HA1630S04/05/06 Series Ultra-Small Low Voltage Operation CMOS Single Operational Amplifier REJ03D0799-0100 Rev.1.00 Mar 10, 2006 Description The HA1630S04/05/06 are high slew rate single CMOS Operational Amplifiers realizing low voltage operation, low input offset voltage and low supply current. In addition to a low operating voltage from 1.8V, these device output can achieve full swing output voltage capability extending to either supply. Available in an ultra-small CMPAK-5 package that occupies only 1/8 the area of the SOP-8 package. Features • Low power and single supply operation • Low input offset voltage • Low supply current • High slew rate • Maximum output voltage • Low input bias current VDD = 1.8 to 5.5 V VIO = 4.0 mV Max IDD = 200 µA Typ (HA1630S04) IDD = 400 µA Typ (HA1630S05) IDD = 800 µA Typ (HA1630S06) SR = 2 V/µs Typ (HA1630S04) SR = 4 V/µs Typ (HA1630S05) SR = 8 V/µs Typ (HA1630S06) VOH = 2.9 V Min (at VDD = 3.0 V) IIB = 1 pA Typ Ordering Information Type No. Package Name Package Code HA1630S04CM HA1630S04LP CMPAK-5 MPAK-5 PTSP0005ZC-A PLSP0005ZB-A HA1630S05CM HA1630S05LP CMPAK-5 MPAK-5 PTSP0005ZC-A PLSP0005ZB-A HA1630S06CM HA1630S06LP CMPAK-5 MPAK-5 PTSP0005ZC-A PLSP0005ZB-A Rev.1.00 Mar 10, 2006 page 1 of 23 HA1630S04/05/06 Series Pin Arrangement VDD 5 VOUT 4 + − 1 2 3 VIN(+) VSS VIN(–) Equivalent Circuit VDD VIN(–) VIN(+) VSS Rev.1.00 Mar 10, 2006 page 2 of 23 VOUT HA1630S04/05/06 Series Absolute Maximum Ratings (Ta = 25°C) Items Supply voltage Symbol Ratings 7 Unit V VDD Differential input voltage Input voltage VIN(diff) VIN –VDD to +VDD –0.3 to +VDD V V Power dissipation Operating temp. Range PT Topr 200 –40 to +85 mW °C Storage temp. Range Tstg –55 to +125 Note: 1. Do not apply Input Voltage exceeding VDD or 7 V. °C Note 1 Electrical Characteristics (VDD = 3.0 V, Ta = 25°C) Min Typ Max Unit Input offset voltage Input offset current Items VIO IIO — — — (1.0) 4.0 — mV pA Vin = 1.5 V Vin = 1.5 V Input bias current Output high voltage IIB VOH — 2.9 (1.0) — — — pA V Vin = 1.5 V RL = 100 kΩ Output source current IO SOURCE 100 200 200 400 — — µA VOH = 2.5 V (HA1630S04) VOH = 2.5 V (HA1630S05) Output low voltage VOL 400 — 800 — — 0.1 Output sink current IO SINK — — (5.0) (6.0) — — Common mode input voltage range VCM — –0.05 to 2.1 (6.5) — — — V Slew rate SR 0 to 1.9 — — (2.0) — — V/µs — — (4.0) (8.0) — — 60 — 90 (2.1) — — — — (3.3) (3.6) — — Voltage gain Gain bandwidth product Symbol AV BW V mA dB MHz VOL = 0.5 V (HA1630S04) VOL = 0.5 V (HA1630S05) VOL = 0.5 V (HA1630S06) (HA1630S04, HA1630S05) (HA1630S06) CL = 20 pF (HA1630S04) CL = 20 pF (HA1630S04) CL = 20 pF (HA1630S05) CL = 20 pF (HA1630S06) PSRR