RT9026 DDR Termination Regulator General Description Features RT9026 is a 3A sink/source tracking termination regulator. It is specifically designed for low-cost and low-external component count systems. The RT9026 possesses a high speed operating amplifier that provides fast load transient response and only requires 20μF of ceramic output capacitance. The RT9026 supports remote sensing functions and all features required to power the DDRI/II/III and low-power DDRIII/DDRIV VTT bus termination according to the JEDEC specification. In addition, the RT9026 includes integrated sleep-state controls placing VTT in High-Z in S3 (suspend to RAM) and soft-off for VTT and VTTREF in S5 (shutdown). The RT9026 is available in the thermal efficient package SOP-8 (Exposed Pad), MSOP-10 (Exposed Pad) and WDFN-10L 3x3. z z z z z z z z z z z DDRI/II/III and Low-Power DDRIII/DDRIV Memory Termination SSTL-2, SSTL-18 HSTL Termination Ordering Information RT9026 Package Type SP : SOP-8 (Exposed Pad-Option 1) FP : MSOP-10 (Exposed Pad) QW : WDFN-10L 3x3 (W-Type) Lead Plating System P : Pb Free G : Green (Halogen Free and Pb Free) Note : Richtek products are : ` RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. ` Suitable for use in SnPb or Pb-free soldering processes. Source/Sink 3A for DDRI and DDRII ` Source/Sink 2A for DDRIII ` Source/Sink 1.5A for Low-Power DDRIII ` Source/Sink 1.2A for Low-Power DDRIV Input Voltage Range : 3.15V to 5.5V VLDOIN Voltage Range : 1.2V to 3.3V Requires Only 20μ μF Ceramic Output Capacitance Supports High-Z in S3 and Soft-Off in S5 Integrated Divider Tracks 1/2 VDDQSNS for Both VTT and VTTREF Remote Sensing (VTTSNS) ±20mV Accuracy for VTT and VTTREF 10mA Buffered Reference (Sourcing/Sinking) (VTTREF) Built-In Soft-Start Over Current Protection Thermal Shutdown Protection SOP-8 (Exposed Pad), MSOP-10 (Exposed Pad) and 10-Lead WDFN Package RoHS Compliant and Halogen Free ` Applications z Support DDRI, DDRII, DDRIII, Low-Power DDRIII and DDRIV Requirement z z z z z Pin Configurations (TOP VIEW) 8 GND S3 2 VTTSNS 3 7 GND 6 9 4 5 VTTREF VTT VLDOIN VIN VDDQSNS SOP-8 (Exposed Pad) VDDQSNS VLDOIN VTT PGND VTTSNS 10 2 3 4 5 9 GND 8 11 7 6 VIN S5 GND S3 VTTREF MSOP-10 (Exposed Pad) 1 2 3 4 5 GND 11 10 9 8 7 9 VDDQSNS VLDOIN VTT PGND VTTSNS VIN S5 GND S3 VTTREF WDFN-10L 3x3 DS9026-06 August 2011 www.richtek.com 1 RT9026 Marking Information RT9026PSP RT9026PFP RT9026PSP : Product Code RT9026 PSPYMDNN A0- : Product Code YMDNN : Date Code YMDNN : Date Code A0-YM DNN RT9026GSP RT9026GFP RT9026GSP : Product Code RT9026 GSPYMDNN A0= : Product Code YMDNN : Date Code YMDNN : Date Code A0=YM DNN RT9026PQW E6- : Product Code YMDNN : Date Code E6-YM DNN RT9026GQW E6= : Product Code YMDNN : Date Code E6=YM DNN Typical Application Circuit RT9026 7 VLDOIN C1 10µF 3.3V or 5V C2 1µF RT9026 1 VDDQSNS VIN 10 VLDOIN VLDOIN VTTREF 4 5 VDDQSNS 3 VTTSNS 6 VIN 8 VTT 2 S3 GND VTTREF C3 0.1µF S3 VTT C4 10µF x 2 1, 9 (Exposed Pad) Figure 1. For SOP-8 (Exposed Pad) Package C1 10µF 2 C4 10µF x 2 3 VTT VTTREF 6 5 VTTSNS 9 S5 4 PGND S3 7 VTT VLDOIN 3.3V or 5V GND 8, 11 (Exposed Pad) S5 S3 C3 0.1µF C2 1µF VTTREF Figure 2. For MSOP-10 (Exposed Pad) / WDFN-10L 3x3 Package Functional Pin Description Pin No. Pin Name Pin Function RT9026□FP RT9026□SP RT9026□QW Ground. The exposed pad must be soldered to a large PCB and 1, 8, GND connected to GND for maximum power dissipation. 