Data Sheet May 2012 DS3105DK Demo Kit Evaluates: DS3102 TimingIC General Description The DS3105DK is an easy-to-use demo and evaluation kit for the DS3105 line card timing IC. A surface-mounted DS3105 and careful layout provide maximum signal integrity. An on-board 8051compatible microcontroller and included software give point-and-click access to configuration and status registers from a Windows®-based PC. LEDs on the board indicate interrupt, power-supply function, and lock status. Single-ended and differential clocks are accessed via SMB connectors. All LEDs and connectors are clearly labeled with silkscreening to identify associated signals. Demo Kit Contents DS3105DK Board CD-ROM Includes: DS3105 Software DS3105 Initialization File DS3105DK Data Sheet DS3105 Data Sheet/Errata Sheet Features ♦ Soldered DS3105 for Best Signal Integrity ♦ SMB Connectors and Termination Ease Connectivity ♦ Careful Layout for Analog Signal Paths ♦ On-Board Stratum 3 Oscillator with Footprints for Stratum 3E and Stratum 4 Oscillators ♦ On-Board Microcontroller and Included Software Provide Point-and-Click Access to the DS3105 Register Set ♦ LEDs for Interrupt, Power Supplies, and Lock Status ♦ Banana Jack VDD and GND Connectors Support Use of Lab Power Supplies ♦ Easy-to-Read Silkscreen Labels Identify the Signals Associated with All Connectors, Jumpers, and LEDs ♦ Software Provides GUI Fields for Most Commonly Used Features Plus Full Read/Write Access to the Entire Register Set ♦ Software Support for Creating and Running Configuration Scripts Saves Time During Evaluation Minimum System Requirements ♦ PC Running Windows XP or Windows 2000 ♦ Display with 1024 x 768 Resolution or Higher ♦ Available USB or Serial (COM) Port ♦ USB Cable or DB-9 Serial Cable Ordering Information PART DS3105DK DESCRIPTION Demo kit for DS3105 Windows is a registered trademark of Microsoft Corp. 1 _________________________________________________________________________________________ DS3105DK Table of Contents 1. BOARD FLOORPLAN .................................................................................................................. 4 INPUT AND OUTPUT CLOCKS ......................................................................................................... 5 JUMPERS, HEADERS, AND SWITCH SETTINGS ................................................................................. 5 MICROCONTROLLER ..................................................................................................................... 5 POWER-SUPPLY CONNECTORS ..................................................................................................... 5 1.1 1.2 1.3 1.4 2. BASIC HARDWARE SETUP ......................................................................................................... 6 2.1 USB DRIVER INSTALLATION .......................................................................................................... 6 INSTALLING AND RUNNING THE SOFTWARE .......................................................................... 7 3.1 COMMAND LINE OPTIONS.............................................................................................................. 7 3. 4. OVERVIEW OF THE SOFTWARE INTERFACE ........................................................................... 8 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 GLOBAL CONFIGURATION.............................................................................................................. 8 INPUT CLOCK MONITOR, DIVIDER, AND SELECTOR ......................................................................... 8 T0 DPLL ....................................................................................................................................10 T4 DPLL ....................................................................................................................................11 T0 APLL AND T0 APLL2 .............................................................................................................12 T4 APLL.....................................................................................................................................13 OUTPUT CLOCKS.........................................................................................................................13 DPLL FREQUENCY LIMITS, PHASE DETECTORS, DPLL LOCK CRITERIA ..........................................14 REFCLK CALIBRATION ................................................................................................................14 PROGRAMMABLE DFS ..............................................................................................................14 I/O PINS ..................................................................................................................................16 REGISTER VIEW W INDOW .........................................................................................................17 CONFIGURATION SCRIPTS AND LOG FILE ...................................................................................18 4.13.1 4.13.2 Configuration Log File .......................................................................................................................... 18 Configuration Scripts ............................................................................................................................ 18 5. APPENDIX 1: HARDWARE COMPONENTS ...............................................................................19 6. APPENDIX 2: SCHEMATICS .......................................................................................................21 7. DOCUMENT REVISION HISTORY ..............................................................................................21 2 _________________________________________________________________________________________ DS3105DK List of Figures Figure 1-1. DS3105DK Board Floorplan .......................................................................................................................4 Figure 4-1. Software Main Screen ................................................................................................................................8 Figure 4-2. Software Input Clock Window ....................................................................................................................9 Figure 4-3. Software T0 DPLL Window ..................................................................................................................... 10 Figure 4-4. Software T4 DPLL Software .................................................................................................................... 12 Figure 4-5. Software-Programmable DFS Window ................................................................................................... 