ROHM BU28TA2WNVX-TR

CMOS LDO Regulator Series for Portable Equipments
High-speed
Load Response
FULL CMOS LDO Regulators
No.09020EAT01
BUTA2WNVX Series, BUTA2WHFV Series
●Description
BU□□TA2WNVX /HFV series is high-performance FULL CMOS regulator with 200-mA output, which is mounted on
microminiature package SSON004X1216 (1.2 mm  1.6 mm  0.6 mm) &HVSOF5(1.6mm X 1.6mm X0.6mm). It has
excellent noise characteristics and load responsiveness characteristics despite its low circuit current consumption of 40 A.
It is most appropriate for various applications such as power supplies for logic IC, RF, and camera modules.
Microminiature package SSON004X1216 & HVSOF5 with built-in heatsink is adopted for the package, which contributes to
the space-saving design of the set.
●Features
1) High-accuracy output voltage of 1% (25 mV on 1.5-V & 1.8-V products)
2) High ripple rejection: 70 dB (Typ., 1 kHz, VOUT1.8 V))
3) Compatible with small ceramic capacitor (CIN=Co=1.0 F)
4) Low current consumption: 40 A
5) ON/OFF control of output voltage
6) With built-in overcurrent protection circuit and overheat protection circuit
7) With built-in output discharge circuit
8) Adopting microminiature power package SSON004X1216
●Applications
Battery-powered portable equipment, etc.
 Absolute maximum rating
Parameter
Maximum applied power voltage
Power dissipation
Maximum junction temperature
Operational temperature range
Storage temperature range
Symbol
VMAX
Pd1
Pd2
TjMAX
Topr
Tstg
Limits
-0.3 ~ +6.5
220*1
(SSON004X1216)
410*2 (HVSOF5)
+125
-40 ~ +85
-55 ~ +125
Unit
V
mW
mW
°C
°C
°C
*1 When 1 PCB (70 mm  70 mm, thickness 1.6-mm glass epoxy) a standard ROHM board is implemented.
Reduced to 2.2 mW/C when used at Ta=25C or higher.
*2 When 1 PCB (70 mm  70 mm, thickness 1.6-mm glass epoxy) a standard ROHM board is implemented.
Reduced to 4.1 mW/C when used at Ta=25C or higher.
 Recommended operating range (Do not exceed Pd.)
Parameter
Symbol
Limits
Input power supply voltage
VIN
2.5 ~ 5.5
Maximum output current
IMAX
200
 Recommended operating conditions
Parameter
Symbol
Min.
Typ.
Max.
Input capacitor
CIN
0.5*3
1.0
-
Output capacitor
CO
0.5*3
1.0
-
*3 Set the capacity value of the capacitor so that it does not fall below
DC device characteristics, and change with time into consideration.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
1/27
Unit
V
mA
Unit
Conditions
μF
A ceramic capacitor is recommended.
μF
A ceramic capacitor is recommended.
the minimum value, taking temperature characteristics,
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
 Block diagram, recommended circuit diagram, and pin configuration diagram
BH□□TA2WNVX
VIN
VIN
4/3
VREF
Cin
VOUT
VOUT
1
1/4
OCP
2
Co
GND
VSTBY
STBY
STBY
3/1
Discharge
Recommended ceramic capacitor for Cin & Co
Murata Manufacturing Co., Ltd.
GRM188B11A105KA61D
Fig.1 Recommended circuit diagram
BU□□TA2WNVX(SSON004X1216)
4
3
1
2
PIN No.
Symbol
Function
1
VOUT
Voltage output
2
GND
Grounding
3
STBY
ON/OFF control of
output voltage
(High: ON, Low: OFF)
4
VIN
Power input
BU□□TA2WHFV(HVSOF5)
5
1
4
2
PIN No.
Symbol
Function
1
STBY
ON/OFF control of
output voltage
(High:ON, Low:OFF)
2
GND
Grounding
3
VIN
Power input
4
VOUT
Voltage output
5
N.C.
No Connect
3
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
2/27
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
●Electrical characteristics(Ta=25C, VIN=VOUT+1.0 V (VIN=3.5 V on VOUT=1.8-V and1.5-V products), STBY=1.5 V, CIN=1.0 F, CO=1.0 F,
unless otherwise specified)
Parameter
Symbol
Min.
VOUT×0.99
Typ.
Unit Conditions
V
Output voltage
VOUT
Circuit current
IIN
-
40
95
ISTBY
-
-
1
μA
-
dB
Circuit current (at STBY)
VOUT-25 mV
VOUT
Max.
VOUT×1.01
IOUT=10 μA,VOUT<2.5 V
VOUT+25 mV
μA IOUT=0mA
70
Ripple rejection
RR
55
65
Input/Output voltage difference
Line regulation
IOUT=10 μA,VOUT≥2.5 V
STBY=0 V
VRR=-20 dBv, fRR=1 kHz,
IOUT=10 mA
1.5 V≤VOUT≤1.8 V
VRR=-20 dBv,fRR=1 kHz,
IOUT=10 mA
2.5 V≤VOUT
-
400
800
mV
2.5 V≤VOUT≤2.6 V
(VIN=0.98*VOUT, IOUT=200 mA)
-
360
720
mV
2.7 V≤VOUT≤2.85 V
(VIN=0.98*VOUT, IOUT=200 mA)
-
330
660
mV
2.9 V≤VOUT≤3.1 V
(VIN=0.98*VOUT,IOUT=200 mA)
-
300
600
mV
3.2 V≤VOUT≤3.4 V
(VIN=0.98*VOUT, IOUT=200 mA)
VDL
-
2
20
mV
VDLO
-
10
80
mV
VIN=VOUT+1.0 V to 5.5 V,
IOUT=10 μA
IOUT=0.01 mA to 100 mA
VSAT
Load regulation
Overcurrent protection
detection current
Output short-circuit current
ILMAX
250
400
700
mA
Vo=VOUT*0.8
ISHORT
20
70
150
mA
Vo=0 V
Output discharge resistance
RDSC
20
40
80
Ω
Standby pull-down resistance
RSTB
500
1000
2000
kΩ
Standby control
ON
VSTBH
1.5
-
5.5
V
OFF
VSTBL
-0.3
-
0.3
V
VIN=4.0 V, STBY=0 V
* This product does not have radiation-proof design.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
3/27
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
 Lineup
■ 200 mA BU□□TA2WNVX / HFV series
Product Name
1.5
1.8
2.5
2.6
BU□□TA2WNVX
BU□□TA2WHFV
2.7
2.8
2.85
○
○
○
○
○
○
○
2.9
3.0
3.1
3.2
3.3
3.4
○
○
○
○
○
○
-
Package
SSON004X1216
HVSOF5
Model name: BU□□TA2WNVX / HFV
a
Symbol
Contents
Output
voltage (V)
□□
a
Specification of output voltage
Output
□□
voltage (V)
Output
voltage (V)
