CMOS LDO Regulators for Portable Equipments 1ch 200mA CMOS LDO Regulators BUTA2WNVX series, BUTA2WHFV series No.11020ECT01 ●Description BU□□TA2WNVX /HFV series is high-performance FULL CMOS regulator with 200-mA output, which is mounted on microminiature package SSON004X1216 (1.2 mm 1.6 mm 0.6 mm) &HVSOF5(1.6mm 1.6mm 0.6mm). It has excellent noise characteristics and load responsiveness characteristics despite its low circuit current consumption of 40 µA. It is most appropriate for various applications such as power supplies for logic IC, RF, and camera modules. Microminiature package SSON004X1216 & HVSOF5 with built-in heatsink is adopted for the package, which contributes to the space-saving design of the set. ●Features 1) High-accuracy output voltage of 1% (25 mV on 1.5-V & 1.8-V products) 2) High ripple rejection: 70 dB (Typ., 1 kHz, VOUT1.8 V)) 3) Compatible with small ceramic capacitor (CIN=Co=1.0 µF) 4) Low current consumption: 40 µA 5) ON/OFF control of output voltage 6) With built-in overcurrent protection circuit and overheat protection circuit 7) With built-in output discharge circuit 8) Adopting microminiature power package SSON004X1216 ●Applications Battery-powered portable equipment, etc. ●Line up ■ 200 mA BU□□TA2WNVX / HFV series Product Name 1.5 1.8 2.5 2.6 2.7 2.8 2.85 2.9 3.0 3.1 3.2 3.3 3.4 Package BU□□TA2WNVX ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ SSON004X1216 BU□□TA2WHFV ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ HVSOF5 Model name: BH□□TA2W□□□ a b Symbol Contents Specification of output voltage a b □□ Output voltage (V) □□ Output voltage (V) □□ Output voltage (V) 15 1.5V(Typ.) 28 2.8V(Typ.) 32 3.2V(Typ.) 18 1.8V(Typ.) 2J 2.85V(Typ.) 33 3.3V(Typ.) 25 2.5V(Typ.) 29 2.9V(Typ.) 34 3.4V(Typ.) 26 2.6V(Typ.) 30 3.0V(Typ.) - - 27 2.7V(Typ.) 31 3.1V(Typ.) - - Package www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. NVX :SSON004X1216 HFV :HVSOF5 1/29 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Absolute maximum rating Parameter Symbol Ratings Maximum applied power voltage VMAX -0.3 ~ Unit +6.5 V Pd1 220*1 (SSON004X1216) Pd2 410*2 (HVSOF5) Maximum junction temperature TjMAX +125 Operational temperature range Topr -40 ~ +85 ℃ Storage temperature range Tstg -55 ~ +125 ℃ Power dissipation *1 *2 mW ℃ When 1 PCB (70 mm 70 mm, thickness 1.6-mm glass epoxy) a standard ROHM board is implemented. Reduced to 2.2 mW/C when used at Ta=25C or higher. When 1 PCB (70 mm 70 mm, thickness 1.6-mm glass epoxy) a standard ROHM board is implemented. Reduced to 4.1 mW/C when used at Ta=25C or higher. ●Recommended operating range (Do not exceed Pd.) Parameter Input power supply voltage Maximum output current Symbol Ratings VIN 2.5 ~ IMAX Unit 5.5 V 200 mA ●Recommended operating conditions Parameter Symbol Ratings Min. Typ. Max. Unit Conditions Input capacitor CIN 0.5*3 1.0 - μF A ceramic capacitor is recommended. Output capacitor CO 0.5*3 1.0 - μF A ceramic capacitor is recommended. *3 Set the capacity value of the capacitor so that it does not fall below the minimum value, taking temperature characteristics, DC device characteristics, and change with time into consideration. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 2/29 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Electrical characteristics (Unless otherwise specified Parameter Ta=25℃, VIN=VOUT+1.0 V (VIN=3.5 V on VOUT=1.8-V and1.5-V products), STBY=1.5 V, CIN=1.0 µF, CO=1.0 µF) Limits Symbol Unit Conditions Min. Typ. Max. VOUT ×1.01 VOUT ×0.99 Output voltage VOUT -25 mV Circuit current (at STBY) VOUT +25 mV IOUT=10 μA, VOUT<2.5 V IIN - 40 95 μA IOUT=0mA ISTBY - - 1 μA STBY=0 V VRR=-20 dBv, fRR=1 kHz, IOUT=10 mA, 1.5 V≤VOUT≤1.8 V 70 Ripple rejection RR 55 - dB VRR=-20 dBv,fRR=1 kHz, IOUT=10 mA, 2.5 V≤VOUT 65 Input/Output voltage difference IOUT=10 μA, VOUT≥2.5 V VOUT VOUT Circuit current V - 400 800 mV 2.5 V≤VOUT≤2.6 V (VIN=0.98*VOUT, IOUT=200 mA) - 360 720 mV 2.7 V≤VOUT≤2.85 V (VIN=0.98*VOUT, IOUT=200 mA) - 330 660 mV 2.9 V≤VOUT≤3.1 V (VIN=0.98*VOUT,IOUT=200 mA) - 300 600 mV 3.2 V≤VOUT≤3.4 V (VIN=0.98*VOUT, IOUT=200 mA) VSAT Line regulation VDL - 2 20 mV VIN=VOUT+1.0 V to 5.5 V, IOUT=10 μA Load regulation VDLO - 10 80 mV IOUT=0.01 mA to 100 mA Overcurrent protection detection ILMAX current 250 400 700 mA Vo=VOUT*0.8 Output short-circuit current ISHORT 20 70 150 mA Vo=0 V Output discharge resistance RDSC 20 40 80 Ω Standby pull-down resistance RSTB 500 1000 2000 kΩ Standby control ON VSTBH 1.5 - 5.5 V OFF VSTBL -0.3 - 0.3 V VIN=4.0 V, STBY=0 V * This product does not have radiation-proof design. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 3/29 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Block diagram, recommended circuit diagram, and pin configuration diagram BH□□TA2WNVX VIN VIN 4/3 VREF VOUT Cin VOUT 1 1/4 2 OCP Co GND VSTB Y STBY 3/1 STBY Discharge Recommended ceramic capacitor for Cin & Co Murata Manufacturing Co., Ltd. GRM188B11A105KA61D Fig.1 Recommended circuit diagram BU□□TA2WNVX(SSON004X1216) 4 3 1 2 PIN No. Symbol Function 1 VOUT Voltage output 2 GND Grounding 3 STBY ON/OFF control of output voltage (High: ON, Low: OFF) 4 VIN PIN No. Symbol 1 STBY ON/OFF control of output voltage (High:ON, Low:OFF) 2 GND Grounding 3 VIN Power input 4 VOUT 5 N.C. Power input BU□□TA2WHFV(HVSOF5) 5 1 4 2 3 www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 4/29 Function Voltage output No Connect 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Input/Output terminal equivalent circuit schematic 1pin (VOUT) 2pin (GND) 3pin (STBY) VIN 4pin (VIN) VIN VOUT STBY Fig.2 Input/Output equivalent circuit ●About input/output capacitor Capacity value of ceramic capacitor - DC bias characteristics (Example) 10-V withstand voltage B1characteristics GRM188B11A105KA61D 10 0 -10 Capacitance Change [%] It is recommended to place a capacitor as close as possible to the pins between the input terminal and GND or between the output terminal and GND. The capacitor between the input terminal and GND becomes valid when source impedance increases or when wiring is long. The larger the capacity of the output capacitor between the output terminal and GND is, the better the stability and characteristics in output load fluctuation become. However, please check the status of actual implementation. Ceramic capacitors generally have variation, temperature characteristics, and direct current bias characteristics and the capacity value also decreases with time depending on the usage conditions. It is recommended to select a ceramic capacitor upon inquiring about detailed data of the related manufacturer. 10-V withstand voltage B characteristics -20 6.3-V withstand voltage B characteristics -30 10-V withstand voltage F characteristics -40 -50 -60 4-V withstand voltage X6S characteristics 10-V withstand voltage F characteristics -70 -80 -90 -100 0 0.5 1 1.5 2 2.5 3 3.5 4 DC Bias Voltage [V] Fig.3 Capacity – bias characteristics ●About the equivalent series resistance (ESR) of a ceramic capacitor 100 ESR [Ω] Capacitors generally have ESR (equivalent series resistance) and it operates stably in the ESR-IOUT area shown on the right. Since ceramic capacitors, tantalum capacitors, electrolytic capacitors, etc. generally have different ESR, please check the ESR of the capacitor to be used and use it within the stability area range shown in the right graph for evaluation of the actual application. Unstable area 10 Stability area 1 0.1 0.01 0 50 100 150 200 IOUT [mA] Fig.4 Stability area characteristics (Example) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 5/29 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Reference data BU15TA2WNVX / HFV (Ta=25ºC unless otherwise specified.) 100 1.55 1.54 1.5 1.2 IO=0uA IO=100uA IO=50mA IO=200mA 0.9 0.6 Temp=25°C VIN = STBY 0.3 IO=0uA IO=100uA IO=50mA IO=200mA 1.53 1.52 1.51 1.50 1.49 1.48 1.47 Temp=25°C VIN = STBY 1.46 0.0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 1.25 1.35 1.45 1.55 1.65 1.75 1.85 1.95 Vin Voltage (V) 40 Temp=-40°C Temp=25°C Temp=85°C 20 0 2.05 2.15 2.25 0.5 1 1.5 2 2.5 3 60 Temp=-40°C Temp=25°C Temp=85°C 40 20 IO=200mA VIN = STBY Temp=85°C 8 Gnd Current (uA) STBY Current (uA) 80 Temp=25°C 6 Temp=-40°C 4 2 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 0 0.5 1 1.5 Vin Voltage (V) Fig. 8 Circuit Current IGND 2 2.5 3 3.5 4 4.5 5 Temp=-40°C 1.51 1.50 1.49 1.48 Temp=85°C VIN = 3.5V STBY = 1.5V 1.46 0.1 0.15 VIN=3.5V 1.25 1.00 VIN=2.5V 0.75 0.50 Temp=25°C STBY = 1.5V 0.00 0.2 0.10 Fig. 11 Load Regulation 0.20 0.30 0.40 0.50 1.50 1.49 VIN=3.5V STBY=1.5V Io=0.1mA 1.46 1.45 -15 10 35 Temp=85°C Temp=25°C Temp=-40°C 0.50 0.5 40.00 30.00 20.00 VIN=3.5V STBY=1.5V Io=0mA 10.00 60 85 Temp (°C) Fig. 14 VOUT vs. Temp www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. -40 -15 10 35 60 Temp (°C) Fig. 15 IGND vs. Temp 6/29 1 1.5 Fig. 13 STBY Threshold 0.00 -40 0.75 STBY Voltage (V) Gnd Current (uA) Input Current (uA) 1.51 1.47 1.00 0 50.00 1.52 0.2 0.00 1.54 1.53 0.15 1.25 0.25 0.60 Fig. 12 OCP Threshold 1.55 0.1 1.50 Output Current (A) Output Current (A) 1.48 0.05 1.75 1.50 0.00 0.05 VIN = 3.5V STBY = 1.5V 2.00 0.25 1.45 0 Temp=-40°C 60 Fig. 10 IOUT - IGND Output Voltage (V) Output Voltage (V) Temp=25°C 1.47 70 Output Current (A) VIN=5.5V 1.75 1.52 80 0 5.5 2.00 1.53 Temp=25°C 90 Fig. 9 STBY Input Current 1.54 5.5 Temp=85°C STBY Voltage (V) 1.55 5 40 0 0 4.5 100 50 VIN = STBY 0 4 120 110 100 3.5 Fig. 7 Circuit Current IGND 10 120 IO=0uA VIN = STBY Vin Voltage (V) Fig. 6 Line Regulation 140 Gnd Current (uA) 60 Vin Voltage (V) Fig. 5 Output Voltage Output Voltage (V) 80 0 1.45 0 Output Voltage (V) Gnd Current (uA) Output Voltage (V) Output Voltage (V) 1.8 85 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000 -0.100 -40 VIN=3.5V STBY=0V -15 10 35 60 85 Temp (°C) Fig. 16 IGND vs. Temp (STBY) 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series (Ta=25ºC unless otherwise specified.) 