19-5889; Rev 0; 8/11 备 有 评 估 板 MAX9643 60V高速、高精度电流检测放大器 概述 优势和特性 MAX9643是一款高速、60V、高精度单向检流放大器,非 常适合电源变化范围较大的控制应用。器件具有很高的信 号带宽,适用于DC-DC开关转换器的电源控制环路,具有 最小相位延迟。 S 支持高压应用 宽输入VCM = -1.5V至+60V IC具有50μV (最大值)精密输入偏压,允许使用很小的采样 电阻,支持高效率、宽动态范围电流测量应用。 S 提高系统精度 高精度VOS = 50μV (最大值) 较高的DC CMRR和AC CMRR使得该器件可理想用于工作 条件变化范围较大的恶劣环境。器件提供2.5V/V和10V/V 固定增益,采用小尺寸、8引脚TDFN (2mm x 3mm)封装, 工作在-40℃至+125℃温度范围。 S -40℃至+125℃工作温度范围 S 高速工作 15MHz带宽 应用 工业和汽车电源 GSM基站电源 高亮度LED控制 定购信息在数据资料的最后给出。 汽车引擎控制 相关型号以及配合该器件使用的推荐产品,请参见:china.maxim-ic. com/MAX9643.related。 H桥电机控制 典型工作电路 RS+ RS- CP1 CP2 OUT VEE VCC MAX9643 BOOST POWER-SUPPLY CONTROL LOAD GND ����������������������������������������������������������������� Maxim Integrated Products 1 本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。 有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区), 或访问Maxim的中文网站:china.maxim-ic.com。 MAX9643 60V高速、高精度电流检测放大器 Absolute Maximum Ratings RS+ to GND, RS- to GND (Note 1)........................-3.5V to +65V RS+ to RS-........................................................................... Q15V VCC to GND............................................................-0.3V to +40V VCC > 4.5V OUT to GND......................................................-0.3V to +4.5V VEE to GND.......................................................+0.3V to -4.5V CP1 to GND.......................................................-0.3V to +4.5V VCC ≤ 4.5V OUT to GND.......................................... -0.3V to (VCC + 0.3V) VEE to GND......................................... +0.3V to (-VCC + 0.3V) CP1 to GND........................................... -0.3V to (VCC + 0.3V) CP2 to GND .............................................. (VEE - 0.3V) to +0.3V Short-Circuit Duration.................................................Continuous Continuous Input Current into Any Pin............................. Q20mA ESD on RS+, RS-........................................................Q4kV HBM ESD on All Other Pins.................................................Q2kV HBM Maximum Power Dissipation TDFN-EP (derate 16.7mW/NC at +70NC).................1333.3mW Operating Temperature Range......................... -40NC to +125NC Junction Temperature......................................................+150NC Lead Temperature (10s, soldering).................................+300NC Soldering Temperature (reflow).......................................+260NC Note 1: Voltages below -3.5V are allowed, as long as the input current is limited to 5mA by an external resistor. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Thermal Characteristics (Note 2) TDFN Junction-to-Ambient Thermal Resistance (BJA).......... 60NC/W Junction-to-Case Thermal Resistance (BJC)............... 11NC/W Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to china.maxim-ic.com/thermal-tutorial. Electrical Characteristics (VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted.) (Note 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DC CHARACTERISTICS Input Common-Mode Voltage Range VRS+, VRS- Input Offset Voltage (Notes 4, 5) VOS Common-Mode Rejection Ratio (Note 5) CMRR CMRR vs. Frequency (Note 5) -1.5 +60 VCC < 5V, guaranteed by CMRR test, VSENSE P 100mV 3.5 VCC 60 IRS+, IRS- Input Bias Current, VCC = 0V, VRS+ = VRS- = 60V IRS+, IRS Input Offset Current (Note 6) IRS+ - IRS- 50 400 -40NC < TA <+125NC -1.5V P VCM P 60V, TA = +25NC -1.5V P VCM P 60V, -40NC P TA P +125NC 120 130 90 35 dB 60 60 -40NC < TA < +125NC 25 0.02 TA = +25NC VCM R 2V 0.15 0.3 -40NC < TA < +125NC FV dB 110 TA = +25NC VCM < 2V FS V 10 TA = +25NC AC CMRR f = 100kHz Input Bias Current Maximum Sense Voltage Before Input Saturation VCC R 5V, guaranteed by CMRR test, VSENSE P 100mV FA FA FA 100 MAX9643T 400 MAX9643U 300 mV ����������������������������������������������������������������� Maxim Integrated Products 2 MAX9643 60V高速、高精度电流检测放大器 ELECTRICAL CHARACTERISTICS* (continued) (VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted.) (Note 3) PARAMETER SYMBOL Voltage Gain (Note 4) Voltage Gain Error (Note 4) GE CONDITIONS MIN TYP MAX9643T 2.5 MAX9643U 10 TA = +25NC 0.06 MAX V/V 0.5 0.6 -40NC < TA < +125NC UNITS % AC CHARACTERISTICS VSENSE = 25mVDC + 2mVP-P, MAX9643T 15 VSENSE = 25mVDC + 2mVP-P, MAX9643U 10 VOUT = 10mV to 110mV 12 V/Fs Delay from Output Saturation to VOL VSENSE = 0 to 20mV 100 ns Delay from Input Saturation and