Datasheet Serial-in / Parallel-out Driver Series 4-input Serial-in / Parallel-out Drivers BU2099FV Key Specifications Description Power supply voltage range: Output voltage: Operating temperature range: BU2099FV is an open drain output driver.It incorporates a built-in shift register and a latch circuit to turn on a maximum of 12 output by a 4-line interface, linked to a microcontroller. An open drain output provides maximum 25mA current. Features Package LED can be driven directly 12bit parallel outputs This product can be operated on low voltage +2.7V to +5.5V 0V to +25.0V -40℃ to +85℃ W(Typ) x D(Typ) x H(Max) 6.50mm x 6.40mm x 1.45mm SSOP-B20 Applications Drive of LED Drive of Solenoid Drive of Relay SSOP-B20 BU2092FV Block Diagrams Pin Configurations (Top View) VSS 1 20 VDD N.C. 2 19 OE DATA 3 18 SO CLOCK CLOCK 4 17 Q11 DATA LCK 5 16 Q10 Q0 6 15 Q9 Q1 7 14 Q8 Q2 8 13 Q7 Q3 9 12 Q6 Q4 10 11 Q5 ○Product structure:Silicon monolithic integrated circuit .www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・14・001 Controller Shift Register SO 12bit LCK OE LPF Latch Write Buffer Q0~Q11 ○This product has no designed protection against radioactive rays 1/12 TSZ02201-0RHR1GZ00140-1-2 18.Sep.2015 Rev.002 BU2099FV Pin Descriptions Pin No. Pin Name I/O Function 1 VSS - Ground 2 N.C. - Non Connected 3 DATA I Serial Data Input 4 CLOCK I Shift clock of DATA (Rising Edge Trigger) 5 LCK I Latch clock of DATA (Rising Edge Trigger) 6 Q0 7 Q1 8 Q2 9 Q3 10 Q4 11 Q5 12 Q6 13 Q7 14 Q8 15 Q9 16 Q10 17 Q11 18 SO O Serial Data Output 19 OE I Output Enable (“H” level : output FET is OFF) 20 VDD - Power Supply Parallel Data Output O (Nch Open Drain ) Latch Data Output L ON H OFF Absolute Maximum Ratings Parameter Symbol Limits Unit Supply Voltage VDD -0.3 to +7.0 V Input Voltage VIN VSS-0.3 to VDD+0.3 V Output Voltage VO VSS to +25.0 V Operating Temperature Topr -40 to +85 °C Storage Temperature Tstg -55 to +125 °C PD (Note 1) W Power Dissipation 0.75 (Note 1) Mounted on 70mm x 70mm x 1.6mm glass epoxy board. Reduce 7.5mW per 1°C above 25°C. Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings. Recommended Operating Conditions (TA =25℃, VSS=0V) Parameter Symbol Limits Unit Supply Voltage VDD +2.7 to +5.5 V Output Voltage VO 0 to +25.0 V www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 2/12 TSZ02201-0RHR1GZ00140-1-2 18.Sep.2015 Rev.002 BU2099FV Electrical Characteristics DC Characteristics (Unless otherwise specified, VDD=5.0V, VSS=0V , TA =25℃) Parameter Symbol Limits Min Typ Max Unit Condition Input high-level Voltage VIH 3.5 - - V - Input low-level Voltage VIL - - 1.5 V - Output Hi-level Voltage (SO) VOH VDD-0.5 - - V - - 1.0 - - 1.5 - - 2.0 Output low-level Voltage1 (Qx) VOL1 IOH=-400μA IOL1=10mA V IOL1=15mA IOL1=20mA Output low-level Voltage 2 (SO) VOL2 - - 0.4 V IOL2=1.5mA Output high-level Leak Current (Qx) IOZH - - 10 μA VO=25.0V Output low-level Leak Current (Qx) IOZL - - -5.0 μA VO=0V Pull-down Current IPD - - 150 μA OE= VDD VCLR 1.1 - 2.4 V (OE) Reset Voltage at Low Supply Voltage Quiescent Current Timing Characteristics IDD - - 200 μA VIN=VSS or VDD, OUTPUT:OPEN (Unless otherwise specified VSS=0V, TA =25℃) Parameter Symbol Max 1000 - - ns 3 500 - - ns 5 1000 - - ns 3 500 - - ns 5 400 - - ns 3 200 - - ns 5 400 - - ns 3 200 - - ns 5 400 - - ns 3 200 - - ns 5 tPLH tPHL - - 500 ns 3 - - - 250 ns 5 - tPLZ (LCK) - 360 - ns 3 - 170 - ns 5 RL=5kΩ CL=10pF tPZL (LCK) - 260 - ns 3 - 175 - ns 5 - 115 - ns 3 - 85 - ns 5 - 175 - ns 3 - 65 - ns 5 - 30 - ns 5 - 20 - ns 5 Minimum Latch Pulse Width (LCK) tW (LCK) Setup Time (LCK→CLOCK) tS Setup Time (DATA→CLOCK) tsu Hole Time (CLOCK→DATA) tH tPLZ Propagation (OE→QX) Noise Pulse Suppression Time (LCK) www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 tPZL tI 3/12 VDD(V) Condition Typ tW Propagation (LCK→QX) Unit Min Minimum Clock Pulse Width (CLOCK) Propagation (SO) Limit - - - - - RL=5kΩ CL=10pF RL=5kΩ CL=10pF RL=5kΩ CL=10pF - TSZ02201-0RHR1GZ00140-1-2 18.Sep.2015 Rev.002 BU2099FV Electrical Characteristics - continued Waveform of Timing Characteristics tW 90% CLOCK 50% 90% 10% tW 90% 10% 10% 90% 50% VDD 50% VSS tH tSU 90% VDD 90% tS DATA VSS tW(LCK) 50% LCK 10% tS2 tPLZ(LCK) VDD 90% 90% 50% VSS tPLZ VDD 50% OE 50% tPZL(LCK) tPZL 50% 50% 10% VSS VO Qx 10% tPLH 50% SO tPHL VSS VDD 50% VSS Figure 1. Waveform of Timing Characteristics