80 80 0.7 f= 0 .1 kHz 70 Ripple Rejection [dB] Ripple Re je c tion (dB ) 70 O u tpu t N o is e D e n s ity [μ V / √ H z ] ●Reference data BU15TA2WNVX /HFV 60 50 40 30 Vin= 3.5V Io=10mA Ta = 25℃ 20 10 f= 1 kHz 60 f= 1 0 kHz 50 40 30 f= 1 0 0 kHz Co=1.0μF Cin=none Iout=10mA temp=25℃ 20 10 0 0 2.5 0.1 1 10 100 1000 4.5 Input Voltage VIN[V] Frequency (kHz) Fig. 17 Ripple Rejection vs. Freq. 3.5 Fig. 18 Ripple Rejection vs. VIN (Iout=10 mA) 5.5 Co=1.0μF Cin=1.0μF Iout=10mA temp=25℃ 0.6 0.5 0.4 0.3 0.2 0.1 0 0.1 1 10 Frequency f [kHz] Fig. 19 Output Noise Spectral Density vs. Freq. Fig. 20 Load Response Fig. 21 Load Response Fig. 22 Load Response Fig. 23 Load Response Fig. 24 Load Response Current Pulse=10 kHz www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 100 Fig. 25 Load Response Current Pulse=10 kHz 7/29 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Reference data BU15TA2WNVX / HFV (Ta=25ºC unless otherwise specified.) Fig. 26 Load Response Current Pulse=100 kHz Fig. 27 Load Response Current Pulse=100 kHz Fig. 28 Startup Time Iout = 0 mA Fig. 29 Startup Time Iout = 200 mA Fig. 31 Startup Time (STBY=VIN) Iout = 200mA Fig. 32 Discharge Time Iout = 0 mA www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 8/29 Fig. 30 Startup Time (STBY=VIN) Iout = 0 mA Fig. 33 VIN Response Iout = 10 mA 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Reference data BU18TA2WNVX / HFV (Unless otherwise specified, Ta=25℃) 3.5 1.84 2.5 2.0 1.5 IO=0uA IO=100uA IO=50mA IO=200mA 1.0 0.5 Temp=25°C VIN = STBY IO=0uA IO=100uA IO=50mA IO=200mA 1.83 1.82 1.81 1.80 1.79 1.78 1.77 Temp=25°C VIN = STBY 1.76 0.0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 1.75 1.85 1.95 Vin Voltage (V) 2.05 2.15 2.25 40 Temp=-40°C Temp=25°C Temp=85°C 20 0 2.35 0.5 1 1.5 2 2.5 3 60 Temp=-40°C Temp=25°C Temp=85°C 40 IO=200mA VIN = STBY 20 Temp=85°C 8 Gnd Current (uA) STBY Current (uA) 80 Temp=25°C 6 Temp=-40°C 4 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 1.80 1.79 1.78 VIN = 3.5V STBY = 1.5V 0.05 0.1 0.15 0.2 VIN=5.5V 2.00 VIN=3.5V 1.50 1.00 VIN=2.5V Temp=25°C STBY = 1.5V 0.10 0.20 0.30 0.40 0.50 0.60 1.81 1.80 1.79 VIN=3.5V STBY=1.5V Io=0.1mA 40.00 30.00 20.00 VIN=3.5V STBY=1.5V Io=0mA 10.00 0.00 1.75 -15 10 35 60 85 Temp (°C) Fig. 43 VOUT vs Temp www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. -40 -15 10 35 60 Temp (°C) Fig. 44 IGND vs Temp 9/29 1 1.5 Fig. 42 STBY Threshold G nd Current (uA) Input Current (uA) 1.82 0.5 STBY Voltage (V) Fig. 41 OCP Threshold 1.83 -40 Temp=85°C Temp=25°C Temp=-40°C 1.00 0 1.84 1.76 1.50 0.50 50.00 1.77 2.00 Output Current (A) Fig. 40 Load Regulation 1.78 2.50 0.00 0.00 Output Current (A) 1.85 0.2 3.00 2.50 0.00 0 0.15 3.50 0.50 1.75 0.1 Fig. 39 IOUT - IGND Output Voltage (V) Output Voltage (V) Temp=-40°C 1.81 1.76 0.05 Output Current (A) 3.00 Temp=25°C Temp=85°C VIN = 3.5V STBY = 1.5V 0 5.5 3.50 1.77 Temp=-40°C 60 Fig. 38 STBY Input Current 1.84 1.82 70 STBY Voltage (V) Fig. 37 Circuit Current IGND 1.83 80 40 Vin Voltage (V) 1.85 5.5 Temp=25°C 90 50 5.5 5 Temp=85°C VIN = STBY 0 4.5 100 2 0 0 4 120 110 100 3.5 Fig. 36 Circuit Current IGND 10 120 IO=0uA VIN = STBY Vin Voltage (V) Fig. 35 Line Regulation 140 Gnd Current (uA) 60 Vin Voltage (V) Fig. 34 Output Voltage Output Voltage (V) 80 0 1.75 0 Output Voltage (V) Gnd Current (uA) Output Voltage (V) Output Voltage (V) 100 1.85 3.0 85 1.000 0.900 0.800 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000 -0.100 -40 VIN=3.5V STBY=0V -15 10 35 60 85 Temp (°C) Fig. 45 IGND vs Temp (STBY) 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series 80 70 70 60 50 40 30 Vin= 3.5V Io=10mA Ta = 25℃ 20 10 0.7 f= 0 .1 kHz O u tpu t N oise D e n sity [μ V / √ H z] 80 Ripple Rejection [dB] R ipple R ejection (dB) ●Reference data BU18TA2WNVX / HFV (Unless otherwise specified, Ta=25℃) f= 1 kHz 60 f= 1 0 kHz 50 40 f= 1 0 0 kHz 30 Co=1.0μF Cin=none Iout=10mA temp=25℃ 20 10 0 0 0.1 1 10 100 2.5 1000 4.5 5.5 0.5 0.4 0.3 0.2 0.1 0 0.1 1 Input Voltage VIN[V] Frequency (kHz) Fig. 46 Ripple Rejection VS Freq. 3.5 Co=1.0μF Cin=1.0μF Iout=10mA temp=25℃ 0.6 Fig. 47 Ripple Rejection VS VIN 10 Frequency f [kHz] 100 Fig. 48 Output Noise Spectrl Density VS Freq. Fig. 49 Load Response Fig. 50 Load Response Fig. 51 Load Response Fig. 52 Load Response ⇔ Fig. 53 Load Response Current Pulse=10kHz www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. Fig. 54 Load Response Current Pulse=10kHz 10/29 2011.01 - Rev.C BUTA2WNVX series, BUTA2WHFV series ●Reference data BU18TA2WNVX / HFV Technical Note (Unless otherwise specified, Ta=25℃) ⇔ Fig. 55 Load Response Current Pulse=100kHz Fig. 57 Start Up Time Iout = 0mA Fig. 60 Start Up Time(STBY=VIN) Iout = 200mA www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. Fig. 56 Load Response Current Pulse=100kHz Fig. 58 Start Up Time Iout = 200mA Fig. 61 Discharge Time Iout = 0mA 11/29 Fig. 59 Start Up Time (STBY=VIN) Iout = 0mA Fig. 62 VIN Response Iout = 10mA 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Reference data BU25TA2WNVX / HFV (Unless otherwise specified, Ta=25℃) 3.5 2.54 2.5 2.0 IO=0uA IO=100uA IO=50mA IO=200mA 1.5 1.0 0.5 Temp.