15 Figure 4-6. Software I/O Pins Window ...................................................................................................................... 16 Figure 4-7. Software Register View Window ............................................................................................................. 17 List of Tables Table 4-1. Mapping Between Input Clock Software Fields and DS3105 Register Fields ............................................9 Table 4-2. Mapping Between T0 DPLL Software Fields and DS3105 Register Fields ............................................. 11 Table 4-3. Mapping Between T4 DPLL Software Fields and DS3105 Register Fields ............................................. 12 Table 4-4. Mapping Between T0 APLL Software Fields and DS3105 Register Fields ............................................. 12 Table 4-5. Mapping Between T4 APLL Software Fields and DS3105 Register Fields ............................................. 13 Table 4-6. Mapping Between Output Clock Software Fields and DS3105 Register Fields....................................... 13 Table 4-7. Mapping Between DPLL Software Fields and DS3105 Register Fields .................................................. 14 Table 4-8. Mapping Between REFCLK Software Fields and DS3105 Register Fields ............................................. 14 Table 4-9. Mapping Between I/O Pins Software Fields and DS3105 Register Fields............................................... 16 3 _________________________________________________________________________________________ DS3105DK 1. Board Floorplan Figure 1-1 shows the DS3105DK floorplan. The DS3105 is in the center of the board, input clock SMB connectors are along the left edge of the board, and output clock connectors are on the right edge. Between the input clock connectors and the DS3105, land patterns are provided for several different types of local oscillators, ranging from inexpensive XOs to higher performance TCXOs. The top edge contains, from left to right, power-supply connectors, DC-DC converters and power-indicator LEDs, reset pushbutton, serial connector, and USB connector. An on-board DS87C520 microcontroller is located near the USB connector. The bottom edge of the board is occupied by a JTAG connector and LED indicators. The DS3105DK has the same PCB design as demo kits for timing ICs with more clock I/O. See Appendix 1: Hardware Components for a complete component list. Complete board schematics follow in Section 7. Figure 1-1. DS3105DK Board Floorplan 4 _________________________________________________________________________________________ DS3105DK 1.1 Input and Output Clocks There are six SMB connectors at the left of the board labeled IC3, IC4, IC9, and SYNC1–SYNC3 that provide a single-ended clock input to the DS3105. All single-ended clock inputs are connected to the DS3105 with a 50Ω characteristic impedance trace and terminated with 50Ω at the device (SYNC1–SYNC3 require a jumper in the TERM position to terminate due to dual functionality). Four additional SMB connectors labeled IC5P, IC5N, IC6P, and IC6N provide differential clock inputs to the DS3105. These differential inputs have 50Ω trace impedance, test points, and 50Ω termination at the device (i.e., 100Ω differential). On the other side of the PCB are three SMB clock output connectors labeled OC3, FSYNC, and MFSYNC. All single-ended clock outputs are buffered at the DS3105 and connected to the SMB connector via a 50Ω characteristic impedance trace. Cables attached to the single-ended output connectors must have 50Ω termination for proper operation. Two additional SMB connectors labeled OC6P and OC6N provide connections to the differential outputs from the DS3105. 1.2 Jumpers, Headers, and Switch Settings Jumpers JMP9–JMP12 and JMP16 (lower right of board) provide the means to pull up or pull down the SRFAIL, SRCSW, SONSDH, and TEST pins of the DS3105. (Note that some of these jumpers only make sense for other DS310x products where the pin has a different function.) Labels specify which position is used to pull each pin to a 1 or a 0 (if jumper is not installed, pin is left to float to accommodate a pin’s output function). Jumpers JMP1–JMP4 (middle right of board) provide access to the SYNC1–SYNC3 and IC9 pins of the DS3105. Labels specify the position to install the jumper to pull the pin up (signified by “1”) or pull it down through a 50Ω resistor (signified by “TERM\0”). The 50Ω resistor is used as a termination resistor when the pin is used as a input clock signal. Jumper JMP6 (labeled VDDIOB) is not used when the board is configured as a DS3105DK. Jumpers JMP62 and JMP63 select the computer interface to be USB or RS232. Jumper JMP5 (upper left) selects whether the board should be powered from the USB connector or from the power-supply jacks (J3 or J13/J19). LEDs DS1–DS4 (upper left) indicate the labeled power supply is operational. LED DS16 (upper right) indicates that the microprocessor is operational. LEDs DS5, DS6, and DS10 (lower middle) indicate the status of the SRFAIL, LOCK, and INTREQ pins, respectively. Switch SW1 is used to select a squaring circuit to accommodate a sinusoidal input on IC3. Header J51 provides access to the JTAG port of the DS3105. Test points are provided for differential inputs and outputs, the watchdog timer pin, SPI port pins, and ground plane connection. 1.3 Microcontroller The DS87C520 microcontroller has factory-installed firmware in on-chip nonvolatile memory. This firmware translates memory access requests from the RS232 serial port or USB port into register accesses on the DS3105. When the microcontroller starts up it turns on DS16 to indicate that the controller is working correctly. A pushbutton switch labeled RESET near the RS232 connector resets the microcontroller as well as the DS3105. 1.4 Power-Supply Connectors A 5V lab power supply can be connected across the red (J13) and black (J19) banana jacks. Optionally, the board can be powered from the USB connector by placing jumper JMP5 in the USB position. The 5V input from either of these sources is then regulated to 3.3V, 2.5V, and 1.8V, and distributed to board components. Note that the board cannot be USB powered through some USB hubs. Before trying to power the board through a USB hub, check the voltage at JMP5 to ensure the board is getting 5V from the hub. 5 _________________________________________________________________________________________ DS3105DK 2. Basic Hardware Setup Note: In the following sections, software-related items are identified by bolding. Text in bold refers to items directly from the demo kit (DK) software. Text in bold and underlined refers to items from the Windows operating system. The following steps provide a quick start to using the DS3105DK. 1) To communicate with the board using a USB cable: a) Configure the board for USB communication by placing jumpers to connect the middle and right pins of JMP62 and JMP63 (i.e., place the jumpers toward the “USB” silkscreen). b) Connect a USB cable between the USB connector on the DS3105DK and an available USB port on the host computer. 