MIC7400 Configurable PMIC, Five-Channel Buck Regulator Plus One-Boost with HyperLight Load® and I2C Control General Description Features The MIC7400 is a powerful, highly integrated, configurable, power-management IC (PMIC) featuring five synchronous buck regulators, one boost regulator and 2 high-speed I C interface with an internal EEPROM. • • • • • • • • The device offers two distinct modes of operation “standby mode” and “normal mode” intended to provide an energy optimized solution suitable for portable handheld, and infotainment applications. In normal mode, the programmable switching converters can be configured to support a variety of features, including start-up sequencing, timing, soft-start ramp, output voltage levels, current limit levels and output discharge for each channel. In stand-by mode the PMIC can configured in a low power state by either disabling an output or by changing the output voltage to a lower level. Independent exit from 2 stand-by mode can be achieved either by I C communication or the external STBY pin. The device has five synchronous buck regulators with high-speed adaptive on-time control supporting even the challenging ultra-fast transient requirement for Core supplies. One boost regulator provides a flash-memory programming supply that delivers up to 200mA of output current. The boost is equipped with an output disconnect switch that opens if a short-to-ground fault is detected. An internal EEPROM enables a single-chip solution across many platforms by allowing the designer to customize the PMIC for their design. Modifications can be made without the need to re-approve a new PMIC, saving valuable design resources and time. All switchers provide light-load efficiency with HyperLight ® Load mode for buck and PFM mode for boost. An additional benefit of this proprietary architecture is very-low output ripple voltage throughout the entire load range with the use of small output capacitors. The MIC7400 is designed for use with a small inductors (down to 0.47µH for buck, 1.5µH for boost), and an output capacitor as small as 10µF for buck, enabling a total solution size of 15mm × 15mm and less than 1mm height. • • • • • • • • • • Input voltage: 2.4V to 5.5V Five independent synchronous bucks up to 3A One independent non-synchronous boost 200mA 200µA quiescent current (all regulators on) 93% peak buck efficiency, 85% typical efficiency at 1mA Dual power mode: stand-by and normal mode I²C interface up to 3.4MHz I²C on-the-fly EEPROM programmability, featuring: − Buck and boost output voltage scaling − Power-on-reset threshold and delay − Power-up sequencing/sequencing delay − Buck and boost current limit − Buck and boost pull-down when disabled − Individual ON, OFF, and standby modes − Soft-start and global power-good masking 23µA buck typical quiescent current 70µA boost typical quiescent current 1.5% output accuracy over temperature/line/load 2.0MHz boost switching frequency 1.3MHz buck operation in continuous mode Ultra-fast buck transient response 15mm × 15mm × 1.25mm solution size Thermal-shutdown and current-limit protection 36-pin 4.5mm × 4.5mm × 0.85mm FQFN package (0.4mm pitch) −40°C to +125°C junction temperature range Applications • • • • • • • Client and enterprise solid state drives (SSD) Consumer and in-vehicle infotainment devices Multimedia devices Portable handheld devices Security camera Gaming machines Service provider gateways The datasheet and other support documentation can be found on Micrel’s website at: www.micrel.com. HyperLight Load is a registered trademark of Micrel, Inc. Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com March 3, 2015 Revision 2.0 Micrel, Inc. MIC7400 Typical Application Ordering Information Lead Finish Marking Output Voltages Features MIC7400YFL 7400 YWWS 1.8V, 1.1V, 1.8V 1.05V, 1.25V, 12V STBY – Active Low Falling Edge (DEFAULT) 36-Pin 4.5mm × 4.5mm FQFN PbFree X X 7400 X YYWW X Configurable Configurable 36-Pin 4.5mm × 4.5mm FQFN PbFree MIC7400-XXXXYFL (2) Package (1) Part Number Notes: 1. GREEN, RoHS-compliant package. Lead finish is Matte Tin. Mold compound is Halogen Free. 2. Configurable options available upon request. Contact Marketing. March 3, 2015 2 Revision 2.0 Micrel, Inc. MIC7400 Table of Contents List of Figures .......................................................................................................................................................................... 5 List of Tables ........................................................................................................................................................................... 6 Pin Configuration ..................................................................................................................................................................... 7 Pin Description ........................................................................................................................................................................ 7 Absolute Maximum Ratings .................................................................................................................................................. 10 Operating Ratings ................................................................................................................................................................. 10 Electrical Characteristics ....................................................................................................................................................... 10 Typical Characteristics .......................................................................................................................................................... 15 Functional Characteristics ..................................................................................................................................................... 17 MIC7400 Block Diagram ....................................................................................................................................................... 24 Functional Description ........................................................................................................................................................... 25 Programmable Buck Soft-Start Control ............................................................................................................................. 25 Buck Digital Voltage Control (DVC) ................................................................................................................................... 26 Programmable Boost Soft-Start Control ............................................................................................................................ 27 Boost Digital Voltage Control (DVC) ................................................................................................................................. 28 Buck Current Limit ............................................................................................................................................................. 28 Boost Current Limit ............................................................................................................................................................ 29 Global Power Good Pin ..................................................................................................................................................... 29 Standard Delay .................................................................................................................................................................. 29 Power-Up Sequencing ....................................................................................................................................................... 29 Programmable Power-on-Reset (POR) Delay .................................................................................................................. 30 Power-Down Sequencing .................................................................................................................................................. 30 Stand-By Mode .................................................................................................................................................................. 31 Resistive Discharge ........................................................................................................................................................... 31 STBY Pin ........................................................................................................................................................................... 31 Safe Start-Up into a Pre-Biased Output ............................................................................................................................ 32 Buck Regulator Power Dissipation .................................................................................................................................... 32 Total Power Dissipation ..................................................................................................................................................... 32 Power Derating .................................................................................................................................................................. 33 Overtemperature Fault ...................................................................................................................................................... 33 Thermal Measurements ..................................................................................................................................................... 34 Timing Diagrams ................................................................................................................................................................... 35 Normal Power-Up Sequence for Outputs .......................................................................................................................... 35 Standby (STBY) Pin (Wake-Up)............................................................................................................................................ 36 Evaluation Board Schematic ................................................................................................................................................. 37 Bill of Materials ...................................................................................................................................................................... 38 March 3, 2015 3 Revision 2.0 Micrel, Inc. MIC7400 Table of Contents (Continued) PCB Layout Guidelines General .............................................................................................................................................................................. 39 IC ....................................................................................................................................................................................... 39 Input Capacitor .................................................................................................................................................................. 39 Inductor .............................................................................................................................................................................. 39 Output Capacitor ............................................................................................................................................................... 39 Proper Termination of Unused Pins ...................................................................................................................................... 40 PCB Layout Recommendations ............................................................................................................................................ 41 Package Information and Recommended Landing Pattern .................................................................................................. 45 Appendix A ............................................................................................................................................................................ 46 2 I C Control Register ........................................................................................................................................................... 47 Serial Port Operation ......................................................................................................................................................... 47 External Host Interface .................................................................................................................................................. 47 2 Special Host I C Commands ......................................................................................................................................... 48 Special Keys .................................................................................................................................................................. 48 Appendix B ............................................................................................................................................................................ 49 Register Settings Descriptions .......................................................................................................................................... 49 Power Good Register (00’h) .......................................................................................................................................... 49 EEPROM-Ready Register (01’h) ................................................................................................................................... 50 Fault Registers (02’h) ..................................................................................................................................................... 51 Standby Register (03’h) ..................................................................................................................................................... 52 Enable/Disable Register (04’h) .......................................................................................................................................... 