Cree C3D06065I Silicon Carbide Schottky Diode - Z-Rec

C3D06065I
VRRM = Silicon Carbide Schottky Diode
IF (TC=135˚C) = 6 A
Z-Rec Rectifier
®
Qc Features
•
•
•
•
•
•
15 nC
650-Volt Schottky Rectifier
Ceramic Package provides 2.5kV isolation
Zero Reverse Recovery Current
High-Frequency Operation
Temperature-Independent Switching Behavior
Positive Temperature Coefficient on VF
TO-220 Isolated
Electrically Isolated Package
Essentially No Switching Losses
Higher Efficiency
Reduction of Heat Sink Requirements
Parallel Devices Without Thermal Runaway
PIN 1
HVAC
PFC
Switch Mode Power Supplies
CASE
PIN 2
Applications
•
•
•
= Package
Benefits
•
•
•
•
•
650 V
Part Number
Package
Marking
C3D06065I
Isolated TO-220-2
C3D06065I
Maximum Ratings (TC = 25˚C unless otherwise specified)
Symbol Parameter
Unit
Test Conditions
Note
VRRM
Repetitive Peak Reverse Voltage
650
V
VRSM
Surge Peak Reverse Voltage
650
V
VDC
DC Blocking Voltage
650
V
Continuous Forward Current
13
6
A
TC=25˚C
IFRM
Repetitive Peak Forward Surge Current
24
16
A
TC=25˚C, tP = 10 ms, Half Sine Wave
TC=110˚C, tP = 10 ms, Half Sine Wave
IFSM
Non-Repetitive Peak Forward Surge Current
63
49
A
TC=25˚C, tp = 10 ms, Half Sine Wave
TC=110˚C, tp = 10 ms, Half Sine Wave
Fig. 8
IF,Max
Non-Repetitive Peak Forward Surge Current
540
460
A
TC=25˚C, tP = 10 µs, Pulse
TC=110˚C, tP = 10 µs, Pulse
Fig. 8
Ptot
Power Dissipation
45.5
19.5
W
TC=25˚C
TC=110˚C
Fig. 4
TJ
Operating Junction Range
-55 to
+175
˚C
Storage Temperature and Case Temperature
-55 to
+150
˚C
1
8.8
Nm
lbf-in
IF
Tstg, Tc
TO-220 Mounting Torque
1
Value
C3D06065I Rev. A
TC=135˚C
M3 Screw
6-32 Screw
Fig. 3
Electrical Characteristics
Symbol
Parameter
Typ.
Max.
Unit
Test Conditions
Note
VF
Forward Voltage
1.5
2.0
1.7
2.4
V
IF = 6 A TJ=25°C
IF = 6 A TJ=175°C
Fig. 1
IR
Reverse Current
10
20
50
100
μA
VR = 650 V TJ=25°C
VR = 650 V TJ=175°C
Fig. 2
QC
Total Capacitive Charge
15
nC
VR = 400 V, IF = 6 A
di/dt = 500 A/μs
TJ = 25°C
Fig. 5
C
Total Capacitance
295
28.5
25.5
pF
VR = 0 V, TJ = 25°C, f = 1 MHz
VR = 200 V, TJ = 25˚C, f = 1 MHz
VR = 400 V, TJ = 25˚C, f = 1 MHz
Fig. 6
EC
Capacitance Stored Energy
2.3
μJ
VR = 400 V
Fig. 7
Note:
1. This is a majority carrier diode, so there is no reverse recovery charge.
Thermal Characteristics
Symbol
RθJC
Parameter
Thermal Resistance from Junction to Case
Typ.