2) To communicate with the board using a serial (RS232) cable: a) Configure the board for serial communication by placing jumpers to connect the left and middle pins of JMP62 and JMP63 (i.e., place the jumpers toward the “RS232” silkscreen). b) Connect a standard DB-9 serial cable between the serial port connector on the DS3105DK and an available serial port on the host computer. (Be sure the cable is a standard straight-through cable rather than a null-modem cable. Null-modem cables prevent proper operation.) 3) To power the board from a lab power supply, place the POWER jumper (JMP5) in the PS position and connect a 5V supply across the J13 and J19 connectors. 4) To power the board from the USB port, place the POWER jumper (JMP5) in the USB position. At this point the power indicator LEDs DS1–DS4 should be lit. Microcontroller status LED DS16 (to the right of the USB connector) should also be lit. 2.1 USB Driver Installation When the DS3105DK is first connected to the PC using a USB cable, an on-board USB-to-serial converter IC is automatically detected by Windows and the Found New Hardware Wizard is automatically started. Follow these steps to install the drivers: 1) In the first screen of this wizard, select Install from a list or specific location and click Next. 2) In the second screen, select Search for the best driver in these locations, check Include this location in the search, and browse to the USB directory in the DS3105DK CD-ROM or downloaded ZIP file. Click Next. 3) Click Finished. 4) Repeat steps 1 to 3 the second time the Found New Hardware Wizard starts. After the drivers are installed, whenever the DS3105DK board is connected to a USB port on the PC, the Windows operating system will see the USB-to-serial converter IC as an additional COM port. The DS3105DK software will automatically list the additional COM port in the PORT selection combo box in the upper-left corner of the main window. 6 _________________________________________________________________________________________ DS3105DK 3. Installing and Running the Software At this time the DS3105 demo kit software only runs on Windows 2000 or Windows XP operating systems. To install the demo kit software, run SETUP.EXE from the disk included in the DS3105DK box or from the zip file available on the Microsemi website or from Microsemi timing products technical support. After software installation is complete, set up the hardware as described above and run the software by doubleclicking the DS3105 Demo Kit icon on the Windows desktop or by selecting Start→Programs→Microsemi→ DS3105 Demo Kit. When the main window appears, select the correct serial port in the box in the upper-left corner. When communication has been properly established between the software and the hardware, the ID field in the upper-left corner should indicate 3105 rev x, where x = 0 for a revision A1 device, and x = 1 for a revision A2 device. The demo kit software always starts in demo mode (with the DEMO MODE checkbox in the upper-left corner checked) to allow a user to look at the software without having the DK hardware connected to the PC. To connect the software with the demo kit hardware, uncheck the DEMO MODE box. The software optionally initializes the DS3105 device and then reads the state of the device to get ready for use. 3.1 Command Line Options The demo kit software has these command line options: -l <filepath> -p[port#] specifies an alternate log file sets the serial (COM) port number example: “DS3105DK.exe –l mylog.mfg example: “DS3105DK.exe –p2” sets COM2 To add command line options to the DS3105 demo kit shortcut that the installer adds to the desktop, right-click on the shortcut and select Properties. In the Shortcut tab, at the end of the text in the Target text box, add a space followed by the command line option. 7 _________________________________________________________________________________________ DS3105DK 4. Overview of the Software Interface Figure 4-1. Software Main Screen 4.1 Global Configuration In the upper-left corner of the main window are several global status and configuration fields. The ID field displays the device part number and revision. The PORT field shows the COM port to which the DK board is connected. The DEMO MODE checkbox, which is checked by default, must be unchecked to enable the software to communicate with the DK board. The ENABLE POLLING checkbox, also checked by default, controls software polling of the device. The RESET checkbox controls MCR1:RESET in the device. Finally, the SDH and SONET radio buttons (which control device register field MCR3:SONSDH) specify whether 1.544MHz (SON) or 2.048MHz (SDH) is an available frequency option for the input clocks. 4.2 Input Clock Monitor, Divider, and Selector This box occupying the left-center section of the main window contains the most frequently used configuration and status associated with input clocks IC3–IC6. Note that the device does not have an IC7 input clock. Just to the right of the input clock numbers (3, 4, 5, 6, and 9) are software LEDs that indicate the state of each input as reported by its input monitor. These LEDs are red in the absence of any other condition. When a clock of the correct frequency is applied to an input, the associated LED turns green when activity is detected. If an input is disqualified by one of the DPLLs because the DPLL could not lock to it, the LED turns magenta. In the middle of the box, the FREQ and LK MODE fields configure the frequency and lock mode (direct-lock, DIVN, LOCK8K, or alternate direct-lock) for each input clock. At the bottom is a field to configure the DIVN divider used for inputs configured for DIVN mode. All the fields in the box containing the PRIORITY fields display information about either the T0 DPLL or the T4 DPLL, depending on which of two radio buttons is selected at the top of the box. The PRIORITY fields configure the input clock priorities for the selected DPLL (1 highest, 15 lowest, 0 disabled). The SEL REF field shows the 8 _________________________________________________________________________________________ DS3105DK selected reference for the DPLL, while the REF 1, REF 2, and REF 3 fields display the three highest priority valid inputs for the DPLL. The FREQ and PHASE fields show the real-time frequency and phase reported by the DPLL. Clicking the More button opens another window (Figure 4-2) with additional input clock configuration and status fields. See Figure 4-1 and Table 4-1 for further details. Figure 4-2. Software Input Clock Window Table 4-1. Mapping Between Input Clock Software Fields and DS3105 Register Fields SOFTWARE FIELD DS3105 REGISTER FIELDS MAIN WINDOW FREQ 3, 4, 5, 6, 9 LK