□□
15
1.5 V(Typ.)
28
2.8 V(Typ.)
32
3.2 V(Typ.)
18
1.8 V(Typ.)
2J
2.85 V(Typ.)
33
3.3 V(Typ.)
25
2.5 V(Typ.)
29
2.9 V(Typ.)
34
3.4 V(Typ.)
26
2.5 V(Typ.)
30
3.0 V(Typ.)
-
-
27
2.7 V(Typ.)
31
3.1 V(Typ.)
-
-
 Input/Output terminal equivalent circuit schematic
1pin (VOUT)
2pin (GND)
3pin (STBY)
VIN
4pin (VIN)
VIN
VOUT
STBY
Fig.2
About input/output capacitor
Capacity value of ceramic capacitor - DC bias characteristics
(Example)
It is recommended to place a capacitor as close as possible to the pins
between the input terminal and GND or between the output terminal and
GND.
The capacitor between the input terminal and GND becomes valid when
source impedance increases or when wiring is long. The larger the
capacity of the output capacitor between the output terminal and GND is,
the better the stability and characteristics in output load fluctuation become.
However, please check the status of actual implementation. Ceramic
capacitors generally have variation, temperature characteristics, and direct
current bias characteristics and the capacity value also decreases with
time depending on the usage conditions. It is recommended to select a
ceramic capacitor upon inquiring about detailed data of the related
manufacturer.
10-V withstand voltage
B1characteristics
GRM188B11A105KA61D
10
0
-10
Capacitance Change [%]

Input/Output equivalent circuit
10-V withstand voltage
B characteristics
-20
6.3-V withstand voltage
B characteristics
-30
10-V withstand voltage
F characteristics
-40
-50
-60
4-V withstand voltage
X6S characteristics
10-V withstand voltage
F characteristics
-70
-80
-90
-100
0
0.5
1
1.5
2
2.5
3
3.5
4
DC Bias Voltage [V]
 About the equivalent series resistance (ESR) of a ceramic capacitor
100
ESR [Ω]
Capacitors generally have ESR (equivalent series resistance) and it
operates stably in the ESR-IOUT area shown on the right. Since ceramic
capacitors, tantalum capacitors, electrolytic capacitors, etc. generally have
different ESR, please check the ESR of the capacitor to be used and use it
within the stability area range shown in the right graph for evaluation of the
actual application.
Fig.3 Capacity – bias characteristics
Unstable area
10
Stability area
1
0.1
0.01
0
50
100
150
200
IOUT [mA]
Fig.4 Stability area characteristics (Example)
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
4/27
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
BU15TA2WNVX / HFV
 Reference data
(Ta=25ºC unless otherwise specified.)
100
1.55
1.54
1.5
1.2
IO=0uA
IO=100uA
IO=50mA
IO=200mA
0.9
0.6
Temp=25°C
VIN = STBY
0.3
IO=0uA
IO=100uA
IO=50mA
IO=200mA
1.53
1.52
1.51
1.50
1.49
1.48
1.47
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
1.25 1.35 1.45
1.55 1.65 1.75 1.85 1.95
Vin Voltage (V)
0
2.05 2.15 2.25
IO=0uA
VIN = STBY
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
Vin Voltage (V)
Fig. 7 Circuit Current IGND
120
10
110
100
80
60
Temp=-40°C
Temp=25°C
Temp=85°C
40
20
IO=200mA
VIN = STBY
8
Temp=85°C
Temp=85°C
Gnd Current (uA)
STBY Current (uA)
120
Temp=25°C
6
Temp=-40°C
4
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0
5.5
Output Voltage (V)
Temp=25°C
Temp=-40°C
1.51
1.50
1.49
1.48
VIN = 3.5V
STBY = 1.5V
0.05
0.1
0.15
VIN=3.5V
1.25
1.00
VIN=2.5V
0.75
0.50
Temp=25°C
STBY = 1.5V
0.10
Fig. 11 Load Regulation
0.20
0.30
0.40
0.50
1.52
1.51
1.50
1.49
VIN=3.5V
STBY=1.5V
Io=0.1mA
1.45
40.00
30.00
20.00
VIN=3.5V
STBY=1.5V
Io=0mA
10.00
0.00
10
35
0.5
60
85
Temp (°C)
Fig. 14 VOUT vs. Temp
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
-40
-15
10
35
60
Temp (°C)
Fig. 15 IGND vs. Temp
5/27
1
1.5
Fig. 13 STBY Threshold
Gnd Current (uA)
Input Current (uA)
1.53
-15
Temp=85°C
Temp=25°C
Temp=-40°C
0.50
STBY Voltage (V)
50.00
-40
0.75
0
1.54
1.46
1.00
0.25
0.60
Fig. 12 OCP Threshold
1.55
1.47
1.25
Output Current (A)
Output Current (A)
1.48
1.50
0.00
0.00
0.2
0.2
1.75
1.50
0.00
0
0.15
2.00
0.25
1.45
0.1
Fig. 10 IOUT - IGND
VIN=5.5V
1.75
1.46
0.05
Output Current (A)
2.00
1.54
Temp=85°C
VIN = 3.5V
STBY = 1.5V
Fig. 9 STBY Input Current
1.55
1.47
Temp=-40°C
60
STBY Voltage (V)
Fig. 8 Circuit Current IGND
1.52
70
40
Vin Voltage (V)
1.53
80
50
0
0.5
Temp=25°C
90
VIN = STBY
0
0
100
2
Output Voltage (V)
Gnd Current (uA)
Temp=-40°C
Temp=25°C
Temp=85°C
Fig. 6 Line Regulation
140
Output Voltage (V)
40
Vin Voltage (V)
Fig. 5 Output Voltage
Output Voltage (V)
60
0
1.45
0
80
20
Temp=25°C
VIN = STBY
1.46
0.0
Gnd Current (uA)
Output Voltage (V)
Output Voltage (V)
1.8
85
1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000
-0.100
-40
VIN=3.5V
STBY=0V
-15
10
35
60
85
Temp (°C)
Fig. 16 IGND vs. Temp (STBY)
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
BU15TA2WNVX /HFV
80
80
0.7
f= 0 .1 kHz
70
Ripple Rejection [dB]
Ripple Re je c tion (dB )
70
(Ta=25ºC unless otherwise specified.)