=25°C VIN=STBY 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 2.52 2.51 2.50 2.49 2.48 2.47 Temp.=25°C VIN=STBY 2.46 0.0 0 IO=0uA IO=100uA IO=50mA IO=200mA 2.53 Gnd Current (uA) Output Voltage (V) Output Voltage (V) 100 2.55 3.0 2.4 2.5 2.6 2.7 2.8 40 Temp.=-40°C Temp.=25°C Temp.=85°C 20 2.9 0 3 0.5 1 1.5 2 2.5 0.35 Temp.=25°C 0.30 0.25 Temp.=-40°C 0.20 0.15 0.10 VIN=0.98*VOUT STBY=1.5V 0.05 Temp.=85°C 8 Gnd Current (uA) STBY Current (uA) 110 Temp.=85°C Temp.=25°C 6 Temp.=-40°C 4 2 0.05 0.1 0.15 4 4.5 5 5.5 Temp.=-40°C 100 Temp.=25°C 90 80 Temp.=85°C 70 60 50 0 0.00 0 3.5 120 10 0.45 0.40 3 Fig. 65 Circuit Current IGND Fig. 64 Line Regulation 0.50 IO=0uA VIN=STBY Vin Voltage (V) Vin Voltage (V) Fig. 63 Output Voltage Dropout Voltage (V) 60 0 2.45 5.5 Vin Voltage (V) 80 40 0 0.2 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0 5.5 0.05 STBY Voltage (V) Output Current (A) Fig. 66 Dropout Voltage Fig. 67 STBY Input Current 2.55 0.1 0.15 0.2 Output Current (A) Fig. 68 IOUT - IGND 3.00 3.50 Temp.=25°C 2.52 Temp.=85°C 2.51 2.50 2.49 2.48 2.47 VIN=3.5V STBY=1.5V Temp.=-40°C 2.46 3.00 2.50 VIN=5.5V VIN=3.5V 2.00 VIN=3.0V 1.50 1.00 Temp.=25°C 0.50 0.00 0 0.05 0.1 0.15 0.2 0 0.1 0.2 Output Current (A) 0.3 0.4 0.5 1.50 Temp.=85°C Temp.=25°C Temp.=-40°C 1.00 0.00 0.6 0 0.5 1.5 Fig. 71 STBY Threshold 1.000 50.00 VIN=3.5V STBY=1.5V Io=0.1mA 1 STBY Voltage (V) Fig. 70 OCP Threshold 2.55 0.900 2.52 2.51 2.50 2.49 2.48 2.47 0.800 40.00 Gnd Current (uA) Gnd Current (uA) 2.53 2.00 Output Current (A) Fig. 69 Load Regulation 2.54 2.50 0.50 STBY=1.5V 2.45 Output Voltage (V) Output Voltage (V) 2.53 Output Voltage (V) Output Voltage (V) 2.54 VIN=3.5V STBY=1.5V Io=0mA 30.00 20.00 10.00 0.700 0.600 0.500 0.400 0.300 0.200 VIN=3.5V STBY=0V 0.100 2.46 0.000 2.45 -0.100 0.00 -40 -15 10 35 60 85 Temp. (°C) Fig. 72 VOUT vs Temp www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. -40 -15 10 35 60 Temp. (°C) Fig. 73 IGND vs Temp 12/29 85 -40 -15 10 35 60 85 Temp. (°C) Fig. 74 IGND vs Temp (STBY) 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Reference data BU25TA2WNVX / HFV (Unless otherwise specified, Ta=25℃) 80 80 1.2 O utput N oise D ensity [μ V /√ H z] f= 0 .1 kHz 70 60 Ripple Rejection [dB] Ripple Rejection (dB ) 70 50 40 30 20 Vin= 3.5V Io=10mA Ta = 25℃ 10 60 f= 1 kHz 50 f= 1 0 kHz 40 f= 1 0 0 kHz 30 Co=1.0μF Cin=none Iout=10mA temp=25℃ 20 10 0 0 0.1 1 10 100 1000 Frequency (kHz) 2.5 3.5 4.5 5.5 Co=1.0μF Cin=1.0μF Iout=10mA temp=25℃ 1 0.8 0.6 0.4 0.2 0 0.1 I OU T=0m A →100m A 10 Frequency f [kHz] I OU T=100m A →0m A Fig. 79 Load Response Fig. 78 Load Response Fig. 80 Load Response Fig. 81 Load Response ⇔ ⇔ Fig. 83 Load Response Current Pulse=10kHz Fig. 82 Load Response Current Pulse=10kHz www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 100 Fig. 77 Output Noise Spectrl Density VS Freq. Fig. 76 Ripple Rejection VS VIN Fig. 75 Ripple Rejection VS Freq. 1 Input Voltage VIN[V] 13/29 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Reference data BU25TA2WNVX / HFV (Unless otherwise specified, Ta=25℃) ⇔ ⇔ Fig. 84 Load Response Current Pulse=100kHz Fig. 86 Start Up Time Iout = 0mA Fig. 89 Start Up Time(STBY=VIN) Iout = 200mA www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. Fig. 85 Load Response Current Pulse=100kHz Fig. 87 Start Up Time Iout = 200mA Fig. 90 Discharge Time Iout = 0mA 14/29 Fig. 88 Start Up Time (STBY=VIN) Iout = 0mA Fig. 91 VIN Response Iout = 10mA 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Reference data BU28TA2WNVX / HFV (Unless otherwise specified, Ta=25℃) 3.5 IO=0uA 2.84 2.5 2.0 IO=0uA IO=100uA IO=50mA IO=200mA 1.5 1.0 Temp.=25°C VIN = STBY 0.5 0.0 IO=0uA IO=100uA IO=50mA IO=200mA 2.83 2.82 2.81 80 Gnd Current (uA) Output Voltage (V) Output Voltage (V) 100 2.85 3.0 2.80 2.79 2.78 Temp.=25°C 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 2.76 VIN = STBY 5.5 2.8 2.9 3 3.1 3.2 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 Vin Voltage (V) Vin Voltage (V) Fig. 94 Circuit Current IGND Fig. 93 Line Regulation 10 0.40 120 0.35 110 Temp.=85°C 0.25 Temp.=25°C 0.20 Temp.=-40°C 0.15 0.10 8 Temp.=85°C Temp.=25°C 6 Temp.=-40°C 4 2 VIN=0.98 x VOUT 0.05 Gnd Current (uA) 0.30 STBY Current (uA) 90 Temp.