MODE 3, 4, 5, 6, 9 PRIORITY 3, 4, 5, 6, 9 SEL REF REF 1 REF 2 REF 3 FREQ (ppm) PHASE (deg) ISR2, ISR3, SR5 registers LED red when ACT = 1, LOCK = 0 LED green when ACT = 0, LOCK = 0 LED magenta when LOCK = 1 ICRn:FREQ[3:0] ICRn:LOCK8K, and DIVN IPR2, IPR3, IPR5 PTAB1:SELREF PTAB1:REF1 PTAB2:REF2 PTAB3:REF3 FREQ1, FREQ2, and FREQ3 registers concatenated PHASE1 and PHASE2 register concatenated Act 3, 4, 5, 6, 9 Lock 3, 4, 5, 6, 9 Valid 3, 4, 5, 6, 9 Enable 3, 4, 5, 6, 9 Bucket 3, 4, 5, 6, 9 PHLKTO and PHLKTOM Alarm Timeout External Switching Ultra-Fast Switching Freq Range Enable 8K Polarity LEAKY BUCKET SETTINGS ACT bit in ISR2, ISR3 or ISR5 LOCK bit in ISR2, ISR3 or ISR5 VALSR1, VALSR2 VALCR1, VALCR2 ICRn:BUCKET PHLKTO MCR3:LKATO MCR10:EXTSW MCR10:UFSW MCR1:FREN TEST1:8KPOL LBxU, LBxL, BLxS, LBxD (x = 1 to 4) Input Clock Status LEDs 3, 4, 5, 6, 9 SUBWINDOW 9 _________________________________________________________________________________________ DS3105DK 4.3 T0 DPLL The state of the T0 DPLL (free-run, locked, holdover, etc.) is shown in the STATE text box. The STATE and SRFAIL buttons represent latched status bits in the device. When the button is red, the corresponding latched status bit has been set in the DS3105. Pressing the button clears the latched status bit and changes the color of the button back to green. The STATE button indicates that the state of the T0 DPLL has changed since the last time the button was pressed. SRFAIL indicates that the selected reference has failed since the last time the button was pressed. The state of the T0 DPLL can be forced using the combo box to the left of the STATE text box, and the selected reference can be forced using the CLK SEL field. Below the CLK SEL field is a field that configures the T0 DPLL for revertive or non-revertive input reference switching. The frequency of the T0 DPLL is displayed in the FREQ field (fixed at 77.76MHz for the DS3105 T0 DPLL). The acquisition and locked bandwidths are set by the ABW and LBW fields, respectively, and the damping factor is set by the DAMP field. The acquisition bandwidth is only used if AUTOBW is checked. If the frequency of the T0 DPLL’s selected reference exceeds the SOFT LIMIT setting (in the DPLL FREQUENCY LIMITS box at the top of the main window), the SOFTLIM LED turns red. The PALARM status LED and the PHASE MONITOR AND BUILDOUT fields are advanced topics. See Table 4-2 and the DS3105 data sheet for more details. Clicking the More button opens another window (see Figure 4-3) with additional T0 DPLL configuration and status fields. Figure 4-3. Software T0 DPLL Window 10 _________________________________________________________________________________________ DS3105DK Table 4-2. Mapping Between T0 DPLL Software Fields and DS3105 Register Fields SOFTWARE FIELD DS3105 REGISTER FIELDS STATE combo box STATE status box CLK SEL Revertive/Non-Rev. FREQ ABW LBW DAMP STATE latched status button SRFAIL PALARM SOFTLIM AUTOBW LIMINT PBOEN PBOFRZ RECAL MANUAL PBO (ns) MCR1:T0STATE OPSTATE:T0STATE MCR2:T0FORCE MCR3:REVERT Fixed by T0 DPLL architecture T0ABW T0LBW T0CR2:DAMP MSR2:STATE MSR2:SRFAIL TEST1:PALARM OPSTATE:T0SOFT MCR9:AUTOBW MCR9:LIMINT MCR10:PBOEN MCR10:PBOFRZ FSCR3:RECAL OFFSET1 and OFFSET2 Freerun Holdover Holdover Type HO Ready SYNC2K Mode MONLIM AEFSEN EFSEN INDEP OCN FSMON SYNC1 Source SYNC1 Phase SYNC2 Source SYNC2 Phase SYNC3 Source SYNC3 Phase PHASE DETECTOR 2 Enable PD2G PD2G8K APBO OFFSET (ns) MCR3:FRUNHO HOCR3:AVG VALSR2:HORDY FSCR3:SOURCE, FSCR1:SYNCSRC FSCR3:MONLIM MCR3:AEFSEN MCR3:EFSEN FSCR2:INDEP FSCR2:OCN OPSTATE:FSMON Derived by software from SYNC2K Mode FSCR2:PHASE1 Derived by software from SYNC2K Mode FSCR2:PHASE2 Derived by software from SYNC2K Mode FSCR2:PHASE3 T0CR3:PD2EN T0CR3:PD2G T0CR2:PD2G8K PBOFF MAIN WINDOW SUBWINDOW 4.4 T4 DPLL In the DS3105, the T4 DPLL can only be used for measuring frequency and phase of input clocks. It is not a clock source for the T4 APLL or any other output clock logic. The T4 APLL is slaved to the T0 DPLL in the DS3105. The state of the T4 DPLL (locked or not locked) is shown in the STATE field. The LOCK button represents a latched status bit in the device. When the button is red, the corresponding latched status bit has been set in the DS3105. Pressing the button clears the latched status bit and changes the color of the button back to green. LOCK indicates that the state of the T4 DPLL has changed since the last time the button was pressed. The selected reference for the T4 DPLL can be forced using the CLK SEL field. The bandwidth of the T4 DPLL is set by the BW field, while the damping factor is set by the DAMP field. If the frequency of the T4 DPLL’s selected reference exceeds the SOFT LIMIT setting (in the DPLL FREQUENCY LIMITS box at the top of the window), the SOFTLIM LED turns red. 11 _________________________________________________________________________________________ DS3105DK The T4MT0 checkbox is an advanced topic. See Table 4-3 and the DS3105 data sheet for more details. Clicking the More button opens another window (Figure 4-4) with additional T4 DPLL configuration and status fields. Figure 4-4. Software T4 DPLL Software Table 4-3. Mapping Between T4 DPLL Software Fields and DS3105 Register Fields SOFTWARE FIELD DS3105 REGISTER FIELDS STATE CLK SEL BW DAMP LOCK SOFTLIM T4MT0 OPSTATE:T4LOCK MCR4:T4FORCE T4BW T4CR2:DAMP MSR3:T4LOCK OPSTATE:T4SOFT T0CR1:T4MT0 MAIN WINDOW SUBWINDOW PHASE DETECTOR (PD2) Enable PD2G PD2G8K 4.5 T4CR3:PD2EN T4CR3:PD2G T4CR2:PD2G8K T0 APLL and T0 APLL2 The Input Freq field configures the frequency of the T0 APLL DFS (refer to the DS3105 data sheet for details). The APLL output frequency is always four times the input frequency. When the Input Freq field is changed, the Output Freq field changes to match, and all the T0 options in the output clock combo boxes also change to frequencies derived from the new T0 APLL frequency. These changes match what happens in the DS3105. In normal operation the T0 APLL2 has a fixed output frequency of 312.5MHz (twice the standard XGMII clock rate). The rate is displayed in the T0 APLL2 Output Freq text box. Whenever the T0 APLL DFS or the T0 APLL2 DFS are configured for programmable DFS operation (see Section 4.10), their respective Input Freq and Output Freq fields specify their frequencies with a “P” prefix to indicate that programmable DFS mode is enabled. Table 4-4. Mapping Between T0 APLL Software Fields and DS3105 Register Fields SOFTWARE FIELD DS3105 REGISTER FIELDS Input Freq Output Freq T0CR1:T0FREQ Derived by software from Input Freq 12 _________________________________________________________________________________________ DS3105DK 4.6 T4 APLL In the DS3105, the T4 APLL is always connected to the output of the T0 DPLL. The Input Freq field configures the frequency of the T4 APLL DFS (refer to the DS3105 data sheet for details). The APLL