53 Regulator Output Voltage Setting NORMAL Mode (05’h − 09’h) ...................................................................................... 54 Boost Regulator Output Voltage Setting NORMAL Mode (0A’h) ...................................................................................... 55 Regulator Voltage Setting STBY Mode (0B’h – 0F’h) ....................................................................................................... 56 Boost Regulator Output Voltage Setting STBY Mode (10’h) ............................................................................................. 57 Sequence Register (11’h) .................................................................................................................................................. 58 Delay Register (17’h) ......................................................................................................................................................... 61 Soft-Start Registers (18’h − 1A’h) ...................................................................................................................................... 62 Current-Limit (Normal Mode) Registers (1B’h − 1D’h) ...................................................................................................... 63 Current-Limit (STBY Mode) Registers (1E − 20’h) ............................................................................................................ 65 Power-on-Reset (POR) Threshold Voltage Setting Register (21’h and 22’h) ................................................................... 66 Pull-Down when Disabled Register (23’h) ......................................................................................................................... 67 March 3, 2015 4 Revision 2.0 Micrel, Inc. MIC7400 List of Figures Figure 1. Buck Soft-Start ..................................................................................................................................................... 25 Figure 2. Buck Soft-Start ..................................................................................................................................................... 26 Figure 3. Buck DVC Control Ramp ..................................................................................................................................... 26 Figure 4. Buck DVC Control Ramp ..................................................................................................................................... 27 Figure 5. Boost Soft-Start Ramp ......................................................................................................................................... 27 Figure 6. Boost Soft-Start.................................................................................................................................................... 27 Figure 7. Boost DVC Control Ramp .................................................................................................................................... 28 Figure 8. Standard Delay Time ........................................................................................................................................... 29 Figure 9. Hot Plug − VIN Rising ........................................................................................................................................... 30 Figure 10. POR ..................................................................................................................................................................... 30 Figure 11. Hot Un-Plug − VIN Falling ..................................................................................................................................... 30 2 Figure 12. I C Stand-By Mode .............................................................................................................................................. 31 Figure 13. Output Pull-Down Resistance .............................................................................................................................. 31 Figure 14. STBY-to-NORMAL Transition (DEFAULT) .......................................................................................................... 32 Figure 15. Pre-Biased Output Voltage .................................................................................................................................. 32 Figure 16. Power Dissipation ................................................................................................................................................ 33 Figure 17. Power Derating Curve.......................................................................................................................................... 33 Figure 18. Hot Plug Input Voltage Spike ............................................................................................................................... 34 Figure 19. MIC7400 Power-Up/Down ................................................................................................................................... 35 Figure 20. MIC7400 STBY Function (DEFAULT) ................................................................................................................. 36 Figure 21. Connections for Unused Pins .............................................................................................................................. 40 Figure 22. Read/Write Protocol ............................................................................................................................................. 47 March 3, 2015 5 Revision 2.0 Micrel, Inc. MIC7400 List of Tables Table 1. Buck Outputs Default Soft-Start Time (DEFAULT) ................................................................................................. 26 Table 2. Boost Output Default Soft-Start Time ..................................................................................................................... 28 Table 3. Buck Current Limit Register Settings ...................................................................................................................... 28 Table 4. Summarization of Unused Pin Connections ........................................................................................................... 40 Table 5. Power Good Status Register .................................................................................................................................. 49 Table 6. EEPROM Status Register ....................................................................................................................................... 50 Table 7. Overcurrent Status Fault Register .......................................................................................................................... 51 Table 8. Standby Register ..................................................................................................................................................... 52 Table 9. Enable Register ....................................................................................................................................................... 53 Table 10. DVC Registers for OUT[1 − 5] .............................................................................................................................. 54 Table 11. DVC Registers for OUT6....................................................................................................................................... 55 Table 12. Standby Registers ................................................................................................................................................. 56 Table 13. Standby DVC Register for OUT6 .......................................................................................................................... 57 Table 14. Sequence State 1 Register ................................................................................................................................... 59 Table 15. Sequence State 2 Register ................................................................................................................................... 59 Table 16. Sequence State 3 Register ................................................................................................................................... 59 Table 17. Sequence State 4 Register ................................................................................................................................... 60 Table 18. Sequence State 5 Register ................................................................................................................................... 60 Table 19. Sequence State 6 Register ................................................................................................................................... 61 Table 20. Delay Register ....................................................................................................................................................... 61 Table 21. Soft-Start Register Speed Settings ....................................................................................................................... 62 Table 22. Soft-Start Register OUT1 and OUT2 .................................................................................................................... 62 Table 23. Soft-Start Register OUT3 and OUT4 .................................................................................................................... 62 Table 24. Soft-Start Register OUT5 and OUT6 .................................................................................................................... 63 Table 25. Current-Limit Register IOUT1 and IOUT2 ................................................................................................................... 63 Table 26. Current-Limit Register IOUT3 and IOUT4 ................................................................................................................... 64 Table 27. Current-Limit Register IOUT 5 and IOUT6 ................................................................................................................... 64 Table 28. Standby Current-Limit Register IOUT1 and IOUT2 ..................................................................................................... 65 Table 29. Standby Current-Limit Register IOUT3 and IOUT4 ..................................................................................................... 65 Table 30. Standby Current-Limit Register IOUT5 and IOUT6 ..................................................................................................... 66 Table 31. Rising and Falling Power-on-Reset Threshold Voltage Settings .......................................................................... 66 Table 32. Power-on-Reset Rising Threshold Voltage Setting Register (21’h) ...................................................................... 67 Table 33. Power-on-Reset Falling Threshold Voltage Setting Register (22’h) ..................................................................... 67 Table 34. Pull-Down when Disabled Register ....................................................................................................................... 67 March 3, 2015 6 Revision 2.0 Micrel, Inc. MIC7400 Pin Configuration 36-Pin 4.5mm × 4.5mm FQFN (FL) (Top View) Pin Description Pin Number Pin Name 1 SW2 2 PVIN2 Power Supply Voltage 2 (Input): Input supply to the source of the internal high-side P-channel MOSFET. An input capacitor between PVIN2 and the power ground PGND2 pin is required and to be placed as close as possible to the IC. 3 OUT2 Output Voltage Sense 2 (Input): This pin is used to sense the output voltage. Connect OUT2 as close to the output capacitor as possible to sense output voltage. Also provides the path to discharge the output through an internal 90Ω resistor when disabled. This pull-down feature is programmed through the PULLD[x] register. 4 PVIN3 Power Supply Voltage 3 (Input): Input supply to the source of the internal high-side P-channel MOSFET. An input capacitor between PVIN3 and the power ground PGND3 pin is required and to be placed as close as possible to the IC. 5 SW3 6 PGND3 Power Ground 3: The power ground for the synchronous buck converter power stage. The PGND pin connects to the sources of the internal low-side N-Channel MOSFET, the negative terminals of input capacitors, and the negative terminals of output capacitors. 7 OUT3 Output Voltage Sense 3 (Input): This pin is used to sense the output voltage. Connect OUT3 as close to the output capacitor as possible to sense output voltage. Also provides the path to discharge the output through an internal 90Ω resistor when disabled. This pull-down feature is programmed through the PULLD[x] register. 8 PVIN4 Power Supply Voltage 4 (Input): Input supply to the source of the internal high-side P-channel MOSFET. An input capacitor between PVIN4 and the power ground PGND4 pin is required and to be placed as close as possible to the IC. March 3, 2015 Description Switch Pin 2 (Output): Inductor connection for the synchronous step-down regulator. Connect the inductor between the output capacitor and the SW2 pin. Switch Pin 3 (Output): Inductor connection for the synchronous step-down regulator. Connect the inductor between the output capacitor and the SW3 pin. 7 Revision 2.0 Micrel, Inc. MIC7400 Pin Description (Continued) Pin Number Pin Name 9 SW4 10 PGND4 Power Ground 4: The power ground for the synchronous buck converter power stage. The PGND pin connects to the source of the internal low-side N-Channel MOSFET, the negative terminals of input capacitors, and the negative terminals of output capacitors. OUT4 Output Voltage Sense 4 (Input): This pin is used to sense the output voltage. Connect the OUT4 as close to the output capacitor as possible to sense output voltage. Also provides the path to discharge the output through an internal 90Ω resistor when disabled. This pull-down feature is programmed through the PULLD[x] register. 