O u tpu t N o is e D e n s ity [μ V / √ H z ]
 Reference data
60
50
40
30
Vin= 3.5V
Io=10mA
Ta = 25℃
20
10
f= 1 kHz
60
f= 1 0 kHz
50
40
30
f= 1 0 0 kHz
Co=1.0μF
Cin=none
Iout=10mA
temp=25℃
20
10
0
0
2.5
0.1
1
10
100
1000
Frequency (kHz)
Fig. 17 Ripple Rejection vs. Freq.
3.5
4.5
Input Voltage VIN[V]
Fig. 18 Ripple Rejection vs. VIN
(Iout=10 mA)
5.5
Co=1.0μF
Cin=1.0μF
Iout=10mA
temp=25℃
0.6
0.5
0.4
0.3
0.2
0.1
0
0.1
1
10
Frequency f [kHz]
Fig. 19 Output Noise Spectral
Density vs. Freq.
Fig. 20 Load Response
Fig. 21 Load Response
Fig. 22 Load Response
Fig. 23 Load Response
Fig. 24 Load Response
Current Pulse=10 kHz
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
100
Fig. 25 Load Response
Current Pulse=10 kHz
6/27
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
 Reference data
BU15TA2WNVX / HFV
(Ta=25ºC unless otherwise specified.)
Fig. 26 Load Response
Current Pulse=100 kHz
Fig. 28 Startup Time
Iout = 0 mA
Fig. 31 Startup Time (STBY=VIN)
Iout = 200mA
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Fig. 27 Load Response
Current Pulse=100 kHz
Fig. 29 Startup Time
Iout = 200 mA
Fig. 32 Discharge Time
Iout = 0 mA
7/27
Fig. 30 Startup Time (STBY=VIN)
Iout = 0 mA
Fig. 33 VIN Response
Iout = 10 mA
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
BU18TA2WNVX / HFV
●Reference data
3.5
100
1.85
1.84
2.5
2.0
1.5
IO=0uA
IO=100uA
IO=50mA
IO=200mA
1.0
0.5
Temp=25°C
VIN = STBY
IO=0uA
IO=100uA
IO=50mA
IO=200mA
1.83
1.82
1.81
1.80
1.79
1.78
1.77
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
1.85
1.95
2.05
2.15
2.25
0
2.35
0.5
1
1.5
Fig. 35 Line Regulation
2
2.5
3
3.5
4
4.5
5
5.5
Fig. 36 Circuit Current IGND
120
10
140
IO=0uA
VIN = STBY
Vin Voltage (V)
Vin Voltage (V)
Fig. 34 Output Voltage
110
100
80
60
Temp=-40°C
Temp=25°C
Temp=85°C
40
IO=200mA
VIN = STBY
20
Temp=85°C
Temp=85°C
8
Gnd Current (uA)
STBY Current (uA)
120
Temp=25°C
6
Temp=-40°C
4
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0
5.5
0.5
1
1.5
Output Voltage (V)
Temp=25°C
Temp=-40°C
1.81
1.80
1.79
1.78
VIN = 3.5V
STBY = 1.5V
1.76
2
2.5
3
3.5
4
4.5
5
3.50
3.00
VIN=5.5V
2.00
VIN=3.5V
1.50
1.00
VIN=2.5V
Temp=25°C
STBY = 1.5V
0.1
0.15
0.2
0.10
Output Current (A)
Fig. 40 Load Regulation
0.20
0.30
0.40
0.50
0.60
Fig. 41 OCP Threshold
1.81
1.80
1.79
VIN=3.5V
STBY=1.5V
Io=0.1mA
40.00
30.00
20.00
VIN=3.5V
STBY=1.5V
Io=0mA
10.00
0.00
1.75
-40
-15
10
35
60
85
Temp (°C)
Fig. 43 VOUT vs Temp
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
-40
-15
10
35
60
Temp (°C)
Fig. 44 IGND vs Temp
8/27
0.5
1
1.5
Fig. 42 STBY Threshold
G nd Current (uA)
Input Current (uA)
1.82
1.76
Temp=85°C
Temp=25°C
Temp=-40°C
1.00
STBY Voltage (V)
1.84
1.77
1.50
0
50.00
1.78
2.00
Output Current (A)
1.83
0.2
0.00
0.00
1.85
0.15
2.50
0.50
0.00
0.05
0.1
Fig. 39 IOUT - IGND
3.00
2.50
0.05
Output Current (A)
3.50
0.50
1.75
0
VIN = 3.5V
STBY = 1.5V
0
5.5
Fig. 38 STBY Input Current
1.84
Temp=85°C
Temp=-40°C
60
STBY Voltage (V)
1.85
1.77
70
40
Fig. 37 Circuit Current IGND
1.82
80
50
Vin Voltage (V)
1.83
Temp=25°C
90
VIN = STBY
Output Voltage (V)
0
100
2
0
0
Output Voltage (V)
Temp=-40°C
Temp=25°C
Temp=85°C
20
0
1.75
Vin Voltage (V)
Gnd Current (uA)
40
1.75
0
Output Voltage (V)
60
Temp=25°C
VIN = STBY
1.76
0.0
80
Gnd Current (uA)
Output Voltage (V)
3.0
Output Voltage (V)
(Unless otherwise specified, Ta=25℃)
85
1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300
0.200
0.100
0.000
-0.100
-40
VIN=3.5V
STBY=0V
-15
10
35
60
85
Temp (°C)
Fig. 45 IGND vs Temp (STBY)
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
BU18TA2WNVX / HFV
80
70
70
60
50
40
30
Vin= 3.5V
Io=10mA
Ta = 25℃
20
10
(Unless otherwise specified, Ta=25℃)
0.7
f= 0 .1 kHz
O u tpu t N oise D e n sity [μ V / √ H z]
80
Ripple Rejection [dB]
R ipple R ejection (dB)
●Reference data
f= 1 kHz
60
f= 1 0 kHz
50
40
f= 1 0 0 kHz
30
Co=1.0μF
Cin=none
Iout=10mA
temp=25℃
20
10
0
0
0.1
1
10
100
1000
Frequency (kHz)
Fig. 46 Ripple Rejection VS Freq.
2.5
3.5
4.5
5.5
Co=1.0μF
Cin=1.0μF
Iout=10mA
temp=25℃
0.6
0.5
0.4
0.3
0.2
0.1
0
0.1
1
Input Voltage VIN[V]
Fig. 47 Ripple Rejection VS VIN
Fig. 49 Load Response
10
Frequency f [kHz]
100
Fig. 48 Output Noise Spectrl
Density VS Freq.