=25°C 80 70 0 0.05 0.1 0.15 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0.15 0.2 3.50 VIN=3.8V 3.00 3.00 2.82 Output Voltage (V) STBY = 1.5V 0.1 Fig. 97 IOUT - IGND 3.50 2.85 2.83 0.05 Output Currnt (A) Fig. 96 STBY Input Current Fig. 95 Dropout Voltage VIN = 3.8V STBY = 1.5V 0 5.5 STBY Voltage (V) Output Current (A) 2.84 VIN = 3.8V 50 40 0 0.2 Temp.=-40°C 60 0 0.00 Temp.=85°C 100 VIN = STBY STBY = 1.5V Temp.=-40°C 2.81 2.80 2.79 2.78 2.77 Temp.=85°C Temp.=25°C VIN=3.8V 2.50 VIN=5.5V 2.00 VIN=3.3V 1.50 1.00 Temp=25°C STBY = 1.5V 0.50 2.76 Output Voltage (V) Dropout Voltage (V) Temp.=-40°C Temp.=25°C Temp.=85°C 0 2.7 Fig. 92 Output Voltage Output Voltage (V) 40 20 2.77 Vin Voltage (V) 2.50 2.00 1.50 Temp.=85°C Temp.=25°C Temp.=-40°C 1.00 0.50 0.00 2.75 0 0.05 0.1 0.15 0 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.00 Output Current (A) Output Currnt (A) 0 0.5 1 1.5 STBY Voltage (V) Fig. 98 Load Regulation Fig. 99 OCP Threshold Fig. 100 STBY Threshold 50.00 2.85 1.000 0.900 2.84 2.82 2.81 2.80 2.79 2.78 VIN=3.8V STBY=1.5V Io=0.1mA 2.77 2.76 0.800 40.00 Gnd Current (uA) 2.83 Gnd Current (uA) Output Voltage (V) 60 2.75 0 VIN = STBY 30.00 20.00 VIN=3.8V STBY=1.5V Io=0mA 10.00 -40 -15 10 35 60 85 Temp. (°C) Fig. 101 VOUT vs Temp www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 0.600 0.500 0.400 0.300 VIN=3.8V STBY=0V 0.200 0.100 0.000 0.00 2.75 0.700 -0.100 -40 -15 10 35 60 Temp. (°C) Fig. 102 IGND vs Temp 15/29 85 -40 -15 10 35 60 85 Temp. (°C) Fig. 103 IGND vs Temp (STBY) 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series (Unless otherwise specified, Ta=25℃) 80 80 1.6 f= 0 .1 kHz 70 60 Ripple Rejection [dB] Ripple Rejection (dB ) 70 O utput N oise D ensity [μ V /√ H z] ●Reference data BU28TA2WNVX / HFV 50 40 30 20 Vin= 3.8V Io=10mA Ta = 25℃ 10 1 10 f= 1 kH z 50 f= 1 0 kH z 40 f= 1 0 0 kH z 30 Co=1.0μF Cin=none Iout=10mA temp=25℃ 20 10 1.2 1 0.8 0.6 0.4 0.2 0 0 0.1 60 100 2.8 1000 3.8 0 4.8 0.1 100 Fig. 108 Load Response Fig. 107 Load Response Fig. 110 Load Response Fig.109 Load Response ⇔ ⇔ Fig. 112 Load Response Current Pulse=10kHz Fig. 111 Load Response Current Pulse=10kHz www.rohm.com 10 Frequency f [kHz] Fig. 106 Output Noise Spectrl Density VS Freq. Fig. 105 Ripple Rejection VS VIN © 2011 ROHM Co., Ltd. All rights reserved. 1 Input Voltage VIN[V] Frequency (kHz) Fig. 104 Ripple Rejection VS Freq. Co=1.0μF Cin=1.0μF Iout=10mA temp=25℃ 1.4 16/29 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Reference data BU28TA2WNVX / HFV (Unless otherwise specified, Ta=25℃) ⇔ ⇔ Fig. 113 Load Response Current Pulse=100kHz Fig. 115 Start Up Time Iout = 0mA Fig. 118 Start Up Time(STBY=VIN) Iout = 200mA www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. Fig. 114 Load Response Current Pulse=100kHz Fig. 116 Start Up Time Iout = 200mA Fig. 119 Discharge Time Iout = 0mA 17/29 Fig. 117 Start Up Time (STBY=VIN) Iout = 0mA Fig.120 VIN Response Iout = 10mA 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series (Unless otherwise specified, Ta=25℃) 3.05 3.0 3.04 2.5 2.0 IO=0uA IO=100uA IO=50mA IO=200mA 1.5 1.0 Temp.=25°C 0.5 0.0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 3.03 3.02 3.01 3.00 2.99 2.98 2.97 Temp.=25°C VIN=STBY 2.96 VIN=STBY 0 100 IO=0uA IO=100uA IO=50mA IO=200mA Gnd Current (uA) 3.5 Output Voltage (V) Output Voltage (V) ●Reference data BU30TA2WNVX / HFV 2.95 5.5 2.9 3 3.1 3.2 3.3 3.4 Temp.=-40°C Temp.=25°C Temp.=85°C 20 3.5 0 0.5 1 1.5 2 2.5 110 Temp.=25°C 0.20 Temp.=-40°C 0.15 0.10 VIN=0.98*VOUT STBY=1.5V 0.05 Temp.=85°C 8 Gnd Current (uA) STBY Current (uA) 0.25 Temp.=25°C 6 Temp.=-40°C 4 2 0 0 0.05 0.1 0.15 0.2 4.5 5 5.5 Temp.=25°C 100 Temp.=85°C 90 80 Temp=-40°C 70 60 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 0 0.05 STBY Voltage (V) 0.1 0.15 0.2 Output Current (A) Fig. 125 STBY Input Current Fig. 126 IOUT - IGND 3.50 3.05 4 40 0 Output Current (A) Fig. 124 Dropout Voltage 3.5 50 VIN=STBY 0.00 3 120 10 Temp.=85°C VIN=STBY Fig. 123 Circuit Current IGND 0.35 0.30 IO=0uA Vin Voltage (V) Fig. 122 Line Regulation 0.40 3.50 VIN=4.0V 3.04 3.00 3.02 3.01 3.00 2.99 2.98 2.97 Temp.=-40°C VIN=4.0V STBY=1.5V 2.96 3.00 VIN=5.5V VIN=4.0V 2.50 VIN=3.5V 2.00 1.50 1.00 Temp.=25°C STBY=1.5V 0.50 Temp.=85°C Output Voltage (V) Output Voltage (V) Temp.=25°C 3.03 0.00 2.95 0 0.05 0.1 0.15 0.1 0.2 Fig. 127 Load Regulation 0.3 0.4 0.5 0.6 1 1.5 Fig. 129 STBY Threshold 1.000 Input Current (µA) 0.900 3.02 3.01 3.00 2.99 2.98 2.97 0.800 40.00 30.00 20.00 VIN=4.0V STBY=1.5V Io=0mA 10.00 2.96 2.95 10 35 60 85 Temp. (°C) Fig. 130 VOUT vs Temp www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 0.700 0.600 0.500 0.400 VIN=4.0V STBY=0V Io=0mA 0.300 0.200 0.100 0.000 -0.100 0.00 -15 0.5 STBY Voltage (V) 50.00 VIN=4.0V STBY=1.5V Io=0.1mA -40 Temp.=85°C Temp.=25°C Temp.