12 STBY Standby Reset (Input): Standby mode allows the total power consumption to be reduced by either lowering a supply voltage or turning it off. The IC can be placed in standby mode while operating in normal mode by a high-to-low transition (DEFAULT) on the STBY input. When this occurs, the STBY_MODEB bit will be set to logic “0”. Either a low-to-high transition on the STBY pin or an I²C write command to the STBY_MODEB bit sets all of the regulators to their normal mode default settings. This pin can be driven with either a digital signal or open collector output. Do not let this pin float. Connect to ground or VIN. A pull-down resistor of 100kΩ or less can also be used. There are both a high-to-low (DEFAULT) and low-to-high normal to standby trigger options available. 13 SDA High-Speed Mode 3.4MHz I²C Data (Input/Output): This is an open drain, bidirectional data pin. Data is read on the rising edge of the SCL and data is clocked out on the falling edge of the SCL. External pull-up resistors are required. 14 AGND Analog Ground: Internal signal ground for all low power circuits. Connect to ground plane for best operation. 15 SCL High-Speed Mode 3.4MHz I²C Clock (Input): I²C serial clock line open drain input. External pull-up resistors are required. 16 POR Power-on-Reset (Output): This is an open drain output that goes high after the POR delay time elapses. The POR delay time starts as soon as the AVIN pin voltage rises above the upper threshold set by the PORUP register. The POR output goes low without delay when AVIN falls below the lower threshold set by the PORDN register. 17 OUT5 Output Voltage Sense 5 (Input): This pin is used to sense the output voltage. Connect OUT5 as close to the output capacitor as possible to sense output voltage. Also provides the path to discharge the output through an internal 90Ω resistor when disabled. This pull-down feature is programmed through the PULLD[x] register. 18 PGND5 Power Ground 5: The power ground for the synchronous buck converter power stage. The PGND pin connects to the source of the internal low-side N-Channel MOSFET, the negative terminals of input capacitors, and the negative terminals of output capacitors. 19 SW5 20 PVIN5 Power Supply Voltage 5 (Input): Input supply to the source of the internal high-side P-channel MOSFET. An input capacitor between PVIN5 and the power ground PGND5 pin is required and to be placed as close as possible to the IC. 21 OUT6 Output Voltage 6 Sense (Input): This pin is used to sense the output voltage. Connect OUT6 as close to the output capacitor as possible to sense output voltage. Also provides the path to discharge the output through an internal programmable current source when disabled. This pull-down feature is programmed through the PULLD[x] register. 22 PGND6 23 SW6 11 March 3, 2015 Description Switch Pin 4 (Output): Inductor connection for the synchronous step-down regulator. Connect the inductor between the output capacitor and the SW4 pin. Switch Pin 5 (Output): Inductor connection for the synchronous step-down regulator. Connect the inductor between the output capacitor and the SW5 pin. Power Ground 6: The power ground for the boost converter power stage. The PGND pin connects to the source of the internal low-side N-Channel MOSFET, the negative terminals of input capacitors, and the negative terminals of output capacitors. Switch Pin 6 (Input): Inductor connection for the boost regulator. Connect the inductor between the PVIN6O and SW6 pin. 8 Revision 2.0 Micrel, Inc. MIC7400 Pin Description (Continued) Pin Number Pin Name Description Power Supply Voltage 6 (Output): This pin is the output of the power disconnect switch for the boost regulator. When the boost regulator is on, an internal switch provides a current path for the boost inductor. In shutdown, an internal P-channel MOSFET is turned off and disconnects the boost output from the input supply. This feature eliminates current draw from the input supply during shutdown. An input capacitor between PVIN6O and the power ground PGND6 pin is required and place as close as possible to the IC. 24 PVIN6O 25 PVIN6 Power Supply Voltage 6 (Input): Input supply to the internal disconnect switch. 26 PVIN1 Power Supply Voltage 1 (Input): Input supply to the source of the internal high-side P-channel MOSFET. An input capacitor between PVIN1 and the power ground PGND1 pin is required and to be placed as close as possible to the IC. 27 SW1 28 PGND1 Power Ground 1: The power ground for the synchronous buck converter power stage. The PGND pin connects to the source of the internal low-side N-Channel MOSFET, the negative terminals of input capacitors, and the negative terminals of output capacitors. 29 OUT1 Output Voltage Sense 1(Input): This pin is used to sense the output voltage remotely. Connect OUT1 as close to output capacitor as possible to sense output voltage. This feature also provides the path to discharge the output through an internal 90Ω resistor when disabled. The pull-down feature is programmed through the PULLD[x] register. 30 VSLT POR Selection Threshold (Input): A high on this pin sets the PORUP and PORDN registers to their upper threshold limits and a low to their lower threshold limits. Do not leave floating. 31 AVIN Analog Voltage Supply (Input): The start-up sequence begins as soon as the AVIN pin voltage rises above the IC’s UVLO upper threshold. The outputs do not turn off until AVIN pin voltage falls below the lower threshold limit. A 2.2µF ceramic capacitor from the AVIN pin to AGND pin must be placed next to the IC. 32 AGND Analog Ground: Internal signal ground for all low power circuits. Connect directly to the layer 2 ground plane. Layer 2 is the point where all the PGNDs and AGND are connected. Do not connect PGND and AGND together on the top layer. 33 NC No Connect. Must be left floating. 34 NC No Connect. Must be left floating. 35 PG Global Power Good (Output): This is an open drain output that is pulled high when all the regulator power good flags are high. If an output falls below the power good threshold or a thermal fault occurs, the global power good flag is pulled low. There is a falling edge de-glitch time of 50µs to prevent false triggering on output voltage transients. A power good mask feature programmed through the PGOOD_MASK[x] registers can be used to ignore a power good fault. When masked an individual power good fault will not cause the global power good output to de-assert. Do not connect the power good pull-up resistor to a voltage higher than AVIN. 36 PGND2 Power Ground 2: The power ground for the synchronous buck converter power stage. The PGND pin connects to the source of the internal low-side N-Channel MOSFET, the negative terminals of input capacitors, and the negative terminals of output capacitors. EP ePad March 3, 2015 Switch Pin 1 (Output): Inductor connection for the synchronous step-down regulator. Connect the inductor between the output capacitor and the SW1 pin. Exposed Pad: Must be connected to the GND plane for full output power to be realized. 9 Revision 2.0 Micrel, Inc. MIC7400 Absolute Maximum Ratings(3) Operating Ratings(4) Supply Voltages (PVIN[1-6]) .................................. -0.3V to 6V Analog Supply Voltage (AVIN) ............................ -0.3V to 6V Buck Output Voltages (VOUT[1-5]) ......................... -0.3V to 6V Boost Output Voltage (VOUT6) ........................... -0.3V to 20V Buck Switch Voltages (VSW[1-5]). ......................... -0.3V to 6V Boost Switch Voltage (VSW6). ........................... -0.3V to 20V Power Good Voltage (VPG) .............................. -0.3V to AVIN Power-On Reset Output (VPOR) .......................... -0.3V to 6V POR Threshold Voltage (VVSLT) ......................... -0.3V to 6V Standby Voltage (VSTBY) ..................................... -0.3V to 6V I²C IO (VSDA, VSCL) ........................................... -0.3V to AVIN AGND to PGND[1-6] ....................................... -0.3V to 0.3V Ambient Storage Temperature (Ts) ........... -40°C to +150°C (6) ESD HBM Rating ........................................................ 2kV ESD MM Rating............................................................ 200V Input Voltage (PVIN[1-6]) ..................................... 2.4V to 5.5V Analog Input Voltage (AVIN) ............................. 2.4V to 5.5V Buck Output Voltage Range (VOUT[1-5]) ............. 0.8V to 3.3V Boost Output Voltage Range (VOUT6) ................... 7V to 14V Power Good Voltage (VPG) ................................... 0V to AVIN Power-On Reset Output (VPOR) ............................ 0V to AVIN POR Threshold Voltage (VVSLT) ........................... 0V to AVIN Standby Voltage (VSTBY) ....................................... 0V to AVIN I²C IO (VSDA, VSCL) ................................................ 0V to AVIN (5) Junction Temperature (TJ) ...................... -40°C to +125°C Junction Thermal Resistance 4.5mm × 4.5mm FQFN-36 (θJA) ........................ 30°C/W Electrical Characteristics(7) VIN = AVIN = PVIN(1-6) = 5.0V; VOUT1 = 1.8V; VOUT2 = 1.1V; VOUT3 = 1.8V; VOUT4 = 1.05V; VOUT5 = 1.25V; VOUT6 = 12V (refer to the Evaluation Board Schematic for component values). TA = 25°C, unless otherwise noted. Bold values indicate −40°C ≤ TJ ≤ +125°C. Parameter Conditions Min. Typ. Max. Unit 5.5 V Input Supply (VIN) 2.4 Input Voltage Range (AVIN, PVIN[1-6]) Operating Quiescent Current (8, 9) into AVIN VIN = 5.0V; IOUT = 0A 200 240 μA Operating Quiescent Current (8) into PVIN VIN = 5.0V; IOUT = 0A 0.3 1 μA Undervoltage Lockout Threshold AVIN Rising 2.25 2.35 V 2.15 Undervoltage Lockout Hysteresis 150 mV Standby Input (STBY) 1.2 Logic Level High V Logic Level Low 0.4 V Bias Current into Pin VSTBY = VIN 200 nA Bias Current out of Pin VSTBY = 0V 200 nA Rising/Falling Edge Reset Deglitch 100 μs Notes: 3. Absolute maximum ratings indicate limits beyond which damage to the component may occur. 4. The device is not guaranteed to function outside its operating rating. 5. The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(Max), the junction-to-ambient thermal resistance, θJA, and the ambient temperature, TA. The maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. 6. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5kΩ in series with 100pF. 7. Specification for packaged product only. 8. Tested in a non-switching configuration. 9. When all outputs are configured to the minimum programmable voltage. March 3, 2015 10 Revision 2.0 Micrel, Inc. MIC7400 Electrical Characteristics(7) (Continued) VIN = AVIN = PVIN(1-6) = 5.0V; VOUT1 = 1.8V; VOUT2 = 1.1V; VOUT3 = 1.8V; VOUT4 = 1.05V; VOUT5 = 1.25V; VOUT6 = 12V (refer to the Evaluation Board Schematic for component values). TA = 25°C, unless otherwise noted. Bold values indicate −40°C ≤ TJ ≤ +125°C. Parameter Conditions Min. Typ. Max. Unit POR Threshold Input (VSLT) 1.2 Logic Level High V Logic Level Low 0.4 V Bias Current Into Pin VVSLT = VIN 200 nA Bias Current Out of Pin VVSLT = 0V 200 nA Power-On-Reset (POR) Comparator POR Upper Comparator Range AVIN Rising, VVSLT = 0V 2.646 2.7 2.754 V POR Lower Comparator Range AVIN Falling, VVSLT = 0V 2.548 2.6 2.652 V POR Upper Comparator Range AVIN Rising, VVSLT = VIN 3.626 3.7 3.774 V POR Lower Comparator Range AVIN Falling, VVSLT = VIN 3.528 3.6 3.672 V 18 20 22 ms Power Reset Output (POR) and Timer POR Delay POR Deglitch Delay AVIN Falling 50 POR Output Low Voltage IPOR = 10mA (sinking) 75 POR Leakage Current VPOR = 5.5V μs 400 mV 200 nA 95 %VOUT Global Power Good Output (PG) Buck Power Good Threshold Voltage (10) Buck Hysteresis VOUT[1-5] Rising 87 VOUT[1-5] Falling Boost Power Good Threshold Voltage (10) 91 4 VOUT[6] Rising 87 91 %VOUT 95 %VOUT Boost Hysteresis VOUT[6] Falling 380 Power Good Output Low Voltage IPG = 10mA (sinking) 75 400 mV Power Good Leakage Current VPG = 5.5V 0.01 200 nA Power Good De-Glitch Delay VOUT[1-6] Falling 100 (10) Output Sequencing Delay 0.96 1 mV μs 1.04 ms Thermal Protection Thermal Shutdown TJ Rising Thermal Hysteresis 160 °C 20 °C Note: 10. Guaranteed by design. March 3, 2015 11 Revision 2.0 Micrel, Inc. MIC7400 Electrical Characteristics(7) (Continued) VIN = AVIN = PVIN(1-6) = 5.0V; VOUT1 = 1.8V; VOUT2 = 1.1V; VOUT3 = 1.8V; VOUT4 = 1.05V; VOUT5 = 1.25V; VOUT6 = 12V (refer to the Evaluation Board Schematic for component values). TA = 25°C, unless otherwise noted. Bold values indicate −40°C ≤ TJ ≤ +125°C. Parameter Conditions Min. Typ. Max. Unit Synchronous Buck (VOUT1 - VOUT5) Buck Output Voltage Accuracy (OUT[1-5]) (11) Includes Load, Line, and Reference −1.5% 1.5% % (11) Includes Load, Line, and Reference −1.5% 1.5% % (11) Includes Load, Line, and Reference −1.5% 1.5% % (11) Includes Load, Line, and Reference −1.5% 1.5% % (11) Includes Load, Line, and Reference −1.5% 1.5% % (11) −1% 1% % (11) −1% 1% % (11) −1% 1% % (11) −1% 1% % (11) −1% 1% % Typical Output Voltage 1 Accuracy Typical Output Voltage 2 Accuracy Typical Output Voltage 3 Accuracy Typical Output Voltage 4 Accuracy Typical Output Voltage 5 Accuracy Output Voltage 1 Accuracy Output Voltage 2 Accuracy Output Voltage 3 Accuracy Output Voltage 4 Accuracy Output Voltage 5 Accuracy Load Regulation IOUT = 10mA to IOUT(MAX) 0.1 % Line Regulation VIN = 3.3V to 5.0V 0.05 % Buck Soft-Start (10, 12) Soft-Start (1-5) LSB 3.84 4 4.16 µs/step Buck Internal MOSFETs High-Side On-Resistance VIN = 3.3V; ISW[1-5] = 200mA 54 mΩ High-Side On-Resistance VIN = 5.0V; ISW[1-5] = 200mA 40 mΩ Low-Side On-Resistance VIN = 3.3V; ISW[1-5] = -200mA 37 mΩ Low-Side On-Resistance VIN = 5.0V; ISW[1-5] = -200mA 30 mΩ Output Pull-Down Resistance VSW[1-5] = 0V 75 90 200 Ω Buck Controller Timing Fixed On-Time (13) VIN = 3.3; VOUT = 1.0V; IOUT = 1.0A Minimum OFF-Time 220 ns 80 ns Note: 11. Not tested in a closed loop configuration. 12. The soft-start time is calculated using the following equation: tsoftstart = [(VOUT_PROGRAM – 0.15)/0.05 +1) × tRAMP. 