Fig. 50 Load Response
Fig. 51 Load Response
Fig. 52 Load Response
⇔
Fig. 53 Load Response
Current Pulse=10kHz
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Fig. 54 Load Response
Current Pulse=10kHz
9/27
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
●Reference data
BU18TA2WNVX / HFV
(Unless otherwise specified, Ta=25℃)
⇔
Fig. 55 Load Response
Current Pulse=100kHz
Fig. 57 Start Up Time
Iout = 0mA
Fig. 60 Start Up Time(STBY=VIN)
Iout = 200mA
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Fig. 56 Load Response
Current Pulse=100kHz
Fig. 58 Start Up Time
Iout = 200mA
Fig. 61 Discharge Time
Iout = 0mA
10/27
Fig. 59 Start Up Time (STBY=VIN)
Iout = 0mA
Fig. 62 VIN Response
Iout = 10mA
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
BU25TA2WNVX / HFV
●Reference data
3.5
100
2.55
2.54
2.5
2.0
IO=0uA
IO=100uA
IO=50mA
IO=200mA
1.5
1.0
0.5
Temp.=25°C
VIN=STBY
IO=0uA
IO=100uA
IO=50mA
IO=200mA
2.53
2.52
2.51
2.50
2.49
2.48
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
40
Temp.=-40°C
Temp.=25°C
Temp.=85°C
2.4
2.5
2.6
2.7
2.8
2.9
0
3
0.5
1
1.5
2.5
0.35
Temp.=25°C
0.30
0.25
Temp.=-40°C
0.20
0.15
0.10
VIN=0.98*VOUT
STBY=1.5V
0.05
Temp.=85°C
8
Gnd Current (uA)
STBY Current (uA)
110
Temp.=85°C
Temp.=25°C
6
Temp.=-40°C
4
0.05
0.1
0.15
4
4.5
5
5.5
Temp.=-40°C
100
Temp.=25°C
90
80
Temp.=85°C
70
60
2
50
0
0.00
0
3.5
120
10
0.45
0.40
3
Fig. 65 Circuit Current IGND
Fig. 64 Line Regulation
0.50
2
Vin Voltage (V)
Vin Voltage (V)
Fig. 63 Output Voltage
IO=0uA
VIN=STBY
0
Vin Voltage (V)
Dropout Voltage (V)
60
Temp.=25°C
VIN=STBY
2.45
0
80
20
2.47
2.46
0.0
Gnd Current (uA)
Output Voltage (V)
3.0
Output Voltage (V)
(Unless otherwise specified, Ta=25℃)
40
0
0.2
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0
5.5
0.05
STBY Voltage (V)
Output Current (A)
Fig. 66 Dropout Voltage
Fig. 67 STBY Input Current
2.55
0.1
0.15
0.2
Output Current (A)
Fig. 68 IOUT - IGND
3.00
3.50
Temp.=25°C
2.52
Temp.=85°C
2.51
2.50
2.49
2.48
2.47
VIN=3.5V
STBY=1.5V
Temp.=-40°C
2.46
3.00
VIN=5.5V
VIN=3.5V
2.00
VIN=3.0V
1.50
1.00
Temp.=25°C
0.50
0.00
0
0.05
0.1
0.15
0.2
1.50
Temp.=85°C
Temp.=25°C
Temp.=-40°C
1.00
0.1
0.2
0.3
0.4
0.5
0.6
0
0.5
Output Current (A)
Fig. 69 Load Regulation
1.5
Fig. 71 STBY Threshold
1.000
50.00
VIN=3.5V
STBY=1.5V
Io=0.1mA
1
STBY Voltage (V)
Fig. 70 OCP Threshold
2.55
0.900
2.52
2.51
2.50
2.49
2.48
2.47
0.800
40.00
Gnd Current (uA)
Gnd Current (uA)
2.53
2.00
0.00
0
Output Current (A)
2.54
2.50
0.50
STBY=1.5V
2.45
Output Voltage (V)
Output Voltage (V)
2.53
2.50
Output Voltage (V)
Output Voltage (V)
2.54
VIN=3.5V
STBY=1.5V
Io=0mA
30.00
20.00
10.00
0.700
0.600
0.500
0.400
0.300
0.200
VIN=3.5V
STBY=0V
0.100
2.46
0.000
2.45
-0.100
0.00
-40
-15
10
35
60
85
Temp. (°C)
Fig. 72 VOUT vs Temp
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
-40
-15
10
35
Temp. (°C)
Fig. 73 IGND vs Temp
11/27
60
85
-40
-15
10
35
60
85
Temp. (°C)
Fig. 74 IGND vs Temp (STBY)
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
●Reference data
BU25TA2WNVX / HFV
(Unless otherwise specified, Ta=25℃)
80
80
1.2
O utput N oise D ensity [μ V /√ H z]
f= 0 .1 kHz
70
60
Ripple Rejection [dB]
Ripple Rejection (dB )
70
50
40
30
20
Vin= 3.5V
Io=10mA
Ta = 25℃
10
60
f= 1 kHz
50
f= 1 0 kHz
40
f= 1 0 0 kHz
30
Co=1.0μF
Cin=none
Iout=10mA
temp=25℃
20
10
0
0
0.1
1
10
100
1000
Frequency (kHz)
2.5
3.5
4.5
5.5
Co=1.0μF
Cin=1.0μF
Iout=10mA
temp=25℃
1
0.8
0.6
0.4
0.2
0
0.1
I OU T=0m A →100m A
10
Frequency f [kHz]
I OU T=100m A →0m A
Fig. 79 Load Response
Fig. 78 Load Response
Fig. 80 Load Response
Fig. 81 Load Response
⇔
⇔
Fig. 82 Load Response
Current Pulse=10kHz
Fig. 83 Load Response
Current Pulse=10kHz
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
100
Fig. 77 Output Noise Spectrl
Density VS Freq.
Fig. 76 Ripple Rejection VS VIN
Fig. 75 Ripple Rejection VS Freq.
