (LVPECL, LVDS, or DISABLED).
S18
QA_TERM1
Selects QA[2:0] output termination. Provides DC path to GND for QA[2:0] bias-Ts when
switched to LVPECL. DC path to GND is open when switched to LVDS.
S19
QA_TERM2
Selects QA[4:3] output termination. Provides DC path to GND for QA[4:3] bias-Ts when
switched to LVPECL. DC path to GND is open when switched to LVDS.
S20
QB_TERM
Selects QB[2:0] output termination. Provides DC path to GND for QB[2:0] bias-Ts when
switched to LVPECL. DC path to GND is open when switched to LVDS.
S21
QC_TERM
Selects QC output termination. Provides DC path to GND for QC bias-Ts when
switched to LVPECL. DC path to GND is open when switched to LVDS.
S1
Table 2. Divider Settings for Various Frequency Configurations
INPUT
FREQUENCY
(MHz)
INPUT
DIVIDER
FEEDBACK
DIVIDER
DM
DF
25
LOW
LOW
31.25
LOW
HIGH
125
HIGH
LOW
156.25
HIGH
HIGH
VCO FREQUENCY
(MHz)
625
OUTPUT
DIVIDER
DA, DB, DC
OUTPUT FREQUENCY
(MHz)
OPEN
312.5
LOW
156.25
HIGH
125
3
C26
10uF
DF
QC_CTRL
C23
0.1uF
9
10
11
12
VCC
VCC
DF
S6
VCC
DA
S9
VCC
DB
38
37
VCCQB
40
39
QB0
QB0
QB_CTRL
QA_CTRL1
QB2
QB1
QB1
36
VCC
S11
DC
35
34
33
32
31
30
29
28
27
26
25
L10
L9
R5
4.7uH 150Ω 1% FERRITE BEAD
QB_TERM
QA_TERM1
VCC
QA_CTRL1
VCC
QA_CTRL2
S15
VCC
QB_CTRL
S16
L18
L17
R9
4.7uH 150Ω 1% FERRITE BEAD
QA_TERM1
C27
0.1uF
QB_TERM
S18
S20
QA_TERM2
QC_TERM
S19
S21
Figure 2. MAX3612 EV Kit Schematic
4 _
L19
R10
L20
4.7uH 150Ω 1% FERRITE BEAD
L22
L21
R12
4.7uH 150Ω 1% FERRITE BEAD
C5
0.1uF
C6
0.1uF
C7
0.1uF
C8
0.1uF
C9
0.1uF
QB2
J4
QB2
J5
QB1
J6
QB1
J7
QB0
J8
QB0
J9
QA0
C10
J11
0.1uF
C14
0.1uF
QA0
J13
L23
R15
L24
4.7uH 150Ω 1% FERRITE BEAD
QA1
C15
J14
0.1uF
C16
0.1uF
QA1
J15
QA2
C22
J16
0.1uF
C29
0.1uF
QA2
J17
VCC
QC_CTRL
L26
L25
R16
4.7uH 150Ω 1% FERRITE BEAD
S17
QA_TERM2
QA_TERM1
L15
R8
L16
4.7uH 150Ω 1% FERRITE BEAD
C4
0.1uF
EP
QA_TERM1
S14
L12
R6
L11
4.7uH 150Ω 1% FERRITE BEAD
L14
L13
R7
4.7uH 150Ω 1% FERRITE BEAD
C28
0.1uF
S13
L7
R4
L8
4.7uH 150Ω 1% FERRITE BEAD
C21
0.1uF
VCC
QA_CTRL2
S3
13
14
15
DM
VCC
MAX3612ETM+
VCCQC
R13
10.5Ω
1%
QB_TERM
VCC
VCCQA
QA0
QA0
QA1
QA1
QA2
QA2
QA3
QA3
QA4
QA4
VCCQA
U1
DC
PLL_BP
S2
IN_SEL
PLL_BP
DM
XIN
XOUT
VCC
IN_SEL
PLL_BP
RES0
DF
QC_CTRL
VCCA
RES1
RES2
L3
R2
L4
4.7uH 150Ω 1% FERRITE BEAD
L6
L5
R3
4.7uH 150Ω 1% FERRITE BEAD
C20
0.1uF
23
24
C24
0.1uF
VCC
2
3
4
5
6
7
8
DA
IN_SEL
S1
VCC
1
QC
QC
VCC
DM
QA_CTRL2
VCC
RES6
C25
33pF
21
22
CIN
U2
25MHz
CRYSTAL
43
42
41
48
47
46
C17
27pF
VCC
18
19
20
C18
0.1uF
R11
C19 49.9Ω
0.1uF 1%
45
44
VCC
QA_CTRL1
QB2
J12
CIN
J1
C1
0.1uF
RES5
DC
DIN
J2
C12
0.1uF TP2
QB_TERM
16
17
C11
2.2uF
L2
L1
R1
4.7uH 150Ω 1% FERRITE BEAD
C2
0.1uF
DIN
DIN
QB_CTRL
GND
C3
0.1uF
DIN
J3
DB
RES4
DA
C13
33uF
J10
VCC
TP1
+3.3V
RES3
VCC
DB
Evaluates: MAX3612
MAX3612 Evaluation Kit
QC
J22
QC
J23
C35
0.1uF
C36
0.1uF
L32
L33
R20
FERRITE BEAD 150Ω 1% 4.7uH
L35
R21
L34
FERRITE BEAD 150Ω 1% 4.7uH
L27
R17
L28
4.7uH 150Ω 1% FERRITE BEAD
L30
L29
R18
4.7uH 150Ω 1% FERRITE BEAD
QC_TERM
QA_TERM2
L31
R22
L36
4.7uH 150Ω 1% FERRITE BEAD
QA3
C30
J18
0.1uF
C31
0.1uF
QA3
J19
QA4
C32
J20
0.1uF
C37
0.1uF
QA4
J24
MAX3612 Evaluation Kit
Evaluates: MAX3612
Figure 3. MAX3612 EV Kit Component Placement Guide—Component Side
5
Evaluates: MAX3612
MAX3612 Evaluation Kit
Figure 4. MAX3612 EV Kit PCB Layout—Component Side
6 _
MAX3612 Evaluation Kit
Evaluates: MAX3612
Figure 5. MAX3612 EV Kit PCB Layout—Ground Plane
7
Evaluates: MAX3612
MAX3612 Evaluation Kit
Figure 6. MAX3612 EV Kit PCB Layout—Power Plane
8 _
MAX3612 Evaluation Kit
Evaluates: MAX3612
Figure 7. MAX3612 EV Kit PCB Layout—Solder Side
9
Evaluates: MAX3612
MAX3612 Evaluation Kit
Revision History
REVISION
NUMBER
REVISION
DATE
0
6/10
10
DESCRIPTION
Initial release
PAGES
CHANGED
—
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.
Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.