13. Buck frequency is calculated using the following equation fSW = (VOUT/VIN) × (1/tON). March 3, 2015 12 Revision 2.0 Micrel, Inc. MIC7400 Electrical Characteristics(7) (Continued) VIN = AVIN = PVIN(1-6) = 5.0V; VOUT1 = 1.8V; VOUT2 = 1.1V; VOUT3 = 1.8V; VOUT4 = 1.05V; VOUT5 = 1.25V; VOUT6 = 12V (refer to the Evaluation Board Schematic for component values). TA = 25°C, unless otherwise noted. Bold values indicate −40°C ≤ TJ ≤ +125°C. Parameter Conditions Min. Typ. Max. Unit Buck 1 Current Limit Threshold See Table 3 for IPROG Settings 3.075 4.1 5.125 A Buck 2 Current Limit Threshold See Table 3 for IPROG Settings 3.075 4.1 5.125 A Buck 3 Current Limit Threshold See Table 3 for IPROG Settings 3.075 4.1 5.125 A Buck 4 Current Limit Threshold See Table 3 for IPROG Settings 4.88 6.1 7.32 A Buck 5 Current Limit Threshold See Table 3 for IPROG Settings 3.075 4.1 5.125 A Gross High-Side Current Limit [1-5] With Respect to Buck [x] Current Limit Zero Cross Threshold Zero crossing detector Buck Current Limit (OUT1-OUT5) 150 % 0 mV Boost (VOUT6) Boost Output Voltage (VOUT6) (11) Typical Output Voltage Accuracy Includes Load, Line, and Reference (11) Output Voltage Accuracy -1.5% 1.5% % -1% 1% % Load Regulation IOUT6 = 1.0mA to 200mA 0.2 % Line Regulation VIN = 2.4V to 5.5V; IOUT6 = 10mA 0.2 % VOUT6 Discharge Current VIN = 3.3V; VOUT6 = 12V 111 148 185 mA 3.84 4 4.16 µs/step Boost Soft-Start Step Duration (10, 12) Soft-Start 6 LSB Boost Internal MOSFETs Low-Side On-Resistance VIN = 3.3V; ISW1 = −100mA 160 mΩ Low-Side On-Resistance VIN = 5.0V; ISW1 = −100mA 140 mΩ IPVIN6O = 100mA; VIN = 3.3V 90 mΩ 5 A Boost Disconnect MOSFETs Disconnect Switch On-Resistance Disconnect Switch Current Limit Boost Switching Frequency Switching Frequency (PWM Mode) 1.92 2 2.08 MHz Minimum Duty Cycle 35 40 45 % Maximum Duty Cycle 80 85 90 % Boost Current Limit NMOS Current-Limit Threshold March 3, 2015 2.24 13 A Revision 2.0 Micrel, Inc. MIC7400 Electrical Characteristics(7) (Continued) VIN = AVIN = PVIN(1-6) = 5.0V; VOUT1 = 1.8V; VOUT2 = 1.1V; VOUT3 = 1.8V; VOUT4 = 1.05V; VOUT5 = 1.25V; VOUT6 = 12V (refer to the Evaluation Board Schematic for component values). TA = 25°C, unless otherwise noted. Bold values indicate −40°C ≤ TJ ≤ +125°C. Parameter Conditions Min. Typ. Max. Unit 0.4 V I²C Interface I²C Interface (SCL, SDA) Low Level Input Voltage High Level Input Voltage 1.2 High Level Input Current −200 0.01 200 nA Low Level Input Current −200 0.01 200 nA SDA Pull-Down Resistance SDA Logic 0 Output Voltage 0.4 ISDA = 3mA 0.7 V pF (10) SCL Clock Frequency Standard Mode 100 Fast Mode 400 High-Speed Mode March 3, 2015 Ω 20 CLK, DATA Pin Capacitance I²C Interface Timing V (10) 3.4 14 kHz MHz Revision 2.0 Micrel, Inc. MIC7400 Typical Characteristics Buck Efficiency (LDCR = 0mΩ) vs. Output Current 100 90 90 90 80 80 80 70 60 0.8V 1.0V 50 1.2V VIN = 3.3V L = 2.2µH TA = 25°C 1.5V 1.8V 30 0.0001 0.001 0.01 0.8V 70 1.0V 60 1.2V 1.5V 50 1.8V 3.3V 30 0.0001 3 0.001 OUTPUT CURRENT (A) 0.01 60 3.3V 90 1.5% 80 80 1.0V 1.2V 1.5V 40 1.8V 30 0.0001 0.001 VIN = 5.0V L = 1.0µH DCR = 40mΩ SAMSUNG CIGW252010GM1R0MNE TA = 25°C 0.01 0.1 1 0.8V 1.0V 60 1.2V 1.8V 2.5V 40 30 0.0001 3 Buck Efficiency (LDCR = 116mΩ) vs. Output Current 100 90 90 80 80 EFFICIENCY (%) 100 70 50 0.8V 1.0V 1.2V 40 1.5V 1.8V 30 0.0001 0.001 VIN = 3.3VL = 2.2µH DCR = 116mΩ SAMSUNG CIG22H2R2MNE TA = 25°C 0.01 0.1 OUTPUT CURRENT (A) March 3, 2015 CIGW252010GM1R0MNE 1 0.001 1.0% 0.5% 0.0% -0.5% -40 -1.0% 25 -1.5% 85 0.01 0.1 1 -2.0% 0.0001 3 0.001 0.01 0.1 1 OUTPUT CURRENT (A) OUTPUT CURRENT (A) Buck Efficiency (LDCR = 116mΩ) vs. Output Current Output Voltage vs. Temperature 10 1.0% 0.8V 1.0V 60 40 VIN = 3.3V VOUT4 = 1.05V 125 70 50 0.1 0.2 TA = 25⁰C 3.3V OUTPUT CURRENT (A) 60 VIN = 5.0V L = 1.0µH DCR = 40mΩ SAMSUNG 1.5V 50 OUTPUT VOLTAGE (%) 0.8V OUTPUT VOLTAGE (V) 90 EFFICIENCY (%) 2.0% 70 0.01 Output Voltage vs. Output Current 100 50 0.001 OUTPUT CURRENT (A) 100 60 5.0V 30 0.0001 Buck Efficiency (LDCR = 40mΩ) vs. Output Current 70 L = 2.2µH DCR = 116mΩ SAMSUNG CIG22H2R2MNE TA = 25°C 50 40 3 1 0.1 70 OUTPUT CURRENT (A) Buck Efficiency (LDCR = 40mΩ) vs. Output Current EFFICIENCY (%) VIN = 5.0V L = 2.2µH TA = 25°C 2.5V 40 1 0.1 EFFICIENCY (%) 100 40 EFFICIENCY (%) Boost Efficiency (12V) vs. Output Current 100 EFFICIENCY (%) EFFICIENCY (%) Buck Efficiency (LDCR = 0mΩ) vs. Output Current 1.2V VIN = 5.0V L = 2.2µH DCR = 116mΩ SAMSUNG CIG22H2R2MNE TA = 25°C 30 0.0001 0.001 1.5V 1.8V 2.5V 0.5% 0.0% VIN = 3.3V VOUT4 = 1.05V IOUT4 = 2.5A -0.5% 3.3V 0.01 0.1 1 -1.0% -50 OUTPUT CURRENT (A) 15 -25 0 25 50 75 100 125 TEMPERATURE (°C) Revision 2.0 Micrel, Inc. MIC7400 Typical Characteristics (Continued) 0.035% 1.000 1.000 0.999 3.3V 0.999 5V TA = 25°C 0.998 0.0001 0.001 0.01 0.1 0.15% 0.10% 0.05% 0.00% -0.05% -0.10% 3.3V -0.15% 0.01 0.1 2.5 2.3 150 100 IOUT = 0A SWITCHING RPG = OPEN RPOR = OPEN TA = 25⁰C 0.0 3 1.0 2.0 3.0 4.0 OUTPUT CURRENT (A) INPUT VOLTAGE (V) Current-Limit Threshold vs. Output Voltage Output Current Limit vs. Output Voltage CURRENT LIMIT (A) 4.1A 3.6A 3.1A 3 2.6A 2.1A 2 1.6A 1.1A 1 1 2 3 4 OUTPUT VOLTAGE (V) March 3, 2015 5 6 1.0 VOUT2 = 1.1V IOUT2 = 0.5A TA = 25°C 0.9 1.0 2.0 3.0 4.0 5.0 6.0 Programmed Current Limit vs. Measured Current Limit 5.1A 4.6A 4.1A 4 3.6A 3.1A 3 2.6A 2.1A 2 1.6A 1.1A VIN = 5.0V VOUT = 1.05V 5 4 3 2 1 0 0 0 1.1 INPUT VOLTAGE (V) 1 0 1.2 6 5 4.6A 1.3 0.0 MEASURED CURRENT LIMIT (A) 5.1A 6 1.4 5.0 6 6 5 0.8 0 2 4 Buck 2 Switching Frequency vs. Input Voltage 200 1.9 4 3 1.5 50 5 0.005% INPUT VOLTAGE (V) 250 2.1 1 0.010% 2 SWITCHNG FREQUENCY (MHz) SUPPLY CURRENT (µA) VIN = 3.3V VOUT = 3.3V L = 2.2µH DCR = 116mΩ SAMSUNG CIG22H2R2MNE TA = 25⁰C 0 0.015% 1 300 2.7 IOUT = 1A TA = 25°C 0.020% VIN Operating Supply Current vs. Input Voltage 3.3 2.9 0.025% OUTPUT CURRENT (A) Dropout Output Voltage vs. Output Current 3.1 0.030% 0.000% 0.001 OUTPUT CURRENT (A) OUTPUT VOLTAGE (V) TA = 25°C 5V -0.20% 0.0001 1 OUTPUT VOLTAGE ERROR (%) 0.20% OUTPUT VOLTAGE ERROR (%) OUTPUT VOLTAGE (V) 1.001 CURRENT LIMIT (A) Buck Line Regulation vs. Input Voltage Buck Output Voltage Regulation vs. Output Current Buck Output Voltage (1.0V) vs. Output Current 0 1 2 3 4 OUTPUT VOLTAGE (V) 16 5 6 0 1 2 3 4 5 6 PROGRAMMED CURRENT LIMIT (A) Revision 2.0 Micrel, Inc. MIC7400 Functional Characteristics March 3, 2015 17 Revision 2.0 Micrel, Inc. MIC7400 Functional Characteristics (Continued) March 3, 2015 18 Revision 2.0 Micrel, Inc. MIC7400 Functional Characteristics (Continued) March 3, 2015 19 Revision 2.0 Micrel, Inc. MIC7400 Functional Characteristics (Continued) March 3, 2015 20 Revision 2.0 Micrel, Inc. MIC7400 Functional Characteristics (Continued) March 3, 2015 21 Revision 2.0 Micrel, Inc. MIC7400 Functional Characteristics (Continued) March 3, 2015 22 Revision 2.0 Micrel, Inc. MIC7400 Functional Characteristics (Continued) March 3, 2015 23 Revision 2.0 Micrel, Inc. MIC7400 MIC7400 Block Diagram March 3, 2015 24 Revision 2.0 Micrel, Inc. MIC7400 Functional Description The MIC7400 is one of the industry’s most-advanced PMIC designed for solid state drives (SSD) on the market today. It is a multi-channel solution which offers software configurable soft-start, sequencing, and digital voltage control (DVC) that minimizes PC board area. These features usually require a pin for programming. However, this approach makes the IC larger by increasing pin count, and also increases BOM cost due to the external components. The MIC7400 has a current-mode boost regulator that can deliver up to 200mA of output current and only consumes 70µA of quiescent current. The 2.0MHz switching frequency allows small chip inductors to be used. Programmable overcurrent sensing protects the boost from overloads and an output disconnect switch opens to protect against a short-circuit condition. Softstart is also programmable and controls both the rising and falling output. The following is a complete list of programmable features: Programmable Buck Soft-Start Control The MIC7400 soft-start feature forces the output voltage to rise gradually, which limits the inrush current during start-up. A slower output rise time will draw a lower input surge current. The soft-start time is based on the least significant bit (LSB) of an internal DAC and the speed of the ramp rate, as shown in Figure 1. This illustrates the soft-start waveform for all five synchronous buck converters. The initial step starts at 150mV and each subsequent step is 50mV. • • • • • • • • • • • • • • Buck output voltage (0.8V – 3.3V/50mV steps) Boost output voltage (7.0V – 14V/ 200mV steps) Power-on-reset (2.25V – 4.25V/50mV steps) Power-on-reset delay (5ms – 160ms/5ms steps) Power-up sequencing (6 time slots) Power-up sequencing delay (0ms – 7ms/1ms steps) Soft-start (4µs – 1024µs per step) Buck current limit threshold − (1.1A to 6.1A/0.5A steps) Boost current limit threshold − (1.76A to 2.6A/0.12A steps) Boost pull-down (37mA to 148mA/37mA steps) Buck pull-down (90Ω) Buck standby output voltage programmable Boost standby output voltage programmable Global power good masking These features give the system designer the flexibility to customize the MIC7400 for their application. For example, VOUT1 current limit can be programmed to 4.1A and VOUT2 can be set to 1.1A. These outputs can be programmed to come up at the same time or 2.0ms apart. In addition, in power-saving standby mode, the outputs can either be turned off or programmed to a lower voltage. With this programmability the MIC7400 can be used in multiple platforms. Figure 1. Buck Soft-Start The output ramp rate (tRAMP) is set by the soft-start registers. Each output ramp rate can be individually set from 4µs to 1024µs, see Table 1 for details. The MIC7400 buck regulators are adaptive on-time synchronous step-down DC-to-DC regulators. They are designed to operate over a wide input voltage range from 2.4V to 5.5V and provide a regulated output voltage at up to 3.0A of output current. An adaptive on-time control scheme is employed to obtain a constant switching frequency and to simplify the control compensation. The device includes an internal soft-start function which reduces the power supply input surge current at start-up by controlling the output voltage rise time. March 3, 2015 25 Revision 2.0 Micrel, Inc. MIC7400 The soft-start time tSS can be calculated by Equation 1: − 0.15 V V t SS = OUT × t RAMP 50mV Eq. 1 Where: tSS = Output rise time VOUT = Output voltage tRAMP = Output dwell time For example: Figure 2. Buck Soft-Start Buck Digital Voltage Control (DVC) The output voltage has a 6-bit control DAC that can be programmed from 0.8V to 3.3V in 50mV increments. If the output is programmed to a higher voltage, then the output ramps up, as shown in Figure 3. 1.8 V − 0.15 V t SS = × 8ms 50mV t SS = 264ms Where: VOUT = 1.8V tRAMP = 8.0µs Table 1. Buck Outputs Default Soft-Start Time (DEFAULT) VOUT (V) tRAMP (µs) tSS (µs) VOUT1 1.8 8 264 VOUT2 1.1 8 152 VOUT3 1.8 8 264 VOUT4 1.05 8 144 VOUT5 1.25 8 176 Figure 3. Buck DVC Control Ramp Figure 2 shows the output of Buck 1 ramping up cleanly, starting from 0.15V to its final 1.1V value. March 3, 2015 26 Revision 2.0 Micrel, Inc. MIC7400 The ramp time is determined by Equation 2: VOUT − VOUT _ INIT ∆t = 50mV × t RAMP After the T1 period, the DAC output ramp starts, T2. The total soft-start time, tSS, is the sum of both periods. Figure 6 displays the actual boost soft-start waveform. Eq. 2 Where: VOUT_INIT = Initial output voltage VOUT = Final output voltage tRAMP = Output dwell time When the regulator is set in stand-by mode or programmed to a lower voltage, then the output voltage ramps down at a rate determined by the output ramp rate (tRAMP), the output capacitance and the external load. Small loads result in slow output voltage decay and heavy loads cause the decay to be controlled by the DAC ramp rate. Figure 5. Boost Soft-Start Ramp In Figure 4, VOUT1 is switched to stand-by mode with an I²C command and then switched back to normal mode either by an I²C command or a low-to-high transition of the STBY pin. In this case, the rise and fall times are the same due to a 1A load on VOUT1. Figure 6. Boost Soft-Start Figure 4. Buck DVC Control Ramp Programmable Boost Soft-Start Control The boost soft-start time is divided into two parts as shown in Figure 5. T1 is a fixed 367µs delay starting from when the internal enable goes high. This delay gives enough time for the disconnect switch to turn on and bring the inductor voltage to VIN before the boost is turned on. There is a 50µs delay which is controlled by the parasitic capacitance (Cgd) of the disconnect switch before the output starts to rise. March 3, 2015 27 Revision 2.0 Micrel, Inc. MIC7400 t SS = T1 + T 2 − 1.4 V ) (V T 2 = OUT × t RAMP 0 . 2 V (12 V − 1.4 V ) T2 = × 16µs 0.2 V The ramp time can be computed using Equation 3: Eq. 2 VOUT − VOUT _ INIT ∆t = 0.2 V × t RAMP Eq. 3 Where: Where: T1 = 367µs T2 = 848µs tSS = 367µs + 848µs = 1.215ms VOUT = Output voltage tRAMP = Output dwell time = 16µs VOUT_INIT = Initial output voltage Table 2. Boost Output Default Soft-Start Time VOUT6 Boost Digital Voltage Control (DVC) The boost output control works the same way as the buck, except that the voltage steps are 200mV, see Figure 7. When the boost is programmed to a lower voltage the output ramps down at a rate determined by the output ramp rate (tRAMP), the output capacitance and the external load. During both the ramp up and down time, the power good output is blanked and if the power good mask bit is set to “1”. VOUT (V) tRAMP (µs) tSS (ms) 12 16 1.215 Buck Current Limit The MIC7400 buck regulators have high-side current limiting that can be varied by a 4-bit code. If the regulator remains in current limit for more than seven consecutive PWM cycles, the output is latched off, the over-current status register bit is set to 1, the power-good status register bit is set to 0 and the global power good (PG) output pin is pulled low. An overcurrent fault on one output will not disable the remaining outputs. Table 3 shows the current limit register settings verses output current. The current limit register setting is set at twice the maximum output current. Table 3. Buck Current Limit Register Settings IPROG BINARY HEX 0.5A 1.1A 1111 F’h 1.0A 2.1A 1101 D’h 1.5A 3.1A 1011 B'h 2.0A 4.1A 1001 9'h 2.5A 5.1A 0111 7'h 3.0A 6.1A 0101 5'h The output can be turned back on by recycling the input power or by software control. To clear the overcurrent fault by software control, set the enable register bit to “0” then clear the overcurrent fault by setting the fault register bit to “0”. This will clear the over-current and power good status registers. Now the output can be reenabled by setting the enable register bit to “1”. Figure 7. Boost DVC Control Ramp March 3, 2015 IOUT(MAX) 28 Revision 2.0 Micrel, Inc. MIC7400 Standard Delay There is a programmable timer that is used to set the standard delay time between each time slot. The timer starts as soon as the previous time slot’s output power good goes high. When the delay