=-40°C 1.00 0 Fig.128 OCP Threshold 3.05 3.03 1.50 Output Current (A) Output Current (A) 3.04 2.00 0.00 0 0.2 2.50 0.50 Input Current (µA) Dropout Voltage (V) 40 Vin Voltage (V) Fig. 121 Output Voltage Output Voltage (V) 60 0 Vin Voltage (V) Output Voltage (V) 80 -40 -15 10 35 60 Temp. (°C) Fig. 131 IGND vs Temp 18/29 85 -40 -15 10 35 60 85 Temp. (°C) Fig. 132 IGND vs Temp (STBY) 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Reference data BU30TA2WNVX / HFV (Unless otherwise specified, Ta=25℃) 80 80 1.6 O u tpu t N o ise D e n sity [μ V / √ H z] f= 0 .1 kHz 70 60 Ripple Rejection [dB] Ripple Re je c tio n (dB ) 70 50 40 30 Vin= 4.0V Io=10mA Ta = 25℃ 20 10 60 f= 1 kH z 50 f= 1 0 kHz 40 30 f= 1 0 0 kHz Co=1.0μF Cin=none Iout=10mA temp=25℃ 20 10 0 3 0 0.1 1 10 Frequency (kHz) 100 1000 Fig. 133 Ripple Rejection VS Freq. 4 Co=1.0μF Cin=1.0μF Iout=10mA temp=25℃ 1.4 1.2 1 0.8 0.6 0.4 0.2 0 5 0.1 Input Voltage VIN[V] Fig. 134 Ripple Rejection VS VIN Fig. 136 Load Response 1 10 Frequency f [kHz] Fig. 135 Output Noise Spectrl Density VS Freq. Fig. 137 Load Response Fig. 138 Load Response Fig. 139 Load Response Fig. 140 Load Response Current Pulse=10kHz Fig. 141 Load Response Current Pulse=10kHz www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 100 19/29 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Reference data BU30TA2WNVX / HFV (Unless otherwise specified, Ta=25℃) Fig. 142 Load Response Current Pulse=100kHz Fig. 144 Start Up Time Iout = 0mA Fig. 147 Start Up Time(STBY=VIN) Iout = 200mA www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. Fig. 143 Load Response Current Pulse=100kHz Fig. 145 Start Up Time Iout = 200mA Fig. 148 Discharge Time Iout = 0mA 20/29 Fig. 146 Start Up Time (STBY=VIN) Iout = 0mA Fig. 149 VIN Response Iout = 10mA 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Reference data BU33TA2WNVX / HFV (Unless otherwise specified, Ta=25℃) 3.5 3.34 2.5 2.0 IO=0uA IO=100uA IO=50mA IO=200mA 1.5 1.0 0.5 Temp.=25°C VIN = STBY IO=0uA IO=100uA IO=50mA IO=200mA 3.33 3.32 3.31 3.30 3.29 3.28 3.27 Temp=25°C VIN = STBY 3.26 0.0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 3.2 3.3 3.4 Vin Voltage (V) 3.5 40 Temp.=-40°C Temp.=25°C Temp.=85°C 20 0 3.7 0.5 1 1.5 2 2.5 0.15 Temp.=-40°C 0.10 VIN=0.98 x VOUT STBY = 1.5V 0.05 Temp.=85°C 8 Gnd Current (uA) STBY Current (uA) Temp.=25°C 0.20 Temp.=25°C 6 Temp.=-40°C 4 2 0 0.05 0.1 0.15 0.2 3.34 3.32 Temp.=25°C Output Voltage (V) 3.33 Temp.=-40°C 3.31 3.30 3.29 3.28 Temp.=85°C 3.27 VIN = 4.3V STBY = 1.5V 3.26 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 0.05 0.1 Temp.=-40°C 80 70 60 VIN = 4.3V STBY = 1.5V 0 5.5 0.05 0.15 3.50 3.00 VIN=3.8V 2.50 VIN=4.3V 2.00 1.50 1.00 STBY = 1.5V 2.50 2.00 1.50 Temp.=85°C Temp.=25°C Temp.=-40°C 1.00 0.00 0.1 0.2 0.3 0.4 0.5 0.6 0 0.5 Output Current (A) Output Current (A) Fig. 156 Load Regulation 1 1.5 STBY Voltage (V) Fig. 158 STBY Threshold Fig. 157 OCP Threshold 3.35 0.2 VIN=4.3V 0.50 Temp=25℃ 0 0.2 0.15 Fig. 155 IOUT - IGND 3.00 VIN=5.5V 0.1 Output Current (A) 0.00 0 90 3.50 0.50 3.25 5.5 Temp.=85°C Fig. 154 STBY Input Current 3.35 5 Temp.=25°C V STBY Voltage (V) Fig. 153 Dropout Voltage 4.5 40 0 Output Current (A) Output Voltage (V) 0 4 100 50 VIN = STBY 0.00 3.5 120 110 Temp.=85°C 3 Fig. 152 Circuit Current IGND 10 0.30 0.25 IO=0uA VIN = STBY Vin Voltage (V) Fig. 151 Line Regulation 0.35 50.00 1.000 3.34 0.900 3.32 3.31 3.30 3.29 3.28 VIN=4.3V STBY=1.5V Io=0.1mA 3.27 3.26 0.800 40.00 30.00 20.00 VIN=4.3V STBY=1.5V Io=0mA 10.00 3.25 Gnd Current (uA) 3.33 Gnd Current (uA) Output Voltage (V) 60 Vin Voltage (V) Fig. 150 Output Voltage Dropout Voltage (V) 3.6 80 0 3.25 0 Output Voltage (V) Gnd Current (uA) Output Voltage (V) Output Voltage (V) 100 3.35 3.0 -15 10 35 60 85 Temp. (°C) Fig. 159 VOUT vs Temp www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 0.600 0.500 0.400 0.300 VIN=4.3V STBY=0V 0.200 0.100 0.000 0.00 -40 0.700 -0.100 -40 -15 10 35 60 Temp. (°C) Fig. 160 IGND vs Temp 21/29 85 -40 -15 10 35 60 85 Temp. (°C) Fig. 161 IGND vs Temp (STBY) 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Reference data BU33TA2WNVX / HFV (Unless otherwise specified, Ta=25℃) 80 1.8 80 50 40 30 Vin= 4.3V Io=10mA Ta = 25℃ 20 10 60 O u tpu t N o ise D e n sity [μ V / √ H z ] f= 1 kHz 70 60 Ripple Rejection [dB] R ipple R e je c tio n (dB ) 70 f= 0 .1 kHz 50 f= 1 0 kHz 40 30 f= 1 0 0 kHz 20 10 Co=1.0μF Cin=none Iout=10mA temp=25℃ 0 0 3.3 0.1 1 10 100 1000 1.2 1 0.8 0.6 0.4 0.2 0.1 Fig. 163 Ripple Rejection VS VIN Fig. 165 Load Response Co=1.0μF Cin=1.0μF Iout=10mA temp=25℃ 1.4 0 5.3 Input Voltage VIN[V] Frequency (kHz) Fig. 162 Ripple Rejection VS Freq. 4.3 1.6 1 10 Frequency f [kHz] Fig. 164 Output Noise Spectrl Density VS Freq. Fig. 166 Load Response Fig. 167 Load Response Fig. 168 Load Response Fig. 169 Load Response Current Pulse=10kHz Fig. 170 Load Response Current Pulse=10kHz www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 100 22/29 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Reference data