Delay from Output Saturation to VOH VSENSE = 10V to 10mV 1 Fs Signal Bandwidth BW Slew Rate SR MHz OUTPUT CHARACTERISTICS Output Short-Circuit Current Output-Voltage Low (MAX9643T) (Note 5) ISC VOL 3.39 IOUT = 100FA sink, TA = +25NC IOUT = 100FA sink, -40NC < TA < +125NC 0.2 IOUT = 1mA sink, TA = +25NC 0.6 1 VOL 0.5 0.6 VOH Capacitive Drive Capability CL 10 mV 10 IOUT = 1mA sink, -40NC < TA < +125NC Output-Voltage High (Note 7) mV 3 3 IOUT = 100FA sink, -40NC < TA < +125NC IOUT = 1mA sink, TA = +25NC IOUT = 1mA source, VCC < 4.5V IOUT = 1mA source, VCC R 4.5V 10 10 IOUT = 1mA sink, -40NC < TA < +125NC IOUT = 100FA sink, TA = +25NC Output-Voltage Low (MAX9643U) (Note 5) mA 1 VCC - 1.3 3.2 RLOAD = Open, no sustained oscillation 2.3 30 V pF POWER-SUPPLY CHARACTERISTICS Power Supply VCC Power-Supply Rejection Ratio (Note 5) PSRR Quiescent Supply Current ICC Charge-Pump Current IEE Note Note Note Note Note Guaranteed by PSRR 2.7 VCC = 2.7V to 36V, VSENSE = 10mV, TA = +25NC 107 -40NC < TA < +125NC 100 TA = +25NC 36 125 1000 DVEE = 500mV dB 1400 1600 -40NC < TA < +125NC 4 V FA mA 3: All devices are 100% production tested at TA = +25NC. Temperature limits are guaranteed by design and/or characterization. 4: Gain and offset voltage are calculated based on two point measurements: VSENSE1 = 10mV and VSENSE2 = 100mV. 5:VOS, VOL, CMRR, and PSRR are measured with the charge pump off. 6: Guaranteed by design and/or characterization. 7: The maximum VSENSE of the MAX9643T is 400mV. With the gain = 2.5V/V, the output swing high is not applicable to the MAX9643T. ����������������������������������������������������������������� Maxim Integrated Products 3 MAX9643 60V高速、高精度电流检测放大器 典型工作特性 (VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted. All devices are 100% production tested at TA = +25NC. Temperature limits are guaranteed by design and/or characterization.) SUPPLY CURRENT vs. SUPPLY VOLTAGE 1.4 25 20 15 10 1.2 1.3 1.1 1.0 0.9 0.8 1.2 1.1 1.0 0.9 0.8 0.7 0.7 5 0.6 0.6 0 0.5 -20 -15 -10 -5 0 0.5 0 5 10 15 20 25 30 10 20 30 40 -25 0 25 50 75 100 SUPPLY VOLTAGE (V) TEMPERATURE (°C) GAIN ERROR vs. COMMON-MODE VOLTAGE GAIN ERROR vs. TEMPERATURE COMMON-MODE REJECTION RATIO vs. FREQUENCY (VCM_AC = 100mV) 0.12 0.10 0.08 0.14 0.12 0.10 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0 10 20 30 40 COMMON-MODE VOLTAGE (V) 50 60 -20 -40 -60 -80 -100 -120 -140 0 0 0 125 MAX9643 toc06 0.16 GAIN ERROR (%) 0.14 0.18 COMMON-MODE REJECTION RATIO (dB) 0.16 MAX9643 toc05 0.20 MAX9643 toc04 0.18 -10 -50 INPUT OFFSET VOLTAGE (V) 0.20 GAIN ERROR (%) 1.4 SUPPLY CURRENT (mA) 1.3 SUPPLY CURRENT (mA) 30 1.5 MAX9643 toc02 35 OCCURRENCE (%) 1.5 MAX9643 toc01 40 SUPPLY CURRENT vs. TEMPERATURE MAX9643 toc03 INPUT OFFSET VOLTAGE HISTOGRAM -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 1 10 100 1000 10,000 100,000 FREQUENCY (kHz) ����������������������������������������������������������������� Maxim Integrated Products 4 MAX9643 60V高速、高精度电流检测放大器 典型工作特性(续) (VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted. All devices are 100% production tested at TA = +25NC. Temperature limits are guaranteed by design and/or characterization.) POWER-SUPPLY REJECTION RATIO vs. FREQUENCY -40 -60 -80 -100 -120 -140 100 10,000 1000 MAX9643 toc09 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 1 FREQUENCY (kHz) 10 100 1000 0 10,000 100,000 FREQUENCY (kHz) 740 720 700 680 660 640 620 3.9 3.8 15 20 25 30 35 40 3.7 3.6 3.5 3.4 3.3 3.2 600 MAX9643 toc12 760 4.0 10 OUTPUT-VOLTAGE LOW vs. OUTPUT SINK CURRENT MAX9643 toc11 780 OUTPUT-VOLTAGE HIGH (V) MAX9643 toc10 800 5 SUPPLY VOLTAGE (V) OUTPUT-VOLTAGE HIGH vs. OUTPUT SOURCE CURRENT SUPPLY CURRENT vs. TEMPERATURE SUPPLY CURRENT (µA) 0.95 OUTPUT-VOLTAGE LOW (µV) 10 1.00 SUPPLY CURRENT (mA) SMALL-SIGNAL GAIN (dB) -20 20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 MAX9643 toc08 MAX9643 toc07 POWER-SUPPLY REJECTION RATIO (dB) 0 1 SUPPLY CURRENT vs. SUPPLY VOLTAGE SMALL SIGNAL vs. FREQUENCY (MAX9643T) 500 400 300 200 100 3.1 600 3.0 -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 OUTPUT SOURCE CURRENT (mA) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 OUTPUT SINK CURRENT (mA) ����������������������������������������������������������������� Maxim Integrated Products 5 MAX9643 60V高速、高精度电流检测放大器 典型工作特性(续) (VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted. All