output frequency is always four times the input frequency. When the Input Freq field is changed, the Output Freq field changes to match, and all the T4 options in the output clock combo boxes also change to frequencies derived from the new T4 APLL frequency. These changes match what happens in the DS3105. Whenever the T4 APLL DFS is configured for programmable DFS operation (see Section 4.10) the Input Freq and Output Freq fields specify their frequencies with a “P” prefix to indicate that programmable DFS mode is enabled for the T4 APLL DFS. Table 4-5. Mapping Between T4 APLL Software Fields and DS3105 Register Fields 4.7 SOFTWARE FIELD DS3105 REGISTER FIELDS Input Freq Output Freq T0CR1:T0FT4 Derived by software from Input Freq Output Clocks The fields in the OUTPUT CLOCKS box configure the DS3105’s output clocks. The DIG1 and DIG2 fields configure the Digital1 and Digital2 frequency options for OC3 and OC6 (refer to the DS3105 data sheet for details). The OC3 and OC6 fields specify the output frequencies for outputs OC3 and OC6, respectively. Note that when the T0 APLL setting is changed, the frequencies of all the T0 options in the OC3 and OC6 fields automatically change to frequencies derived from the new T0 APLL frequency. Similarly, when the T4 APLL setting is changed, the frequencies of all the T4 options in the OC3 and OC6 fields automatically change to frequencies derived from the new T4 APLL frequency. These changes match what happens in the DS3105. Whenever the T0 APLL DFS, T4 APLL DFS, or T0 APLL2 DFS are configured for programmable DFS operation (see Section 4.10) the T0, T4 and T02 options, respectively, in the OC3 and OC6 fields change to frequencies derived from the programmable DFS settings. These options all have a “P” prefix, for example, “PT0” or “PT4” to indicate that they are controlled by the programmable DFS mode. Similarly, whenever the DIG1 DFS or the DIG2 DFS are configured for programmable DFS operation, the DIG1 and DIG2 fields change to display the programmable DFS frequency with a “P” prefix. FSYNC is an 8kHz output that can be configured as a 50% duty cycle clock or a frame pulse and can optionally be inverted. MFSYNC is a 2kHz output that can be similarly configured. Table 4-6. Mapping Between Output Clock Software Fields and DS3105 Register Fields SOFTWARE FIELD DS3105 REGISTER FIELDS DIG1 DIG2 OC3 and OC6 FSYNC MFSYNC MCR6:DIG1SS, MCR7:DIG1F MCR6:DIG2SS, MCR7:DIG2F, MCR7:DIG2AF OCR2 and OCR3 OCR4:FSEN, FSCR1:8KPUL, FSCR1:8KINV OCR4:MFSEN, FSCR1:2KPUL, FSCR1:2KINV 13 _________________________________________________________________________________________ DS3105DK 4.8 DPLL Frequency Limits, Phase Detectors, DPLL Lock Criteria The DPLL frequency limits specify the hard and soft limits of the DPLL frequency range. When the selected reference for a DPLL exceeds the soft limit, the SOFTLIM LED for that DPLL turns red but the selected reference is not disqualified. If the FLLOL (frequency limit loss of lock) box is checked in the DPLL LOCK CRITERIA box, when the selected reference for a DPLL exceeds the hard limit the DPLL will lose lock (T4 transitions to Not Locked state, and T0 transitions to LOL state). The remaining fields are advanced topics. See Table 4-7 and the DS3105 data sheet for more details. Table 4-7. Mapping Between DPLL Software Fields and DS3105 Register Fields 4.9 SOFTWARE FIELD DS3105 REGISTER FIELDS MCPDEN USEMCPD D180 COURSELIM FINELIM FLEN CLEN FLLOL NALOL HARD LIMIT SOFT LIMIT PHLIM2:MCPDEN PHLIM2:USEMCPD TEST1:D180 PHLIM2:COARSELIM PHLIM1:FINELIM PHLIM1:FLEN PHLIM2:CLEN DLIMIT3:FLLOL PHLIM1:NALOL HARDLIM[9:0] in DLIMIT1 and DLIMIT2 DLIMIT3:SOFTLIM REFCLK Calibration Any known frequency error in the local oscillator can be calibrated out inside the DS3105 by setting the ppm value in the REFCLK CAL box. Also, the significant edge of the REFCLK signal can be selected in XOEDGE field. Table 4-8. Mapping Between REFCLK Software Fields and DS3105 Register Fields SOFTWARE FIELD DS3105 REGISTER FIELDS REFCLK slider/text box XOEDGE MCLKFREQ[15:0] in MCLK1 and MCLK2 MCR3:XOEDGE 4.10 Programmable DFS When the Programmable DFS button in the upper-right corner of the main window is pressed, the Programmable DFS window appears (Figure 4-5). In this window one or more of the output DFS engines in the DS3105 can be configured to synthesize a custom frequency that is a multiple of 2kHz (f < 77.76MHz), a multiple of 8kHz (f ≤ 311.04MHz), or a multiple of 10kHz (f < 388.79MHz). The desired frequency can be entered in the Target Output Clock Frequency (MHz) box at the top of the window, and the software then performs the necessary computations to fill in the other numerical fields in window. The programmable DFS configuration can be applied to one or more DFS engines as specified in the Use Programmable DFS box. Frequencies below 77.76MHz are typically synthesized by the DIG1 or DIG2 DFS engine and brought out on CMOS/TTL output clock pin(s) by selecting DIG1 or DIG2 in the appropriate output clock configuration field in the main window of the software. Frequencies of 77.76MHz or above must be synthesized using an APLL DFS and its associated APLL, and are typically brought out on differential output clock pin(s). If a group of custom clock rates that are related to one another by factors of 1, 2, 4, 6, 8, 10, 12, 16, 20, 48, or 64 are needed, often the highest frequency clock can be produced through one of the APLL DFS blocks and then various lower rate clocks can be selected on one or more of the output pins. Refer to the OCR2 and OCR3 registers in the DS3105 data sheet for details. 14 _________________________________________________________________________________________ DS3105DK If the software-computed values for DFS Frequency (MHz), DIG1/DIG2 Freq & APLL Input Freq, or APLL Multiplier are manually overridden, the user must manually ensure that the DFS Frequency (MHz) falls within its allowed range and that the APLL VCO Frequency falls within its allowed range. Note that the APLL VCO Frequency does not need to be within its allowed range if none of the APLL DFS blocks is selected for use. The Register Configuration (Hex) section of the Programmable DFS window shows the values that are written to the DFSC1–DFSC15 registers to get the configuration specified in the upper part of the window. DFSC1–DFSC15 are located at device addresses 1E0h–1EEh, respectively. Figure 4-5. Software-Programmable DFS Window 15 _________________________________________________________________________________________ DS3105DK 4.11 I/O Pins The fields in this window configure the general-purpose I/O available on the DS3105. See Figure 4-6, Table 4-9, and the DS3105 data sheet for details. Figure 4-6. Software I/O Pins Window Table 4-9. Mapping Between I/O Pins Software Fields and DS3105 Register Fields SOFTWARE FIELD DS3105 REGISTER FIELDS GPIO1 to GPIO4 