1
Input Voltage VIN[V]
12/27
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
●Reference data
BU25TA2WNVX / HFV
(Unless otherwise specified, Ta=25℃)
⇔
⇔
Fig. 84 Load Response
Current Pulse=100kHz
Fig. 86 Start Up Time
Iout = 0mA
Fig. 89 Start Up Time(STBY=VIN)
Iout = 200mA
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Fig. 85 Load Response
Current Pulse=100kHz
Fig. 87 Start Up Time
Iout = 200mA
Fig. 90 Discharge Time
Iout = 0mA
13/27
Fig. 88 Start Up Time (STBY=VIN)
Iout = 0mA
Fig. 91 VIN Response
Iout = 10mA
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
BU28TA2WNVX / HFV
●Reference data
3.5
100
2.85
IO=0uA
2.84
2.5
2.0
IO=0uA
IO=100uA
IO=50mA
IO=200mA
1.5
1.0
Temp.=25°C
VIN = STBY
0.5
IO=0uA
IO=100uA
IO=50mA
IO=200mA
2.83
2.82
2.81
2.80
2.79
2.78
2.77
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
Temp.=-40°C
Temp.=25°C
Temp.=85°C
VIN = STBY
0
2.7
2.8
2.9
Vin Voltage (V)
3
3.1
3.2
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Vin Voltage (V)
Fig. 92 Output Voltage
Vin Voltage (V)
Fig. 94 Circuit Current IGND
Fig. 93 Line Regulation
10
0.40
120
0.35
110
Temp.=85°C
0.25
Temp.=25°C
0.20
Temp.=-40°C
0.15
0.10
8
Temp.=85°C
Temp.=25°C
6
Temp.=-40°C
4
Temp.=85°C
100
90
Temp.=25°C
80
70
Temp.=-40°C
60
2
VIN=0.98 x VOUT
0.05
Gnd Current (uA)
0.30
STBY Current (uA)
VIN = 3.8V
50
VIN = STBY
STBY = 1.5V
STBY = 1.5V
40
0
0.00
0
0.05
0.1
0.15
0
0.2
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0
5.5
0.05
Fig. 95 Dropout Voltage
Fig. 96 STBY Input Current
0.15
0.2
Fig. 97 IOUT - IGND
3.50
3.50
2.85
0.1
Output Currnt (A)
STBY Voltage (V)
Output Current (A)
VIN=3.8V
VIN = 3.8V
2.83
STBY = 1.5V
3.00
3.00
Output Voltage (V)
2.84
2.82
Temp.=-40°C
2.81
2.80
2.79
2.78
2.77
Temp.=85°C
Temp.=25°C
Output Voltage (V)
Dropout Voltage (V)
40
2.75
0
Output Voltage (V)
60
20
Temp.=25°C
2.76
0.0
VIN = STBY
80
Gnd Current (uA)
Output Voltage (V)
3.0
Output Voltage (V)
(Unless otherwise specified, Ta=25℃)
VIN=3.8V
2.50
VIN=5.5V
2.00
VIN=3.3V
1.50
1.00
Temp=25°C
STBY = 1.5V
0.50
2.76
2.50
2.00
1.50
Temp.=85°C
Temp.=25°C
Temp.=-40°C
1.00
0.50
0.00
2.75
0
0.05
0.1
0.15
0
0.2
0.1
0.2
0.3
0.4
0.5
0.6
0.00
Output Current (A)
Output Currnt (A)
0
0.5
1
1.5
STBY Voltage (V)
Fig. 98 Load Regulation
Fig. 99 OCP Threshold
Fig. 100 STBY Threshold
50.00
2.85
1.000
0.900
2.82
2.81
2.80
2.79
2.78
VIN=3.8V
STBY=1.5V
Io=0.1mA
2.77
2.76
0.800
40.00
Gnd Current (uA)
2.83
Gnd Current (uA)
Output Voltage (V)
2.84
30.00
20.00
VIN=3.8V
STBY=1.5V
Io=0mA
10.00
-40
-15
10
35
60
85
Temp. (°C)
Fig. 101 VOUT vs Temp
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
0.600
0.500
0.400
0.300
VIN=3.8V
STBY=0V
0.200
0.100
0.000
0.00
2.75
0.700
-0.100
-40
-15
10
35
Temp. (°C)
Fig. 102 IGND vs Temp
14/27
60
85
-40
-15
10
35
60
85
Temp. (°C)
Fig. 103 IGND vs Temp (STBY)
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
BU28TA2WNVX / HFV
80
80
1.6
f= 0 .1 kHz
70
60
Ripple Rejection [dB]
Ripple Rejection (dB )
70
(Unless otherwise specified, Ta=25℃)
50
40
30
20
Vin= 3.8V
Io=10mA
Ta = 25℃
10
1
50
f= 1 0 kH z
40
f= 1 0 0 kH z
30
Co=1.0μF
Cin=none
Iout=10mA
temp=25℃
20
10
10
100
1000
Frequency (kHz)
2.8
3.8
1.2
1
0.8
0.6
0.4
0.2
0
4.8
0.1
100
Fig. 106 Output Noise Spectrl
Density VS Freq.
Fig. 110 Load Response
Fig.109 Load Response
⇔
⇔
Fig. 112 Load Response
Current Pulse=10kHz
Fig. 111 Load Response
Current Pulse=10kHz
www.rohm.com
10
Frequency f [kHz]
Fig. 108 Load Response
Fig. 107 Load Response
© 2009 ROHM Co., Ltd. All rights reserved.
1
Input Voltage VIN[V]
Fig. 105 Ripple Rejection VS VIN
Fig. 104 Ripple Rejection VS Freq.