devices are 100% production tested at TA = +25NC. Temperature limits are guaranteed by design and/or characterization.) SMALL-SIGNAL TRANSIENT RESPONSE LARGE-SIGNAL TRANSIENT RESPONSE MAX9643 toc13 OUTPUT HIGH-SATURATION RECOVERY RESPONSE (INPUT SIGNAL = 4V TO 100mV) MAX9643 toc15 MAX9643 toc14 MAX9643T MAX9643T MAX9643T OUTPUT 10mV/div OUTPUT 100mV/div INPUT 2V/div GND GND VRS_ INPUT 10mV/div INPUT 100mV/div OUTPUT 1V/div GND GND GND 200ns/div 100ns/div 1µs/div OUTPUT LOW-SATURATION RECOVERY RESPONSE (INPUT SIGNAL = 0V TO 20mV) STARTUP DELAY (VSENSE = 200mV) INPUT SENSE VOLTAGE SATURATION (VCM = 12V) MAX9643 toc16 MAX9643T INPUT 20mV/div MAX9643 toc17 MAX9643T VCC 5V/div MAX9643 toc18 MAX9643T VSENSE 1V/div GND VRS_ GND OUTPUT 500mV/div OUTPUT 50mV/div OUTPUT 1V/div GND GND GND 200ns/div 100µs/div 200µs/div INPUT SENSE VOLTAGE SATURATION (VCM = 1.5V) CHARGE-PUMP NOISE COMMON MODE (VCM = 0V TO 10V) MAX9643 toc19 MAX9643 toc20 MAX9643T VSENSE 500mV/div MAX9643 toc21 MAX9643T MAX9643T VCM 5V/div CP1 2V/div GND GND GND OUTPUT 200mV/div OUTPUT 200mV/div OUTPUT 20mV/div GND GND 200µs/div 1µs/div 20ns/div ����������������������������������������������������������������� Maxim Integrated Products 6 MAX9643 60V高速、高精度电流检测放大器 引脚配置 TOP VIEW OUT VCC 8 7 RS- RS+ 6 5 MAX9643 EP + 1 2 GND VEE 3 4 CP1 CP2 TDFN 引脚说明 PIN NAME 1 GND 地。 DESCRIPTION 2 VEE 电荷泵输出,利用1μF电容连接至GND。 3 CP1 1μF飞电容的正端。 4 CP2 1μF飞电容的负端。 5 RS+ 检流电阻输入正端。 6 RS- 检流电阻输入负端。 7 VCC 电源。 8 OUT 输出。 — EP 裸焊盘,必须从外部连接至GND。 ����������������������������������������������������������������� Maxim Integrated Products 7 MAX9643 60V高速、高精度电流检测放大器 详细说明 MAX9643是一款高速、高精度电流检测放大器,非常适合 各种高性能工业和汽车电源应用。器件具有低输入失调电 压、极低的增益误差和温漂,允许使用小阻值检流电阻测 量电流,有助于提高电源转换效率和测量精度。器件的快 速响应能力可迅速响应电源电路的开关电流,适合作为控 制环路的一部分。 单向高边电流检测放大器具有-1.5V至+60V较宽的输入共 模电压范围。即使在电源对地短路的条件下,也能够监测 电源的负载电流。高边电流监测不会影响被测负载的接地 通路,因此,这款IC能够满足各种高可靠性系统的要求。 IC采用专有的高速互补BiCMOS SOI工艺设计。这种高压 模拟工艺优化用于高交流动态性能、超低噪声、宽工作电 压范围、低漂移信号调理电路。 应用信息 输入共模电压范围 电流检测放大器输入级由内部负电源供电,允许放大器的 输入共模电压扩展到地电位以下,无任何交越误差。如果 电流检测放大器利用两个不同的差分输入级(npn/pnp晶体 管或pnp晶体管和基于电阻的输入级)覆盖整个共模电压工 作范围,则会发生交越失真问题,从而影响测量精度。 输入共模电压的最小值取决于内部电荷泵产生的负电源电 压。由于负电源电压在较低VCC (低于5V时)下会下跌,所以, 输入共模电压的最小值也受VCC的限制。 如果输入电流限制在5mA以下,则可超出负的输入共模电 压范围,利用串联输入电阻实现。负输入共模电压的ESD 保护架构类似于5个串联的二极管。假设每个二极管导通 压降为0.7V,则需利用输入串联电阻来抑制-3.5V以下的输 图1. PCB布局 FROM RSENSE 内部电荷泵 利用器件内部的电荷泵提供两个极具吸引力的应用特性: TO ADC U 输入共模电压范围扩展至地电位以下1.5V。 8 0.1µF 250kHz内部电荷泵用于产生负电源电压,为电流检测放大 器的输入级和输出级提供偏置。在IC的CP1和CP2引脚之 间使用1µF陶瓷电容,并确保布局紧凑,将环路面积降至 最小。为达到良好的低噪声性能,必须在VEE和GND之间 使用1µF陶瓷电容。 还可将VEE引脚直接连接到外部-5V电源,确保该电压低于 内部产生的电荷泵电压。 0.1µF U 输出电压范围可扩展到真正的地电位。 7 6 5 MAX9643 + 1 MAX9643评估板给出了很好的布局实例,如图1所示。 1µF 2 3 4 1µF 0.1µF 图1. PCB布局 ����������������������������������������������������������������� Maxim Integrated Products 8 MAX9643 60V高速、高精度电流检测放大器 入瞬态电压。例如,如果应用中可能出现-12V的输入瞬态 电压或故障电压,则应使用一个大于8.5V/5mA = 1700Ω 的电阻,可选择2kΩ电阻,以留有一定设计裕量。 U 效率和功耗:电流较大时,RSENSE的I2R损耗很明显, 选择电阻值及其功耗(瓦数)额定值时,须考虑这一因素。 另外,如果器件过度发热,还须考虑检流电阻的温漂。 在2.7V至36V整个VCC范围内,最大输入共模电压可扩展至 高达60V。建议采取器件屏蔽措施,以防止电压高于其65V 绝对最大额定值,有效保护器件。 U 电感:如果ISENSE具有较大的高频分量,则需保持尽 可能低的寄生电感。由于有大电流流过RSENSE,需谨 慎考虑布线,以消除寄生电阻的影响,避免引入检测 电压误差。使用四端检流电阻,或开尔文(加载/感应) PCB布局技术。 输出电压范围 电荷泵产生的内部负电源也用于电流检测放大器的输出 级偏置,使其支持真正的VOL = 0V。该特性允许极低的 检测电压,便于连接其它模拟和混合信号IC。实际上,当 VSENSE = 0V时,VOUT = VOS x 增益,因此,VOL = 0V下 的检测性能往往受限于电流检测放大器的失调电压。 电源旁路和接地 此外,IC的最大输出电压在内部箝位至5V以下(即使采用 40V电源供电),可以方便地连接下游的低压电路,不用担 心较大的瞬态电压或故障保护问题。 对于大多数应用来说,可以使用0.1μF陶瓷电容将VCC旁路 至GND。在许多应用中,VCC可以连接到其中一个检流端 子(RS+或RS-)。因为VCC与被监测电压无关,VCC可连接至 独立的稳压电源,无需考虑特殊的供电顺序。即使VCC = 0V,器件仍可承受60V的输入共模电压,并在这种应用条 件下保持高输入阻抗。 选择检流电阻 芯片信息 按照以下原则选择RSENSE: PROCESS: BiCMOS U 电压损耗:考虑到IR压降,较高的RSENSE会造成电源电 压 跌 落。 为 获 得 最 小 电 压 损 耗, 应 使 用 尽 可 能 低 的 RSENSE。 U 精度:较高的RSENSE能够以更高精度测量微小电流。 这是因为检流电压较大时,可以相对降低输入失调电 压的影响。 定购信息 PART PINPACKAGE GAIN (V/V) TEMP RANGE MAX9643TATA+ 8 TDFN-EP* 2.5 -40NC to +125NC MAX9643UATA+ 8 TDFN-EP* 10 -40NC to +125NC +表示无铅(Pb)/符合RoHS标准的封装。 *EP = 裸焊盘。 ����������������������������������������������������������������� Maxim Integrated Products 9 MAX9643 60V高速、高精度电流检测放大器 封装信息 如需最近的封装外形信息和焊盘布局(占位面积),请查询china.maxim-ic.com/packages。请注意,封装编码中的“+”、“#”或“-”仅 表示RoHS状态。封装图中可能包含不同的尾缀字符,但封装图只与封装有关,与RoHS状态无关。 