BU33TA2WNVX / HFV (Unless otherwise specified, Ta=25℃) Fig. 172 Load Response Current Pulse=100kHz Fig. 171 Load Response Current Pulse=100kHz Fig. 173 Start Up Time Iout = 0mA Fig. 174 Start Up Time Iout = 200mA Fig. 176 Start Up Time(STBY=VIN) Iout = 200mA Fig. 177 Discharge Time Iout = 0mA www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 23/29 Fig. 175 Start Up Time (STBY=VIN) Iout = 0mA Fig. 178 VIN Response Iout = 10mA 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●About power dissipation (Pd) As for power dissipation, an approximate estimate of the heat reduction characteristics and internal power consumption of IC are shown, so please use these for reference. Since power dissipation changes substantially depending on the implementation conditions (board size, board thickness, metal wiring rate, number of layers and through holes, etc.), it is recommended to measure Pd on a set board. Exceeding the power dissipation of IC may lead to deterioration of the original IC performance, such as causing operation of the thermal shutdown circuit or reduction in current capability. Therefore, be sure to prepare sufficient margin within power dissipation for usage. Calculation of the maximum internal power consumption of IC (PMAX) PMAX=(VIN-VOUT)×IOUT(MAX.) (VIN: Input voltage VOUT: Output voltage IOUT(MAX): Maximum output current) Measurement conditions Evaluation Board 1 (Single-side Board) Evaluation Board 2 (Double-side Board) 40 40 20 20 40 20 40 20 Layout of Board for Measurement (Unit: mm) Top Layer (Top View) Top Layer (Top View) 40 40 20 IC Implementation Position 40 40 20 Bottom Layer (Top View) Bottom Layer (Top View) Measurement State With board implemented (Wind speed 0 m/s) With board implemented (Wind speed 0 m/s) Board Material Glass epoxy resin (Single-side board) Glass epoxy resin (Double-side board) Board Size 40 mm x 40 mm x 0.8 mm 40 mm x 40 mm x 0.8 mm Top layer Metal (GND) wiring rate: Approx. 25% Metal (GND) wiring rate: Approx. 25% Bottom layer Metal (GND) wiring rate: Approx 0% Metal (GND) wiring rate: Approx 25% Through Hole 0 holes Diameter 0.5 mm 12 holes Power Dissipation 1100 mW 1250 mW Thermal Resistance θja=91℃/W θja=80℃/W Wiring Rate www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 24/29 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ○SSON004X1216 1500 1250 mW * Please design the margin so that PMAX becomes is than Pd (PMAXPd) within the usage temperature range. Evaluation board 2 (Double-side board) 1000 Pd (mW) 1100 mW - Standard ROHM board Size: 70 mm 70 mm 1.6 mm Material: Glass epoxy board Evaluation board 1 (Single-side board) 500 Standard ROHM board 220 mW 0 0 25 50 75 100 125 Ta ( ℃) Fig.179 SSON004X1216 Power dissipation heat reduction characteristics (Reference) Pd(W) ○HVSOF5 * Please design the margin so that PMAX becomes is than Pd (PMAXPd) within the usage temperature range. Fig.180 HVSOF5 Power dissipation heat reduction characteristics (Reference) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 25/29 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●DEVICE TYPE & Mark ○HVSOF5 ○SSON004X1216 Device type: BUXXTA2WNVX Device type: BUXXTA2WHFV a a a package XX output voltage SSON004X1216 HVSOF5 15 1.5V typ. AA BA 18 1.8V typ. AB BB 25 2.5V typ. AC BD 26 2.6V typ. AD BE 27 2.7V typ. AE BF 28 2.8V typ. AF BG 2J 2.85V typ. AG BH 29 2.9V typ. AH BJ 30 3.0V typ. AJ BK 31 3.1V typ. AK BL 32 3.2V typ. AL BM 33 3.3V typ. AM BN 34 3.4V typ. AN BP www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 26/29 2011.01 - Rev.C BUTA2WNVX series, BUTA2WHFV series Technical Note ○SSON004X1216 Mark Lot No. ○HVSOF5 Mark Lot No. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 27/29 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Notes for use ・About absolute maximum rating Breakage may occur when absolute maximum ratings such as applied voltage and operating temperature range are exceeded. Short mode or open mode cannot be specified at occurrence of a break, so please prepare physical safety measures (e.g., fuse) if such special mode in which the absolute maximum rating is exceeded can be assumed. ・About GND potential Please be sure that the potential of the GND terminal is the lowest in any operating condition. ・About thermal design Please provide thermal design with sufficient margin, taking power dissipation (Pd) in actual usage conditions into consideration. ・About short between pins and misattachment Please be careful regarding the IC direction and misalignment at attachment onto a printed circuit board. Misattachment may cause a break of IC. Short caused by foreign matter between outputs, output and power supply, or GNDs may also lead to a break. ・About operation in a strong electromagnetic field Please note that usage in a strong electromagnetic field may cause malfunction. ・About common