CMRR 50 50 70 70 — — dB dB Supply current IDD — — 200 400 400 800 µA — 800 1700 Rev.1.00 Mar 10, 2006 page 3 of 23 VOH = 2.5 V (HA1630S06) RL = 100 kΩ CL = 20 pF (HA1630S05) CL = 20 pF (HA1630S06) Power supply rejection ratio Common mode rejection ratio Notes: 1. In the case of continuous current flow, use a sink current of under 4 mA. 2. ( ) : Design specification Test Condition RL = ∞ (HA1630S04) RL = ∞ (HA1630S05) RL = ∞ (HA1630S06) HA1630S04/05/06 Series Table of Graphs Electrical Characteristics HA1630S04 Figure HA1630S05 Figure HA1630S06 Figure Test Circuit Supply current IDD vs Supply voltage vs Ambient temperature 1-1 1-2 2-1 2-2 3-1 3-2 2 Output high voltage VOH vs Output source current vs Supply voltage 1-3 1-4 2-3 2-4 3-3 3-4 4 Output source current Output low voltage IO SOURCE VOL vs Ambient temperature vs Output sink current 1-5 1-6 2-5 2-6 3-5 3-6 6 5 Output sink current Input offset voltage IO SINK VIO vs Ambient temperature Distribution 1-7 1-8 2-7 2-8 3-7 3-8 6 1 vs Supply voltage vs Ambient temperature 1-9 1-10 2-9 2-10 3-9 3-10 Common mode input voltage range Power supply rejection ratio VCM vs Ambient temperature 1-11 2-11 3-11 7 PSRR vs Frequency 1-12 2-12 3-12 1 Common mode rejection ratio Voltage gain & phase angle CMRR vs Frequency 1-13 2-13 3-13 7 AV vs Frequency 1-14 2-14 3-14 10 Input bias current IIB vs Ambient temperature vs Input voltage 1-15 1-16 2-15 2-16 3-15 3-16 3 Slew Rate (rising) Slew Rate (falling) SRr SRf vs Ambient temperature vs Ambient temperature 1-17 1-18 2-17 2-18 3-17 3-18 9 Large signal transient response Small signal transient response 1-19 2-19 3-19 1-20 2-20 3-20 vs. Output voltage p-p vs. Output voltage p-p 1-21 1-22 2-21 2-22 3-21 3-22 vs Frequency 1-23 2-23 3-23 vs Frequency 1-24 2-24 3-24 Slew rate Total harmonic distortion + noise (0 dB) (40 dB) Maximum p-p output voltage Voltage noise density Rev.1.00 Mar 10, 2006 page 4 of 23 8 HA1630S04/05/06 Series Main Characteristics (HA1630S04) Figure 1-1. HA1630S04 Supply Current vs. Supply Voltage 400 Ta = 25°C Supply Current IDD (µA) Supply Current IDD (µA) 400 Figure 1-2. HA1630S04 Supply Current vs. Ambient Temperature 300 200 100 0 1 2 3 4 5 Supply Voltage VDD (V) VDD = 5.5 V VDD = 3.0 V 300 VDD = 1.8 V 200 100 0 −40 6 6 Ta = 25°C 5 VDD = 5.5 V 4 3 VDD = 3.0 V 2 VDD = 1.8 V 1 0 6 Ta = 25°C VDD = 3.0 V RL = 100 kΩ 5 4 3 2 1 0 100 200 300 Output Source Current IOSOURCE (µA) Figure 1-5. HA1630S04 Output Source Current vs. Ambient Temperature 400 Output Source Current IOSOURCE (µA) 100 Figure 1-4. HA1630S04 Output High Voltage vs. Supply Voltage Output High Voltage VOH (V) Output High Voltage VOH (V) Figure 