封装编码 外形编号 焊盘布局编号 8 TDFN-EP T823+1 21-0174 90-0091 8L, TDFN.EPS 封装类型 PACKAGE OUTLINE 8L TDFN, EXPOSED PAD, 2x3x0.8mm 21-0174 B 1 2 DIMENSIONS SYMBOL A E MIN. 0.70 NOM. 0.75 MAX. 0.80 2.95 3.00 3.05 D A1 L 1.95 0.00 2.00 0.02 2.05 0.05 0.30 0.40 0.20 MIN. 0.20 REF. 0.50 k A2 E2 D2 PKG. CODE MIN. NOM. MAX. MIN. NOM. MAX. T823-1 1.60 1.75 1.90 1.50 1.63 1.75 ���������������������������������������������������������������� Maxim Integrated Products 10 N e b EXPOSED PAD PACKAGE 0.18 8 0.50 BSC 0.25 0.30 MAX9643 60V高速、高精度电流检测放大器 封装信息(续) PACKAGE OUTLINE 8L TDFN, EXPOSED PAD, 2x3x0.8mm 1 如需最近的封装外形信息和焊盘布局(占位面积),请查询china.maxim-ic.com/packages。请注意,封装编码中的 “+”、“#”或 B “-”仅 21-0174 2 表示RoHS状态。封装图中可能包含不同的尾缀字符,但封装图只与封装有关,与RoHS状态无关。 DIMENSIONS SYMBOL A E MIN. 0.70 NOM. 0.75 2.95 3.00 D A1 L 1.95 0.00 0.30 2.00 0.02 0.40 0.20 MIN. 0.20 REF. k A2 N e b 0.18 8 0.50 BSC 0.25 MAX. 0.80 3.05 2.05 0.05 0.50 EXPOSED PAD PACKAGE E2 D2 PKG. CODE MIN. NOM. MAX. MIN. NOM. MAX. T823-1 1.60 1.75 1.90 1.50 1.63 1.75 0.30 PACKAGE OUTLINE 8L TDFN, EXPOSED PAD, 2x3x0.8mm 21-0174 B 2 2 ���������������������������������������������������������������� Maxim Integrated Products 11 MAX9643 60V高速、高精度电流检测放大器 修订历史 修订号 修订日期 0 8/11 说明 修改页 — 最初版本。 Maxim北京办事处 北京8328信箱 邮政编码100083 免费电话:800 810 0310 电话:010-6211 5199 传真:010-6211 5299 Maxim不对Maxim产品以外的任何电路使用负责,也不提供其专利许可。Maxim保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2011 Maxim Integrated Products 12 Maxim是Maxim Integrated Products,Inc.的注册商标。 MAX9643 60V高速、高精度电流检测放大器 - 概述 Page 1 of 2 Login 产品 方案 设计 销售联络 支持中心 公司简介 Register 简体中文 (cn) 我的Maxim Maxim > 产品 > 放大器和比较器 > MAX9643 MAX9643 60V高速、高精度电流检测放大器 业内最快的电流检测放大器,提供出色的50µV VOS精度 概述 设计资源 定购信息 相关产品 所有内容 状况 数据资料 状况:生产中。 提供更新的英文版数据资料 英文 下载 Rev. 2 (PDF, 710.2kB) 概述 Email 中文 MAX9643是一款高速、60V、高精度单向检流放大器,非常适合电源变化范围较大的控制应用。器件具有很高的信 号带宽,适用于DC-DC开关转换器的电源控制环路,具有最小相位延迟。 下载 Rev. 0 (PDF, 2MB) Email IC具有50µV (最大值)精密输入偏压,允许使用很小的采样电阻,支持高效率、宽动态范围电流测量应用。 较高的DC CMRR和AC CMRR使得该器件可理想用于工作条件变化范围较大的恶劣环境。器件提供2.5V/V和10V/V 固定增益,采用小尺寸、8引脚TDFN (2mm x 3mm)封装,工作在-40°C至+125°C温度范围。 现备有评估板:MAX9643EVKIT 关键特性 应用/使用 支持高压应用 宽输入VCM = -1.5V至+60V 高速工作 15MHz带宽 提高系统精度 高精度VOS = 50µV (最大值) -40°C至+125°C工作温度范围 汽车引擎控制 GSM基站电源 H桥电机控制 高亮度LED控制 工业和汽车电源 关键特性: Current Sense Amplifiers Part Number MAX9643 Output Format Voltage CMVR (V) CMVR (V) VCC (V) VCC (V) ICC (µA) min max min max typ -1.5 60 2.7 36 1000 BiDir. Curr. Sense No VSENSE_FS (mV) VOS @25° C (µV) recomm. max 100 300 400 130 Gain 2.5V/V 10V/V Gain Accuracy @25°C (%) BW (kHz) max @3dB 0.5 10000 Comparators Re 0 Ex 查看所有Current Sense Amplifiers (39) Pricing Notes: This pricing is BUDGETARY, for comparing similar parts. Prices are in U.S. dollars and subject to change. Quantity pricing may vary substantially and international prices may differ due to local duties, taxes, fees, and exchange rates. For volume-specific prices and delivery, please see the price and availability page or contact an authorized distributor. 图表 Typical Operating Circuit 更多信息 顶标 MAX9643 没有找到你需要的产品吗? http://china.maximintegrated.com/datasheet/index.mvp/id/7283 2014-2-1 EVALUATION KIT AVAILABLE MAX9643 60V High-Speed Precision Current-Sense Amplifier General Description The MAX9643 is a high-speed 60V precision unidirectional current-sense amplifier ideal for a wide variety of power-supply control applications. Its high signal bandwidth allows its use within DC-DC switching converter power-supply control loops with minimal phase delay. The IC also features 130FV (max) precision input offset voltage, allowing small sense resistors to be used in applications where efficiency is important and when wide dynamic-range current measurement is needed. Benefits and Features SSupports High-Voltage Applications Wide Input VCM = -1.5V to +60V SDelivers High-Speed Operation 15MHz Bandwidth SIncreases System Accuracy Precision VOS = 130µV (max) S-40NC to +125NC Specified Temperature Range) High DC CMRR and AC CMRR make it easy to use in a wide variety of aggressive environments. The device is available in fixed gains of 2.5V/V and 10V/V. It is also available in a small, 8-pin TDFN (2mm x 3mm) package and is rated over the -40NC to +125NC temperature range. Applications Industrial Power Supplies GSM Base Station Power Supply High-Brightness LED Control Ordering Information appears at end of data sheet. H-Bridge Motor Control For related parts and recommended products to use with this part, refer to www.maximintegrated.com/MAX9643.related. Typical Operating Circuit RS+ RS- CP1 CP2 OUT VEE VCC MAX9643 BOOST POWER-SUPPLY CONTROL LOAD GND For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com. 19-5889; Rev 2; 1/14 MAX9643 60V High-Speed Precision Current-Sense Amplifier ABSOLUTE MAXIMUM RATINGS RS+ to GND, RS- to GND (Note 1)........................