completes, the regulators assigned to that time slot are enabled, see Figure 8. During start-up sequencing if Output 1 is still shorted, Outputs 2 through 4 will come up normally. Once an overcurrent condition is sensed, then the fault register is set to “1” and the start-up sequence will stop and no further outputs will be enabled. See Figure 9 for default start-up sequence. Boost Current Limit The boost current limit features cycle-by-cycle protection. The duty cycle is cut immediately once the current limit is hit. When the boost current limit is hit for five consecutive cycles, the FAULT signal is asserted and remains asserted with the boost converter keeping on running until the boost is powered off. This protects the boost in normal overload conditions, but not in a short-to-ground case. For a short circuit to ground, the boost current limit will not be able to limit the inductor current. This short-circuit condition is sensed by the current in the disconnect switch. When the disconnect switch current limit is hit for four consecutive master clock cycles (2MHz), regardless if the boost is switching or not, both the disconnect switch and boost are latched off automatically and the FAULT signal is asserted. The output can be turned back on by recycling the input power or by software control. To clear the overcurrent fault by software control, set the enable register bit to “0” then clear the overcurrent fault by setting the fault register bit to “0”. Figure 8. Standard Delay Time Power-Up Sequencing When power is first applied to the MIC7400, all I²C registers are loaded with their default values from the EEPROM. There is about a 1.5ms delay before the first regulator is enabled while the MIC7400 goes through the initialization process. The DELAY register’s STDEL bits set the delay between powering up each regulator at initial power up. Global Power Good Pin The global power-good output indicates that all the outputs are above the 91% limit after the power-up sequence is completed. Once the power-up sequence is complete, the global power good output stays high unless an output falls below its power-good limit, a thermal fault occurs, the input voltage drops below the lower UVLO threshold or an output is turned OFF by setting the enable register bit to “0” unless the PGOOD_MASK[x] bit is set to “1” (Default). The sequencing registers allow the outputs to come up in any order. There are six time slots that an output can be configured to power up in. Each time slot can be programmed for up to six regulators to be turned on at once or none at all. A power-good mask bit can be used to control the global power good output. The power-good mask feature is programmed through the PGOOD_MASK[x] registers and is used to ignore an individual power-good fault. When masked, PGOOD_MASK[x] bit is set to “1”, an individual power good fault will not cause the global power good output to de-assert. Figure 9 shows an example of this feature. VOUT4 is enabled in time slot 1. After a 1ms delay, VOUT2 and VOUT3 are enable at the same time in time slot 2. The 1ms is the standard delay for all of the outputs and can be programmed from 0ms to 7ms in 1ms. Next, VOUT1 is powered up in time slot 3 and VOUT5 in time slot 4. There are no regulators programmed for time slot 5. Finally, VOUT6 is powered up in time slot 6. The global power good output, VPG, goes high as soon as the last output reaches 91% of its final value. If all the PGOOD_MASK[x] bits are set to “1”, then the power good output de-asserts as soon as the first output starts to rise. The PGOOD_MASK[x] bit of the last output must be set to “0” to have the PG output stay low until the last output reaches 91% of its final value. The global power-good output is an open-drain output. A pull-up resistor can be connected to VIN or VOUT. Do not connect the pull-up resistor to a voltage higher than AVIN. March 3, 2015 29 Revision 2.0 Micrel, Inc. MIC7400 Figure 10. POR Power-Down Sequencing When power is removed from VIN, all the regulators try to maintain the output voltage until the input voltage falls below the UVLO limit of 2.35V as shown in Figure 11. Figure 9. Hot Plug − VIN Rising VSLT Pin The power-on reset threshold toggles between two different ranges by driving the VSLT pin high or low. The lower range of 2.25V to 3.25V is selected when the VSLT pin is tied to ground. The upper range, 3.25V to 4.25V, is selected when the VSLT pin is tied to VIN. Programmable Power-on-Reset (POR) Delay The POR output pin provides the user with a way to let the SOC know that the input power is failing. If the input voltage falls below the power-on reset lower threshold level, the POR output immediately goes low. The lower threshold is set in the PORDN register and the upper threshold uses PORUP register. The low-to-high POR transition can be delayed from 5ms to 160ms in 5ms increments. This feature can be used to signal the SOC that the power supplies are stable. The PORDEL register sets the delay of the POR pin. The POR delay starts as soon as the AVIN pin voltage rises above the power-on reset upper threshold limit. Figure 10 shows the POR operation. Figure 11. Hot Un-Plug − VIN Falling March 3, 2015 30 Revision 2.0 Micrel, Inc. MIC7400 Stand-By Mode In stand-by mode, efficiency can be improved by lowering the output voltage to the standby mode value or turning an output off completely. There are two registers used for setting the output voltage, normal-mode register and stand-by mode register. The default power-up voltages are set in the normal-mode registers. Resistive Discharge To ensure a known output condition in stand-by mode, the output is actively discharged to ground if the output is disabled. Setting the buck pull down register field PULLD[1-5] = 1 connects a 90Ω pull down resistor from OUT[x] to PGND[x] when the MIC7400 is disabled. If PULLD[x] = 0 the output drifts to PGND at a rate determined by the load current and the output capacitance value. The boost has a programmable pulldown current level from 37mA to 148mA. In Figure 13, the top trace shows the normal pull down and the bottom trace is with the 90Ω pull-down. An I²C write command to the STBY_CTRL_REG register or the STBY pin can be used to set the MIC7400 into stand-by mode. Figure 12 shows an I²C write command implementation. In stand-by mode, the output can be programmed to a lower voltage or turned completely off. When disabled, the output will be soft-discharged to zero if the PULLD[1-6] register are set to 1. If PULLD[x] = 0 the output drifts to PGND at a rate determined by the load current and output capacitance. In stand-by, if an output is disabled, the global power good output is not affected when the PGOOD_MASK[x] is set to logic 1. If the PGOOD_MASK[x] is set to logic 0, then the global power good flag is pulled low. In Figure 12, all the PGOOD_MASK[x] bits are set to logic 1. Figure 13. Output Pull-Down Resistance STBY Pin A pin-selectable STBY input allows the MIC7400 to be placed into standby or normal mode. In standby mode, the individual regulator can be turned on or off or the output voltage can be set to a different value. If the regulators are turned off, standby mode cuts the quiescent current by 23µA for each buck regulator and 70µA for the boost. Figure 14 illustrates the STBY pin operation. A low-tohigh transition on the STBY pin switches the output from standby mode to normal mode. There is a 100µs STBY deglitch time to eliminate nuisance tripping then all the regulators are enabled at the same time and ramp up with their programmed ramp rates. A high-to-low transition on the STBY pin switches the output from normal mode to standby mode. 2 Figure 12. I C Stand-By Mode March 3, 2015 31 Revision 2.0 Micrel, Inc. MIC7400 Figure 15. Pre-Biased Output Voltage Buck Regulator Power Dissipation The total power dissipation in a MIC7400 is a combination of the five buck regulators and the boost dissipation. The buck regulators (OUT1 to OUT5) dissipation is approximately the switcher’s input power minus the switcher’s output power and minus the power loss in the inductor: Figure 14. STBY-to-NORMAL Transition (DEFAULT) PD_BUCK ≈ VIN × IIN – VOUT × IOUT – PL_LOSS Safe Start-Up into a Pre-Biased Output The MIC7400 is designed for safe start-up into a prebiased output. This prevents large negative inductor currents which can cause the output voltage to dip and excessive output voltage oscillations. A zero crossing comparator is used to detect a negative inductor current. If a negative inductor current is detected, the low-side synchronous MOSFET functions as a diode and is immediately turned off. While the boost power dissipation is estimated by Equation 5: PD_BOOST ≈ VIN × IIN – VOUT x IOUT – PL_LOSS – Vf × IOUT Eq. 5 Although the maximum output current for a single buck regulator can be as much as 3A, the MIC7400 will thermal limit and will not support this high output current on all outputs at the same time. Figure 15 shows a 1V output pre-bias at 0.5V at start-up, see VOUT4 trace. The inductor current, Trace IL4, is not allowed to go negative by more than 0.5A before the lowside switch is turned off. This feature prevents high negative inductor current flow in a pre-bias condition which can damage the IC. Total Power Dissipation The total power dissipation in the MIC7400 package is equal to the sum of the power loss of each regulator: PD_TOTAL ≈ SUM (PD_SWITCHERS) March 3, 2015 Eq. 4 32 Eq. 6 Revision 2.0 Micrel, Inc. MIC7400 Once the total power dissipation is calculated, the IC junction temperature can be estimated using Equation 7: TJ(MAX) ≈ TA + PD_TOTAL × θJA Eq. 7 Where: TJ(MAX) = The maximum junction temperature TA = The ambient temperature θJA = The junction-to-ambient thermal resistance of the package (30°C/W) Figure 17. Power Derating Curve Figure 16 shows the measured junction temperature versus power dissipation of the MIC7400 evaluation board. The actual junction temperature of the IC depends upon many factors. The significant factors influencing the die temperature rise are copper thickness in the PCB, the surface area available for convection heat transfer, air flow and power dissipation from other components, including inductors, SOCs and processor ICs. It is good engineering practice to measure all power components temperature during the final design review using a thermal couple or IR thermometer, see the “Thermal Measurements” sub-section for details. The maximum power dissipation of the package can be calculated by Equation 8: TJ(MAX) − TA PD(MAX) ≈ θ JA Eq. 8 Where: TJ(MAX) = Maximum junction temperature (125°C) TA = Ambient temperature θJA = Junction-to-ambient thermal resistance of the package (30°C/W). Overtemperature Fault An overtemperature fault is triggered when the IC junction temperature reaches 160°C. When this occurs, both the overtemperature fault flag is set to “1”, the global power good output is pulled low and all the outputs are turned off. During the fault condition the I²C interface remains active and all registers values are maintained. When the die temperature decreases by 20°C the overtemperature fault bit can be cleared. To clear the fault, either recycle power or write a logic “0” to the over temperature fault register. Once the fault bit is cleared, the outputs power up to their default values and are sequenced according to the time slot settings. Figure 16. Power Dissipation Power Derating The MIC7400 package has a 2W power dissipation limit. To keep the IC junction temperature below a 125°C design limit, the output power has to be limited above an ambient temperature of 65°C. Figure 17 shows the power dissipation derating curve. March 3, 2015 33 Revision 2.0 Micrel, Inc. MIC7400 Thermal Measurements Measuring the IC’s case temperature is recommended to ensure it is within its operating limits. Although this might seem like a very elementary task, it is easy to get erroneous results. The most common mistake is to use the standard thermal couple that comes with a thermal meter. This thermal couple wire gauge is large (typically 22 gauge) and behaves like a heatsink, resulting in a lower case measurement. Input Voltage “Hot Plug” High-voltage spikes twice the input voltage can appear on the MIC7401 PVIN pins if a battery pack is hotplugged to the input supply voltage connection as shown in Figure 18 (Trace 1). These spikes are due to the inductance of the wires to the battery and the very low inductance and ESR of the ceramic input capacitors. This problem can be solved by placing a 150µF POS capacitor across the input terminals. Figure 18 (Trace 2) shows that the high-voltage spike is greatly reduced to a value below the maximum allowable input voltage rating. Two reliable methods of temperature measurement are a smaller thermal couple wire or an infrared thermometer. If a thermal couple wire is used, it must be constructed of 36 gauge wire or higher (smaller wire size) to minimize the wire heat-sinking effect. In addition, the thermal couple tip must be covered in either thermal grease or thermal glue to make sure that the thermal couple junction is making good contact with the case of the IC. Omega brand thermal couple (5SC-TT-K-36-36) is adequate for most applications. Whenever possible, an infrared thermometer is recommended. The measurement spot size of most infrared thermometers is too large for an accurate reading on a small form factor ICs. However, an IR thermometer from Optris has a 1mm spot size, which makes it a good choice for measuring the hottest point on the case. An optional stand makes it easy to hold the beam on the IC for long periods of time. Figure 18. Hot Plug Input Voltage Spike March 3, 2015 34 Revision 2.0 Micrel, Inc. MIC7400 Timing Diagrams Normal Power-Up Sequence for Outputs The STDEL register sets the delay between powering up of each regulator at initial power-up (see power-up sequencing in Figure 19). Once all the internal power good registers PGOOD[1-6] are all “1”, then the global PG pin goes high without delay if the PGOOD_MASK[6] bit is set to “0”. The PORDEL register sets the delay for the POR flag pin. The POR delay time starts as soon as the AVIN pin voltage rises above the system UVLO upper threshold set by the PORUP register. The POR output goes low without delay if AVIN falls below the lower UVLO threshold set by the PORDN register. Figure 19. MIC7400 