1-3. HA1630S04 Output High Voltage vs. Output Source Current −20 0 20 40 60 80 Ambient Temperature Ta (°C) 300 VDD = 5.5 V VDD = 3.0 V VDD = 1.8 V 200 100 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 5 of 23 100 1 2 3 4 5 Supply Voltage VDD (V) 6 HA1630S04/05/06 Series Figure 1-7. HA1630S04 Output Sink Current vs. Ambient Temperature 1.5 10 VDD = 5.5 V Output Sink Current IOSINK (mA) Output Low Voltage VOL (V) Figure 1-6. HA1630S04 Output Low Voltage vs. Output Sink Current VDD = 3.0 V 1.0 VDD = 1.8 V 0.5 0 0 2 4 Output Sink Current IOSINK (mA) VDD = 5.5 V VDD = 3.0 V 8 VDD = 1.8 V 6 4 2 0 −40 6 Percentage (%) 40 Ta = 25°C VDD = 3.0 V 30 20 10 0 −4 −3 −2 −1 0 1 2 3 Input Offset Voltage VIO (mV) 4 4 Ta = 25°C VIN = 0.5 V 3 2 1 0 −1 −2 −3 −4 1 2 Common Mode Input Voltage VCM (V) Input Offset Voltage VIO (mV) 6 3.0 4 VDD = 1.8 V, VIN = 0.9 V 2 VDD = 3.0 V, VIN = 1.5 V 1 0 −1 VDD = 5.5 V, VIN = 2.75 V −2 −3 −4 −40 3 4 5 Supply Voltage VDD (V) Figure 1-11. HA1630S04 Common Mode Input Voltage vs. Ambient Temperature Figure 1-10. HA1630S04 Input Offset Voltage vs. Ambient Temperature 3 100 Figure 1-9. HA1630S04 Input Offset Voltage vs. Supply Voltage Input Offset Voltage VIO (mV) Figure 1-8. HA1630S04 Input Offset Voltage Distribution −20 0 20 40 60 80 Ambient Temperature Ta (°C) −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 6 of 23 100 2.0 VDD = 3.0 V 1.0 0 −1.0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) 100 HA1630S04/05/06 Series Power Supply Rejection Ratio PSRR (dB) Figure 1-12. HA1630S04 Power Supply Rejection Ratio vs. Frequency 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 80 60 40 20 0 10 100 1k 10k 100k 1M 10M Frequency f (Hz) Common Mode Rejection Ratio CMRR (dB) Figure 1-13. HA1630S04 Common Mode Rejection Ratio vs. Frequency 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 80 60 40 20 0 10 100 1k 10k 100k 1M 10M Frequency f (Hz) Figure 1-14. HA1630S04 Open Loop Voltage Gain and Phase Angle vs. Frequency 225 80 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF Open Loop Voltage Gain 60 40 20 135 90 Phase Angle 45 0 Phase Margin: 57 deg −20 −40 10 180 0 −45 100 1k 10k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 7 of 23 100k 1M −90 10M Phase Angle (deg) Open Loop Voltage Gain AVOL (dB) 100 HA1630S04/05/06 Series 200 VDD = 3.0 V 100 0 −100 −200 0 Figure 1-16. HA1630S04 Input Bias Current vs. Input Voltage Input Bias Current IIB (pA) Input Bias Current IIB (pA) Figure 1-15. HA1630S04 Input Bias Current vs. Ambient Temperature 25 50 75 Ambient Temperature Ta (°C) 200 100 0 −100 −200 100 Figure 1-17. HA1630S04 Slew Rate (rising) vs. Ambient Temperature