9 (Exposed Pad) 11 (Exposed Pad) 2 7 S3 Active Low Suspend to RAM Mode Control Pin, VTT is turned off and left High-Z, VTTREF is active. 3 5 VTTSNS VTT Voltage Sense Input Pin. Connect to plus terminal of the output capacitor. To be Continued www.richtek.com 2 DS9026-06 August 2011 RT9026 Pin No. RT9026□FP RT9026□SP RT9026□QW Pin Function Pin Name Buffered output VDDQSNS/2. that is a reference output, equal to 4 6 VTTREF 5 1 VDDQSNS VLDOIN Sense Input Pin. 6 10 VIN 7 2 VLDOIN 8 3 VTT -- 4 PGND Power Ground of the VTT Output. -- 9 S5 Active low shutdown control pin, both VTT and VTTREF are turned off and discharged to ground. Analog Input Pin (to control loop). Power supply of the VTT and VTTREF output stage (to power MOS). Output voltage for connection to termination resistors, equal to VDDQSNS/2. Function Block Diagram VDDQSNS + VLDOIN Half DDQ + - VTTREF - GND VIN ENREF + 2.32V/ 2.2V + VIN OK VTT - ENVTT ENVTT S3 5V(10%) + S5 ENREF PGND + - + PGOOD + -5V(10%) VTTSNS Table 1. S3 and S5 Control Table State S3 S5 Normal High High Standby Low High Shutdown Low Low Shutdown High Low DS9026-06 August 2011 VTT VREF 1.25V/0.9V/0.75V 1.25V/0.9V/0.75V /0.675V/0.6V /0.675V/0.6V 12mV/6mV 1.25V/0.9V/0.75V (High-Z) /0.675V/0.6V 0V (Discharge) 0V (Discharge) 0V (Discharge) 0V (Discharge) www.richtek.com 3 RT9026 Absolute Maximum Ratings l l l l l l l l (Note 1) Supply Input Voltage, VIN ---------------------------------------------------------------------------------------------- 6V Supply Input Voltage, VLDOIN, VDDQSNS ------------------------------------------------------------------------ 3.6V Power Dissipation, PD @ TA = 25°C SOP-8 (Exposed Pad) -------------------------------------------------------------------------------------------------- 1.333W MSOP-10 (Exposed Pad) ---------------------------------------------------------------------------------------------- 1.163W WDFN-10L 3x3 ----------------------------------------------------------------------------------------------------------- 1.429W Package Thermal Resistance (Note 2) SOP-8 (Exposed Pad), θJA -------------------------------------------------------------------------------------------- 75°C/W SOP-8 (Exposed Pad), θJC -------------------------------------------------------------------------------------------- 28°C/W MSOP-10 (Exposed Pad), θJA ---------------------------------------------------------------------------------------- 86°C/W MSOP-10 (Exposed Pad), θJC ---------------------------------------------------------------------------------------- 30°C/W WDFN-10L 3x3, θJA ------------------------------------------------------------------------------------------------------ 70°C/W WDFN-10L 3x3, θJC ----------------------------------------------------------------------------------------------------- 8.2°C/W Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------------------ 260°C Junction Temperature --------------------------------------------------------------------------------------------------- 150°C Storage Temperature Range ------------------------------------------------------------------------------------------- −65°C to 150°C