A 50MHz-16GHz Low Distortion SOI Voltage Controlled Attenuator IC with IIP3 > +38dBm and Control Range of > 25dB Ed Franzwa, Alan Ellis, Brad Nelson, Marcus Granger-Jones and Greg Valenti Outline • Motivation • Technical Approach • Circuit Design • Analysis of Distortion • Mechanical and Thermal Design • Measured Results • Conclusions Motivation & Requirement Broadband Voltage Controlled Attenuator • General Purpose and wideband up to 16GHz apps • Test equipment, military equipment, wideband apps • Very high linearity IIP3 > +38dBm • Attenuation range > 25dB • Temperature compensated • Linear in dB control Low cost and easy to use • MMIC silicon implementation • Eliminate pin diodes • No discrete external support circuitry Technical Approach SOI CMOS Attenuator MMIC • Low cost process • Based on „Pi‟ & „T‟ attenuators • Integrated bias control • No external components or module • Low parasitic capacitance on SOI Stacked FET techniques • Distributed RF signal • IIP3 proportional to 20log{Nstack} Flip chip • Low parasitic inductance • High volume low cost plastic package Functional Block Diagram Attenuator Structure T Attenuator Structure Control B Control C . . x N Series . . Devices . . x N Series . . Devices . . x N Series . . Devices RFOUT RFIN 2 x N Shunt Devices x N Shunt Devices Control A x N Shunt Devices Control D RFIN Attenuation Stage 1 Attenuation Stage 2 Vcontrol Vbg / R generator Preconditioning Stage Control A Control B Control C Control D RFOUT Controlling Distortion in RF Section Design Attenuator Type • Selection of attenuator topology and position for multi-stage design Relative sequencing of threshold (VGS) crossing • Threshold sequencing for series and shunt RF FETs Physical resistors in RF sections • Careful placement of physical resistors moves the threshold (VGS) crossing of RF FETs versus absolute attenuation Distortion Analysis Reference “Intermodulation Distortion in CMOS Attenuators & Switches” H. Dogan & R. Meyer JSSC 03/07 Reference [1] “A Broadband High Dynamic Range Voltage Controlled Attenuator MMIC with IIP3 > 47dBm over entire analog control range” M. Granger-Jones, IMS 2011, TU2G-1 Assumptions - Gate current insignificant – very large gate resistors - Substrate current insignificant – insulating oxide layer - Vds across each device is equal Why We Get Such High Bandwidth Plastic Mold Compound Handle wafer High Resistivity Handle Wafer 1kohm-cm Csb BOX Buried Oxide Device Layer Cgd Cgs Low parasitic C due to thick Buried Oxide layer Cgs, Cgd, Csb & Cdb in series with high value resistor Rb gnd Rg Flip Chip - No wire bonds Vgdc Flip Chip Die and Package Open Top Package (no over mold) Bumped Die Photo RF In RF Out Package: • 16 Pin 3x3 mm QFN footprint • 4 layer laminate • Filled Cu vias • SMD‟s optional Thermal Design • Flip chip SOI devices inherently have a long cooling path to the outside world. • Heat dissipating features are fabricated on thin, low conductivity structures. THERMAL CONDUCTIVITY THICKNESS MATERIAL (W/mK) (um) Si handle wafer 140 150.0 Si active layer 0.145 140 SiO2 BOX layer 1.5 1.000 SiO2 bump layer 1.5 6.920 Heat path is across die and passivation, through solder bumps, and into the package substrate (not shown). • Heat dissipating structure Temperature Prediction and Measurement RF Input Power 24dBm, 85°C PCB Temperature • Finite element simulation including die, • Measured IR scan results bump, and substrate. • View is from die backside and through • Simulation peak temperature is 127°C die. • Peak temperature of 124°C Test PCB PCB characteristics • CPW transmission lines using low loss dielectric material • CPW to module transition optimized with EM analysis • Each PCB includes test coupon for loss de-embedding • 1.3dB loss at 16GHz • 17dB return loss connector launches at 16GHz Insertion Loss vs. Control Voltage Vdd= 3.3V Attenuation vs Control Voltage over Temperature (7GHz) 0 Attenuation (dB) -5 Linear in dB Control Voltage Characteristic -10 -15 -20 25C -25 -40C -30 85C -35 -40 0 1 2 3 Control Voltage (V) 4 5 Insertion Loss vs. Frequency Insertion Loss, Temp 25C, 0.2V Steps 0 3dB BW ~ 16GHz -5 S21 (dB) -10 -15 -20 -25 -30 Atten Range ~ 25dB -35 -40 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 Frequency (MHz) Note: PCB Loss De-embedded (1.3dB at 16GHz) Input IP3 vs. Control Voltage IIP3 vs Control Voltage vs Temp 75 0 70 5 65 10 60 15 55 20 50 25 Attenuation (dB) IIP3 (dBm) 7GHz and 7.001GHz Pin=+17dBm/tone 45 Upper_25C 40 Upper_-40C 35 Upper_85C 30 0 0.5 1 Attenuator stage handoff 1.5 2 2.5 3 Control Voltage (V) 3.5 4 4.5 5 First stage Shunt FET control at VTH Input Return Loss vs. Freq. and Attenuation Input Return Loss, Temp 25C Worst Case -7.1dB 0 -5 S11 (dB) -10 -15 -20 -25 -30 -35 -40 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 Frequency (MHz) Output Return Loss vs. Freq. and Attenuation Output Return Loss, Temp 25C Worst Case -8.2dB 0 -5 -10 S22 (dB) -15 -20 -25 -30 -35 -40 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 Frequency (MHz) Performance Comparison Units This Work Prototype Reference Sun Poitrenaud HMC712LP3C TGL4203-SM [2] [5] [3] [4] Freq Range (GHz) 0.05-16 2-18 5-30 5-26.5GHz DC-30 IIP3 vs atten WC (dBm) 38 NA 27 31 19 Atten Range (dB) 25 13 25 28 17 Insertion Loss WC (dB) 5.0 2.7 5.5 5.0 2 Current (mA) 1.2 near zero near zero near zero near zero IP1dB (dBm) >25 26 25 NA 10 Temp stability WC (dBp-p) 1.7 NA NA 2 0.9 GaAs MESFET LF QFN 3x3 0.25um PHEMT LF QFN 3x3 Technology Package Difficulty # Control lines (mm) CMOS SOI GaAs MESFET GaAs MESFET Lam QFN 3x3 Bare Die LF QFN 3x3 Simple Moderate Moderate Moderate Difficult 1 1 2 2 2 Input IP3 vs. Frequency Worst Case Input IP3 at 25C 45 Input IP3 (dBm) 40 35 30 25 20 15 0 2 4 6 8 10 12 14 16 Frequency(GHz) Worst case IIP3 across entire attenuation range at each frequency Tested at 10dBm input power per tone 18 38.5dBm min thru 16GHz Summary • Quantum leap forward in performance & cost • Very linear, IIP3 > +38dBm • Low current of 1.2mA • Small size, 3x3 laminate module • Low cost SOI CMOS process • Temperature Compensated • One broadband MMIC addresses multiple applications • 50MHz to 16GHz • Architecture able to trade IP3 for BW • Ready for higher levels of CMOS integration • Plug & Play! • No external components • Inherently good performance over PVT