-3.5V to +65V RS+ to RS-........................................................................... Q15V VCC to GND............................................................-0.3V to +40V VCC > 4.5V OUT to GND......................................................-0.3V to +4.5V VEE to GND..........................................................+0.3V to -5V CP1 to GND.......................................................-0.3V to +4.5V VCC ≤ 4.5V OUT to GND.......................................... -0.3V to (VCC + 0.3V) VEE to GND......................................... +0.3V to (-VCC + 0.3V) CP1 to GND........................................... -0.3V to (VCC + 0.3V) CP2 to GND .............................................. (VEE - 0.3V) to +0.3V Short-Circuit Duration.................................................Continuous Continuous Input Current into Any Pin............................. Q20mA ESD on RS+, RS-........................................................Q4kV HBM ESD on All Other Pins.................................................Q2kV HBM Maximum Power Dissipation TDFN-EP (derate 16.7mW/NC at +70NC).................1333.3mW Operating Temperature Range......................... -40NC to +125NC Junction Temperature......................................................+150NC Lead Temperature (10s, soldering).................................+300NC Soldering Temperature (reflow).......................................+260NC Note 1: Voltages below -3.5V are allowed, as long as the input current is limited to 5mA by an external resistor. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. PACKAGE THERMAL CHARACTERISTICS (Note 2) TDFN Junction-to-Ambient Thermal Resistance (BJA).......... 60NC/W Junction-to-Case Thermal Resistance (BJC)............... 11NC/W Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial. ELECTRICAL CHARACTERISTICS (VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted.) (Note 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DC CHARACTERISTICS Input Common-Mode Voltage Range VRS+, VRS- VCC R 5V, guaranteed by CMRR test, VSENSE P 100mV -1.5 VCC < 5V, guaranteed by CMRR test, VSENSE P 100mV 3.5 VCC TA = +25NC Input Offset Voltage (Notes 4, 5) Common-Mode Rejection Ratio (Note 5) CMRR vs. Frequency (Note 5) VOS CMRR IRS+, IRS- Input Bias Current, VCC = 0V, VRS+ = VRS- = 60V IRS+, IRS -1.5V P VCM P 60V, TA = +25NC -1.5V P VCM P 60V, -40NC P TA P +125NC TA = +25NC 10 130 650 IRS+ - IRS- +10NC < TA <+85NC FV 400 120 130 dB 110 90 35 dB 60 60 25 -40NC < TA < +125NC Maxim Integrated 60 -40NC < TA < +125NC TA = +25NC Input Offset Current (Note 6) V -40NC < TA <+125NC +10NC < TA <+85NC AC CMRR f = 100kHz Input Bias Current +60 0.02 FA FA 0.65 0.65 FA 0.8 2 MAX9643 60V High-Speed Precision Current-Sense Amplifier ELECTRICAL CHARACTERISTICS* (continued) (VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted.) (Note 3) PARAMETER Maximum Sense Voltage Before Input Saturation SYMBOL FS Voltage Gain (Note 4) Voltage Gain Error (Note 4) CONDITIONS VCM < 2V GE VCM R 2V MIN TYP MAX UNITS 100 MAX9643T 400 MAX9643U 300 mV MAX9643T 2.5 MAX9643U 10 TA = +25NC 0.06 -40NC < TA < +125NC V/V 0.5 0.6 % AC CHARACTERISTICS VSENSE = 25mVDC + 2mVP-P, MAX9643T 15 VSENSE = 25mVDC + 2mVP-P, MAX9643U 10 VOUT = 10mV to 110mV 12 V/Fs Delay from Output Saturation to VOL VSENSE = 0 to 20mV 100 ns Delay from Input Saturation and Delay from Output Saturation to VOH VSENSE = 10V to 10mV 1 Fs Signal Bandwidth BW Slew Rate SR MHz OUTPUT CHARACTERISTICS Output Short-Circuit Current Output-Voltage Low (MAX9643T) (Note 5) Output-Voltage Low (MAX9643U) (Note 5) Output-Voltage High (Note 7) Capacitive Drive Capability Maxim Integrated ISC 3.39 IOUT = 100FA sink, TA = +25NC IOUT = 100FA sink, -40NC < TA < +125NC VOL VOL 0.2 2.2 IOUT = 100FA sink, +10NC < TA < +85NC 1.2 IOUT = 1mA sink, TA = +25NC IOUT = 1mA sink, -40NC < TA < +125NC 0.6 IOUT = 100FA sink, TA = +25NC IOUT = 100FA sink, -40NC < TA < +125NC 0.5 CL RLOAD = Open, no sustained oscillation 4 8.8 4.8 IOUT = 1mA sink, TA = +25NC IOUT = 1mA sink, -40NC < TA < +125NC VOH mV 10 10 IOUT = 100FA sink, +10NC < TA < +85NC IOUT = 1mA source, VCC < 4.5V IOUT = 1mA source, VCC R 4.5V mA 1 0.6 mV 10 10 VCC - 1.3 V 3.2 30 pF 3 MAX9643 60V High-Speed Precision Current-Sense Amplifier ELECTRICAL CHARACTERISTICS* (continued) (VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted.) (Note 3) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 36 V POWER-SUPPLY CHARACTERISTICS Power Supply Power-Supply Rejection Ratio (Note 5) VCC PSRR Quiescent Supply Current ICC Charge-Pump Current IEE Note Note Note Note Note Guaranteed by PSRR 2.7 VCC = 2.7V to 36V, VSENSE = 10mV, TA = +25NC 107 -40NC < TA < +125NC TA = +25NC 125 1000 -40NC < TA < +125NC DVEE = 500mV dB 100 1400 1600 4 FA mA 3: All devices are 100% production tested at TA = +25NC. Temperature limits are guaranteed by design and/or characterization. 