ESD Susceptibility (Note 3) HBM (Human Body Mode) --------------------------------------------------------------------------------------------- 2kV MM (Machine Mode) ---------------------------------------------------------------------------------------------------- 200V Recommended Operating Conditions l l l l (Note 4) Supply Input Voltage, VIN ---------------------------------------------------------------------------------------------- 3.15V to 5.5V Supply Input Voltage, VLDOIN, VDDQSNS ------------------------------------------------------------------------ 1.2V to 3.3V Junction Temperature Range ------------------------------------------------------------------------------------------ −40°C to 125°C Ambient Temperature Range ------------------------------------------------------------------------------------------ −40°C to 85°C Electrical Characteristics (VIN = 5V, VLDOIN = VDDQSNS = 2.5V, C1=10µF, C2=1µF, C3=0.1µF, C4=10µFx2, TA = 25°C, S5 function only for RT9026PFP and RT9026PQW, unless otherwise specified) Parameter Min Typ Max Unit VIN = 5V, No Load, S5 = S3 = 5V -- -- 2 mA IVINSTB VIN = 5V, No Load, S5 = 5V, S3 = 0V -- -- 300 µA IVINSHDN VIN = 5V, No Load, S5 = S3 = 0V (Only for RT9026PFP and RT9026PQW) -- -- 1 µA IVLDOIN VIN = 5V, No Load, S5 = S3 = 5V -- -- 2 mA IVLDOINSTB VIN = 5V, No Load, S5 = 5V, S3 = 0V Symbol VIN (to control loop) Supply IVIN Current VIN Standby Current VIN Shutdown Current VLDOIN (to power MOS) Supply Current VLDOIN Standby Current Test Conditions -- -- 10 µA VLDOIN Shutdown Current IVLDOINSHDN VIN = 5V, No Load, S5 = S3 = 0V VDDQSNS Input Current IVDDQSNS VIN = 5V, S5 = S3 = 5V -- -- 1 µA -- -- 50 µA VTTSNS Input Current IVTTSNS VIN = 5V, S5 = S3 = 5V -- -- 1 µA VDDQSNS = VLDOIN = 2.5V -- 1.25 -- VTT Output Voltage VTT VDDQSNS = VLDOIN = 1.8V -- 0.9 -- VDDQSNS = VLDOIN = 1.5V -- 0.75 -- V To be Continued www.richtek.com 4 DS9026-06 August 2011 RT9026 Parameter VTT Output Voltage VTTREF, VTT Output Tolerance Symbol VTT VVTTTOL Test Conditions Min Typ Max VDDQSNS = VLDOIN = 1.35V -- 0.675 -- VDDQSNS = VLDOIN = 1.2V -- 0.6 -- VDDQSNS = VLDOIN = 2.5V/1.8V/1.5V/1.35V/1.2V, ∣IVTT∣= 0A −20 -- 20 VDDQSNS = VLDOIN = 1.2V, ∣IVTT∣= 1.2A −30 -- 30 VDDQSNS = VLDOIN = 2.5V/1.8V/1.5V/1.35V, ∣IVTT∣= 1.5A VDDQSNS = VLDOIN = 2.5V/1.8V, ∣IVTT∣= 3A Unit V mV −30 -- 30 −40 -- 40 VTT Source Current Limit IVTTOCLsr VTT = 0V 3 4 -- A VTT Sink Current Limit IVTTOCLsk VTT = VDDQSNS 3 4 -- A VTT Discharge Current IDSCHRG VDDQSNS = 0V, VTT = 1.25V, S5 = S3 = 0V 10 17 -- mA VTTREF Output Voltage VVTTREF V VVTTREF = VDDQSNS 2 -- 1.25/0.9/ 0.75/ 0.675/0.6 -- V VDDQSNS/2, VTTREF Output Voltage Tolerance VLDOIN = VDDQSNS = VVTTREFTOL 2.5V/1.8V/1.5V/1.35V/1.2V, I VTTREF < 10mA −20 -- 20 mV 20 40 60 mA Rising -- -- 2.7 Hysteresis -- 0.2 -- VTTREF Source Current Limit IVTTREFOCL VVTTREF = 0V UVLO Threshold Voltage VUVLO V Logic-High VIH S5, S3 pin 1.6 -- -- Logic-Low VIL S5, S3 pin -- -- 0.4 IILK S5, S3 pin -- -- 1 µA -- 160 -- °C -- 20 -- °C Input Voltage Logic Input Leakage Current V Thermal Shutdown Protection TSD Thermal Shutdown Hysteresis ∆TSD Note 1. Stresses listed as the above “Absolute Maximum Ratings” may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability. Note 2. θJA is measured in the natural