www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 4/12 TSZ02201-0RHR1GZ00140-1-2 18.Sep.2015 Rev.002 BU2099FV Test Circuits VDD +25V RL =10kΩ RL RL RL RL RL RL RL VSS RL RL RL RL RL PatternGenerator VIH VIL VSS Figure 2. Test Circuit of Input Voltage VDD ±25V 12 1 SW3 VSS 1 SW1 SW2 2 3 IOL1 PatternGenerator Vss Vss SW4 2 1 Vss IOH Vss IOL2 Vss Vss Figure 3. Test Circuit of Output Voltage Test condition VOL1:Set all data “L”. SW1=”ON”, SW2=”3”, SW3=”1”~”12”. VOL2:Set output data “L” to SO and SW4 is positioned to “2”, then voltage is measured at IOL2. VOH:Set output data “H” to SO and SW4 is positioned to “1”, then voltage is measured at IOH. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 5/12 TSZ02201-0RHR1GZ00140-1-2 18.Sep.2015 Rev.002 BU2099FV Test Circuits - continued VDD +25V + IDD A + IOZ A 12 SW 1 VSS PatternGenerator Figure 4. Test Circuit of Output Leak Current / Static Dissipation Current +25V VDD RL =5kΩ CL =10pF +25V VSS RL =5kΩ CL =10pF PatternGenerator Figure 5. Test Circuit of Timing Characteristics www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 6/12 TSZ02201-0RHR1GZ00140-1-2 18.Sep.2015 Rev.002 BU2099FV Timing Chart CLOCK DATA12 DATA DATA11 DATA10 DATA2 DATA1 LCK OE Previous DATA11 SO DATA Previous DATA “H” Qx Previous DATA10 DATA12 DATA11 Figure 6 . Timing Chart 1. 2. 3. 4. 5. After the power is turned on and the voltage is stabilized, LCK should be activates, after clocking 12 data bits into the DATA terminal. th Qx parallel output data of the shift register is set after the 12 clock by the LCK. Since the LCK is a label latch, data is retained in the “L” section and renewed in the “H” section of the LCK. Data retained in the internal latch circuit is output when the OE is in the “L” section. The final stage data of the shift register is output to the SO by synchronizing with the rise time of the CLOCK. [Truth Table] Input Function CLOCK DATA LCK OE × × × H All the output data output “H” with pull-up. × × × L The Q0~Q11 output can be enable and output the data of storage register. L × × Store “L” in the first stage data of shift register, the previous stage data in the others. (The conditions of storage register and output have no change.) H × × Store “H” in the first stage data of shift register, the previous stage data in the others. (The conditions of storage register and output have no change.) × × × The data of shift register has no change. SO outputs the final stage data of shift register with synchronized falling edge of CLOCK, not controlled by OE. × × × The data of shift register is transferred to the storage register. × × × The data of storage register has no change. (Note 2)The Q0~Q11 output have a Nch open drain FET . The FET is ON when data from shift register is “L”, and the FET is OFF when data is “H”. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 7/12 TSZ02201-0RHR1GZ00140-1-2 18.Sep.2015 Rev.002 BU2099FV I/O Equivalence Circuits DATA,CLOCK,LCK OE VDD VDD VDD DATA CLOCK LCK VDD VDD OE VSS VSS VSS SO VSS VSS Q0~Q11 VDD Qx SO VSS VSS Power Dissipation Power dissipation(total loss) indicates the power that can be consumed by IC at T A=25°C(normal temperature). IC is heated when it consumed power, and the temperature of IC chip becomes higher than ambient temperature. The temperature that can be accepted by IC chip depends on circuit configuration, manufacturing process, and consumable power is limited. Power dissipation is determined by the temperature allowed in IC chip(maximum junction temperature) and thermal resistance of package(heat dissipation capability). The maximum junction temperature is typically equal to the maximum value in the storage temperature range. Heat generated by consumed power of IC radiates from the mold resin or lead frame of the package. The parameter which indicates this heat dissipation capability(hardness of heat release)is called thermal resistance, represented by the symbol θ JA (°C/W).The temperature of IC inside the package can be estimated by this thermal resistance. Figure 7 shows the model of thermal resistance of the package. Thermal resistance θJA, ambient temperature TA, maximum junction temperature TJmax, and power dissipation PD can be calculated by the equation below: θJA = (TJmax - TA) / PD (°C/W) Derating curve in Figure 8 indicates power that can be consumed by IC with reference to ambient temperature. Power that can be consumed by IC with reference to ambient temperature. Power that can be consumed by IC begins to attenuate at certain ambient temperature. This gradient is determined by thermal resistance θJA. Thermal resistance θJA depends on chip size, power consumption, package, ambient temperature, package condition, wind velocity, etc even when the same of package is used. Thermal reduction curve indicates a reference value measured at a specified condition. 