4: Gain and offset voltage are calculated based on two point measurements: VSENSE1 = 10mV and VSENSE2 = 100mV. 5:VOS, VOL, CMRR, and PSRR are measured with the charge pump off. 6: Guaranteed by design and/or characterization. 7: The maximum VSENSE of the MAX9643T is 400mV. With the gain = 2.5V/V, the output swing high is not applicable to the MAX9643T. Maxim Integrated 4 MAX9643 60V High-Speed Precision Current-Sense Amplifier Typical Operating Characteristics (VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted. All devices are 100% production tested at TA = +25NC. Temperature limits are guaranteed by design and/or characterization.) SUPPLY CURRENT vs. SUPPLY VOLTAGE 1.4 25 20 15 10 1.2 1.3 1.1 1.0 0.9 0.8 1.2 1.1 1.0 0.9 0.8 0.7 0.7 5 0.6 0.6 0 0.5 -20 -15 -10 -5 0 0.5 0 5 10 15 20 25 30 10 20 30 40 -25 0 25 50 75 100 SUPPLY VOLTAGE (V) TEMPERATURE (°C) GAIN ERROR vs. COMMON-MODE VOLTAGE GAIN ERROR vs. TEMPERATURE COMMON-MODE REJECTION RATIO vs. FREQUENCY (VCM_AC = 100mV) 0.12 0.10 0.08 0.14 0.12 0.10 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0 10 20 30 40 COMMON-MODE VOLTAGE (V) Maxim Integrated 50 60 -20 -40 -60 -80 -100 -120 -140 0 0 0 125 MAX9643 toc06 0.16 GAIN ERROR (%) 0.14 0.18 COMMON-MODE REJECTION RATIO (dB) 0.16 MAX9643 toc05 0.20 MAX9643 toc04 0.18 -10 -50 INPUT OFFSET VOLTAGE (V) 0.20 GAIN ERROR (%) 1.4 SUPPLY CURRENT (mA) 1.3 SUPPLY CURRENT (mA) 30 1.5 MAX9643 toc02 35 OCCURRENCE (%) 1.5 MAX9643 toc01 40 SUPPLY CURRENT vs. TEMPERATURE MAX9643 toc03 INPUT OFFSET VOLTAGE HISTOGRAM -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 1 10 100 1000 10,000 100,000 FREQUENCY (kHz) 5 MAX9643 60V High-Speed Precision Current-Sense Amplifier Typical Operating Characteristics (continued) (VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted. All devices are 100% production tested at TA = +25NC. Temperature limits are guaranteed by design and/or characterization.) POWER-SUPPLY REJECTION RATIO vs. FREQUENCY -40 -60 -80 -100 -120 -140 1 10 100 1000 MAX9643 toc09 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 1 10 100 1000 0 10,000 100,000 FREQUENCY (kHz) FREQUENCY (kHz) OUTPUT-VOLTAGE LOW vs. OUTPUT SINK CURRENT SMALL-SIGNAL TRANSIENT RESPONSE 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 OUTPUT SOURCE CURRENT (mA) LARGE-SIGNAL TRANSIENT RESPONSE MAX9643 toc11 MAX9643 toc10 600 OUTPUT-VOLTAGE LOW (µV) 10,000 4.0 OUTPUT-VOLTAGE HIGH (V) SMALL-SIGNAL GAIN (dB) -20 20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 MAX9643 toc08 MAX9643 toc07 POWER-SUPPLY REJECTION RATIO (dB) 0 OUTPUT-VOLTAGE HIGH vs. OUTPUT SOURCE CURRENT SMALL SIGNAL vs. FREQUENCY (MAX9643T) 500 400 300 200 100 MAX9643 toc12 MAX9643T MAX9643T OUTPUT 10mV/div OUTPUT 100mV/div GND GND INPUT 10mV/div INPUT 100mV/div GND GND 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 200ns/div 100ns/div OUTPUT SINK CURRENT (mA) Maxim Integrated 6 MAX9643 60V High-Speed Precision Current-Sense Amplifier Typical Operating Characteristics (continued) (VCC = 5V, VRS+ = VRS- = 12V, TA = -40NC to +125NC, unless otherwise noted. All devices are 100% production tested at TA = +25NC. Temperature limits are guaranteed by design and/or characterization.) OUTPUT LOW-SATURATION RECOVERY RESPONSE (INPUT SIGNAL = 0V TO 20mV) OUTPUT HIGH-SATURATION RECOVERY RESPONSE (INPUT SIGNAL = 4V TO 100mV) STARTUP DELAY (VSENSE = 200mV) MAX9643 toc14 MAX9643 toc13 MAX9643T MAX9643T INPUT 2V/div MAX9643T VCC 5V/div INPUT 20mV/div MAX9643 toc15 GND VRS_ VRS_ OUTPUT 1V/div OUTPUT 50mV/div GND GND OUTPUT 500mV/div GND 200ns/div 1µs/div 100µs/div INPUT SENSE VOLTAGE SATURATION (VCM = 1.5V) INPUT SENSE VOLTAGE SATURATION (VCM = 12V) MAX9643 toc17 MAX9643 toc16 MAX9643T MAX9643T VSENSE 