Slew Rate SRf (V/µs) Slew Rate SRr (V/µs) 0.5 1.0 1.5 2.0 Input Voltage VIN (V) 2.5 3.0 5 VDD = 5.5 V 4 VDD = 3.0 V VDD = 1.8 V 2 1 0 −40 0 Figure 1-18. HA1630S04 Slew Rate (falling) vs. Ambient Temperature 5 3 Ta = 25°C VDD = 3.0 V −20 0 20 40 60 80 100 VDD = 5.5 V VDD = 3.0 V VDD = 1.8 V 4 3 2 1 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Ambient Temperature Ta (°C) Figure 1-19. HA1630S04 Large Signal Transient Response Figure 1-20. HA1630S04 Small Signal Transient Response 2.0 V Vin = 2.1 Vp-p, 250 kHz Ta = 25°C VDD = 3.0 V RL = 100 kΩ CL = 20 pF 1.6 V Vin = 0.2 Vp-p, 250 kHz 0V 1.4 V 2.0 V 1.6 V 0V 1.4 V Rev.1.00 Mar 10, 2006 page 8 of 23 100 Ta = 25°C VDD = 3.0 V RL = 100 kΩ CL = 20 pF HA1630S04/05/06 Series Figure 1-21. HA1630S04 Total Harmonic Distortion + Noise vs. Output Voltage p-p 10 VDD = 3.0 V Ta = 25°C Gain = 0 dB 1 T.H.D. + Noise (%) T.H.D. + Noise (%) 10 Figure 1-22. HA1630S04 Total Harmonic Distortion + Noise vs. Output Voltage p-p f = 10 kHz f = 1 kHz f = 100 Hz 0.1 0.01 0.001 1 f = 10 kHz f = 1 kHz f = 100 Hz 0.1 0.01 V = 3.0 V DD Ta = 25°C Gain = 40 dB 0.001 0 0.5 1.0 1.5 2.0 2.5 3.0 0 Output Voltage Vout p-p (V) 0.5 1.0 1.5 2.0 2.5 Output Voltage Vout p-p (V) Voltage Output Vout p-p (V) Figure 1-23. HA1630S04 Voltage Output p-p vs. Frequency 3.5 Ta = 25°C VDD = 3.0 V 3.0 2.5 Gain = 40 dB, VIN = 0.03 Vp-p 2.0 Gain = 0 dB, VIN = 2.0 Vp-p 1.5 1.0 0.5 0 1k Voltage Noise Density (nVms/√Hz) Gain = 20 dB, VIN = 0.3 Vp-p 10k 100k Frequency f (Hz) Figure 1-24. HA1630S04 Voltage Noise Density vs. Frequency 200 VDD = 3.0 V Ta = 25°C Gain = 40 dB RS = 1 kΩ 160 120 80 40 0 100 1k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 9 of 23 10k 1M 10M 3.0 HA1630S04/05/06 Series Main Characteristics (HA1630S05) Figure 2-1. HA1630S05 Supply Current vs. Supply Voltage Figure 2-2. HA1630S05 Supply Current vs. Ambient Temperature 800 Ta = 25°C Supply Current IDD (µA) Supply Current IDD (µA) 800 600 400 200 0 1 2 3 4 5 Supply Voltage VDD (V) VDD = 5.5 V VDD = 3.0 V 600 VDD = 1.8 V 400 200 0 −40 6 6 Ta = 25°C VDD = 5.5 V 5 4 3 VDD = 3.0 V 2 VDD = 1.8 V 1 0 6 Ta = 25°C VDD = 3.0 V 5 4 RL = 100 kΩ RL = 20 kΩ 3 2 1 0 100 200 300 400 500 Output Source Current IOSOURCE (µA) Figure 2-5. HA1630S05 Output Source Current vs. Ambient Temperature 800 Output Source Current IOSOURCE (µA) 100 Figure 2-4. HA1630S05 Output High Voltage vs. Supply Voltage Output High Voltage VOH (V) Output High Voltage VOH (V) Figure 2-3. HA1630S05 Output High Voltage vs. Output Source Current −20 0 20 40 60 80 Ambient Temperature Ta (°C) VDD = 5.5 V VDD = 3.0 V 600 VDD = 1.8 V 400 200 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 