Config GPIO1 to GPIO4 Status INTREQ Mode INTREQ Polarity INTREQ Pin Open Drain Enable OC6POS/OC6NEG Format LOCK Pin Enable SRFAIL Pin Enable GPCR:GPIOxD and GPIOxO GPSR:GPIOx INTCR:LOS, GPO INTCR:POL INTCR:OD MCR8:OC6SF MCR1:LOCKPIN MCR10:SRFPIN 16 _________________________________________________________________________________________ DS3105DK 4.12 Register View Window When the Register View button in the upper-right corner of the main window is pressed, the Register View window appears (Figure 4-7). In this window the DS3105’s entire register set can be viewed and manually written as needed. The large grid that takes up most of the window displays the DS3105 register map. For each register, its hexadecimal address in square brackets is followed by its register name and its contents in two-digit hex format. When a register is clicked in the main register grid, its register description and fields are displayed at the bottom of the window. Due to the limited speed of the serial port, the demo kit software does not continually poll every register and does not make real-time updates to the data displayed on the Register View screen. Registers can be manually read as described below. The Register View window supports the following actions: • • • • • • Read a register. Select the register in the register map. Read a register field. Select the register in the map or the register field at the bottom of the window. Read all registers. Press the Read All button. Write a register. Double-click the register name in the register map and enter the value to be written. Write a register field. Select the register, double-click the field, and enter the value to be written. Write a multiregister field. Double-click one of the register names and enter the value for the field. Figure 4-7. Software Register View Window 17 _________________________________________________________________________________________ DS3105DK 4.13 Configuration Scripts and Log File 4.13.1 Configuration Log File Every write command issued by the software to the DS3105DK board is logged in file DS3105DKLog.mfg located in the same directory as the software executable. This file can be viewed in Notepad by pressing the Log File button in the upper-right corner of the main window. Command line option "-l <filepath>" can be used to cause the software to write to a file other than DS3105DKLog.mfg. 4.13.2 Configuration Scripts All or part of the text in the configuration log file can be copied to a text file with a .mfg file extension for use as a configuration script. Configuration scripts are useful for quickly configuring the DS3105 without having to remember all the required settings. Two types of configuration scripts are possible: full and partial. A full configuration script can start with the DS3105 in its power-on default state and configure every aspect of the device to bring it to a desired state. To make a full configuration script, run the software, uncheck the Demo Mode checkbox, initialize the device, configure the device using the DK software fields, press the Log File button, and use File→Save As in Notepad to save a copy of the entire log file to a different file name. A partial configuration file only affects a subset of the DS3105 device settings. To make a partial configuration script, press the Log File button to view the log file, press Ctrl-End to jump to the end of the file, and add to the end of the file a carriage return or comment line (starting with a semicolon) to delimit the start of the desired configuration. Then save and exit the log file. Next, configure the device using the DK software fields. Finally, view the log file again, jump to the end, and copy everything from the delimiter to the end of the file into a new .mfg file. To run a configuration script, press the Config Script button in the upper-right corner of the main window. In the script window, type the path to the file or press the Browse button to navigate to the file. Note that when the Demo Mode checkbox is unchecked, during the Initializing the DS3105 step, the software runs configuration script startup.mfg located in the same directory as the software executable. The startup.mfg file can be edited or replaced as needed to change the initial configuration of the device. Be aware, however, that the section of the startup.mfg file labeled Required Initialization must be executed after device power-up or reset for the DS3105 to operate correctly. 18 _________________________________________________________________________________________ DS3105DK 5. Appendix 1: Hardware Components DESIGNATION C1, C2, C5, C6, C9–C12, C15, C42, C59–C138, C140, C142, C143, C145, C147, C151, C155, C163–C166, C168, C169 C3, C13 ,C14, C16, C41 C4, C17, C18, C20 C7 QTY DESCRIPTION SUPPLIER PART 103 0.1µF ±20% 16V X7R ceramic capacitors (0603) AVX 0603YC104MAT 5 4.7µF ±10%, 25V X5R ceramic capacitors (1206) PAN ECJ-3YB1E475K 4 6.8µF ±10%, 6.3V X5R ceramic capacitors (1206) PAN ECJ-3YB0J685K 1 68µF ±20%, 16V tantalum capacitor (D case) PAN ECS-T1CD686R C8 1 0.01µF ±10%, 50V X7R ceramic capacitor (0603) AVX 06035C103KAT C19 C34–C38, C51–C58, C139, C141, C153, C154 C39, C40 1 100µF ±20%, 4V ceramic capacitor (1206) TAI AMK316BJ107ML-T 17 10µF ±20%, 10V ceramic capacitors (1206) PAN ECJ-3YB1A106M 2 22pF ±10%, 100V ceramic capacitors (1206) AVX 12061A220KAT2A C43 D1 1 1 1µF ±10%, 16V ceramic capacitor (1206) DIODE 1A 50V GEN PURPOSE SILICON PAN GEN ECJ-3YB1C105K 1N4001 D2, D7 DS1–DS4, DS6 2 5 SCHOTTKY DIODE, 1 AMP 40 VOLT SMD green LEDs IRF PAN 10BQ040 LN1351C DS5, DS10 DS16 J1, J6, J7, J9–J12, J22, J27, J34–J37, J40, J41 2 1 SMD red LEDs SMD green LED PAN PAN LN1251C LN1351C 15 CONNECTOR, SMB, 50 OHM VERTICAL, 5PIN AMP 413990-1 J3 1 CONN 2.1MM/5.5MM PWRJACK RT ANGLE PCB, closed frame, high current 24VDC@5A CUI, INC PJ-002AH J13 1 SOCKET, BANANA PLUG, HORIZONTAL, RED MSR 164-6219 J14 1 CONNECTOR, SMB, 50 OHM VERTICAL, 5PIN, DO NOT POPULATE AMP 413990-1 J19 1 SOCKET, BANANA PLUG, HORIZONTAL, BLACK MSR 164-6218 J50 1 CONN, DB9 RA, LONG CASE AMP 747459-1 J51 1 TERMINAL STRIP, 10 PIN, DUAL ROW, VERT J54 1 CONN, USB, TYPE B SINGLE RT ANGLE, BLACK MOL 67068-0000 11 L_HEADER, 3-PIN, .100 CENTERS, VERTICAL STC TSW-103-07-T-S 4 L_2 PIN HEADER, .100 CENTERS, VERTICAL STC TSW-102-07-T-S 3 DO NOT PLACE, SHORTED 2PIN TH JUMPER NA 2 L_3 PIN HEADER, .100 CENTERS, VERTICAL STC JMP1–JMP6, JMP9–JMP12, JMP16 JMP7, JMP8, JMP36, JMP37 JMP13, JMP14, JMP15 JMP62, JMP63 NA NA NA TSW-103-07-T-S 19 _________________________________________________________________________________________ DS3105DK DESIGNATION R1–R4, R17, R19, R20, R25–R27, R33, R34, R41, R43, R45, R47–R63, R111, R112, R117, R118 R5, R11, R13, R15, R21–R24, R29–R32, R65–R68 R6 R7, R9, R10, R12, R14, R84, R110, R113, R115, R116, R120–R123 R8, R16, R18, R46, R64, R83, R100, R101, R102 R28 QTY DESCRIPTION SUPPLIER PART 