Power-Up/Down March 3, 2015 35 Revision 2.0 Micrel, Inc. MIC7400 Standby (STBY) Pin (Wake-Up) An I²C write command to the STBY_CTRL_REG register or the STBY pin can be used to set the MIC7400 into stand-by mode. The standby (STBY) pin provides a hardware-specific manner in which to wake-up from stand-by mode and go into normal mode. Figure 20 shows the STBY pin operation. A low-to-high transition on the STBY pin switches the output from stand-by mode to normal mode. There is a 100µs STBY deglitch time to eliminate nuisance tripping, then all the regulators are enabled at the same time and ramp up with their programmed ramp rates. Figure 20. MIC7400 STBY Function (DEFAULT) March 3, 2015 36 Revision 2.0 Micrel, Inc. MIC7400 Evaluation Board Schematic VIN R7 0Ω + C15 150µF PGND VIN PGND R6 499kΩ C1 2.2µF R1 100kΩ VIN VSLT PG VOUT2 1.1V/0.5A L2 2.2µH C10 22µF 3 36 PGND 4 VIN C11 10µF VOUT3 1.8V/0.5A L3 2.2µH C12 22µF 5 6 8 VIN C13 10µF L4 1.0µH C14 22µF 30 VSLT 31 AVIN 32 33 NC NC SW2 SW1 OUT2 OUT1 PGND2 PGND1 MIC7400 PVIN3 SW3 PVIN6O OUT3 SW6 9 10 26 27 PGND6 PVIN4 PVIN5 SW5 PGND4 POR PGND5 VOUT1 1.8V/0.8A C3 22µF PGND 25 24 VIN L6 2.2µH D1 PMEG4002 VOUT6 12V/0.2A 23 22 C6 10µF C5 22µF C4 10µF PGND 21 20 19 VIN L5 2.2µH C7 10µF C8 22µF 17 18 VOUT5 1.25V/1.0A PGND 16 SCL 15 AGND 14 13 STBY 12 R4 499kΩ SDA OUT5 VIN C2 10µF 28 SW4 OUT4 VIN L1 2.2µH 29 PGND3 OUT6 11 PGND PVIN1 PVIN6 7 PGND VOUT4 1.05V/3.0A 1 PVIN2 AGND C9 10µF PG 2 VIN 34 35 VSLT VIN VIN TP14 R8 NF SDA VIN CLK NC STAND-BY GND R5 2kΩ 4 R3 2kΩ R2 100kΩ 3 2 1 STAND-BY POR PG VSLT March 3, 2015 37 Revision 2.0 Micrel, Inc. MIC7400 Bill of Materials Item Part Number C1 CL05A225KO5NQNC C2, C7, C9, C11, C13 CL10A106MO8NQNC C4, C6 C3, C5, C8, C10, C12, C14 C15 D1 Manufacturer Description Qty. 2.2µF/16V, Ceramic, X5R, 0402, 0.8mm, ±10% 1 Samsung 10µF/16V, Ceramic, X5R, 0603, 0.8mm, ±20% 5 CL21A106KAYNNNE Samsung 10µF/25V, Ceramic, X5R, 0805, 1.25mm, ±20% 2 CL10A226MQ8NUNE Samsung 22µF/6.3V, Ceramic, X5R, 0603, 0.8mm, ±20% 6 EEF-CX0J151XR Panasonic 150µF/6.3V, POS Capacitor, SP, ±20% 1 (15) 0.2A/40V, Schottky, SOD-882 1 RC1005F104CS Samsung 100kΩ, Resistor, 0402, 1% 3 RC1005F202CS Samsung 2.0kΩ, Resistor, 0402, 1% 2 R4, R6 RC1005F4993CS Samsung 499kΩ, Resistor, 0402, 1% 1 R7 RC1005J000CS Samsung 0.00Ω, Resistor, 0402, Jumper 1 L1, L2, L3, L5, L6 CIG22H2R2MNE Samsung 2.2µH, 1.6A Inductor, 116mΩ, 2520 × 1.2mm (max) 5 1.0µH, 3.3A Inductor 40mΩ, 2520 × 1.0mm (max) 1 Five-Channel Buck Regulator Plus One Boost ® 2 with HyperLight Load and I C Control 1 R1, R2 R3, R5 PMEG4002EL Samsung (14) NXP L4 CIGW252010GM1R0MNE Samsung U1 MIC7400YFL Micrel (16) , Notes: 14. Samsung: www.samsung.com. 15. NXP: www.nxp.com. 16. Micrel, Inc.: www.micrel.com. March 3, 2015 38 Revision 2.0 Micrel, Inc. MIC7400 PCB Layout Guidelines Input Capacitor Warning!!! To minimize EMI and output noise, follow these layout recommendations. • A 10µF X5R or X7R dielectrics ceramic capacitor is recommended on each of the PVIN pins for bypassing. • Place the input capacitors on the same side of the board and as close to the IC as possible. • Keep both the PVIN pin and PGND connections short. • If possible, place vias to the ground plane close to the each input capacitor ground terminal, but not in the way of the high di/dit current path. • Use either X7R or X5R dielectric input capacitors. Do not use Y5V or Z5U type capacitors. • Do not replace the ceramic input capacitor with any other type of capacitor. Any type of capacitor can be placed in parallel with the input capacitor. • In “Hot-Plug” applications, a Tantalum or Electrolytic bypass capacitor must be used to limit the over-voltage spike seen on the input supply with power is suddenly applied. PCB layout is critical to achieve reliable, stable, and efficient performance. A ground plane is required to control EMI and minimize the inductance in power, signal, and return paths. The following guidelines should be followed to ensure proper operation: General • Most of the heat removed from the IC is due to the exposed pad (EP) on the bottom of the IC conducting heat into the internal ground planes and the ground plane on the bottom side of the board. Use at least 16 vias for the EP to ground plane connection. • Do not connect the PGND and AGND traces together on the top layer. The single point connection is made on the layer 2 ground plane. • Do not put a via directly in front of a high current pin, SW, PGND, or PVIN. This will increase the trace resistance and parasitic inductance. • Do not place a via in between the input and output capacitor ground connection. Put it to the inside of the output capacitor and in the way of the high di/dt current path. • Route all power traces on the top layer, as shown in the example layout. • Place the input capacitors first and put them as close as possible to the IC. Inductor • Keep the inductor connection to the switch node (SW) short. • Do not route any digital lines underneath or close to the inductor. • To minimize noise, place a ground plane underneath the inductor. Output Capacitor • Use a wide trace to connect the output capacitor ground terminal to the input capacitor ground terminal. In the example layout, all input and output capacitor ground connections are place back-to-back. • The OUT[1-6] trace should be separate from the power trace and connected as close as possible to the output capacitor. Sensing a long high-current load trace can degrade the DC load regulation. IC • The 2.2µF ceramic capacitor, which is connected to the AVIN pin, must be located right at the IC. The AVIN pin is very noise sensitive and placement of the capacitor is very critical. Use wide traces to connect to the AVIN and AGND pins. • The analog ground pin (AGND) must be connected directly to the ground planes. Do not route the SGND pin to the PGND Pad on the top layer. • Use fat traces to route the input and output power lines. • Use Layer 5 as an input voltage power plane. • Layer 2 and the bottom layer (Layer 6) are ground planes. March 3, 2015 39 Revision 2.0 Micrel, Inc. MIC7400 Proper Termination of Unused Pins Many designs will not require all six DC-to-DC output voltages. In these cases, the unused pin must be connected to either VIN or GND. The schematic in Figure 21 shows where to tie the unused pins and Table 4 summarizes the connections. VIN R7 0Ω + C15 150µF PGND VIN PGND R6 499kΩ C1 2.2µF R1 100kΩ VIN VSLT PG VOUT2 1.1V/0.5A L2 2.2µH C10 22µF 4 C11 10µF VOUT3 1.8V/0.5A L3 2.2µH C12 22µF 5 6 8 VIN C13 10µF L4 1.0µH C14 22µF 30 VSLT 31 AVIN 32 33 NC PG SW1 9 10 26 VIN 29 27 OUT2 PGND2 PGND1 MIC7400 PVIN3 SW3 PVIN6O OUT3 SW6 28 25 VIN 24 23 PGND3 PGND6 PVIN4 OUT6 11 PGND SW2 PVIN6 7 PGND VOUT4 1.05V/2.5A 1 36 VIN PVIN1 OUT1 3 PGND PVIN2 AGND C9 10µF NC 2 VIN 34 35 VSLT PVIN5 22 21 20 SW4 OUT4 SW5 PGND4 POR SCL 15 PGND5 C7 10µF C8 22µF 17 18 VOUT5 1.25V/1.0A PGND 16 AGND 14 13 STBY 12 R4 100kΩ SDA OUT5 VIN 19 VIN L5 2.2µH VIN VIN TP14 R8 NF SDA VIN CLK NC STAND-BY GND R5 2kΩ 4 R3 2kΩ 3 2 1 STAND-BY POR PG VSLT Figure 21. Connections for Unused Pins Table 4. Summarization of Unused Pin Connections Unused VIN PGND Boost PVIN6, PGIN6O, VOUT6 PGND6, SW6 Buck PVIN[x], VOUT[x} PGND[6], SW[x] POR March 3, 2015 POR 40 Revision 2.0 Micrel, Inc. MIC7400 PCB Layout Recommendations Evaluation Board Top Layer − Power Component Placement Evaluation Board Top Layer − Layer 1 (Power Routing Layer) March 3, 2015 41 Revision 2.0 Micrel, Inc. MIC7400 PCB Layout Recommendations (Continued) Evaluation Board Top Layer − Layer 1 (Power Routing Layer) Evaluation Board Layer 2 (Ground Plane) March 3, 2015 42 Revision 2.0 Micrel, Inc. MIC7400 PCB Layout Recommendations (Continued) Evaluation Board Top Layer − Layer 3 (Signal Routing Layer) Evaluation Board Layer 4 (Ground Plane) March 3, 2015 43 Revision 2.0 Micrel, Inc. MIC7400 PCB Layout Recommendations (Continued) Evaluation Board Layer − Layer 5 (VIN Plane) Evaluation Board Bottom Later − Layer 6 (Ground Plane) March 3, 2015 44 Revision 2.0 Micrel, Inc. MIC7400 Package Information(17) and Recommended Landing Pattern 36-Pin 4.5mm × 4.5mm FQFN (FL) Note: 17. Package information is correct as of the publication date. For updates and most current information, go to www.micrel.com. March 3, 2015 45 Revision 2.0 Micrel, Inc. MIC7400 Via Layout Design and Layout Constraints 0.48 16x, dia. 0.2 1.80 0.48 1.80 Via Layout Design Notes: Dimensions in millimeters (mm). This package is designed to be soldered to a thermal pad on the board. Connect all ground planes together Customers should contact their board fabrication site for recommended solder mask tolerance and via tenting recommendations for vias placed in the thermal pad. March 3, 2015 46 Revision 2.0 Micrel, Inc. MIC7400 Appendix A 2 I C Control Register The MIC7400 I²C Read/Write registers are detailed here. During normal operation, the configuration data can be saved into non-volatile registers in EEPROM by addressing the chip and writing to SAVECONFIG key = 66’h. Saving CONFIG data to EEPROM takes time so the external host should poll the MIC7400 and read the CONFIG bit[1] of EEPROM Ready register 01’h to determine the end of programming. All transactions start with a control byte sent from the I²C master device. The control byte begins with a START condition, followed by a 7-bit slave address. The slave address is seven bits long followed by an eighth bit which is a data direction bit (R/W), a “0” indicates a transmission (WRITE) and a “1” indicates a request for data (READ). A data transfer is always terminated by a STOP condition that is generated by the master. Serial Port Operation External Host Interface 2 Bidirectional I C port capable of Standard (up to 100kbits/s), Fast (up to 400kbits/s), Fast Plus (up to 1Mbit/s) and High 2 Speed (up to 3.4Mbit/s) as defined in the I C-Bus Specification. 2 The MIC7400 acts as an I C slave when addressed by the external host. The MIC7400 slave address uses a fixed 7-bit code and is followed by an R/W bit which is part of the control word that is right after the start bit as shown in Figure 22 in the Device Address column. The MIC7400 can receive multiple data bytes after a single address byte and automatically increments its register pointer to block fill internal volatile memory. Byte data is latched after individual bytes are received so multi-byte transfers could be corrupted if interrupted mid-stream. 2 No system clock is required by the digital core for I C access from the external host (only the host SCL clock is assumed). 2 In order to prevent spurious operation of the I C, if a start bit is seen, then any partial communication is aborted and new 2 I C data is allowed. Start bit is when SDA goes low when SCL is high. Stop bit is when SDA goes high when SCL is high. 2 Normal I C exchange is shown in Figure 22. Figure 22. Read/Write Protocol March 3, 2015 47 Revision 2.0 Micrel, Inc. MIC7400 2 Special Host I C Commands The following commands are all 2 byte communications: Byte1 = device address with write bit set, LSB = 0 Byte2 = special key Special Keys • SAVECONFIG Key = 66’h. Saves the shadow register configuration data into EEPROM registers 03’h thru 23’h. • RESET Key = 6A’h. Reloads only NORMAL mode voltage and current limit settings then enables the regulator to NORMAL mode with no soft-start, no sequencing, and no delays. Then clears the STANDBY register bit 6 in register 03’h. • RELOAD Key = 6B’h. Reloads all data from EEPROM into the shadow registers. No other actions are performed, including soft-start, sequencing, and delay. • REBOOT Key = 6C’h. Turns all regulators OFF, reloads EEPROM data into shadow registers, then re-sequences the regulators with the programmed soft-start and sequence delays. • SEQUENCE Key = 6D’h. Turns all regulators OFF, restarts the sequencer including soft-start and sequence delays. March 3, 2015 48 Revision 2.0 Micrel, Inc. MIC7400 Appendix B Register Settings Descriptions Power Good Register (00’h) This register indicates when the regulators 1 − 6 output voltage is above 91% of the target value. The MIC7400 deglitches the input signal for 50µs in order to prevent false events. The global PG pin indicator is functional ‘AND’ of all the power good indicators during sequencing. Once the power-up sequence is complete, the global power good output stays high unless an output falls below its power-good limit, a thermal fault occurs, the input voltage drops below the lower UVLO threshold or an output is turned OFF by setting the enable register bit to “0” if the PGOOD_MASK[x] bit is set to “0”. Table 5. Power Good Status Register Register Name Power Good Status Register PGOOD1-6_REG Address 0x00’h Field bit R/W Default PGOOD1 0 R 0 PGOOD2 1 R 0 PGOOD3 2 R 0 PGOOD4 3 R 0 PGOOD5 4 R 0 PGOOD6 5 R 0 Reserved 6 R/W 0 Not Used Reserved 7 R/W 0 Not Used March 3, 2015 Description Power Good indicator for Regulator 1 0 = Buck Not Valid 1 = Buck Valid Power Good indicator for Regulator 2 0 = Buck Not Valid 1 = Buck Valid Power Good indicator for regulator 3 0 = Buck Not Valid 1 = Buck Valid Power Good indicator for Regulator 4 0 = Buck Not Valid 1 = Buck Valid Power Good indicator for Regulator 5 0 = Buck Not Valid 1 = Buck Valid Power Good indicator for Regulator 6 0 = Boost Not Valid 49 1 = Boost Valid Revision 2.0 Micrel, Inc. MIC7400 EEPROM-Ready Register (01’h) This register indicates the status of EEPROM to external I²C host. The READY bit = 1 when the Trim and Configuration data have been loaded into core from EEPROM after reset, reboot or reload and the chip is ready for operation. [If the SAVE1 bit in register 04’h is read in as logic 1, the configuration registers will not be loaded from the EEPROM memory and the READY bit will still get set indicating that any startup procedure involving the EEPROM memory is complete.] The READY bit will be set to 1 after loading or attempting to load Trim and Configuration data from EEPROM into volatile memory. The Trim data will always be loaded and if SAVE1 bit in register 04’h is set to logic 0, Configuration data is also loaded. Regardless of the SAVE1 bit being set or not, after the loading operation the READY bit is set to 1. The CONFIG bit = 1 when the Configuration data have been saved to EEPROM after the SAVECONFIG Code is issued from the Host. If CONFIG=1 before the SAVECONFIG code is issued, CONFIG will be cleared immediately and then will