10 of 23 100 1 2 3 4 5 Supply Voltage VDD (V) 6 HA1630S04/05/06 Series Figure 2-7. HA1630S05 Output Sink Current vs. Ambient Temperature 1.5 10 Output Sink Current IOSINK (mA) Output Low Voltage VOL (V) Figure 2-6. HA1630S05 Output Low Voltage vs. Output Sink Current VDD = 5.5 V VDD = 3.0 V 1.0 VDD = 1.8 V 0.5 0 0 2 4 6 Output Sink Current IOSINK (mA) VDD = 5.5 V VDD = 3.0 V 8 VDD = 1.8 V 6 4 2 0 −40 8 Percentage (%) 40 Ta = 25°C VDD = 3.0 V 30 20 10 0 −4 −3 −2 −1 0 1 2 3 Input Offset Voltage VIO (mV) 4 4 Ta = 25°C VIN = 0.5 V 3 2 1 0 −1 −2 −3 −4 1 2 Common Mode Input Voltage VCM (V) Input Offset Voltage VIO (mV) 6 3.0 4 VDD = 1.8 V, VIN = 0.5 V 2 VDD = 3.0 V, VIN = 1.5 V 1 0 −1 VDD = 5.5 V, VIN = 2.75 V −2 −3 −4 −40 3 4 5 Supply Voltage VDD (V) Figure 2-11. HA1630S05 Common Mode Input Voltage vs. Ambient Temperature Figure 2-10. HA1630S05 Input Offset Voltage vs. Ambient Temperature 3 100 Figure 2-9. HA1630S05 Input Offset Voltage vs. Supply Voltage Input Offset Voltage VIO (mV) Figure 2-8. HA1630S05 Input Offset Voltage Distribution −20 0 20 40 60 80 Ambient Temperature Ta (°C) −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 11 of 23 100 2.0 VDD = 3.0 V 1.0 0 −1.0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) 100 HA1630S04/05/06 Series Power Supply Rejection Ratio PSRR (dB) Figure 2-12. HA1630S05 Power Supply Rejection Ratio vs. Frequency 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 80 60 40 20 0 10 100 1k 10k 100k 1M 10M Frequency f (Hz) Common Mode Rejection Ratio CMRR (dB) Figure 2-13. HA1630S05 Common Mode Rejection Ratio vs. Frequency 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 80 60 40 20 0 10 100 1k 10k 100k 1M 10M Frequency f (Hz) Figure 2-14. HA1630S05 Open Loop Voltage Gain and Phase Angle vs. Frequency 225 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF Open Loop Voltage Gain 80 60 40 135 90 20 45 Phase Angle 0 0 Phase Margin: 55 deg −20 −40 10 180 −45 100 1k 10k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 12 of 23 100k 1M −90 10M Phase Angle (deg) Open Loop Voltage Gain AVOL (dB) 100 HA1630S04/05/06 Series 200 VDD = 3.0 V 100 0 −100 −200 0 Figure 2-16. HA1630S05 Input Bias Current vs. Input Voltage Input Bias Current IIB (pA) Input Bias Current IIB (pA) Figure 2-15. HA1630S05 Input Bias Current vs. Ambient Temperature 25 50 75 Ambient Temperature Ta (°C) 200 Ta = 25°C VDD = 3.0 V 100 0 −100 −200 100 0 VDD = 5.5 V 8 Slew Rate SRf (V/µs) Slew Rate SRr (V/µs) 2.5 3.0 10 10 VDD = 3.0 V VDD = 1.8 V 4 2 0 −40 1.0 1.5 2.0 Input Voltage VIN (V) Figure 2-18. HA1630S05 Slew Rate (falling) vs. Ambient Temperature Figure 2-17. HA1630S05 Slew Rate (rising) vs. Ambient Temperature 6 0.5 −20 0 20 40 60 80 100 VDD = 5.5 V 8 6 VDD = 3.0 V VDD = 1.8 V 4 2 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Ambient Temperature Ta (°C) Figure 2-19. HA1630S05 Large Signal Transient Response Figure 2-20. HA1630S05 Small Signal Transient Response 2.0 V VIN = 2.1 Vp-p, 500 kHz Ta = 25°C VDD = 3.0 V RL = 100 kΩ CL = 20 pF 1.6 V VIN = 0.2 Vp-p, 500 kHz 0V 1.4 V 2.0 V 1.6 V 0V 1.4 V Rev.1.00 Mar 10, 2006 page 13 of 23 100 Ta = 25°C VDD = 3.0 V RL = 100 kΩ CL = 20 pF HA1630S04/05/06 Series Figure 2-21. HA1630S05 Total Harmonic Distortion + Noise vs. Output Voltage p-p 10 VDD = 3.0 V Ta = 25°C Gain = 0 dB 1 T.H.D. + Noise (%) T.H.D. + Noise (%) 10 Figure 2-22. HA1630S05 Total Harmonic Distortion + Noise vs. Output Voltage p-p f = 10 kHz f = 1 kHz f = 100 Hz 0.1 0.01 0.001 0.1 0.01 0.001 0 0.5 1.0 1.5 2.0 2.5 3.0 f = 10 kHz f = 1 kHz f = 100 Hz 1 VDD = 3.0 V Ta = 25°C Gain = 40 dB 0 Output Voltage Vout p-p (V) 0.5 1.0 1.5 2.0 2.5 Output Voltage Vout p-p (V) Voltage Output Vout p-p (V) Figure 2-23. HA1630S05 Voltage Output p-p vs. Frequency 3.5 Ta = 25°C VDD = 3.0 V 3.0 2.5 Gain = 40 dB, VIN = 0.03 Vp-p Gain = 20 dB, VIN = 0.3 Vp-p 2.0 Gain = 0 dB, VIN = 2.0 Vp-p 1.5 1.0 0.5 0 1k 10k 100k Frequency f (Hz) Figure 2-24. HA1630S05 Voltage Noise Density vs. Frequency Voltage Noise Density (nVms/√Hz) 200 VDD = 3.0 V Ta = 25°C Gain = 40 dB RS = 1 kΩ 160 120 80 40 0 100 1k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 14 of 23 10k 1M 10M 3.0 HA1630S04/05/06 Series Main Characteristics (HA1630S06) Figure 3-1. HA1630S06 Supply Current vs. Supply Voltage 1600 Ta = 25°C Supply Current IDD (µA) Supply Current IDD (µA) 1600 Figure 3-2. HA1630S06 Supply Current vs. Ambient Temperature 1200 800 400 0 1 2 3 4 5 Supply Voltage VDD (V) VDD = 5.5 V VDD = 3.0 V 1200 VDD = 1.8 V 800 400 0 −40 6 6 Ta = 25°C 5 VDD = 5.5 V 4 VDD = 3.0 V 3 VDD = 1.8 V 2 1 0 6 Ta = 25°C VDD = 3.0 V 5 RL = 100 kΩ RL = 20 kΩ 4 3 2 1 0 200 400 600 800 1000 Output Source Current IOSOURCE (µA) Figure 3-5. HA1630S06 Output Source Current vs. Ambient Temperature 1600 Output Source Current IOSOURCE (µA) 100 Figure 3-4. HA1630S06 Output High Voltage vs. Supply Voltage Output High Voltage VOH (V) Output High Voltage VOH (V) Figure 3-3. HA1630S06 Output High Voltage vs. Output Source Current −20 0 20 40 60 80 Ambient Temperature Ta (°C) VDD = 5.5 V VDD = 3.0 V 1200 VDD = 1.8 V 800 400 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 15 of 23 100 1 2 3 4 5 Supply Voltage VDD (V) 6 HA1630S04/05/06 Series Figure 3-7. HA1630S06 Output Sink Current vs. Ambient Temperature 1.5 12 Output Sink Current IOSINK (mA) Output