Unit
Note
3.3
°C/W
Fig. 9
Typical Performance
20
14
6
TJ = 25 °C
TJ = 75 °C
TJ = 125 °C
IR (mA)
8
TJ = -55 °C
Reverse Leakage Current, IRR (mA)
10
F
Foward I
Current,
(A) IF (A)
12
TJ = 175 °C
4
2
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0 200 400 600 800 1000 1200 FowardVVoltage,
(V) VF (V)
F
Figure 1. Forward Characteristics
2
C3D06065I Rev. A
16
TJ = 175 °C
12
TJ = 125 °C
TJ = 75 °C
8
TJ = 25 °C
TJ = -55 °C
4
0
0
100 200 300 400 500 600 700 800 900 1000
ReverseVVoltage,
(V) VR (V)
R
Figure 2. Reverse Characteristics
Typical Performance
45
50
10% Duty
20% Duty
30% Duty
50% Duty
70% Duty
DC
40
35
40
35
25
(W)
PP
Tot(W)
TOT
IF(peak)
(A)
IF (A)
30
45
20
15
30
25
20
15
10
10
5
5
0
25
50
75
100
125
150
0
175
25
50
75
T
˚C
TCC(°C)
150
175
C
Figure 4. Power Derating
350
Conditions:
TJ = 25 °C
Conditions:
TJ = 25 °C
Ftest = 1 MHz
Vtest = 25 mV
300
20
250
Capacitance
C (pF) (pF)
CapacitiveQCharge,
(nC) QC (nC)
C
125
˚C
TTC (°C)
Figure 3. Current Derating
25
100
15
10
200
150
100
5
50
0
0
100
200
300
400
500
600
700
ReverseVVoltage,
(V) VR (V)
R
Figure 5. Total Capacitance Charge vs. Reverse Voltage
3
C3D06065I Rev. A
0
0
1
10
100
(V) VR (V)
ReverseVVoltage,
R
Figure 6. Capacitance vs. Reverse Voltage
1000
Typical Performance
1,000
6
IIFSM (A)
(A)
4
FSM
3
C
Capacitance StoredE Energy,
µJ)
(mJ) EC (µ
5
100
TJ = 25 °C
TJ = 110 °C
2
1
0
0
100
200
300
400
500
600
10
10E-6
700
100E-6
ReverseVVoltage,
(V) VR (V)
Figure 8. Non-repetitive peak forward surge current versus pulse duration (sinusoidal waveform)
Figure 7. Capacitance Stored Energy
0.5
1
0.3
0.1
0.05
100E-3
0.02
0.01
SinglePulse
10E-3
1E-3
1E-6
10E-6
100E-6
1E-3
10E-3
Time,
tp (s)
T (Sec)
100E-3
Figure 9. Transient Thermal Impedance
4
C3D06065I Rev. A
10E-3
tp (s)
Time,
tp (s)
R
Thermal Resistance
(oC/W)
Thermal Resistance
(˚C/W)
1E-3
1
10
Package Dimensions
Recommended Solder Pad Layout
Measurements shown in inches
TO-220-2
Part Number
Package
Marking
C3D08065I
Isolated TO-220-2
C3D08065I
Note: Recommended soldering profiles can be found in the applications note here:
http://www.cree.com/power_app_notes/soldering
5
C3D06065I Rev. A
Diode Model
Diode Model CSD04060
Vf T = VT + If*RT
VT= 0.965 + (Tj * -1.3*10-3)
RT= 0.096 + (Tj * 1.06*10-3)
VfT = VT + If * RT
VT = 0.96 + (TJ * -1.1*10-3)
RT = 0.07 + (TJ * 7.4*10-4)
VT
RT
Note: Tj = Diode Junction Temperature In Degrees Celsius,
valid from 25°C to 175°C
Notes
• RoHS Compliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred
to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance
with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can
be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.
• REACh Compliance
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable
future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration.
REACh banned substance information (REACh Article 67) is also available upon request.
•
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into
the human body nor in applications in which failure of the product could lead to death, personal injury or property
damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines,
cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control
systems, or air traffic control systems.
Related Links
•
•
•
Cree SiC Schottky diode portfolio: http://www.cree.com/diodes
C3D Spice models: http://response.cree.com/Request_Diode_model
SiC MOSFET and diode reference designs: http://response.cree.com/SiC_RefDesigns
Copyright © 2015 Cree, Inc. All rights reserved.
The information in this document is subject to change without notice.
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.
6
C3D06065I Rev. A
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.cree.com/power