be set to logic 1 again once all Configuration data is written to the EEPROM memory. The CALIB bit = 1 when the Trim data have been saved to EEPROM after the SAVETRIM Code is issued from the Host. If CALIB=1 before the SAVETRIM code is issued, CALIB will be cleared immediately and then will be set to logic 1 again once all Trim data is written to the EEPROM memory. The EEPREAD and EEPWRITE bits indicate if an EEPROM read or write fault has occurred. These bits should be read and cleared prior to reloading data from the EEPROM memory. Table 6. EEPROM Status Register Register Name STATUS_REG Address Field EEPROM Status Register 0x01’h bit R/W Default READY 0 R 0 CONFIG 1 R 0 CALIB 2 R 0 Reserved 3 R/W 0 Not Used Reserved 4 R/W 0 Not Used Reserved 5 R/W 0 Not Used EEPREAD 6 R/W 0 EEPWRITE 7 R/W 0 March 3, 2015 Description Indicate ready for operation when the trim and configuration data has been loaded 0 = Data not loaded 1 = Chip Ready Indicate Configuration saved to EEPROM 0 = Configuration not saved 1 = Configuration Saved Indicate trim data have been saved to EEROM 0 = Trim not saved 1 = Trim saved EEPROM Read 0 = No Fault 1 = Fault EEPROM Write 0 = No Fault 1 = Fault 50 Revision 2.0 Micrel, Inc. MIC7400 Fault Registers (02’h) This register indicates the over-current flag for each regulator and one global overtemperature (OT). These register bits are set by an over current condition and reset by writing a logic “0” to each bit by the I²C host. If the fault condition persists, the bit will be set to logic “1” again immediately by the MIC7400 after it is written to logic “0” by the host. Table 7. Overcurrent Status Fault Register Register Name Overcurrent Status Fault Register FAULT_REG Address Field 0x02’h bit R/W Default REG1OC 0 R/W 0 REG2OC 1 R/W 0 REG3OC 2 R/W 0 REG4OC 3 R/W 0 REG5OC 4 R/W 0 REG6OC 5 R/W 0 Reserved 6 R/W 0 OT 7 R/W 0 March 3, 2015 Description Regulator 1 Overcurrent 0 = No Fault 1 = Fault Regulator 2 Overcurrent 0 = No Fault 1 = Fault Regulator 3 Overcurrent 0 = No Fault 1 = Fault Regulator 4 Overcurrent 0 = No Fault 1 = Fault Regulator 5 Overcurrent 0 = No Fault 1 = Fault Regulator 6 Overcurrent 0 = No Fault 1 = Fault Reserved Overtemperature 0 = No Fault 1 = Fault 51 Revision 2.0 Micrel, Inc. MIC7400 Standby Register (03’h) This register controls standby mode operation. Global stand-by mode can either be enabled by I²C or by changing the logic state of the STBY input pin. Global stand-by is controlled by the STBY_MODEB bit. When STBY_MODEB [6] = 1 then the regulators output voltages are set to their normal-mode output voltage settings, (05’h – 0A’h) registers. When STBY_MODEB [6] = 0 then regulators output voltages are set to the standby-mode output voltage settings, (0B’h – 10’h) registers. If STBY [1-6] register is set to logic “0”, then the output is shut off in standby mode. The global power good flag is asserted when an output is disabled unless the power good mask bit (PGOOD_MASK[x]) is set to 1. Table 8. Standby Register Register Name STBY_CTRL_REG Address Field Standby Register 0x03’h bit R/W Default STBY1 0 R/W 1 STBY2 1 R/W 1 STBY3 2 R/W 1 STBY4 3 R/W 1 STBY5 4 R/W 1 STBY6 5 R/W 1 Description Regulator 1 Standby Voltage Control 0 = OFF 1 = ON Regulator 2 Standby Voltage Control 0 = OFF 1 = ON Regulator 3 Standby Voltage Control 0 = OFF 1 = ON Regulator 4 Standby Voltage Control 0 = OFF 1 = ON Regulator 5 Standby Voltage Control 0 = OFF 1 = ON Regulator 6 Standby Voltage Control 0 = OFF 1 = ON Global Standby Control STBY_MODEB 6 R/W 1 0 = All regulators in Standby Mode 1 = All regulators in Normal Mode Reserved March 3, 2015 7 R/W 0 Not Used 52 Revision 2.0 Micrel, Inc. MIC7400 Enable/Disable Register (04’h) This register controls the enable/disable of each DC-to-DC regulators. When EN(n) bit transitions from “0” to “1”, then the regulator(n) is enabled with soft-start unless the STBY_MODEB register bit in register 03’h is set to logic “0”. The configuration save bit “SAVE1” should be cleared by customer before saving configuration data to EEPROM. This bit is used during power up to indicate via the Status register (00’h) that configuration data has previously been stored. Table 9. Enable Register Register Name Enable Register EN_REG Address 0x04’h Field bit R/W Default EN1 0 R/W 1 EN2 1 R/W 1 EN3 2 R/W 1 EN4 3 R/W 1 EN5 4 R/W 1 EN6 5 R/W 1 Reserved 6 R/W 0 Description Regulator 1 ON/OFF Control bit 0 = OFF 1 = ON Regulator 2 ON/OFF Control bit 0 = OFF 1 = ON Regulator 3 ON/OFF Control 0 = OFF 1 = ON Regulator 4 ON/OFF Control 0 = OFF 1 = ON Regulator 5 ON/OFF Control 0 = OFF 1 = ON Regulator 6 ON/OFF Control 0 = OFF 1 = ON Not Used Save Configuration SAVE1 7 R/W 0 0 = Configuration Saved to EEPROM 1 = Not Configuration Saved to EEPROM March 3, 2015 53 Revision 2.0 Micrel, Inc. MIC7400 Regulator Output Voltage Setting NORMAL Mode (05’h − 09’h) One register for each regulator output (OUT1 – OUT5). Sets output voltage of regulator for NORMAL mode operation. Table 10. DVC Registers for OUT[1 − 5] Register Name DVC Registers for OUT[1-5] OUT1-5_REG OUT1 = 0x05’h OUT2 = 0x06’h OUT3 = 0x07’h OUT4 = 0x08’h OUT5 = 0x09’h Address Field bit R/W Default Description Output Voltage setting of OUT[1-5] DVC from 3.3 V to 0.8V in -50mV steps OUT[1-5] March 3, 2015 5:0 R/W See Table 2 000000 = 3.30V 010000 = 2.50V 100000 = 1.70V 110000 = 0.90V 000001 = 3.25V 010001 = 2.45V 100001 = 1.65V 110001 = 0.85V 000010 = 3.20V 010010 = 2.40V 100010 = 1.60V 110010 = 0.80V 000011 = 3.15V 010011 = 2.35V 100011 = 1.55V 110011 = 0.80V 000100 = 3.10V 010100 = 2.30V 100100 = 1.50V 110100 = 0.80V 000101 = 3.05V 010101 = 2.25V 100101 = 1.45V 110101 = 0.80V 000110 = 3.00V 010110 = 2.20V 100110 = 1.40V 110110 = 0.80V 000111 = 2.95V 010111 = 2.15V 100111 = 1.35V 110111 = 0.80V 001000 = 2.90V 011000 = 2.10V 101000 = 1.30V 111000 = 0.80V 001001 = 2.85V 011001 = 2.05V 101001 = 1.25V 111001 = 0.80V 001010 = 2.80V 011010 = 2.00V 101010 = 1.20V 111010 = 0.80V 001011 = 2.75V 011011 = 1.95V 101011 = 1.15V 111011 = 0.80V 001100 = 2.70V 011100 = 1.90V 101100 = 1.10V 111100 = 0.80V 001101 = 2.65V 011101 = 1.85V 101101 = 1.05V 111101 = 0.80V 001110 = 2.60V 011110 = 1.80V 101110 = 1.00V 111110 = 0.80V 001111 = 2.55V 011111 = 1.75V 101111 = 0.95V 111111 = 0.80V 6 0 Not Used 7 0 Not Used 54 Revision 2.0 Micrel, Inc. MIC7400 Boost Regulator Output Voltage Setting NORMAL Mode (0A’h) Sets output voltage of the boost regulator (OUT6) in NORMAL mode operation. Table 11. DVC Registers for OUT6 Register Name DVC Registers OUT6_REG Address Field 0x0A’h bit R/W Default Description DVC from 14V to 7V in 200mV decrements OUT6 March 3, 2015 5:0 R/W See Table 2 000000 = 14.0V 010000 = 10.8V 100000 = 7.6V 110000 = 7.0V 000001 = 13.8V 010001 = 10.6V 100001 = 7.4V 110001 = 7.0V 000010 = 13.6V 010010 = 10.4V 100010 = 7.2V 110010 = 7.0V 000011 = 13.4V 010011 = 10.2V 100011 = 7.0V 110011 = 7.0V 000100 = 13.2V 010100 = 10.0V 100100 = 7.0V 110100 = 7.0V 000101 = 13.0V 010101 = 9.8V 100101 = 7.0V 110101 = 7.0V 000110 = 12.8V 010110 = 9.6V 100110 = 7.0V 110110 = 7.0V 000111 = 12.6V 010111 = 9.4V 100111 = 7.0V 110111 = 7.0V 001000 = 12.4V 011000 = 9.2V 101000 = 7.0V 111000 = 7.0V 001001 = 12.2V 011001 = 9.0V 101001 = 7.0V 111001 = 7.0V 001010 = 12.0V 011010 = 8.8V 101010 = 7.0V 111010 = 7.0V 001011 = 11.8V 011011 = 8.6V 101011 = 7.0V 111011 = 7.0V 001100 = 11.6V 011100 = 8.4V 101100 = 7.0V 111100 = 7.0V 001101 = 11.4V 011101 = 8.2V 101101 = 7.0V 111101 = 7.0V 001110 = 11.2V 011110 = 8.0V 101110 = 7.0V 111110 = 7.0V 001111 = 11.0V 011111 = 7.8V 101111 = 7.0V 111111 = 7.0V 6 0 Not Used 7 0 Not Used 55 Revision 2.0 Micrel, Inc. MIC7400 Regulator Voltage Setting STBY Mode (0B’h – 0F’h) This register is used to sets the output voltage of regulators 1 − 5 in STBY mode operation. Table 12. Standby Registers Register Name STBY_ OUT1-5_REG OUT1 = 0x0B’h OUT2 = 0x0C’h OUT3 = 0x0D’h OUT4 = 0x0E’h OUT5 = 0x0F’h Address Field Standby DVC Registers bit R/W Default Description Output Voltage setting of OUT[1-5] DVC from 3.3 V to 0.8V in -50mV steps SB_OUT[1-5] March 3, 2015 5:0 R/W See Table 2 000000 = 3.30V 010000 = 2.50V 100000 = 1.70V 110000 = 0.90V 000001 = 3.25V 010001 = 2.45V 100001 = 1.65V 110001 = 0.85V 000010 = 3.20V 010010 = 2.40V 100010 = 1.60V 110010 = 0.80V 000011 = 3.15V 010011 = 2.35V 100011 = 1.55V 110011 = 0.80V 000100 = 3.10V 010100 = 2.30V 100100 = 1.50V 110100 = 0.80V 000101 = 3.05V 010101 = 2.25V 100101 = 1.45V 110101 = 0.80V 000110 = 3.00V 010110 = 2.20V 100110 = 1.40V 110110 = 0.80V 000111 = 2.95V 010111 = 2.15V 100111 = 1.35V 110111 = 0.80V 001000 = 2.90V 011000 = 2.10V 101000 = 1.30V 111000 = 0.80V 001001 = 2.85V 011001 = 2.05V 101001 = 1.25V 111001 = 0.80V 001010 = 2.80V 011010 = 2.00V 101010 = 1.20V 111010 = 0.80V 001011 = 2.75V 011011 = 1.95V 101011 = 1.15V 111011 = 0.80V 001100 = 2.70V 011100 = 1.90V 101100 = 1.10V 111100 = 0.80V 001101 = 2.65V 011101 = 1.85V 101101 = 1.05V 111101 = 0.80V 001110 = 2.60V 011110 = 1.80V 101110 = 1.00V 111110 = 0.80V 001111 = 2.55V 011111 = 1.75V 101111 = 0.95V 111111 = 0.80V 6 0 Not Used 7 0 Not Used 56 Revision 2.0 Micrel, Inc. MIC7400 Boost Regulator Output Voltage Setting STBY Mode (10’h) Sets output voltage of the boost regulator (OUT6) for STBY mode operation. Table 13. Standby DVC Register for OUT6 Register Name STBY _OUT6_REG Address Field DVC Registers 0x10’h bit R/W Default Description DVC from 14V to 7V in 200mV decrements SB_OUT6 March 3, 2015 5:0 R/W See Table 2 000000 = 14.0V 010000 = 10.8V 100000 = 7.6V 110000 = 7.0V 000001 = 13.8V 010001 = 10.6V 100001 = 7.4V 110001 = 7.0V 000010 = 13.6V 010010 = 10.4V 100010 = 7.2V 110010 = 7.0V 000011 = 13.4V 010011 = 10.2V 100011 = 7.0V 110011 = 7.0V 000100 = 13.2V 010100 = 10.0V 100100 = 7.0V 110100 = 7.0V 000101 = 13.0V 010101 = 9.8V 100101 = 7.0V 110101 = 7.0V 000110 = 12.8V 010110 = 9.6V 100110 = 7.0V 110110 = 7.0V 000111 = 12.6V 010111 = 9.4V 100111 = 7.0V 110111 = 7.0V 001000 = 12.4V 011000 = 9.2V 101000 = 7.0V 111000 = 7.0V 001001 = 12.2V 011001 = 9.0V 101001 = 7.0V 111001 = 7.0V 001010 = 12.0V 011010 = 8.8V 101010 = 7.0V 111010 = 7.0V 001011 = 11.8V 011011 = 8.6V 101011 = 7.0V 111011 = 7.0V 001100 = 11.6V 011100 = 8.4V 101100 = 7.0V 111100 = 7.0V 001101 = 11.4V 011101 = 8.2V 101101 = 7.0V 111101 = 7.0V 001110 = 11.2V 011110 = 8.0V 101110 = 7.0V 111110 = 7.0V 001111 = 11.0V 011111 = 7.8V 101111 = 7.0V 111111 = 7.0V 6 0 Not Used 7 0 Not Used 57 Revision 2.0 Micrel, Inc. MIC7400 Sequence Register (11’h) Each regulator can be assigned to start in any one of six sequencing slots (1 to 6). If starting in slot 1, the regulator starts immediately. If starting in any other slot the regulator must wait for the PGOOD=1 flags of all regulators assigned to the preceding slot and then wait for the specified delay time (register 17’h) i.e., all PGOODs in preceding state flag then the delay timer is started and when delay completes the regulator is enabled. Each regulator must delay its startup (after the appropriate preceding PGOOD flags) by the delay set in the Delay Register (17’h), unless the regulator is assigned to sequence state 0. If all default Enable bits = 0 the IC starts up, but no outputs are enabled. Sequencing is only used during initial startup, and not used when outputs are enabled via I²C command. If outputs are enabled via I²C then soft-start is still active but start-up delays (timed from preceding PGOODs) are not. Table 14. Sequence State 1 Register Register Name Sequence Register SEQ1_REG Address Field 0x11’h bit R/W Default REG1SQ1 0 R/W 0 REG2SQ1 1 R/W 0 REG3SQ1 2 R/W 0 REG4SQ1 3 R/W 1 REG5SQ1 4 R/W 0 REG6SQ1 5 R/W 0 6 R/W 0 Reserved 7 R/W 0 Reserved March 3, 2015 Description 0 = No Start 1 = Regulator 1 will Start in Sequence State 1 0 = No Start 1 = Regulator 2 will Start in Sequence State 1 0 = No Start 1 = Regulator 3 will Start in Sequence State 1 0 = No Start 1 = Regulator 4 will Start in Sequence State 1 0 = No Start 1 = Regulator 5 will Start in Sequence State 1 0 = No Start 1 = Regulator 6 will Start in Sequence State 1 58 Revision 2.0 Micrel, Inc. MIC7400 Table 15. Sequence State 2 Register Register Name Sequence Register SEQ2_REG Address Field 0x12’h bit R/W Default Description REG1SQ2 0 R/W 0 REG2SQ2 1 R/W 1 REG3SQ2 2 R/W 1 REG4SQ2 3 R/W 0 REG5SQ2 4 R/W 0 REG6SQ2 5 R/W 0 6 R/W 0 Reserved 7 R/W 0 Reserved 0 = No Start 1 = Regulator 1 will Start in Sequence State 2 0 = No Start 1 = Regulator 2 will Start in Sequence State 2 0 = No Start 1 = Regulator 3 will Start in Sequence State 2 0 = No Start 1 = Regulator 4 will Start in Sequence State 2 0 = No Start 1 = Regulator 5 will Start in Sequence State 2 0 = No Start 1 = Regulator 6 will Start in Sequence State 2 Table 16. Sequence State 3 Register Register Name Sequence Register SEQ3_REG Address Field 0x13’h bit R/W Default REG1SQ3 0 R/W 1 REG2SQ3 1 R/W 0 REG3SQ3 2 R/W 0 REG4SQ3 3 R/W 0 REG5SQ3 4 R/W 0 REG6SQ3 5 R/W 0 6 R/W 0 Reserved 7 R/W 0 Reserved March 3, 2015 Description 0 = No Start 1 = Regulator 1 will Start in Sequence State 3 0 = No Start 1 = Regulator 2 will Start in Sequence State 3 0 = No Start 1 = Regulator 3 will Start in Sequence State 3 0 = No Start 1 = Regulator 4 will Start in Sequence State 3 0 = No Start 1 = Regulator 5 will Start in Sequence State 3 0 = No Start 1 = Regulator 6 will Start in Sequence State 3 59 Revision 2.0 Micrel, Inc. MIC7400 Table 17. Sequence State 4 Register Register Name Sequence Register SEQ4_REG Address Field 0x14’h bit R/W Default Description REG1SQ4 0 R/W 0 REG2SQ4 1 R/W 0 REG3SQ4 2 R/W 0 REG4SQ4 3 R/W 0 REG5SQ4 4 R/W 1 REG6SQ4 5 R/W 0 6 R/W 0 Reserved 7 R/W 0 Reserved 0 = No Start 1 = Regulator 1 will Start in Sequence State 4 0 = No Start 1 = Regulator 2 will Start in Sequence State 4 0 = No Start 1 = Regulator 3 will Start in Sequence State 4 0 = No Start 1 = Regulator 4 will Start in Sequence State 4 0 = No Start 1 = Regulator 5 will Start in Sequence State 4 0 = No Start 1 = Regulator 6 will Start in Sequence State 4 Table 18. Sequence State 5 Register Register Name Sequence Register SEQ5_REG Address Field 0x15’h bit R/W Default REG1SQ5 0 R/W 0 REG2SQ5 1 R/W 0 REG3SQ5 2 R/W 0 REG4SQ5 3 R/W 0 REG5SQ5 4 R/W 0 REG6SQ5 5 R/W 0 6 R/W 0 Reserved 7 R/W 0 Reserved March 3, 2015 Description 0 = No Start 1 = Regulator 1 will Start in Sequence State 5 0 = No Start 1 = Regulator 2 will Start in Sequence State 5 0 = No Start 1 = Regulator 3 will Start in Sequence State 5 0 = No Start 1 = Regulator 4 will Start in Sequence State 5 0 = No Start 1 = Regulator 5 will Start in Sequence State 5 0 = No Start 1 = Regulator 6 will Start in Sequence State 5 60 Revision 2.0 Micrel, Inc. MIC7400 Table 19. Sequence State 6 Register Register Name Sequence Register SEQ6_REG Address Field 0x16’h bit R/W Default Description REG1SQ6 0 R/W 0 REG2SQ6 1 R/W 0 REG3SQ6 2 R/W 0 REG4SQ6 3 R/W 0 REG5SQ6 4 R/W 0 REG6SQ6 5 R/W 1 6 R/W 0 Reserved 7 R/W 0 Reserved 0 = No Start 1 = Regulator 1 will Start in Sequence State 6 0 = No Start 1 = Regulator 2 will Start in Sequence State 6 0 = No Start 1 = Regulator 3 will Start in Sequence State 6 0 = No Start 1 = Regulator 4 will Start in Sequence State 6 0 = No Start 1 = Regulator 5 will Start in Sequence State 6 0 = No Start 1 = Regulator 6 will Start in Sequence State 6 Delay Register (17’h) The STDEL register sets the delay between powering up of each regulator at initial power up (see Figure 19). Once all the internal power good registers PGOOD[1-6] are all “1”, then the global PG pin goes high without delay. The PORDEL register sets the delay for the POR flag pin. The POR delay time starts as soon as AVIN pin voltage rises above the system UVLO upper threshold set by the PORUP register (21’h). The POR output goes low without delay if AVIN falls below the lower UVLO threshold set by the PORDN register (22’h). Table 20. Delay Register Register Name DELAY_CNTL_REG Address Field Delay Register 0x17’h bit R/W Default R/W 001 (1ms) Description Delay Time from 0ms to 7ms in 1ms increment STDEL 2:0 000 = 0ms 010 = 2ms 100 = 4ms 110 = 6ms 001 = 1ms 011 = 3ms 101 = 5ms 111 = 7ms Delay Time from 5ms to 160ms in 5ms increment PORDEL March 3, 2015 7:3 R/W 00011 (20ms) 00000 = 5ms 01000 = 45ms 10000 = 85ms 11000 = 125ms 00001 = 10ms 01001 = 50ms 10001 = 90ms 11001 = 130ms 00010 = 15ms 01010 = 55ms 10010 = 95ms 11010 = 135ms 00011 = 20ms 01011 = 60ms 10011 = 100ms 11011 = 140ms 00100 = 25ms 01100 = 65ms 10100 = 105ms 11100 = 145ms 00101 = 30ms 01101 = 70ms 10101 = 110ms 11101 = 150ms 00110 = 35ms 01110 = 75ms 10110 = 115ms 11110 = 155ms 00111 = 40ms 01111 = 80ms 10111 = 120ms 11111 = 160ms 61 Revision 2.0 Micrel, Inc. MIC7400 Soft-Start Registers (18’h − 1A’h) When regulator(n) is turned on from either the Enable Register (04’h) in NORMAL mode or from the Standby Register (03’h) in STANDBY mode, then the three REG(n)SS soft-start bits are used to control both the rising and falling ramp rate of the outputs. In NORMAL mode, the outputs are stepped from the current regulator voltage settings to a newly-programmed regulator voltage setting or to the default value. On power-up, the regulator voltage output is set to the lowest possible voltage setting which is 3F’h. The voltage regulator will change by one step or increment at a time. The amount of time between each step is controlled by the soft-start registers. Table 21 details the amount of time for each encoded soft-start value. Table 21. Soft-Start Register Speed Settings R/W Default Description Soft-Start Time from 4µs to 512µs SS_SPEED = 0 R/W 000 000 = 4µs 010 = 16µs 100 = 64µs 110 = 256µs 001 = 8µs 011 = 32µs 101 = 128µs 111 = 512µs Soft-Start Time from 8µs to 1024µs SS_SPEED = 1 R/W 000 000 = 8µs 010 = 32µs 100 = 128µs 110 = 512µs 001 = 16µs 011 = 64µs 101 = 256µs 111 = 1024µs Table 22. Soft-Start Register OUT1 and OUT2 Register Name Soft-Start Register for VOUT1 and VOUT2 SS1-2_REG Address 0x18’h Field bit R/W Default REG1SS 2:0 R/W 001 (8µs) REG2SS 5:3 R/W 001 (8µs) 6 R/W 0 7 R/W 0 SS_SPEED Description OUT1 Soft-Start Time See Table 19 for Soft-Start Settings OUT2 Soft-Start Time See Table 19 for Soft-Start Settings Reserved Set the speed of the clock to slow or fast for different clock division, see Table 19. 0 = Slow Speed 1 = Fast Speed Table 23. Soft-Start Register OUT3 and OUT4 Register Name Soft-Start Register for VOUT3 and VOUT4 SS3-4_REG Address 0x19’h Field bit R/W Default REG3SS 2:0 R/W 001 (8µs) REG4SS 5:3 R/W 001 (8µs) 6 R/W 0 Reserved 7 R/W 0 Reserved March 3, 2015 Description OUT3 Soft-Start Time See Table 19 for Soft-Start Settings OUT4 Soft-Start Time See Table 19 for Soft-Start Settings 62 Revision 2.0 Micrel, Inc. MIC7400 Table 24. Soft-Start Register OUT5 and OUT6 Register Name Soft-Start Register for VOUT5 and VOUT6 SS5-6_REG Address 0x1A’h Field bit R/W Default Description REG5SS 2:0 R/W 001 (8µs) REG6SS 5:3 R/W 010 (16µs) 6 R/W 0 Reserved 7 R/W 0 Reserved OUT5 Soft-Start Time See Table 19 for Soft-Start Settings OUT6 Soft-Start Time See Table 19 for Soft-Start Settings Current-Limit (Normal Mode) Registers (1B’h − 1D’h) This register is use to set the current limit for each DC-to-DC regulator in normal mode operation. Table 25. Current-Limit Register IOUT1 and IOUT2 Register Name ILIMIT_1-2_REG Address Field Current-Limit Register for VOUT1 and VOUT2 0x1B’h bit R/W Default Description Normal current-limit for regulator 1 from 8.6A to 1.1A in 0.5A decrements REG1CL 3:0 R/W 1001 (4.1A) 0000 = 8.6A 0100 = 6.6A 1000 = 4.6A 1100 = 2.6 A 0001 = 8.1A 0101 = 6.1A 1001 = 4.1A 1101 = 2.1A 0010 = 7.6A 0110 = 5.6A 1010 = 3.6A 1110 = 1.6A 0011 = 7.1A 0111 = 5.1A 1011 = 3.1A 1111 = 1.1A Normal current-limit for regulator 2 from 8.6A to 1.1A in 0.5A decrements REG2CL March 3, 2015 7:4 R/W 1001 (4.1A) 0000 = 8.6A 0100 = 6.6A 1000 = 4.6A 1100 = 2.6 A 0001 = 8.1A 0101 = 6.1A 1001 = 4.1A 1101 = 2.1A 0010 = 7.6A 0110 = 5.6A 1010 = 3.6A 1110 = 1.6A 0011 = 7.1A 0111 = 5.1A 1011 = 3.1A 1111 = 1.1A 63 Revision 2.0 Micrel, Inc. MIC7400 Table 26. Current-Limit Register IOUT3 and IOUT4 Register Name ILIMIT_3-4_REG Address Field Current-Limit Register for VOUT3 and VOUT4 0x1C’h bit R/W Default Description Normal current-limit for regulator 3 from 8.6A to 1.1A in 0.5A decrements REG3CL 3:0 R/W 1001 (4.1A) 0000 = 8.6A 0100 = 6.6A 1000 = 4.6A 1100 = 2.6 A 0001 = 8.1A 0101 = 6.1A 1001 = 4.1A 1101 = 2.1A 0010 = 7.6A 0110 = 5.6A 1010 = 3.6A 1110 = 1.6A 0011 = 7.1A 0111 = 5.1A 1011 = 3.1A 1111 = 1.1A Normal current-limit for regulator 4 from 8.6A to 1.1A in 0.5A decrements REG4CL 7:4 R/W 0101 (6.1A) 0000 = 8.6A 0100 = 6.6A 1000 = 4.6A 1100 = 2.6 A 0001 = 8.1A 0101 = 6.1A 1001 = 4.1A 1101 = 2.1A 0010 = 7.6A 0110 = 5.6A 1010 = 3.6A 1110 = 1.6A 0011 = 7.1A 0111 = 5.1A 1011 = 3.1A 1111 = 1.1A Table 27. Current-Limit Register IOUT 5 and IOUT6 Register Name ILIMIT_5-6_REG Address Field Current-Limit Register for VOUT5 and VOUT6 0x1D’h bit R/W Default Description Normal current-limit for regulator 5 from 8.6A to 1.1A in 0.5A decrements REG5CL 3:0 R/W 1001 (4.1A) 0000 = 8.6A 0100 = 6.6A 1000 = 4.6A 1100 = 2.6 A 0001 = 8.1A 0101 = 6.1A 1001 = 4.1A 1101 = 2.1A 0010 = 7.6A 0110 = 5.6A 1010 = 3.6A 1110 = 1.6A 0011 = 7.1A 0111 = 5.1A 1011 = 3.1A 1111 = 1.1A Current limit from 2.6A to 1.78A in 0.12A decrements REG6CL 6:4 7 March 3, 2015 R/W R/W 011 (2.24A) 0 000 = 2.6A 010 = 2.36A 100 = 2.12A 110 = 1.88A 001 = 2.48A 011 = 2.24A 101 = 2.00A 111 = 1.76A 0 = Current Limit On 64 1 = Current Limit Off Revision 2.0 Micrel, Inc. MIC7400 Current-Limit (STBY Mode) Registers (1E − 20’h) This register is used to set the current limit for each DC-to-DC regulator when in standby (STBY) mode operation. Table 28. Standby Current-Limit Register IOUT1 and IOUT2 Register Name STBY_ILIMIT_1-2_REG Address Field Standby Current-Limit Register for VOUT1 and VOUT2 0x1E’h bit R/W Default Description Standby current limit for regulator 1 from 8.6A to 1.1A in 0.5A decrements SB1CL 3:0 R/W 1001 (4.1A) 0000 = 8.6A 0100 = 6.6A 1000 = 4.6A 1100 = 2.6 A 0001 = 8.1A 0101 = 6.1A 1001 = 4.1A 1101 = 2.1A 0010 = 7.6A 0110 = 5.6A 1010 = 3.6A 1110 = 1.6A 0011 = 7.1A 0111 = 5.1A 1011 = 3.1A 1111 = 1.1A Standby current limit for regulator 2 from 8.6A to 1.1A in 0.5A decrements SB2CL 7:4 R/W 1001 (4.1A) 0000 = 8.6A 0100 = 6.6A 1000 = 4.6A 1100 = 2.6 A 0001 = 8.1A 0101 = 6.1A 1001 = 4.1A 1101 = 2.1A 0010 = 7.6A 0110 = 5.6A 1010 = 3.6A 1110 = 1.6A 0011 = 7.1A 0111 = 5.1A 1011 = 3.1A 1111 = 1.1A Table 29. Standby Current-Limit Register IOUT3 and IOUT4 Register Name STBY_ILIMIT_3-4_REG Address Field Standby Current-Limit Register for VOUT3 and VOUT4 0x1F’h bit R/W Default Description Standby current limit for regulator 3 from 8.6A to 1.1A in 0.5A decrements SB3CL 3:0 R/W 1001 (4.1A) 0000 = 8.6A 0100 = 6.6A 1000 = 4.6A 1100 = 2.6 A 0001 = 8.1A 0101 = 6.1A 1001 = 4.1A 1101 = 2.1A 0010 = 7.6A 0110 = 5.6A 1010 = 3.6A 1110 = 1.6A 0011 = 7.1A 0111 = 5.1A 1011 = 3.1A 1111 = 1.1A Standby current limit for regulator 4 from 8.6A to 1.1A in 0.5A decrements SB4CL March 3, 2015 7:4 R/W 0101 (6.1A) 0000 = 8.6A 0100 = 6.6A 1000 = 4.6A 1100 = 2.6 A 0001 = 8.1A 0101 = 6.1A 1001 = 4.1A 1101 = 2.1A 0010 = 7.6A 0110 = 5.6A 1010 = 3.6A 1110 = 1.6A 0011 = 7.1A 0111 = 5.1A 1011 = 3.1A 1111 = 1.1A 65 Revision 2.0 Micrel, Inc. MIC7400 Table 30. Standby Current-Limit Register IOUT5 and IOUT6 Register Name STBY_ILIMIT_5-6_REG Address Field Standby Current-Limit Register for VOUT5 and VOUT6 0x20’h bit R/W Default Description Standby current limit for regulator 5 from 8.6A to 1.1A in 0.5A decrements SB5CL 3:0 R/W 1001 (4.1A) 0000 = 8.6A 0100 = 6.6A 1000 = 4.6A 1100 = 2.6 A 0001 = 8.1A 0101 = 6.1A 1001 = 4.1A 1101 = 2.1A 0010 = 7.6A 0110 = 5.6A 1010 = 3.6A 1110 = 1.6A 0011 = 7.1A 0111 = 5.1A 1011 = 3.1A 1111 = 1.1A Current limit from 2.6A to 1.78A in 0.12A decrements SB6CL 6:4 7 R/W R/W 011 (2.24A) 0 000 = 2.6A 010 = 2.36A 100 = 2.12A 110 = 1.88A 001 = 2.48A 011 = 2.24A 101 = 2.00A 111 = 1.76A 0 = Current Limit On 1 = Current Limit Off Power-on-Reset (POR) Threshold Voltage Setting Register (21’h and 22’h) This register is used to set the rising and falling threshold of power-on-reset (POR) comparator. The POR threshold voltage setting is based on the logic level of the VSLT pin in addition to the register bits. Refer to Table 20 for POR time delay settings. Table 31. Rising and Falling Power-on-Reset Threshold Voltage Settings Rising and Falling Power-On-Reset Threshold Voltage Setting bit R/W Default Description 3.3V to 2.3V in 50mV decrements VSCLT = 0 4:0 R/W 00000 00000 = 3.25V 01000 = 2.85V 10000 = 2.45V 11000 = 2.25V 00001 = 3.20V 01001 = 2.80V 10001 = 2.40V 11001 = 2.25V 00010 = 3.15V 01010 = 2.75V 10010 = 2.35V 11010 = 2.25V 00011 = 3.10V 01011 = 2.70V 10011 = 2.30V 11011 = 2.25V 00100 = 3.05V 01100 = 2.65V 10100 = 2.25V 11100 = 2.25V 00101 = 3.00V 01101 = 2.60V 10101 = 2.25V 11101 = 2.25V 00110 = 2.95V 01110 = 2.55V 10110 = 2.25V 11110 = 2.25V 00111 = 2.90V 01111 = 2.50V 10111 = 2.25V 11111 = 2.25V 4.3V to 3.3V in 50mV decrements VSCLT = 1 4:0 R/W 00000 00000 = 4.25V 01000 = 3.85V 10000 = 3.45V 11000 = 3.25V 00001 = 4.20V 01001 = 3.80V 10001 = 3.40V 11001 = 3.25V 00010 = 4.15V 01010 = 3.75V 10010 = 3.35V 11010 = 3.25V 00011 = 4.10V 01011 = 3.70V 10011 = 3.30V 11011 = 3.25V 00100 = 4.05V 01100 = 3.65V 10100 = 3.25V 11100 = 3.25V 00101 = 4.00V 01101 = 3.60V 10101 = 3.25V 11101 = 3.25V 00110 = 3.95V 01110 = 3.55V 10110 = 3.25V 11110 = 3.25V 00111 = 3.90V 01111 = 3.50V 10111 = 3.25V 11111 = 3.25V The three most significant bits [7:5] in registers 21’h and 22’h are used to mask the output voltage power-good flag after the start-up sequenced is finished. March 3, 2015 66 Revision 2.0 Micrel, Inc. MIC7400 Table 32. Power-on-Reset Rising Threshold Voltage Setting Register (21’h) Register Name Power-on-Reset Falling Threshold PORUO_REG Address 0x21’h Field bit R/W Default Description PORUP 4:0 R/W 01011 (2.7V) See Table 28 PGOOD_MASK1 5 R/W 1 0 = Do not mask PGOOD1 1 = Mask PGOOD1 PGOOD_MASK2 6 R/W 1 0 = Do not mask PGOOD2 1 = Mask PGOOD2 PGOOD_MASK3 7 R/W 1 0 = Do not mask PGOOD3 1 = Mask PGOOD3 Table 33. Power-on-Reset Falling Threshold Voltage Setting Register (22’h) Register Name Power-on-Reset Falling Threshold PORDN_REG Address 0x22’h Field bit R/W Default Description PORDN 4:0 R/W 01101 (2.6V) See Table 28 PGOOD_MASK4 5 R/W 1 0 = Do not mask PGOOD4 1 = Mask PGOOD4 PGOOD_MASK5 6 R/W 1 0 = Do not mask PGOOD5 1 = Mask PGOOD5 PGOOD_MASK6 7 R/W 1 0 = Do not mask PGOOD6 1 = Mask PGOOD6 Pull-Down when Disabled Register (23’h) This register is used to set the preference of enabling/disabling a pull-down FET when the DC-to-DC regulators are disabled. The pull-down value for buck regulators 1 − 5 is 90Ω. The pull-down current value for the boost regulator 6 is programmable. Table 34. Pull-Down when Disabled Register Register Name PULLDN1-6_REG Address Field 0x23’h bit R/W Default PULLD1 0 R/W 0 PULLD2 1 R/W 0 PULLD3 2 R/W 0 PULLD4 3 R/W 0 PULLD5 PULLD6C PULLD6 March 3, 2015 Pull-Down when Disabled Register 4 R/W 0 6:5 R/W 00 7 R/W 0 Description Enable/Disable the pull-down on Regulator 1 when power down 0 = No Pull Down 1 = Pull-Down Enable/Disable the pull-down on Regulator 2 when power down 0 = No Pull-Down 1 = Pull-Down Enable/Disable the pull-down on Regulator 3 when power-down 0 = No Pull-Down 1 = Pull Down Enable/Disable the pull-down on Regulator 4 when power down 0 = No Pull-Down 1 = Pull-Down Enable/Disable the pull-down on Regulator 5 when power-down 0 = No Pull-Down 1 = Pull-Down Sets Boost Pull-Down Current Level 00 = 148mA 01 = 111mA 10 = 74mA 11 = 37mA Enable/Disable the pull-down on Regulator 6 when power-down 0 = No Pull-Down 1 = Pull-Down 67 Revision 2.0 Micrel, Inc. MIC7400 MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com Micrel, Inc. is a leading global manufacturer of IC solutions for the worldwide high-performance linear and power, LAN, and timing & communications markets. The Company’s products include advanced mixed-signal, analog & power semiconductors; high-performance communication, clock management, MEMs-based clock oscillators & crystal-less clock generators, Ethernet switches, and physical layer transceiver ICs. Company customers include leading manufacturers of enterprise, consumer, industrial, mobile, telecommunications, automotive, and computer products. Corporation headquarters and state-of-the-art wafer fabrication facilities are located in San Jose, CA, with regional sales and support offices and advanced technology design centers situated throughout the Americas, Europe, and Asia. Additionally, the Company maintains an extensive network of distributors and reps worldwide. Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this datasheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel’s terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2014 Micrel, Incorporated. March 3, 2015 68 Revision 2.0