impedance Please give due consideration to wiring of the power source and GND by reducing common-mode ripple or making ripple as small as possible (e.g., making the wiring as thick and short as possible, or reducing ripple by LC), etc. ・About STBY terminal voltage Set STBY terminal voltage to 0.3 V or less to put each channel into a standby state and to 1.5 V or more to put each channel into an operating state. Do not fix STBY terminal voltage to 0.3 V or more and 1.5 V or less or do not lengthen the transition time. This may cause malfunction or failure. When shorting the VIN terminal and STBY terminal for usage, the status will be “STBY=VIN=LOW” at turning the power OFF, and discharge of the VOUT terminal cannot operate, which means voltage may remain for a certain time in the VOUT terminal. Since turning the power ON again in this state may cause overshoot, turn the power ON for use after the VOUT terminal is completely discharged. ・About overcurrent protection circuit Output has a built-in overcurrent protection circuit, which prevents IC break at load short. Note that this protection circuit is effective for prevention of breaks due to unexpected accidents. Please avoid usage by which the protection circuit operates continuously. ・About thermal shutdown Output is OFF when the thermal circuit operates since a temperature protection circuit is built in to prevent thermal breakdown. However, it recovers when the temperature returns to a certain temperature. The thermal circuit operates at emergency such as overheating of IC. Since it is prepared to prevent IC breakdown, please do not use it in a state in which protection works. ●About reverse current For applications on which reverse current is assumed to flow into IC, it is recommended to prepare a path to let the current out by putting a bypass diode between the VIN-VOUT terminals. Reverse current VIN STBY OUT GND Fig.181 Example of bypass diode connection ●About testing on a set board When connecting a capacitor to a terminal with low impedance for testing on a set board, please be sure to discharge for each process since IC may be stressed. As a countermeasure against static electricity, prepare grounding in the assembly process and take sufficient care in transportation and storage. In addition, when connecting a capacitor to a jig in a testing process, please do so after turning the power OFF and remove it after turning the power OFF. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 28/29 2011.01 - Rev.C Technical Note BUTA2WNVX series, BUTA2WHFV series ●Ordering part number B U 1 5 T Lineup Output voltage Part No. A 15: 1.5V 29: 2.9V 18: 1.8V 30: 3.0V 25: 2.5V 31: 3.1V 26: 2.6V 32: 3.2V 27: 2.7V 33: 3.3V 28: 2.8V 34: 3.4V 2J: 2.85V 2 W N Shutdown Swich W : Includes switch V X - Package NVX : SSON004X1216 HFV : HVSOF5 T R Packaging and forming specification TR: Embossed tape and reel SSON004X1216 <Tape and Reel information> 1.6 ± 0.1 1.2±0.1 Tape Embossed carrier tape Quantity 5000pcs Direction of feed 0.6MAX 1PIN MARK 1 2 4 3 +0.03 0.02 -0.02 0.65±0.1 ) 0.8 ± 0.1 0.2 ± 0.1 0.08 S +0.05 0.2 -0.04 The direction is the 1pin of product is at the upper right when you hold ( reel on the left hand and you pull out the tape on the right hand (0.12) S TR Direction of feed 1pin 0.75±0.1 Reel (Unit : mm) ∗ Order quantity needs to be multiple of the minimum quantity. HVSOF5 <Tape and Reel information> 4 Embossed carrier tape (0.3) Quantity 3000pcs (0.91) 4 0.2MAX (0.05) 5 Tape 5 (0.41) 1.6±0.05 1.0±0.05 (0.8) Direction of feed TR The direction is the 1pin of product is at the upper right when you hold ( reel on the left hand and you pull out the tape on the right hand ) 3 2 1 1 2 3 1pin 0.13±0.05 S +0.03 0.02 –0.02 0.6MAX 1.2±0.05 (MAX 1.28 include BURR) 1.6±0.05 0.1 S 0.5 0.22±0.05 0.08 Direction of feed M Reel (Unit : mm) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 29/29 ∗ Order quantity needs to be multiple of the minimum quantity. 2011.01 - Rev.C Datasheet Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you (Note 1) , transport intend to use our Products in devices requiring extremely high reliability (such as medical equipment equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice - GE © 2014 ROHM Co., Ltd. All rights reserved. Rev.002 Datasheet Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label QR code printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.: 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice - GE © 2014 ROHM Co., Ltd. All rights reserved. Rev.002 Datasheet General Precaution 1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents. ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s representative. 3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or concerning such information. Notice – WE © 2014 ROHM Co., Ltd. All rights reserved. Rev.001