1V/div VSENSE 500mV/div GND GND OUTPUT 1V/div OUTPUT 200mV/div GND GND 200µs/div 200µs/div COMMON MODE (VCM = 0V TO 10V) CHARGE-PUMP NOISE MAX9643 toc18 MAX9643T CH2 MAX9643 toc19 MAX9643T VCM 5V/div CP1 2V/div GND GND OUTPUT 200mV/div OUTPUT 20mV/div GND 1µs/div Maxim Integrated CH1 20ns/div 7 MAX9643 60V High-Speed Precision Current-Sense Amplifier Pin Configuration TOP VIEW OUT VCC 8 7 RS- RS+ 6 5 MAX9643 EP + 1 2 GND VEE 3 4 CP1 CP2 TDFN Pin Description PIN NAME 1 GND Ground 2 VEE Charge-Pump Output. Connect 1µF to GND. 3 CP1 Positive Terminal of 1µF Flying Capacitor 4 CP2 Negative Terminal of 1µF Flying Capacitor 5 RS+ Positive Sense Resistor Input 6 RS- Negative Sense Resistor Input 7 VCC Power Supply 8 OUT Output — EP Maxim Integrated DESCRIPTION Exposed Pad. Must be externally connected to GND. 8 MAX9643 60V High-Speed Precision Current-Sense Amplifier Detailed Description The MAX9643 is a high-speed precision current-sense amplifier ideal for a wide variety of high-performance industrial and automotive power-supply applications. The device’s low input offset voltage, tight gain error, and low temperature drift characteristics allow the use of smallsense resistors for current measurements to improve power-supply conversion efficiency and accuracy of measurements. Its fast response allows it to react quickly to switching currents as is common in power-supply circuits, and makes it possible to be used as part of control loops. The unidirectional high-side, current-sense amplifier also features a wide -1.5V to +60V input common-mode range. This feature allows monitoring of power-supply load current even if the rail is shorted to ground. Highside current monitoring does not interfere with the ground path of the load being measured, making the IC particularly useful in a wide range of high-reliability systems. The IC has been designed on a proprietary high-speed complementary BiCMOS SOI process. This high-voltage analog process is optimized for excellent AC dynamic performance, ultra-low noise, wide operating voltage range, and low-drift signal conditioning circuitry. Input Common-Mode Voltage Range The use of an internal negative voltage rail for its input stage allows the current-sense amplifier to extend its input common-mode voltage below ground without any crossover inaccuracies. Crossover problems with precision can occur with alternate architectures of current-sense amplifiers that use two different input differential stages to cover the entire operating commonmode voltage range (either npn/pnp transistors or pnp transistor and resistor-based input stages). The minimum input common-mode voltage capability is dependent on the internal negative voltage rail generated by the charge pump. Since this negative voltage rail goes down at low values of VCC (i.e., when under 5V), the minimum input common-mode voltage rail is also limited at low VCC. The negative input common-mode voltage specification can be exceeded if the input current is limited to under 5mA. This is typically accomplished by using series input resistors. The input ESD structure for negative input common-mode voltages looks like 5 series-connected diodes. Assuming an on-drop of 0.7V per diode, negative Applications Information Internal Charge Pump An internal charge pump on the part is utilized to provide two attractive application features: FROM RSENSE TO ADC 8 U Input common-mode voltage range extends to 1.5V below ground. 7 6 5 It is possible to also connect the VEE pin directly to an external -5V power supply. Ensure that this voltage is lower than the internally generated charge-pump voltage. The -4.7V voltage is the minimum necessary to guarantee the charge pump is turned off. 0.1µF A 250kHz internal charge pump is used to generate a negative voltage rail to bias both the input stage and output stage of the current-sense amplifier. Use a 1FF ceramic capacitor between the CP1 and CP2 pins of the IC, and ensure a tight layout to minimize loop area. Using a 1FF ceramic capacitor from VEE to GND is essential to good low-noise performance. 