BL6311 3 Watt Mono Filter-Free Class-D Audio Power Amplifier Features Efficiency With an 8-Ω Speaker: 88% at 400 mW 80% at 100 mW 2.6mA Quiescent Current 0.4µA Shutdown Current Optimized PWM Output Stage Eliminates LC Output Filter Internally Generated 250-kHz Switching Frequency Eliminates Capacitor and Resistor Improved PSRR (−75 dB) and Wide Supply Voltage (2.5 V to 5.5 V) Eliminates Need a Voltage Regulator Fully Differential Design Reduces RF Rectification and Eliminates Bypass Capacitor Improved CMRR Eliminates Two Input Coupling Capacitors Available in space-saving package: 9-bump WLCSP for General Description The BL6311 is a 3-W high efficiency filter-free class-D audio power amplifier in a wafer chip scale package (WCSP) that requires only three external components. Features like 88% efficiency, −75dB PSRR, and improved RF-rectification immunity make the BL6311 ideal for cellular handsets. In cellular handsets, the earpiece, speaker phone, and melody ringer can each be driven by the BL6311. Applications Mobile phone、PDA MP3/4、PMP Portable electronic devices Pin Diagrams 9 Bump WLCSP Marking (Top View) 9 Bump WLCSP Package (Top View) 1 2 3 IN+ GND VO- 1 2 3 A A B B VDD PVDD PGND C IN- SDB VO+ 6311 YYWW C YY - Year Code WW - Week Code http://www.belling.com.cn - Page 1 of 14 - Ver1.6 BL6311 Pin Description Pin # Name Description A1 IN+ Positive differential input A2 GND Power Ground A3 VO- Negative BTL output B1 VDD Power Supply B2 PVDD Power Supply B3 PGND Power Ground C1 IN- Negative differential input C2 SDB Shutdown terminal (low active) C3 VO+ Positive BTL output Function Block Diagram Av1 = 150k/Ri (B1) VDD 150k (B2) PVDD (C1) IN- (A3) Vo- PWM Modulator and Power Driver Amp1 (A1) IN+ (C3) Vo+ Av2 = 2 V/V (B3) PGND 150k (C2) SDB ShutDown Control 300k Start up & Protection Bias & Reference OSC & RAMP Notes: Total Voltage Gain = Av1 × Av 2 = 2 × (A2) GND OC Detect 150k RI Figure 1. Function Block Diagram http://www.belling.com.cn - Page 2 of 14 - Ver1.6 BL6311 Application Circuit VDD Ri Vi- + Differential Input Vi+ + ) p o Lo TL B &d e Ms Wo Pl C ( To Battery Cs Vo+ Vo- Ri GND Bias & ShutDown SDB OSC & RAMP Figure 2. BL6311 Application Schematic With Differential Input VDD Ci Ri Vi- + Differential Input Vi+ Ci + ) p Lo o T BL &d Me s W Po l C ( To Battery Cs Vo+ Vo- Ri GND Bias & ShutDown SDB OSC & RAMP Figure 3. BL6311 Application Schematic With Differential Input and Input Capacitors VDD Ci Single-ended Input Ri Vi- + Vi+ + ) p Lo o T BL &d Me s W Po l C ( To Battery Cs Vo+ Vo- Ri Ci GND SDB Bias & ShutDown OSC & RAMP Figure 4. BL6311 Application Schematic With Single-Ended Input http://www.belling.com.cn - Page 3 of 14 - Ver1.6 BL6311 Absolute Maximum Ratings Supply voltage -0.3V to 6V Input voltage -0.3V to VDD+0.3V Junction Temperature -40 to +150 Storage Temperature -65 to +150 Note: Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. Recommended Operating Conditions Min Max Unit Supply Voltage 2.5 5.5 V Shutdown Voltage Input High 1.3 VDD V Shutdown Voltage Input Low 0 0.4 V Electrical Characteristics The following