36 L_RES 0603 0 Ohm 1/16W 1% AVX CJ10-000F 16 L_RES 0603 51.1 Ohm 1/16W 1% PAN ERJ-3EKF51R1V 1 RES 0603 100K Ohm 1/16W 5% PAN ERJ-3GEYJ104V 14 L_RES 0603 10K Ohm 1/16W 5% PAN ERJ-3GEYJ103V 9 RES 0603 DO NOT POPULATE NA 1 RES 0603 33.2 Ohm 1/16W 1% PAN ERJ-3EKF33R2V R35–R40, R42, R44, R94, R108 10 L_RES 0603 330 Ohm 1/16W 5% PAN ERJ-3GEYJ331V R97 1 RES 0603 20K Ohm 1/16W 5% PAN ERJ-3GEYJ203V SW1 SW5 TP1–TP22, TP49–TP60, TP65–TP84 1 1 SWITCH DPDT SLIDE 6PIN TH SWITCH MOM 4PIN SINGLE POLE TYC PAN SSA22 EVQPAE04M 54 Test Points, 1 PLATED HOLE, DO NOT STUFF NA NA U1, U2, U5, U13, U14, U23, U24, U28 8 L_TINYLOGIC HIGH SPEED 2-INPUT OR GATE, 5 PIN SOT23 FAI NC7SZ32M5 U3 1 IC, LINE CARD TIMING, -40°C to +85°C, 64 PIN QFP DAL DS3105 U4, U6 2 LINEAR REGULATOR, 3.3V, 16 PIN TSSOP-EP MAX MAX1793EUE-33 U7, U25 2 L_TINYLOGIC HIGH SPEED 2-INPUT XOR GATE, 5 PIN SOT23 U8 1 LINEAR REGULATOR, 1.8V, 16 PIN TSSOP-EP U26 1 U29 1 U35 1 U41 1 U42 1 U44 1 U45 1 U46 1 IC, LINEAR REGULATOR, 1.5W, 2.5V OR ADJ, 1A, 16 PIN TSSOP-EP IC, TCXO, 12.8MHz, 0°C to +70°C, 16-PIN SOIC, DO NOT POPULATE IC, LINE CARD TIMING WITH SYNCHRONOUS ETHERNET SUPPORT, -40 TO 85C, 81 PIN BGA, DO NOT POPULATE DUAL RS232 XMITR/RCVR 16 PIN SOIC (300 MIL) HIGH SPEED MICRO 44-PIN TQFP 0°C to +70°C MICROPROCESSOR VOLTAGE MONITOR, 3.08V RESET, 4PIN SOT143 MICROPROCESSOR VOLTAGE MONITOR, 4.38V RESET, 4PIN SOT143 IC, SINGLE-CHIP USB TO UART BRIDGE, 28 PIN QFN FAI NA NC7SZ86M5 MAX MAX1793EUE-18 MAX MAX1793EUE-25 DAL DS4026+BCC DAL NOT POPULATED DAL DS232AS DAL DS87C520-ECL MAX MAX811TEUS-T MAX MAX812MEUS-T SIL CP2101 20 _________________________________________________________________________________________ DS3105DK 6. DESIGNATION QTY Y1 1 Y2 1 Y3 1 Y4 1 Y7 1 DESCRIPTION OSCILLATOR, CRYSTAL CLOCK, 3.3V 12.8MHz, DO NOT POPULATE OSCILLATOR, RAKON TCXO, 3.3V, 12.8MHz, 4 PIN SMD OSCILLATOR, CRYSTAL CLOCK XO 1613, 3.3V CMOS, LOW JITTER-12.8MHz, 4-PIN SMD, DO NOT POPULATE OSCILLATOR, CRYSTAL CLOCK XO 1633, 3.3V CMOS, LOW JITTER-12.8MHz, 4-PIN SMD, DO NOT POPULATE XTAL, LOW PROFILE, 11.0592MHz SUPPLIER PART SAR NTH069A3-12.8 RAK E4837LF SAR S1613A-12.8000 SAR S1633A-12.8000 PLE LP49-33-11.0592M Appendix 2: Schematics The schematics are featured in the following pages. 7. Document Revision History REVISION DATE 012208 2012-05 DESCRIPTION Initial release. Reformatted for Microsemi. No content change. 21 A 8 C163.1UF 1 1 2 1 2 B C164.1UF 1 2 7 SYNC1 SYNC2 SYNC3 IC1NEG IC1POS IC2NEG IC2POS IC3 IC4 IC5POS IC5NEG IC6POS IC6NEG IC8 IC9 IC8 IC9 F9 G9 SYNC3 IC6NEG J6 G8 IC6POS H6 SYNC2 IC5NEG J4 SYNC1 IC5POS H4 H9 IC4 J9 H8 IC2POS IC3 J8 IC2NEG H7 J7 VDD2 INTREQ/SRFAIL VDD1 WDT JTRST JTCLK JTDI JTMS JTDO JTDO JTCLK JTDI JTRST* F8 A9 A8 E9 C8 JTMS GPIO4/SONSDH 6 BGA OR DS3102 DS3104_U1 U35 NA VDD_OC45 VSS1 IC1POS VSS2 H5 VSS3 IC1NEG VDDIO1 VSS4 J5 VDDIO2 SRFAIL SRCSW RST* REFCLK TEST E3 G5 VDD_OC67 DUT33 5 VDDIOB VSS_OC45 DUT18 AVDD_PLL1 VSS_OC67 5 DUT18 AVDD_PLL2 AVSS_PLL1 6 VDDIO3 VSS5 C C165.1UF VPLL1 VPLL2 VPLL3 VPLL4 C166.1UF 2 AVDD_PLL3 AVSS_PLL2 C5 E6 G6 VDD3 LOCK A2 C1 B9 B3 G1 F7 D8 B1 G7 TEST REFCLK PORNOT SONSDH SRCSW SRFAIL WDT INTREQ LOCK AVDD_PLL4 AVSS_PLL3 C4 D6 F6 G3 VDDIO4 VSS6 D4 D5 E4 E5 F4 F5 D2 A4 B6 E1 E2 J2 H2 J3 H3 OC4POS OC5 OC5B OC5NEG OC5POS OC6NEG OC6POS OC7NEG OC7POS 4 D1 OC4B OC4NEG E7 D7 CPOL C9 CPHA E8 SDI SCLK C7 A6 OC4 SDO A3 D9 B5 OC3B/GPIO3 CS* B7 OC3 H1 A5 OC2B/GPIO2 J1 A7 OC2 MFSYNC B4 OC1B/GPIO1 FSYNC B8 OC1 4 NA 1 3 SCLK CPHA CPOL CS SDO 1 SDI R34 0.0 2 OC3B OC4 OC4B OC4NEG OC4POS OC5 OC5B OC5NEG OC5POS OC6NEG OC6POS OC7NEG OC7POS FSYNC MFSYNC ENGINEER: TITLE: 3 OC1 TP20 NA OC1B OC2 TP21 NA OC2B TP22 OC3 1 C6 VDDIOB R25 VPLL1 B21 2 0.0 VPLL2 R26 C2 1 2 0.0 R27 VPLL3 F2 1 2 0.0 R33 VPLL4 F3 1 2 0.0 D3 G4 AVSS_PLL4 A1 C3 F1 G2 1 DS6 SONSDH SRFAIL LOCK TEST SRCSW JML 2 1 1 1 1 1 DS10 RED GREEN DS3104DK01B0 DS5 2 INTREQ 2 SRFAIL 2 R35 1 1 330 R40 2 7 R42 330 RED NA TP16 3 3 3 3 3 2 1 LOCK 2 1 1 2 330 2 1 D 8 VCC WDT NA TP17 VCC 1 VCC JMP10 JMP11 JMP12 JMP16 NA NA NA JMP9NA NA PAGE: DATE: 1 1 OF 12 013007 Wed May 30 13:54:19 2007 1 R94 1 1 2 330 2 2 2 2 2 R97 C8 R44 20K .01UF 330 1 2 2 1 2 R8 DNP 1 CPHA 2 R10 10K 1 1 2 R83 DNP 1 CPOL 2 R84 10K 1 A B C D A B 8 7 JTMS JTDO 50 6 REFCLK 6 SONSDH 64 TEST 2 PORNOT 48 INTREQ 5 SRCSW 13 SRCSW QFP OR DS3106 DS3105_U2 U3 DS3105-SE NA I26 5 VDDIO2 VDD4 VSS4 VDD3 VSS3 VDD2 VSS2 VDD1 VSS1 27 39 57 58 INTREQ/SRFAIL RST* TEST GPIO4/SONSDH SYNC2 SYNC1 IC9 34 SYNC1 28 SYNC2 33 IC6POS IC6NEG IC5NEG 24 26 IC5POS 25 IC4 30 23 IC3 REFCLK JTDI 41 29 JTCLK 51 IC3 IC4 IC5POS IC5NEG IC6POS IC6NEG IC9 JTRST* VSS5 37 VDD_OC6 VSS6 49 VSS7 JTRST JTCLK JTDI JTMS JTDO VSS_PLL1 22 59 AVDD_DL DUT33 VDD_PLL1 VSS_PLL2 DUT18 5 VDD_PLL2 6 VDDIO1 VSS8 1 15 16 31 40 53 60 62 VSS_OC6 C 7 VDDIO3 AVSS_DL 21 55 4 VDD_PLL3 VSS_PLL3 D 8 14 32 54 61 VDDIO4 VPLL1 VPLL2 VPLL3 VPLL4 4 7 9 11 VDD_PLL4 VSS_PLL4 4 3 8 10 12 46 O6F1/GPIO2 18 52 43 SDO SDI CS* CPHA SCLK FSYNC MFSYNC SDO SDI 47 SCLK 42 CPHA 44 CS 17 FSYNC MFSYNC O6F2/GPIO3 45 O6F0/GPIO1 OC1B OC2B 63 OC3B 38 O3F2/LOCK 35 O3F0/SYNC3 O3F1/SRFAIL SYNC3 SRFAIL 36 LOCK 20 OC6POS 56 OC3 OC6NEG OC3 OC6NEG 19 OC6POS 3 3 ENGINEER: TITLE: JML 2 DS3104DK01B0 2 PAGE: DATE: 1 2 OF 12 013007 Wed May 30 13:54:21 2007 1 A B C D A B C R101 DNP 2 2 DNP 8 GND 1 OUT VCC GND VC GNDA GND 1 11 14 VCCD VOSC VCC VREF FOUT DS4026_U GNDD GNDOSC SCL 13 5 SDA 12 VS RF_OUT U29 12.8MHZ 2 1 Y2 OSC_TCXO 5 8 12.8MHZ_3.3V Y1 OSC OSC33 2 12.8MHZ_3.3V 4 1 DNP R18 3 4 7 16 4 3 2 15 1 1 1 R46 33.2 R28 2 2 2 R5 .1UF C1 REFCLK 2 6 1 4 1 4 1 B A U25 C U7 B A C 100K 2 4 4 OUT VCC 5 8 GND 1 OSC Y4 OUT VCC 5 OSC33 5 8 12.8MHZ_3.3V_XO GND 1 OSC Y3 12.8MHZ_3.3V_XO 1 R6 NC7SZ86 2 1 NC7SZ86 2 VCC 1 2 1 5 R64 SW1 DPDT 5 4 6 3 1 REFCLK 2 J12 J11 J10 J9 J8 J7 4 1 1 1 1 1 1 4 3 3 ENGINEER: TITLE: JML 2 DS3104DK01B0 2 1 1 R9 10K R32 51.1 1 R12 10K 1 1 1 VCC 2 2 R11 51.1 VCC 2 2 2 VCC R13 51.1 2 2 R15 51.1 R14 10K 1 VCC 2 JMP1 R7 10K 1 PAGE: DATE: 1 3 OF 12 013007 Wed May 30 13:54:19 2007 2 2 SYNC3 SYNC1 2 SYNC2 2 IC9 1 IC8 IC4 IC3 JMP4 INPUT CLOCKS OSC33 1 1 R100 NA TP18 R16 1 51.1 THE INVERTERS THAT CAN BE SWITCHED INTO IC3 PATH ARE USED TO SQUARE A CLOCK THAT IS SINUSOIDAL DNP 1 1 2 1 J14 11 1 J6 1 C5 C2 2 1 100UF 2 1 2 .1UF .1UF 1 C11 .1UF 2 NA TP19 D C12 .1UF 1 ALL SIGNAL TRACKS ARE 50 OHM WITH RESPECT TO PLANE 6 .1UF R29 R30 R31 51.1 51.1 51.1 2 1 2 1 2 1 7 C10 1 3 1 3 1 3 1 8 C15 .1UF 1 2 1 2 R102 C19 DNP 2 JMP3 3 DNP 2 JMP2 DNP A B C D INPUT CLOCKS 7 6 TP11 TP12 TP7 TP8 1 1 5 IC2NEG 2 4 J37 J36 IC2POS JMP8 J35 J34 IC1NEG 2 JMP7 IC1POS 4 1 1 1 1 TP51 TP52 TP49 TP50 3 TITLE: DS3104DK01B0 TP55 TP56 TP53 TP54 2 1 1 8 3 ENGINEER: JML 2 PAGE: DATE: 1 4 OF 12 013007 Wed May 30 13:54:20 2007 IC6NEG 2 JMP37 IC6POS IC5NEG 2 JMP36 IC5POS 1 C D A TP9 TP10 TP5 TP6 5 A 1 1 1 1 2 B J31 J30 J29 J28 6 2 B C D 7 ALL SIGNAL TRACKS ARE 50 OHM WITH RESPECT TO PLANE 8 1 1 1 1 1 1 1 1 R21 R22 R23 R24 2 1 1 51.1 51.1 51.1 