Co=1.0μF
Cin=1.0μF
Iout=10mA
temp=25℃
1.4
0
0
0.1
60
f= 1 kH z
O utput N oise D ensity [μ V /√ H z]
●Reference data
15/27
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
●Reference data
BU28TA2WNVX / HFV
(Unless otherwise specified, Ta=25℃)
⇔
⇔
Fig. 113 Load Response
Current Pulse=100kHz
Fig. 115 Start Up Time
Iout = 0mA
Fig. 118 Start Up Time(STBY=VIN)
Iout = 200mA
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Fig. 114 Load Response
Current Pulse=100kHz
Fig. 116 Start Up Time
Iout = 200mA
Fig. 119 Discharge Time
Iout = 0mA
16/27
Fig. 117 Start Up Time (STBY=VIN)
Iout = 0mA
Fig.120 VIN Response
Iout = 10mA
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
BU30TA2WNVX / HFV
3.05
3.0
3.04
2.5
2.0
IO=0uA
IO=100uA
IO=50mA
IO=200mA
1.5
1.0
Temp.=25°C
0.5
(Unless otherwise specified, Ta=25℃)
100
IO=0uA
IO=100uA
IO=50mA
IO=200mA
3.03
3.02
3.01
3.00
2.99
2.98
2.97
2.95
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
3
3.1
3.2
3.3
3.4
Temp.=-40°C
Temp.=25°C
Temp.=85°C
3.5
0
0.5
1
1.5
2
2.5
110
Temp.=25°C
0.20
Temp.=-40°C
0.15
0.10
VIN=0.98*VOUT
STBY=1.5V
0.05
Temp.=85°C
8
Gnd Current (uA)
STBY Current (uA)
0.25
Temp.=25°C
6
Temp.=-40°C
4
0.05
0.1
0.15
0.2
0.5
1
1.5
Output Current (A)
5.5
Temp.=25°C
100
Temp.=85°C
90
80
Temp=-40°C
70
60
2
2.5
3
3.5
4
4.5
5
5.5
0
0.05
STBY Voltage (V)
0.1
0.15
0.2
Output Current (A)
Fig. 125 STBY Input Current
Fig. 126 IOUT - IGND
3.50
3.05
5
40
0
Fig. 124 Dropout Voltage
4.5
50
0
0
VIN=STBY
4
2
VIN=STBY
0.00
3.5
120
10
Temp.=85°C
3
Fig. 123 Circuit Current IGND
0.35
0.30
IO=0uA
Vin Voltage (V)
Fig. 122 Line Regulation
0.40
3.50
VIN=4.0V
3.04
3.00
Output Voltage (V)
Temp.=25°C
3.02
3.01
3.00
2.99
2.98
2.97
Temp.=-40°C
VIN=4.0V
STBY=1.5V
2.96
3.00
VIN=5.5V
VIN=4.0V
2.50
VIN=3.5V
2.00
1.50
1.00
Temp.=25°C
STBY=1.5V
0.50
Temp.=85°C
Output Voltage (V)
3.03
0
0.05
0.1
0.15
0.1
Fig. 127 Load Regulation
0.2
0.3
0.4
0.5
0.6
0
1
1.5
Fig. 129 STBY Threshold
1.000
Input Current (µA)
0.900
3.02
3.01
3.00
2.99
2.98
2.97
0.800
40.00
30.00
20.00
VIN=4.0V
STBY=1.5V
Io=0mA
10.00
2.96
2.95
10
35
60
85
Temp. (°C)
Fig. 130 VOUT vs Temp
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
0.700
0.600
0.500
0.400
VIN=4.0V
STBY=0V
Io=0mA
0.300
0.200
0.100
0.000
-0.100
0.00
-15
0.5
STBY Voltage (V)
50.00
VIN=4.0V
STBY=1.5V
Io=0.1mA
-40
Temp.=85°C
Temp.=25°C
Temp.=-40°C
1.00
Fig.128 OCP Threshold
3.05
3.03
1.50
Output Current (A)
Output Current (A)
3.04
2.00
0.00
0
0.2
2.50
0.50
0.00
2.95
Input Current (µA)
Dropout Voltage (V)
40
Vin Voltage (V)
Fig. 121 Output Voltage
Output Voltage (V)
60
0
2.9
Vin Voltage (V)
Output Voltage (V)
80
20
Temp.=25°C
VIN=STBY
2.96
VIN=STBY
0.0
Gnd Current (uA)
3.5
Output Voltage (V)
Output Voltage (V)
●Reference data
-40
-15
10
35
Temp. (°C)
Fig. 131 IGND vs Temp
17/27
60
85
-40
-15
10
35
60
85
Temp. (°C)
Fig. 132 IGND vs Temp (STBY)
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
●Reference data
BU30TA2WNVX / HFV
(Unless otherwise specified, Ta=25℃)
80
80
1.6
O u tpu t N o ise D e n sity [μ V / √ H z]
f= 0 .1 kHz
70
60
Ripple Rejection [dB]
Ripple Re je c tio n (dB )
70
50
40
30
Vin= 4.0V
Io=10mA
Ta = 25℃
20
10
60
f= 1 kH z
50
f= 1 0 kHz
40
30
f= 1 0 0 kHz
Co=1.0μF
Cin=none
Iout=10mA
temp=25℃
20
10
0
3
0
0.1
1
10
100
1000
Frequency (kHz)
Fig. 133 Ripple Rejection VS Freq.
4
Co=1.0μF
Cin=1.0μF
Iout=10mA
temp=25℃
1.4
1.2
1
0.8
0.6
0.4
0.2
0
5
0.1
1
Input Voltage VIN[V]
Fig. 134 Ripple Rejection VS VIN
Fig. 136 Load Response
Fig. 137 Load Response
Fig. 139 Load Response
Fig. 140 Load Response
Current Pulse=10kHz
Fig. 141 Load Response
Current Pulse=10kHz
www.rohm.com
100
Fig. 135 Output Noise Spectrl
Density VS Freq.
Fig. 138 Load Response
© 2009 ROHM Co., Ltd. All rights reserved.
10
Frequency f [kHz]
18/27
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
●Reference data
BU30TA2WNVX / HFV
(Unless otherwise specified, Ta=25℃)
Fig. 142 Load Response
Current Pulse=100kHz
Fig. 144 Start Up Time
Iout = 0mA
Fig. 147 Start Up Time(STBY=VIN)
Iout = 200mA
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Fig. 143 Load Response
Current Pulse=100kHz
Fig. 145 Start Up Time
Iout = 200mA
Fig. 148 Discharge Time
Iout = 0mA
19/27
Fig. 146 Start Up Time (STBY=VIN)
Iout = 0mA
Fig. 149 VIN Response
Iout = 10mA
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
BU33TA2WNVX / HFV
●Reference data
3.5
100
3.35
3.34
2.5
2.0
IO=0uA
IO=100uA
IO=50mA
IO=200mA
1.5
1.0
0.5
Temp.=25°C
VIN = STBY
IO=0uA
IO=100uA
IO=50mA
IO=200mA
3.33
3.32
3.31
3.30
3.29
3.28
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
40
Temp.=-40°C
Temp.=25°C
Temp.=85°C
3.3
3.4
3.5
3.6
0
3.7
0.5
1
1.5
2.5
110
Temp.=25°C
0.20
0.15
Temp.=-40°C
0.10
VIN=0.98 x VOUT
STBY = 1.5V
0.05
Temp.=85°C
8
Gnd Current (uA)
STBY Current (uA)
Temp.=85°C
Temp.=25°C
6
Temp.=-40°C
4
0.1
0.15
5.5
Temp.=-40°C
80
70
60
VIN = 4.3V
STBY = 1.5V
40
0
0.5
1
1.5
Output Current (A)
2
2.5
3
3.5
4
4.5
5
0
5.5
0.05
V STBY Voltage (V)
0.1
0.15
0.2