0.8 θJA =( TJmax - TA)/ PD Power Dissipation [W] 0.7 (°C/W) 周囲温度 Ta [℃] TA (℃) Ambient temperature 0.6 0.5 0.4 0.3 0.2 0.1 Chip surface temperature TJ(℃) チップ 表面温度 Tj [℃] Power dissipation PD (W) 0.0 消費電力 P [W] 0 25 50 75 85 100 125 Ambient Temperature [℃] Figure 7. Thermal resistance www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 Figure 8. Derating Curve 8/12 TSZ02201-0RHR1GZ00140-1-2 18.Sep.2015 Rev.002 BU2099FV Operational Notes 1. Reverse Connection of Power Supply Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply pins. 2. Power Supply Lines Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. 3. Ground Voltage Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. 4. Ground Wiring Pattern When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance. 5. Thermal Consideration Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. The absolute maximum rating of the PD stated in this specification is when the IC is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the PD rating. 6. Recommended Operating Conditions These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter. 7. Inrush Current When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections. 8. Operation Under Strong Electromagnetic Field Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction. 9. Testing on Application Boards When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage. 10. Inter-pin Short and Mounting Errors Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few. 11. Unused Input Pins Input terminals of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line. www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 9/12 TSZ02201-0RHR1GZ00140-1-2 18.Sep.2015 Rev.002 BU2099FV Operational Notes - continued 12. Regarding the Input Pin of the IC In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an input pin lower than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input pins have voltages within the values specified in the electrical characteristics of this IC. 13. Ceramic Capacitor When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others. 14. Area of Safe Operation (ASO) Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe Operation (ASO). Ordering Information B U 2 0 9 Part Number 9 FV - E2 Packaging and forming specification E2: Embossed tape and reel Package FV:SSOP-B20 Marking Diagrams SSOP-B20(TOP VIEW) Part Number Marking 2 0 9 9 F V LOT Number 1PIN MARK www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 10/12 TSZ02201-0RHR1GZ00140-1-2 18.Sep.2015 Rev.002 BU2099FV Physical Dimension, Tape and Reel Information Package Name www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 SSOP-B20 11/12 TSZ02201-0RHR1GZ00140-1-2 18.Sep.2015 Rev.002 BU2099FV Revision History Date Revision Changes 26.Dec.2013 001 New Release 18.Sep.2015 002 Page.1 www.rohm.com © 2013 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 Block Diagrams : Add SO signal. 12/12 TSZ02201-0RHR1GZ00140-1-2 18.Sep.2015 Rev.002 Datasheet Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you (Note 1) , transport intend to use our Products in devices requiring extremely high reliability (such as medical equipment equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice-PGA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.001 Datasheet Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label QR code printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software). 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice-PGA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.001 Datasheet General Precaution 1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents. ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s representative. 3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or concerning such information. Notice – WE © 2015 ROHM Co., Ltd. All rights reserved. Rev.001