0.1µF U Output voltage range extends down to true ground. MAX9643 + 1 1µF 2 3 4 1µF 0.1µF Figure 1. PCB Layout The MAX9643 EV kit shows a good example layout. A representation is shown in Figure 1. Maxim Integrated 9 MAX9643 60V High-Speed Precision Current-Sense Amplifier input voltage transients below -3.5V should be limited by the use of input series resistors. For example, if an input voltage transient or fault condition of -12V were to occur in the application, use a resistor greater than 8.5V/5mA = 1700I. Use 2kI for margin. The maximum input common-mode voltage extends up to 60V over the entire VCC range of 2.7V to 36V. It is recommended to shield the device from overvoltages above its 65V absolute maximum rating to protect the device. Output Voltage Range The internal negative voltage rail generated by the charge pump is also used to bias the output stage of the current-sense amplifier, allowing it to feature true VOL = 0V performance. This feature allows small sense voltages to be used and eases interface to other analog and mixed-signal ICs. In reality, attaining true VOL = 0V specification is usually limited by the offset voltage of the current-sense amplifier since VOUT = VOS x gain, when input VSENSE = 0V. In addition, the maximum output voltage of the IC is internally clamped to less than 5V even when it is powered from a 40V rail. This allows easy interface to low-voltage downstream circuitry without worrying about protecting them from large input voltage transients or faults. Common Mode and Differential Filtering When the AC common-mode signal with large amplitudes (>5VP-P for example) at high frequencies (> 1kHz for example) is present at the inputs, AC CMRR limitation causes spikes at the output as shown in the Common Mode graph in the Typical Operating Characteristics. Application Note 3888: Performance of Current-Sense Amplifiers with Input Series Resistors explains the way to filter out these common-mode transients as seen by the amplifier and filtering of the differential mode. Choosing the Sense Resistor Choose RSENSE based on the following criteria: U Voltage loss: A high RSENSE value causes the power-source voltage to reduce due to IR drop. For minimal voltage loss, use the lowest RSENSE value. UAccuracy: A high RSENSE value allows lower currents to be measured more accurately. This is because input offset voltages become less significant when the sense voltage is larger. U Efficiency and power dissipation: At high current levels, the I2R losses in RSENSE can be significant. Take this into consideration when choosing the resistor value and its power dissipation (wattage) rating. Also, the sense resistor’s value might drift if it is allowed to heat up excessively. UInductance: Keep inductance low if ISENSE has a large high-frequency component. Because of the high currents that flow through RSENSE, take care to eliminate parasitic trace resistance from causing errors in the sense voltage. Either use a four-terminal current-sense resistor or use Kelvin (force and sense) PCB layout techniques. Power-Supply Bypassing and Grounding For most applications, bypass VCC to GND with a 0.1FF ceramic capacitor. In many applications, VCC can be connected to one of the current monitor terminals (RS+ or RS-). Because VCC is independent of the monitored voltage, VCC can be connected to a separate regulated supply. There are no specific power-supply sequencing issues to consider. The part can withstand 60V input common-mode voltages even when VCC = 0V, and maintains a high input impedance in this application condition. Chip Information Ordering Information PROCESS: BiCMOS PART PINPACKAGE GAIN (V/V) TEMP RANGE MAX9643TATA+ 8 TDFN-EP* 2.5 -40NC to +125NC MAX9643UATA+ 8 TDFN-EP* 10 -40NC to +125NC +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. Maxim Integrated 10 MAX9643 60V High-Speed Precision Current-Sense Amplifier Package Information For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 8 TDFN-EP T823+1 21-0174 90-0091 Maxim Integrated 11 MAX9643 60V High-Speed Precision Current-Sense Amplifier Revision History REVISION NUMBER REVISION DATE 0 8/11 Initial release 1 2/13 Updated Electrical Characteristics and Typical Operating Characteristics. Added the Common Mode and Differential Filtering section. 2 1/14 Revised the General Description, Benefits and Features, Electrical Characteristics, and Internal Charge Pump sections. DESCRIPTION PAGES CHANGED — 3, 5, 6, 9 1–3, 8 Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance. Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000 © 2014 Maxim Integrated 12 Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.