specifications apply for the circuit shown in Figure 5. TA = 25 , unless otherwise specified. Symbol ISD IQ Parameter Shutdown Current Quiescent Current VOS Output Offset Voltage PSRR Power Supply Rejection Ratio Conditions Spec Min. Typ. Max. VIN=0V, VSDB=0V, No Load 0.4 2 VDD = 2.5V, VIN = 0V, No Load 2.0 VDD = 3.6V, VIN = 0V, No Load 2.6 VDD = 5.5V, VIN = 0V, No Load 3.0 8 2 25 VIN = 0V, AV = 2V/V, VDD = 2.5V to 5.5V VDD = 2.5V to 5.5V Units uA mA mV -75 dB -68 dB VDD = 2.5V to 5.5V, CMRR Common Mode Rejection Ratio VIC = VDD/2 to 0.5V, VIC = VDD/2 to VDD - 0.8V FSW Modulation frequency VDD = 2.5V to 5.5V 200 250 300 kHz AV Voltage gain VDD = 2.5V to 5.5V 285k RI 300k RI 315k RI V/V RSDB ZI Resistance from SDB to GND 300 Input impedance TWU rDS(on) Wake-up time from shutdown 142 150 VDD = 3.6V 1 VDD = 2.5V 700 Drain-Source resistance (on-state) VDD = 3.6V 500 VDD = 5.5V 400 kΩ 158 kΩ mS mΩ Operating Characteristics VDD = 5V, RI = 150kΩ, TA = 25 Symbol Parameter http://www.belling.com.cn , unless otherwise specified. Conditions - Page 4 of 14 - Spec Min. Typ. Max. Units Ver1.6 BL6311 PO THD+N SNR Total Harmonic Distortion + Noise 3.0 THD+N=1%, f=1KHz, RL = 4Ω 2.4 THD+N=10%, f=1KHz, RL = 8Ω 1.7 THD+N=1%, f=1KHz, RL = 8Ω 1.4 Po=1.0Wrms, f=1kHz, RL = 8Ω 0.19 % 97 dB Signal-to-Noise ratio VDD=5V, Po=1.0Wrms, RL = 8Ω W VDD = 3.6V, RI = 150kΩ, TA = 25 , unless otherwise specified. Symbol PO THD+N KSVR Vn CMRR Output Power THD+N=10%, f=1KHz, RL = 4Ω Parameter Output Power Total Harmonic Distortion + Noise Spec Conditions Min. THD+N=1%, f=1KHz, RL = 4Ω 1.2 THD+N=10%, f=1KHz, RL = 8Ω 0.9 THD+N=1%, f=1KHz, RL = 8Ω 0.7 Po=0.5Wrms, f=1kHz, RL = 8Ω 0.19 % -68 dB rejection ratio f=217Hz, V(Ripple)=200mVPP Rejection Ratio Units 1.5 VDD = 3.6V, input ac-grounded with CI = 2uF Common Mode Max. THD+N=10%, f=1KHz, RL = 4Ω Supply ripple Output voltage noise Typ. VDD = 3.6V, input ac-grounded No weighting 48 with CI = 2uF, f=20~20kHz 36 A weighting VDD = 3.6V, VIC = 1 VPP, f=217Hz W uVRMS -70 dB VDD = 2.5V, RI = 150kΩ, TA = 25 , unless otherwise specified. Symbol PO THD+N Parameter Output Power Total Harmonic Distortion + Noise Conditions Spec Min. Typ. THD+N=10%, f=1KHz, RL = 4Ω 0.7 THD+N=1%, f=1KHz, RL = 4Ω 0.55 THD+N=10%, f=1KHz, RL = 8Ω 0.4 THD+N=1%, f=1KHz, RL = 8Ω 0.3 Po=0.2Wrms, f=1kHz, RL = 8Ω 0.19 Max. Units W % Test Circuit http://www.belling.com.cn - Page 5 of 14 - Ver1.6 BL6311 Ci Ri IN+ 2uF Signal input from measurement VO+ 150K Vin BL6311 Ci Ri IN2uF 30 LP RL Output to measurement VO VO- 150K Shutdown signal SDB VDD GND CS 1uF Power + Supply - Figure 5. BL6311 test set up circuit VO+ 100 47nF VO- VO 100 47nF 30kHz LPF Figure 6. 