convection at TA = 25°C on a high effective four-layers thermal conductivity test board of JEDEC 51-7 thermal measurement standard. The case point of θJC is on the exposed pad for SOP-8 (Exposed Pad) , MSOP-10 (Exposed Pad) and WDFN-10L 3x3 package. Note 3. Devices are ESD sensitive. Handling precaution is recommended. Note 4. The device is not guaranteed to function outside its operating conditions. DS9026-06 August 2011 www.richtek.com 5 RT9026 Typical Operating Characteristics VDDQSNS = VLDOIN, C1 = 10μF, C2 = 1μF, C3 = 0.1μF, C4 = 10μF x 2 unless otherwise specified. 1.25VTT Output Voltage vs. Temperature 0.9VTT Output Voltage vs. Temperature 1.30 0.95 1.28 0.93 VIN = 3.3V 1.26 VIN = 5V 1.24 Output Voltage (V) Output Voltage (V) 0.94 0.92 0.91 VIN = 3.3V 0.90 VIN = 5V 0.89 0.88 1.22 0.87 0.86 VLDOIN = 2.5V 1.20 VLDOIN = 1.8V 0.85 -50 -25 0 25 50 75 100 125 -50 -25 0 Temperature (°C) 0.79 0.715 0.78 0.705 0.77 VIN = 3.3V 0.76 0.75 VIN = 5V 0.74 0.73 Output Voltage (V) Output Voltage (V) 0.725 100 125 0.695 VIN = 3.3V 0.685 0.675 VIN = 5V 0.665 0.655 0.635 VLDOIN = 1.5V VLDOIN = 1.35V 0.625 0.70 -50 -25 0 25 50 75 100 -50 125 -25 0 25 50 75 100 125 Temperature (°C) Temperature (°C) 0.6VTT Output Voltage vs. Temperature VIN Supply Current vs. Temperature 0.65 1000 0.64 0.62 VIN = 3.3V 0.61 0.60 VIN = 5V 0.59 0.58 0.57 VIN Supply Current (µA) 950 0.63 Output Voltage (V) 75 0.645 0.72 0.56 50 0.675VTT Output Voltage vs. Temperature 0.75VTT Output Voltage vs. Temperature 0.80 0.71 25 Temperature (°C) VIN = 5V, VLDOIN = 2.5V VLDOIN = 1.8V 900 850 800 VIN = 5V, VLDOIN = 1.5V VLDOIN = 1.35V VLDOIN = 1.2V VIN = 3.3V, VLDOIN = 2.5V VLDOIN = 1.8V VLDOIN = 1.5V VLDOIN = 1.35V VLDOIN = 1.2V 750 700 650 VLDOIN = 1.2V 0.55 600 -50 -25 0 25 50 Temperature (°C) www.richtek.com 6 75 100 125 -50 -25 0 25 50 75 100 125 Temperature (°C) DS9026-06 August 2011 RT9026 VIN Standby Current vs. Temperature 1.25VTT @ 3A Transient Response 250 Source VIN Standby Current (µA) VIN = 5V, VLDOIN = 2.5V VIN = 5V, VLDOIN VLDOIN VLDOIN VLDOIN VLDOIN 230 210 = 2.5V = 1.8V = 1.5V = 1.35V = 1.2V VTT (20mV/Div) 190 VIN = 3.3V, VLDOIN VLDOIN VLDOIN VLDOIN VLDOIN 170 = 2.5V = 1.8V = 1.5V = 1.35V = 1.2V IVTT (2A/Div) 150 -50 -25 0 25 50 75 100 Time (500μs/Div) 125 Temperature (°C) 0.75VTT @ 2A Transient Response 0.9VTT @ 3A Transient Response VIN = 5V, VLDOIN = 1.8V Source Source VIN = 5V, VLDOIN = 1.5V VTT (20mV/Div) VTT (20mV/Div) IVTT (2A/Div) IVTT (1A/Div) Time (500μs/Div) Time (500μs/Div) 0.675VTT @ 1.5A Transient Response 0.6VTT @ 1.2A Transient Response VIN = 5V, VLDOIN = 1.35V Source VTT (20mV/Div) VTT (20mV/Div) IVTT (1A/Div) IVTT (1A/Div) Time (400μs/Div) DS9026-06 August 2011 Source VIN = 5V, VLDOIN = 1.2V Time (400μs/Div) www.richtek.com 7 RT9026 0.9VTT @ 3A Transient Response 1.25VTT @ 3A Transient Response VIN = 5V, VLDOIN = 2.5V Sink VIN = 5V, VLDOIN = 1.8V Sink VTT (20mV/Div) VTT (20mV/Div) IVTT (2A/Div) IVTT (2A/Div) Time (500μs/Div) Time (500μs/Div) 0.75VTT @ 2A Transient Response 0.675VTT @ 1.5A Transient Response VIN = 5V, VLDOIN = 1.5V Sink VTT (20mV/Div) VIN = 5V, VLDOIN = 1.35V Sink VTT (20mV/Div) IVTT (1A/Div) IVTT (1A/Div) Time (500μs/Div) Time (400μs/Div) 0.6VTTREF @ 1.2A Transient Response 0.9VTTREF @ 10mA Transient Response VIN = 5V, VLDOIN = 1.2V Source VTTREF (10mV/Div) VTT (20mV/Div) IVTT (1A/Div) IVTTREF (10mA/Div) Time (400μs/Div) www.richtek.com 8 VIN = 5V, VLDOIN = 1.8V Sink Time (1ms/Div) DS9026-06 August 2011 RT9026 0.9VTTREF @ 10mA Transient Response VIN = 5V, VLDOIN = 1.8V VTTREF (10mV/Div) Sink Start Up S3 (5V/Div) S5 (5V/Div) VTTREF (1V/Div) IVTTREF (10mA/Div) VTT (1V/Div) S3 = 0V, C3 = 0.1μF, S5 : Low to High Time (1ms/Div) Time (2.5μs/Div) Start Up Start Up S3 (5V/Div) S3 (5V/Div) S5 (5V/Div) S5 (5V/Div) VTTREF (1V/Div) VTT (1V/Div) S3 = 0V, C3 = 1μF, S5 : Low to High Time (10μs/Div) VTTREF (1V/Div) VTT (1V/Div) S3 = 0V, S5 = 5V, S3 : Low to High Time (10μs/Div) Power Off S3 S3 (5V/Div) S5 S5 V TTREF (5V/Div) VTTREF (1V/Div) VTT (1V/Div) V TT S3 = 0V, C3 = 0.1μF, S3 and S5 : High to Low Time (1ms/Div) DS9026-06 August 2011 www.richtek.com 9 RT9026 Application Information RT9026 is a 3A sink/source tracking termination regulator. It is specifically designed for low-cost and low-external component count system such as notebook PC applications. The RT9026 possesses a high speed operating amplifier that provides fast load transient response and only requires a 10μF ceramic input capacitor and two 10μF ceramic output capacitor. For stable operation, the total capacitance of the cerarnic capcitor at the VTT output terminal must not be larger than 30μF. The RT9026 is designed specifically to work with low ESR ceramic output capacitor in space saving and performance consideration. Larger output capacitance can reduce the noise and improve load transient response, stability and PSRR. The output capacitor should be located near the VTT output terminal pin as close as possible. VTTREF Regulator VTTREF is a reference output voltage with source/sink current capability up to 10mA. To ensure stable operation 0.1μF ceramic capacitor between VTTREF and GND is recommended. S3, S5 Logic Control The S3 and S5 terminals should be connected to SLP_S3 and SLP_S5 signals respectively. Both VTTREF and VTT are turned on at normal state (S3 = High, S5 = High). In standby state (S3 = Low, S5 = High) VTTREF is kept alive while VTT is turned off and left high impedance. Both VTT and VTTREF outputs are turned off and discharged to ground through internal MOSFETs during shutdown state (S5 = low). Table 2. S3 and S5 Control STATE S3 S5 VTTREF VTT Normal H H ON ON Standby L H ON OFF(high-Z) Shutdown L L OFF (discharge) OFF (discharge) Capacitor Selection Good bypassing is recommended from VLDOIN to GND to help improve AC performance. A 10μF or greater input capacitor located as close as possible to the IC is recommended. The input capacitor must be located at a distance of less than 0.5 inches from the VLDOIN pin of the IC. Adding a ceramic capacitor 1μF close to the VIN pin and it should be kept away from any parasitic impedance from the supply power. www.richtek.com 10 Thermal Considerations For continuous operation, do not exceed absolute maximum operation junction temperature. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula : PD(MAX) = ( TJ(MAX) − TA ) / θJA Where T J(MAX) is the maximum operation junction temperature, TA is the ambient temperature and the θJA is the junction to ambient thermal resistance. For recommended operating conditions specification of the RT9026, the maximum junction temperature is 125°C. The junction to ambient thermal resistance θJA is layout dependent. The thermal resistance θJA for WDFN-10L 3x3 is 70°C/W, for SOP-8 (Exposed Pad) is 75°C/W and for MSOP-10 (Exposed Pad) is 86°C/W on the standard JEDEC 51-7 four layers thermal test board. The maximum power dissipation at TA = 25°C can be calculated by following formula : PD(MAX) = (125°C − 25°C) / (70°C/W) = 1.429W for WDFN-10L 3x3 packages PD(MAX) = (125°C − 25°C) / (75°C/W) = 1.333W for SOP-8 (Exposed Pad) packages PD(MAX) = (125°C − 25°C) / (86°C/W) = 1.163W for MSOP-10 (Exposed Pad) packages The maximum power dissipation depends on operating ambient temperature for fixed T J(MAX) and thermal resistance θJA. For RT9026 packages, the Figure 3 of derating curves allows the designer to see the effect of rising ambient temperature on the maximum power allowed. DS9026-06 August 2011 Maximum Power Dissipation (W)1 RT9026 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 Four-Layers PCB WDFN-10L 3x3 SOP-8 (Exposed Pad) MSOP-10 (Exposed Pad) 0 25 50 75 100 125 Ambient Temperature (°C) Figure 3. Derating Curves for the RT9026 Packages DS9026-06 August 2011 www.richtek.com 11 RT9026 Outline Dimension H A M EXPOSED THERMAL PAD (Bottom of Package) Y J B X F C I D Dimensions In Millimeters Dimensions In Inches Symbol Min Max Min Max A 4.801 5.004 0.189 0.197 B 3.810 4.000 0.150 0.157 C 1.346 1.753 0.053 0.069 D 0.330 0.510 0.013 0.020 F 1.194 1.346 0.047 0.053 H 0.170 0.254 0.007 0.010 I 0.000 0.152 0.000 0.006 J 5.791 6.200 0.228 0.244 M 0.406 1.270 0.016 0.050 X 2.000 2.300 0.079 0.091 Y 2.000 2.300 0.079 0.091 X 2.100 2.500 0.083 0.098 Y 3.000 3.500 0.118 0.138 Option 1 Option 2 8-Lead SOP (Exposed Pad) Plastic Package www.richtek.com 12 DS9026-06 August 2011 RT9026 D L EXPOSED THERMAL PAD (Bottom of Package) U E V E1 e A2 A A1 b Dimensions In Millimeters Dimensions In Inches Symbol Min Max Min Max A 0.810 1.100 0.032 0.043 A1 0.000 0.100 0.000 0.004 A2 0.750 0.950 0.030 0.037 b 0.170 0.270 0.007 0.011 D 2.900 3.100 0.114 0.122 e 0.500 0.020 E 4.800 5.000 0.189 0.197 E1 2.900 3.100 0.114 0.122 L 0.400 0.800 0.016 0.031 U 1.300 1.700 0.051 0.067 V 1.500 1.900 0.059 0.075 10-Lead MSOP (Exposed Pad) Plastic Package DS9026-06 August 2011 www.richtek.com 13 RT9026 D2 D L E E2 1 SEE DETAIL A 2 e A A1 1 2 1 b DETAIL A Pin #1 ID and Tie Bar Mark Options A3 Note : The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated. Dimensions In Millimeters Dimensions In Inches Symbol Min Max Min Max A 0.700 0.800 0.028 0.031 A1 0.000 0.050 0.000 0.002 A3 0.175 0.250 0.007 0.010 b 0.180 0.300 0.007 0.012 D 2.950 3.050 0.116 0.120 D2 2.300 2.650 0.091 0.104 E 2.950 3.050 0.116 0.120 E2 1.500 1.750 0.059 0.069 e L 0.500 0.350 0.020 0.450 0.014 0.018 W-Type 10L DFN 3x3 Package Richtek Technology Corporation Richtek Technology Corporation Headquarter Taipei Office (Marketing) 5F, No. 20, Taiyuen Street, Chupei City 5F, No. 95, Minchiuan Road, Hsintien City Hsinchu, Taiwan, R.O.C. Taipei County, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611 Tel: (8862)86672399 Fax: (8862)86672377 Email: [email protected] Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek. www.richtek.com 14 DS9026-06 August 2011