51.1 2 2 1 1 1 1 1 1 1 1 1 1 R65 R66 R67 R68 2 1 1 51.1 51.1 51.1 51.1 2 2 1 1 A B C D OC5B OC5 OC4 OC3 OC2 OC1 8 OUTPUT CLOCKS 8 1 1 1 1 1 1 0.0 R51 0.0 R49 0.0 R47 0.0 R45 0.0 R43 0.0 R41 B A C 4 U9 B A C B A C B A C B A C B A C B A C B A C B A C B A C B A C B A C 7 NC7SZ32 2 1 NC7SZ32 2 2 1 NC7SZ32 2 1 NC7SZ32 2 2 1 NC7SZ32 2 1 NC7SZ32 2 2 1 NC7SZ32 2 1 NC7SZ32 2 2 1 NC7SZ32 2 1 NC7SZ32 2 2 1 NC7SZ32 2 1 4 U20 4 U19 4 U18 4 U17 4 U16 4 U15 4 U14 4 U13 4 U12 4 U11 4 NC7SZ32 U10 2 2 1 7 1 1 1 1 1 1 0.0 R50 0.0 R57 0.0 R56 0.0 R54 0.0 R52 0.0 R48 2 2 2 2 2 2 6 6 1 1 1 1 1 1 J25 J24 J23 J22 J21 J20 5 5 OC4B 4 OC3B OC2B OC1B MFSYNC FSYNC 4 1 1 1 1 1 1 0.0 R20 0.0 R19 0.0 R17 0.0 R1 0.0 R55 0.0 R53 B A C B A C B A C B A C B A C B A C C 4 U27 B C B A C B A C B A C B A C U31 4 U34 4 U33 U32 4 4 4 U2 U1 U24 U23 U22 U21 ENGINEER: TITLE: 3 NC7SZ32 2 1 NC7SZ32 2 2 1 NC7SZ32 2 1 NC7SZ32 2 2 1 NC7SZ32 2 A B A 4 4 4 4 4 4 NC7SZ32 U30 1 2 2 1 NC7SZ32 2 1 NC7SZ32 2 2 1 NC7SZ32 2 1 NC7SZ32 2 2 1 NC7SZ32 2 1 NC7SZ32 2 2 1 3 1 1 1 1 1 0.0 R62 0.0 R61 0.0 R60 0.0 R59 0.0 R58 0.0 R63 2 2 2 2 2 2 JML 2 DS3104DK01B0 1 2 J18 J17 J16 J1 J27 J26 PAGE: DATE: 1 5 OF 12 013007 Wed May 30 13:54:20 2007 1 1 1 1 1 1 1 A B C D 7 6 5 J15 J5 J4 J2 4 4 OC7NEG OC7POS OC6NEG OC6POS TP58 TP57 TP60 TP59 3 TITLE: DS3104DK01B0 2 J39 J38 J41 J40 8 3 ENGINEER: JML 2 PAGE: DATE: 1 6 OF 12 013007 Thu Feb 15 16:29:11 2007 1 1 1 1 1 C D A 1 1 1 1 5 A OUTPUT CLOCKS TP4 TP3 TP2 TP1 6 B OC5NEG OC5POS OC4NEG OC4POS 7 B C D 8 1 1 1 1 1 1 1 1 3 6 5 4 3 ENGINEER: TITLE: JML 2 DS3104DK01B0 2 Wed Feb 21 13:57:17 2007 1 C D PAGE: DATE: 1 7 OF 12 013007 A 7 4 A 8 5 INTENTIONALLY LEFT BLANK 6 B 7 B C D 8 A B 8 7 1 3 1 C34 2 GND T2IN T1IN R2IN R1IN C1NEG TXD0 J H G F E D C B A J50 6 C38 1 TX232 5 4 1 RXD0 JMP633 10UF TX232 3 RX232 2 1 CONN_DB9P 9 8 7 6 7 14 9 12 5 4 2 15 16 USB_RXD T2OUT T1OUT R2OUT R1OUT C2NEG C2POS VNEG C1POS VCC VPOS U41 DS232A USB_TXD JMP623 10 11 8 13 10UF 1 1 10UF RX232 2 C37 C35 12 10UF 2 C36 16 2 2 V5_0 2 RS232 5 5 4 4 SDI 330 R108 P2_3 P2_2 P2_1 P2_0 P3_0 P3_1 P3_2 P3_3 P3_4 P3_5 P3_6 P3_7 XTAL1 XTAL2 GND<2-0> 8 9 10 11 12 13 14 11.0592MHZ 15 1 Y7 2 RXD0 TXD0 INTREQ 18 19 20 21 22 23 24 25 26 27 29 30 3 ENGINEER: TITLE: V5_0 VCC 2 JML 2 DS3104DK01B0 DS87C520_TQFP P2_4 P2_5 P2_6 P2_7 PSEN ALE EA AD7 AD6 7 32 AD5 31 33 AD4 5 2 TP13 POR 0.0 RST 34 AD3 4 1 R4 2 TP14 P1_7 35 AD2 P1_6 36 AD1 3 37 AD0 2 38 VCC P1_5 P1_2 42 1 DS16 2 1 P1_1 41 2 P1_4 P1_0 40 U42 14 44 2 TP15 C U5 NC7SZ32 B A GREEN P1_3 0.0 0.0 1 2 NA 3 43 1 SCLK R31 CS R2 22PF 6 22PF C40 C 7 FIRMWARE V2.28 D 8 1 C39 2 1 1 1 1 2 2 1 10UF PAGE: DATE: 1 8 OF 12 013007 Wed May 30 13:54:18 2007 R110 10K 1 A B C D A B 8 4 3 2 SW5 1 3 1 9 7 5 3 1 8 MR* GND 7 10 8 6 4 2 CONN_10P 10 7 9 6 4 3 5 2 1 RESET* VCC MAX811_U U44 3.08V JTCLK JTDO JTMS JTRST JTDI 2 4 1 0.0 R111 VCC 2 3 GND MR* 6 PORNOT 1 RESET VCC U45 MAX812_U 4.38V 2 4 1 5 0.0 R112 V5_0 2 POR VDD DATDAT+ GND SH J54 USB C 1 2 3 4 1 4 2 1 1 2 2 R115 10K USBPWR C43 NA 5 J51 C42 .1UF 1 2 10K VCC 12 11 7 9 8 4 5 SUSPEND_HIGH ENGINEER: TITLE: 3 U46 NA CP2101_U1 SUSPEND_LOW* REGIN RST* VBUS USBDP USBDM 18 NC7 19 20 21 22 NC8 NC9 NC10 NC11 RI* 1 1 2 1 JML 28 1 27 1 25 1 24 1 23 1 2 R117 0.0 2 2 2 R121 10K R122 10K R123 10K 1 PAGE: DATE: 1 9 OF 12 013007 Wed May 30 13:54:19 2007 2 2 2 TP84 R120 10K USB_RXD USB_TXD TP83 R118 0.0 26 1 DCD* DSR* DTR* CTS* RTS* RXD TXD 2 DS3104DK01B0 GND 2 10K 3 NC1 3 4 NC2 R113 5 2 1 6 VDD NC3 1 6 NC4 7 NC5 D 8 NC6 10 13 14 15 16 17 1UF R116 4.7UF C41 A B C D A B C 8 B A 1 2 B A C 41 U28 NA DUT331 OSC331 1 330 R39 330 R38 330 R37 330 R36 V5_0 1 2 1 2 1 DS4 2 1 DS3 2 1 DS2 2 1 DS1 V5_0 1 2 CONN_BANANA_2P J19 J3 2.1MM/5.5MM NC7SZ32 2 DUT18 1 B A CONN_BANANA_2P J13 2 USBPWR 3 JMP5 1 1 7 2 2 2 2 2 68UF C7 2 6 1 2 V5_0 V5_0 V5_0 V5_0 10 GND IN2 IN3 IN4 SHDN* 3 4 5 7 11 10 GND 6 RST* SET 15 14 13 12 OUT4 OUT3 OUT2 OUT1 IN2 IN3 IN4 3 4 5 GND SET RST* OUT4 OUT3 OUT2 OUT1 10 11 6 15 14 13 12 5 MAX1793_U2 SHDN* IN1 2 MAX1793_U2 U8 IN1 2 7 11 6 RST* SET 15 14 13 12 OUT4 OUT3 OUT2 OUT1 MAX1793_U2 U6 SHDN* 7 IN3 4 IN4 IN2 5 IN1 3 U4 2 5 1 JMP13 4 1 1 4 JMP15 D7 JMP14 2 2 2 DUT18 1 AMP OSC33 DUT33 VCC 3 C3 3 ENGINEER: TITLE: IN3 IN4 4 5 JML 10 GND 2 D2 DUT33 1 JMP6 3 VDDIOB 1 AMP 1 PAGE: DATE: 1 10 OF 12 013007 Wed May 30 13:54:20 2007 11 6 15 14 13 12 SET RST* OUT4 OUT3 OUT2 OUT1 MAX1793 SHDN* IN2 3 7 IN1 2 U26 2.5 VOLT REGULATOR C4 2 DS3104DK01B0 V5_0 4.7UF D 6 1 2 1 1 2 7 6.8UF 1 2 1 2 2 8 C13 C14 C16 4.7UF 4.7UF 4.7UF C17 C18 C20 1 2 1 2 1 2 6.8UF 6.8UF 6.8UF 2 1 2 D1 A B C D A B C52 C51 8 1 2 VCC VCC C56 10UF 1 GND DUT18 2 2 1 2 1 C63 TP65 1 1 2 .1UF 1 C67 .1UF 1 2 1 C71 .1UF 1 2 1 C75 .1UF 1 2 1 7 TP68 TP69 C79 .1UF 2 1 2 1 2 1 2 1 2 1 2 1 1 C83 .1UF 1 C87 .1UF 1 C91 .1UF 1 C95 .1UF 1 C99 .1UF 1 6 TP74 C103 .1UF 2 1 2 1 2 1 2 1 1 6 C107 .1UF 1 C111 .1UF 1 C115 .1UF 1 C119 .1UF 1 2 1 TP79 C123 .1UF 5 2 1 2 1 2 1 2 1 1 C127 .1UF 1 C131 .1UF 5 1 1 .1UF 7 1 1 1 1 1 1 C132 .1UF 2 2 .1UF 1 C55 10UF C59 10UF 1 C64 .1UF 2 1 C72 .1UF 2 1 C80 .1UF 1 C84 .1UF 2 1 C92 .1UF 2 1 C100 .1UF 1 C104 .1UF 2 1 C112 .1UF 2 1 C120 .1UF 1 C124 .1UF 2 2 1 1 2 C60 10UF 2 1 2 1 2 2 1 2 1 2 2 1 2 1 2 2 1 C128 .1UF 1 C133 .1UF C136 .1UF C137 .1UF VCC DUT33 1 1 C61 10UF 1 C65 .1UF 2 C68 .1UF 1 C73 .1UF 2 C76 .1UF 1 C81 .1UF 1 C85 .1UF 2 C88 .1UF 1 C93 .1UF 2 C96 .1UF 1 C101 .1UF 1 C105 .1UF 2 C108 .1UF 1 C113 .1UF 2 C116 .1UF 1 C121 .1UF 1 C125 .1UF 2 2 2 C C53 2 C57 10UF 2 2 1 2 1 2 2 1 2 1 2 2 1 2 1 2 2 1 1 2 .1UF 8 1 1 C62 10UF 1 C66 .1UF C69 .1UF 1 C74 .1UF C77 .1UF 1 C82 .1UF 1 C86 .1UF C89 .1UF 1 C94 .1UF C97 .1UF 1 C102 .1UF 1 C106 .1UF C109 .1UF 1 C114 .1UF C117 .1UF 1 C122 .1UF 1 C126 .1UF C129 .1UF 1 C134 .1UF 2 C138 .1UF D C54 2 C58 10UF 2 2 2 C70 .1UF 2 2 C78 .1UF 2 2 2 C90 .1UF 2 2 C98 .1UF 2 2 2 C110 .1UF 2 2 C118 .1UF 2 2 2 C130 .1UF 2 1 2 TP66 TP67 TP73 TP71 TP70 TP72 TP77 TP75 TP76 TP78 TP81 TP82 TP80 1 C135 .1UF 1 .1UF 4 4 C6 C153 1 2 C139 1 2 OSC33 10UF C154 2 1 1 10UF C141 2 1 V5_0 1 10UF C155 2 V5_0 VDDIOB 2 .1UF C9 2 .1UF 10UF C143 1 2 .1UF C168 2 1 .1UF C145 1 2 1 .1UF C147 3 ENGINEER: TITLE: 1 3 .1UF C169 2 2 .1UF 1 .1UF C151 2 1 .1UF C140 JML 1 1 .1UF 2 2 DS3104DK01B0 2 .1UF C142 2 PAGE: DATE: 1 11 OF 12 013007 Wed May 30 13:54:21 2007 1 A B C D 8 7 6 - 5 4 3 ENGINEER: TITLE: FIXED USBPWR NET, FIXED SILKSCREEN BELOW SONSDH HEADER GENERAL CLEANUP, RELEASE TO DATASHEET, DS3104DK01B0 2 Tue May 29 13:45:02 2007 1 C D JML 2 PAGE: DATE: 1 12 OF 12 013007 A 052907 - ON DS OSC, OTHER CHANGES MADE PER DESIGN REVIEW - 3 ADDED SPI TESTPOINTS, CHANGED 4.7UF TO 100 UF ADDED TWO FOOTPRINTS FOR SMD STRATUM 4 OSC, RELEASE FOR REVIEW 4 - - - 5 A - B0 051707 030907 021907 6 B - - 02 A0 - 01 REVISION HISTORY - 7 B C D 8 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at www.microsemi.com. Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 © 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.