Low Voltage VOL (V) Figure 3-6. HA1630S06 Output Low Voltage vs. Output Sink Current VDD = 5.5 V VDD = 3.0 V 1.0 VDD = 1.8 V 0.5 VDD = 5.5 V 10 8 VDD = 3.0 V 6 4 VDD = 1.8 V 2 0 0 2 4 6 8 Output Sink Current IOSINK (mA) 0 −40 10 Percentage (%) 40 Ta = 25°C VDD = 3.0 V 30 20 10 0 −4 −3 −2 −1 0 1 2 3 Input Offset Voltage VIO (mV) 4 4 Ta = 25°C VIN = 0.5 V 3 2 1 0 −1 −2 −3 −4 1 2 Common Mode Input Voltage VCM (V) Input Offset Voltage VIO (mV) 6 3.0 4 VDD = 1.8 V, VIN = 0.5 V 2 VDD = 3.0 V, VIN = 1.5 V 1 0 −1 VDD = 5.5 V, VIN = 2.75 V −2 −3 −4 −40 3 4 5 Supply Voltage VDD (V) Figure 3-11. HA1630S06 Common Mode Input Voltage vs. Ambient Temperature Figure 3-10. HA1630S06 Input Offset Voltage vs. Ambient Temperature 3 100 Figure 3-9. HA1630S06 Input Offset Voltage vs. Supply Voltage Input Offset Voltage VIO (mV) Figure 3-8. HA1630S06 Input Offset Voltage Distribution −20 0 20 40 60 80 Ambient Temperature Ta (°C) −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 16 of 23 100 2.0 VDD = 3.0 V 1.0 0 −1.0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) 100 HA1630S04/05/06 Series Power Supply Rejection Ratio PSRR (dB) Figure 3-12. HA1630S06 Power Supply Rejection Ratio vs. Frequency 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF VRIP = 0.1 Vp 80 60 40 20 0 10 100 1k 10k 100k 1M 10M Frequency f (Hz) Common Mode Rejection Ratio CMRR (dB) Figure 3-13. HA1630S06 Common Mode Rejection Ratio vs. Frequency 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 80 60 40 20 0 10 100 1k 10k 100k 1M 10M Frequency f (Hz) Figure 3-14. HA1630S06 Open Loop Voltage Gain and Phase Angle vs. Frequency 225 Ta = 25°C VDD = 3.0 V 180 RL = 1 MΩ CL = 20 pF 135 Open Loop Voltage Gain 80 60 40 90 Phase Angle 20 45 0 Phase Margin: 65 deg −20 −40 10 0 −45 100 1k 10k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 17 of 23 100k 1M −90 10M Phase Angle (deg) Open Loop Voltage Gain AVOL (dB) 100 HA1630S04/05/06 Series 200 VDD = 3.0 V 100 0 −100 −200 0 25 50 75 Ambient Temperature Ta (°C) Figure 3-16. HA1630S06 Input Bias Current vs. Input Voltage Input Bias Current IIB (pA) Input Bias Current IIB (pA) Figure 3-15. HA1630S06 Input Bias Current vs. Ambient Temperature 200 100 0 −100 −200 100 Figure 3-17. HA1630S06 Slew Rate (rising) vs. Ambient Temperature 0.5 1.0 1.5 2.0 Input Voltage VIN (V) 2.5 3.0 14 12 Slew Rate SRf (V/µs) Slew Rate SRr (V/µs) 0 Figure 3-18. HA1630S06 Slew Rate (falling) vs. Ambient Temperature 14 VDD = 5.5 V VDD = 3.0 V 10 VDD = 1.8 V 8 6 4 −40 Ta = 25°C VDD = 3.0 V −20 0 20 40 60 80 100 VDD = 5.5 V 12 10 VDD = 3.0 V VDD = 1.8 V 8 6 4 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Ambient Temperature