Output Current (A)
Fig. 154 STBY Input Current
Fig. 153 Dropout Voltage
Fig. 155 IOUT - IGND
3.50
3.50
3.35
5
Temp.=25°C
90
50
0.2
4.5
Temp.=85°C
2
0
0.05
4
100
VIN = STBY
0.00
0
3.5
120
10
0.30
0.25
3
Fig. 152 Circuit Current IGND
Fig. 151 Line Regulation
0.35
2
Vin Voltage (V)
Vin Voltage (V)
Fig. 150 Output Voltage
IO=0uA
VIN = STBY
0
3.2
Vin Voltage (V)
Dropout Voltage (V)
60
Temp=25°C
VIN = STBY
3.25
0
80
20
3.27
3.26
0.0
Gnd Current (uA)
Output Voltage (V)
3.0
Output Voltage (V)
(Unless otherwise specified, Ta=25℃)
VIN=4.3V
3.00
3.32
Temp.=25°C
Temp.=-40°C
3.31
3.30
3.29
3.28
Temp.=85°C
3.27
VIN = 4.3V
STBY = 1.5V
3.26
3.00
VIN=3.8V
VIN=5.5V
2.50
VIN=4.3V
2.00
1.50
1.00
STBY = 1.5V
0.50
3.25
Output Voltage (V)
3.33
Output Voltage (V)
Output Voltage (V)
3.34
0.05
0.1
0.15
0.1
0.2
Temp.=85°C
Temp.=25°C
Temp.=-40°C
1.00
0.3
0.4
0.5
0.6
0
0.5
Output Current (A)
Output Current (A)
Fig. 156 Load Regulation
1
1.5
STBY Voltage (V)
Fig. 158 STBY Threshold
Fig. 157 OCP Threshold
3.35
50.00
1.000
3.34
0.900
3.32
3.31
3.30
3.29
3.28
VIN=4.3V
STBY=1.5V
Io=0.1mA
3.27
3.26
0.800
40.00
30.00
20.00
VIN=4.3V
STBY=1.5V
Io=0mA
10.00
3.25
Gnd Current (uA)
3.33
Gnd Current (uA)
Output Voltage (V)
1.50
0.00
0
0.2
2.00
0.50
Temp=25℃
0.00
0
2.50
-15
10
35
60
85
Temp. (°C)
Fig. 159 VOUT vs Temp
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
0.600
0.500
0.400
0.300
VIN=4.3V
STBY=0V
0.200
0.100
0.000
0.00
-40
0.700
-0.100
-40
-15
10
35
60
Temp. (°C)
Fig. 160 IGND vs Temp
20/27
85
-40
-15
10
35
60
85
Temp. (°C)
Fig. 161 IGND vs Temp (STBY)
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
●Reference data
BU33TA2WNVX / HFV
(Unless otherwise specified, Ta=25℃)
80
1.8
70
60
Ripple Rejection [dB]
R ipple R e je c tio n (dB )
f= 1 kHz
50
40
30
Vin= 4.3V
Io=10mA
Ta = 25℃
20
10
60
f= 0 .1 kHz
50
f= 1 0 kHz
40
30
f= 1 0 0 kHz
20
10
Co=1.0μF
Cin=none
Iout=10mA
temp=25℃
0
0
3.3
0.1
1
10
100
1000
Frequency (kHz)
Fig. 162 Ripple Rejection VS Freq.
4.3
5.3
Input Voltage VIN[V]
Fig. 163 Ripple Rejection VS VIN
Fig. 165 Load Response
O u tpu t N o ise D e n sity [μ V / √ H z ]
80
70
1.6
Co=1.0μF
Cin=1.0μF
Iout=10mA
temp=25℃
1.4
1.2
1
0.8
0.6
0.4
0.2
0
0.1
1
Fig. 166 Load Response
Fig. 168 Load Response
Fig. 169 Load Response
Current Pulse=10kHz
Fig. 170 Load Response
Current Pulse=10kHz
www.rohm.com
100
Fig. 164 Output Noise Spectrl
Density VS Freq.
Fig. 167 Load Response
© 2009 ROHM Co., Ltd. All rights reserved.
10
Frequency f [kHz]
21/27
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
●Reference data
BU33TA2WNVX / HFV
(Unless otherwise specified, Ta=25℃)
Fig. 172 Load Response
Current Pulse=100kHz
Fig. 171 Load Response
Current Pulse=100kHz
Fig. 173 Start Up Time
Iout = 0mA
Fig. 176 Start Up Time(STBY=VIN)
Iout = 200mA
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Fig. 174 Start Up Time
Iout = 200mA
Fig. 177 Discharge Time
Iout = 0mA
22/27
Fig. 175 Start Up Time (STBY=VIN)
Iout = 0mA
Fig. 178 VIN Response
Iout = 10mA
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
●About power dissipation (Pd)
As for power dissipation, an approximate estimate of the heat reduction characteristics and internal power consumption of
IC are shown, so please use these for reference. Since power dissipation changes substantially depending on the
implementation conditions (board size, board thickness, metal wiring rate, number of layers and through holes, etc.), it is
recommended to measure Pd on a set board. Exceeding the power dissipation of IC may lead to deterioration of the original
IC performance, such as causing operation of the thermal shutdown circuit or reduction in current capability. Therefore, be
sure to prepare sufficient margin within power dissipation for usage.
Calculation of the maximum internal power consumption of IC (PMAX)
PMAX=(VIN-VOUT)×IOUT(MAX.) (VIN: Input voltage VOUT: Output voltage IOUT(MAX): Maximum output current)
○
SSON004X1216
Measurement conditions
Evaluation Board 1
(Single-side Board)
Evaluation Board 2
(Double-side Board)
40
40
20
20
40 20
40 20
Layout of Board for
Measurement
(Unit: mm)
Top Layer (Top View)
Top Layer (Top View)
40
40
20
IC Implementation
Position
40
40 20
Bottom Layer (Top View)
Bottom Layer (Top View)
Measurement State
With board implemented (Wind speed 0 m/s)
With board implemented (Wind speed 0 m/s)
Board Material
Glass epoxy resin (Single-side board)
Glass epoxy resin (Double-side board)
Board Size
40 mm x 40 mm x 0.8 mm
40 mm x 40 mm x 0.8 mm
Top layer
Metal (GND) wiring rate: Approx. 25%
Metal (GND) wiring rate: Approx. 25%
Bottom layer
Metal (GND) wiring rate: Approx 0%
Metal (GND) wiring rate: Approx 25%
0 holes
Wiring
Rate
Power Dissipation
1100 mW
Diameter 0.5 mm  12 holes
1250 mW
Thermal Resistance
θja=91°C/W
θja=80°C/W
Through Hole
1500
1250 mW
Evaluation board 2
(Double-side board)
1000
Pd (mW)
1100 mW
* Please design the margin so that PMAX
becomes is than Pd (PMAXPd) within
the usage temperature range.