30-kHz LPF for BL6311 test Notes: 1>. CS should be placed as close as possible to VDD/GND pad of the device 2>. Ci should be shorted for any Common-Mode input voltage measurement 3>. A 33uH inductor should be used in series with RL for efficiency measurement 4>. The 30 kHz LPF (shown in figure 5) is required even if the analyzer has an internal LPF Component Recommended Due to the weak noise immunity of the single-ended input application, the differential input application should be used whenever possible. The typical component values are listed in the table: RI CI CS 150 k 3.3 nF 1 uF (1) CI should have a tolerance of ±10% or better to reduce impedance mismatch. http://www.belling.com.cn - Page 6 of 14 - Ver1.6 BL6311 (2) Use 1% tolerance resistors or better to keep the performance optimized, and place the RI close to the device to limit noise injection on the high-impedance nodes. Input Resistors (RI) & Capacitors (CI) The input resistors (RI) set the total voltage gain of the amplifier according to Eq1 Gain = 2 × 150kΩ RI V V Eq1 The input resistor matching directly affects the CMRR, PSRR, and the second harmonic distortion cancellation. If a differential signal source is used, and the signal is biased from 0.5V ~ VDD-0.8V (shown in Figure2), the input capacitor (CI) is not required. If the input signal is not biased within the recommended common-mode input range in differential input application (shown in Figure3), or in a single-ended input application (shown in Figure4), the input coupling capacitors are required. If the input coupling capacitors are used, the RI and CI form a high-pass filter (HPF). The corner frequency (fC) of the HPF can be calculated by Eq2 fC = 1 2π ⋅ R I ⋅ C I (Hz ) Eq 2 Decoupling Capacitor (CS) A good low equivalent-series-resistance (ESR) ceramic capacitor (CS), used as power supply decoupling capacitor (CS), is required for high power supply rejection (PSRR), high efficiency and low total harmonic distortion (THD). Typically CS is 1µF, placed as close as possible to the device VDD pin. Typical Performance Characteristics Audio Precision 04/23/08 14:58:01 20 10 5 % 2 1 0.5 0.2 0.1 6m 10m 20m 50m 100m 200m 500m 1 2 3 W Sweep Trace Color Line Style Thick Data 1 2 3 4 1 1 1 1 Cyan Green Yellow Red Solid Solid Solid Solid 1 1 1 1 Analyzer.THD+N Analyzer.THD+N Analyzer.THD+N Analyzer.THD+N Ratio Ratio Ratio Ratio B B B B Axis Com m ent Left Left Left Left 2.5v 3v 3.6v 5v Figure7. THDN vs PO (RL=4ohm, f=1kHz, Gain=2) http://www.belling.com.cn - Page 7 of 14 - Ver1.6 BL6311 Audio Precision 20 10 5 % 2 1 0.5 0.2 0.1 5m 10m 20m 50m 100m 200m 500m 1 W Sweep Trace Color Line Style Thick Data Axis Comment 1 2 3 4 1 1 1 1 Magenta Red Yellow Green Solid Solid Solid Solid 1 1 1 1 .Analyzer.THD+N Ratio B .Analyzer.THD+N Ratio B .Analyzer.THD+N Ratio B .Analyzer.THD+N Ratio B Left Left Left Left 2.5V 3V 3.6V 5V Figure8. THDN vs PO (RL=8ohm, f=1kHz, Gain=2) Audio Precision 100 10 1 % 0.1 0.01 0.001 0.0001 20 50 100 200 500 1k 2k 5k 10k 20k Hz Sweep Trace Color 1 2 3 1 1 1 Line Style Thick Data Green Solid Cyan Solid Yellow Solid 1 1 1 Axis Comment Analyzer.THD+N Ratio B Left Analyzer.THD+N Ratio B Left Analyzer.THD+N Ratio B Left Po=25mW Po=250mW Po=1w Figure9. THDN vs Frequency (VDD=5V RL=8ohm Gain=2 CI=2uF) http://www.belling.com.cn - Page 8 of 14 - Ver1.6 BL6311 Audio Precision 10 1 % 0.1 0.01 20 50 100 200 500 1k 2k 5k 10k 20k Hz Sweep Trace Color Line Style Thick Data Axis Comment 1 2 3 1 1 1 Green Cyan Yellow Solid Solid Solid 