Evaluation board 1
(Single-side board)
500
- Standard ROHM board Size: 70 mm  70 mm  1.6 mm
Material: Glass epoxy board
Standard ROHM board
220 mW
0
0
25
50
75
100
125
Ta ( ℃)
Fig.179 SSON004X1216
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Power dissipation heat reduction characteristics (Reference)
23/27
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
HVSOF5
Pd(W)
○
Fig.180
* Please design the margin so that PMAX
becomes is than Pd (PMAXPd) within
the usage temperature range.
HVSOF5 Power dissipation heat reduction characteristics (Reference)
●DEVICE TYPE & Mark
○SSON004X1216
Device type:
○HVSOF5
BUXXTA2WNVX
Device typce:
BUXXTA2WHFV
a
a
package
a
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
XX
output
voltage
SSON004
X1216
HVSOF5
15
1.5V typ.
AA
BA
18
1.8V typ.
AB
BB
23
2.3V typ.
AG
BC
25
2.5V typ.
AC
BD
26
2.6V typ.
AD
BE
27
2.7V typ.
AE
BF
28
2.8V typ.
AF
BG
2J
2.85V typ.
AG
BH
29
2.9V typ.
AH
BJ
30
3.0V typ.
AJ
BK
31
3.1V typ.
AK
BL
32
3.2V typ.
AL
BM
33
3.3V typ.
AM
BN
34
3.4V typ.
AN
BP
24/27
2009.05 - Rev.B
BUTA2WNVX Series, BUTA2WHFV Series
○
Technical Note
SSON004X1216
Mark
Lot No.
○
HVSOF5
標印
Makrk
Lot No.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
25/27
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
 Other notes
- About absolute maximum rating
Breakage may occur when absolute maximum ratings such as applied voltage and operating temperature range are
exceeded. Short mode or open mode cannot be specified at occurrence of a break, so please prepare physical safety
measures (e.g., fuse) if such special mode in which the absolute maximum rating is exceeded can be assumed.
- About GND potential
Please be sure that the potential of the GND terminal is the lowest in any operating condition.
- About thermal design
Please provide thermal design with sufficient margin, taking power dissipation (Pd) in actual usage conditions into
consideration.
- About short between pins and misattachment
Please be careful regarding the IC direction and misalignment at attachment onto a printed circuit board. Misattachment
may cause a break of IC. Short caused by foreign matter between outputs, output and power supply, or GNDs may also
lead to a break.
- About operation in a strong electromagnetic field
Please note that usage in a strong electromagnetic field may cause malfunction.
- About common impedance
Please give due consideration to wiring of the power source and GND by reducing common-mode ripple or
making ripple as small as possible (e.g., making the wiring as thick and short as possible, or reducing ripple by
LC), etc.
- About STBY terminal voltage
Set STBY terminal voltage to 0.3 V or less to put each channel into a standby state and to 1.5 V or more to put each
channel into an operating state. Do not fix STBY terminal voltage to 0.3 V or more and 1.5 V or less or do not lengthen
the transition time. This may cause malfunction or failure.
When shorting the VIN terminal and STBY terminal for usage, the status will be “STBY=VIN=LOW” at turning the power
OFF, and discharge of the VOUT terminal cannot operate, which means voltage may remain for a certain time in the
VOUT terminal. Since turning the power ON again in this state may cause overshoot, turn the power ON for use after the
VOUT terminal is completely discharged.
- About overcurrent protection circuit
Output has a built-in overcurrent protection circuit, which prevents IC break at load short. Note that this protection circuit
is effective for prevention of breaks due to unexpected accidents. Please avoid usage by which the protection circuit
operates continuously.
- About thermal shutdown
Output is OFF when the thermal circuit operates since a temperature protection circuit is built in to prevent thermal
breakdown. However, it recovers when the temperature returns to a certain temperature. The thermal circuit operates at
emergency such as overheating of IC. Since it is prepared to prevent IC breakdown, please do not use it in a state in
which protection works.
Reverse current
 About reverse current
For applications on which reverse current is assumed to flow into IC,
it is recommended to prepare a path to let the current out
by putting a bypass diode between the VIN-VOUT terminals.
VIN
STBY
OUT
GND
Fig.181 Example of bypass diode connection
 About testing on a set board
When connecting a capacitor to a terminal with low impedance for testing on a set board, please be sure to discharge for
each process since IC may be stressed. As a countermeasure against static electricity, prepare grounding in the assembly
process and take sufficient care in transportation and storage. In addition, when connecting a capacitor to a jig in a testing
process, please do so after turning the power OFF and remove it after turning the power OFF.
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
26/27
2009.05 - Rev.B
Technical Note
BUTA2WNVX Series, BUTA2WHFV Series
●Selection of order type
B
1
U
ROHM type
5
T A 2
Output voltage
15 : 1.5V
18 : 1.8V
25 : 2.5V
26 : 2.6V
27 : 2.7V
28 : 2.8V
2J : 2.85V
29 : 2.9V
30 : 3.0V
31 : 3.1V
32 : 3.2V
33 : 3.3V
34 : 3.4V
W
Lineup
High-speed Load Response
Full CMOS LDO Regulators
N
V
X
T
Package
NVX : SSON004X1216
HFV : HVSOF5
R
Package specification
TR : reel shape emboss taping
SSON004X1216
<Tape and Reel information>
1.6 ± 0.1
1.2±0.1
Tape
Embossed carrier tape
Quantity
5000pcs
Direction
of feed
0.6MAX
1PIN MARK
1
2
4
3
+0.03
0.02 -0.02
0.65±0.1
)
0.8 ± 0.1
0.2 ± 0.1
0.08 S
+0.05
0.2 -0.04
The direction is the 1pin of product is at the upper right when you hold
( reel on the left hand and you pull out the tape on the right hand
(0.12)
S
TR
Direction of feed
1pin
0.75±0.1
Reel
(Unit : mm)
∗ Order quantity needs to be multiple of the minimum quantity.
HVSOF5
1.0±0.05
3000pcs
4
4
(0.91)
5
0.2MAX
Embossed carrier tape
Quantity
(0.05)
Tape
(0.3)
5
(0.41)
1.6±0.05
(0.8)
Direction
of feed
TR
The direction is the 1pin of product is at the upper right when you hold
( reel on the left hand and you pull out the tape on the right hand
)
3 2 1
1 2 3
1pin
0.13±0.05
S
+0.03
0.02 –0.02
0.6MAX
1.2±0.05
(MAX 1.28 include BURR)
<Tape and Reel information>
1.6±0.05
0.1
S
0.5
0.22±0.05
0.08
Direction of feed
M
(Unit : mm)
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
Reel
27/27
∗ Order quantity needs to be multiple of the minimum quantity.
2009.05 - Rev.B
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller,
fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of
any of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2009 ROHM Co., Ltd. All rights reserved.
R0039A