1 1 1 Analyzer.THD+N Ratio B Analyzer.THD+N Ratio B Analyzer.THD+N Ratio B Left Left Left Po=25mW Po=125mW Po=500mW Figure10. THDN vs Frequency (VDD=3.6V RL=8ohm Gain=2 CI=2uF) Audio Precision 10 1 % 0.1 0.01 20 50 100 200 500 1k 2k 5k 10k 20k Hz Sweep Trace Color 1 2 3 Green Solid Cyan Solid Yellow Solid 1 1 1 Line Style Thick Data 1 1 1 Axis Analyzer.THD+N Ratio B Left Analyzer.THD+N Ratio B Left Analyzer.THD+N Ratio B Left Comment Po=15mW Po=75mW po=200mW Figure11. THDN vs Frequency (VDD=2.5V RL=8ohm Gain=2 CI=2uF) http://www.belling.com.cn - Page 9 of 14 - Ver1.6 BL6311 Audio Precision -40 -60 d B -80 -100 -120 20 50 100 200 500 1k 2k 5k 10k 20k Hz Sweep Trace Color 1 2 3 1 1 1 Line Style Thick Data Blue Solid Green Solid Red Solid 1 1 1 Axis Analyzer.Crosstalk B Left Analyzer.Crosstalk B Left Analyzer.Crosstalk B Left Comment 5V 3.6V 2.5V Figure12. PSRR vs Frequency (RL=4ohm, Input ac-grounded) Audio Precision psrr 04/23/08 14:02:31 -40 -60 d B -80 -100 -120 20 50 100 200 500 1k 2k 5k 10k 20k Hz Sweep Trace Color 1 2 3 1 1 1 Line Style Thick Data Cyan Solid Green Solid Yellow Solid 1 1 1 Axis Comment Analyzer.Crosstalk B Left 5v Analyzer.Crosstalk B Left 3.6v Analyzer.Crosstalk B Left 2.5v Figure13. PSRR vs Frequency (RL=8ohm, Input ac-grounded) http://www.belling.com.cn - Page 10 of 14 - Ver1.6 BL6311 Audio Precision -40 -60 d B -80 -100 -120 20 50 100 200 500 1k 2k 5k 10k 20k Hz Sweep Trace Color 1 2 3 1 1 1 Line Style Thick Data Blue Solid Green Solid Red Solid 1 1 1 Axis Analyzer.Crosstalk B Left Analyzer.Crosstalk B Left Analyzer.Crosstalk B Left Comment 5V 3.6V 2.5V Figure14. PSRR vs Frequency (RL=8ohm, Input floating) fficiency vs Po 1 0 9 0 fficiency 0 0 0 5 0 0 3 0 2 Vdd=5V Vdd=2 5 0 1 0 0 0 02 0 05 0 1 0 15 0 2 0 25 0 Po 0 5 0 0 1 1 2 Figure15. Efficiency vs Po (RL=8 +33uH) http://www.belling.com.cn - Page 11 of 14 - Ver1.6 BL6311 Supply Current vs Po 0 3 Vdd=5V Vdd=2 5V 0 25 IDD (A) 0 2 0 15 0 1 0 05 0 0 0 02 0 05 0 1 0 15 0 2 0 25 0 0 5 0 0 1 1 2 Po (W) Figure16. Supply Current vs Output Power (RL=8 +33uH) http://www.belling.com.cn - Page 12 of 14 - Ver1.6 BL6311 Audio Precision 300m 40m 200m 20m 100m V 0 0 -100m V -20m -200m -40m -300m 0 5m 10m 15m 20m 25m 30m s Sweep Trace Color Line Style Thick Data Axis Comment 1 1 1 2 Green Cyan Solid Solid 1 1 FFT.ChA Amplitude FFT.ChB Amplitude Left Right GSM signal added to VDD Vout Figure17. GSM Power Supply Rejection vs Time Audio Precision -20 +100 -40 +50 -60 d B V -80 d B V +0 -100 -50 -120 -140 -100 -160 250 500 750 1k 1.25k 1.5k 1.75k 2k Hz Sweep Trace Color Line Style Thick Data Axis Comment 1 1 1 2 Green Cyan Solid Solid 1 1 FFT.ChA Amplitude FFT.ChB Amplitude Left Right GSM signal added to VDD VOUT Figure18. GSM Power Supply Rejection vs Frequency http://www.belling.com.cn - Page 13 of 14 - Ver1.6 BL6311 Package Dimensions 9 Bump WLCSP Dimensions (mm) REF MIN TYP MAX A1 0.215 0.235 0.255 A2 0.355 0.380 0.405 A3 0.020 0.035 0.050 D 1.490 1.520 1.550 D1 E 0.500 1.490 E1 b CCC http://www.belling.com.cn - Page 14 of 14 - 1.520 1.550 0.500 0.300 0.320 0.340 0.080 Ver1.6