Ta (°C) Figure 3-19. HA1630S06 Large Signal Transient Response Figure 3-20. HA1630S06 Small Signal Transient Response 2.0 V VIN = 1.9 Vp-p, 500 kHz Ta = 25°C VDD = 3.0 V RL = 100 kΩ CL = 20 pF 1.6 V VIN = 0.2 Vp-p, 500 kHz 0V 1.4 V 2.0 V 1.6 V 0V 1.4 V Rev.1.00 Mar 10, 2006 page 18 of 23 100 Ta = 25°C VDD = 3.0 V RL = 100 kΩ CL = 20 pF HA1630S04/05/06 Series Figure 3-21. HA1630S06 Total Harmonic Distortion + Noise vs. Output Voltage p-p 10 VDD = 3.0 V Ta = 25°C Gain = 0 dB 1 T.H.D. + Noise (%) T.H.D. + Noise (%) 10 Figure 3-22. HA1630S06 Total Harmonic Distortion + Noise vs. Output Voltage p-p f = 10 kHz f = 1 kHz f = 100 Hz 0.1 0.01 1 f = 10 kHz f = 1 kHz f = 100 Hz 0.1 0.01 VDD = 3.0 V Ta = 25°C Gain = 40 dB 0.001 0.001 0 0.5 1.0 1.5 2.0 2.5 3.0 0 Output Voltage Vout p-p (V) 0.5 1.0 1.5 2.0 2.5 Output Voltage Vout p-p (V) Voltage Output Vout p-p (V) Figure 3-23. HA1630S06 Voltage Output p-p vs. Frequency 3.5 Ta = 25°C VDD = 3.0 V 3.0 2.5 Gain = 40 dB, VIN = 0.03 Vp-p Gain = 20 dB, VIN = 0.3 Vp-p 10k 100k Frequency f (Hz) 1.5 1.0 0.5 0 1k Figure 3-24. HA1630S06 Voltage Noise Density vs. Frequency Voltage Noise Density (nVms/√Hz) 200 VDD = 3.0 V Ta = 25°C Gain = 40 dB RS = 1 kΩ 160 120 80 40 0 100 Gain = 0 dB, VIN = 2.0 Vp-p 2.0 1k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 19 of 23 10k 1M 10M 3.0 HA1630S04/05/06 Series Test Circuits 1. Power Supply Rejection Ratio, PSRP & Voltage Offset, VIO VIO VDD VIO = VO − RF = 680 kΩ VDD 2 × RS R S + RF RS = 6.8 kΩ PSRR − + VO RS = 6.8 kΩ VDD PSRR = −20log 2 VDD1 − VDD2 VO1 − VO2 × RS R S + RF Measure VO corresponding to VDD1 = 2.95 V and VDD2 = 3.05 V 2. Supply Current, IDD 3. Input Bias Current, IIB VDD VDD A − + − + VDD VDD 2 2 4. Output High Voltage, VOH VOH VDD VIN1 = VDD / 2 − 0.05 V VIN2 = VDD / 2 + 0.05 V − + VIN1 VO VIN2 RL = 100 kΩ 5. Output Low Voltage, VOL VOL VDD VIN1 = VDD / 2 + 0.05 V VIN2 = VDD / 2 − 0.05 V − + VIN1 RL = 100 kΩ VIN2 Rev.1.00 Mar 10, 2006 page 20 of 23 VO A HA1630S04/05/06 Series 6. Output Source Current, IOSOURCE & Output Sink Current, IOSINK VDD IOSOURCE VO = VDD − 0.5 V VIN1 = VDD / 2 − 0.05 V VIN2 = VDD / 2 + 0.05 V − + VIN1 A IOSINK VIN2 VO = + 0.5 V VIN1 = VDD / 2 + 0.05 V VIN2 = VDD / 2 − 0.05 V VO 7. Common Mode Input Voltage, VCM & Common Mode Rejection Ratio, CMRR VDD CMRR RF = 680 kΩ RS = 6.8 kΩ VIN1 − VIN2 VO1 − VO2 CMRR = −20log − + VO RS = 6.8 kΩ × RS RS + RF Measure VO corresponding to VIN1 = 1.45 V and VIN2 = 1.55 V VDD VIN 2 RF = 680 kΩ 8. Total Harmonic Distortion, THD VDD THD RF Gain Variable RS − + VO Gain Variable RF / RS = 20log (100 kΩ / 1 kΩ) = 40 dB RF / RS = 20log (100 kΩ / 100 kΩ) = 0 dB freq = 100 Hz, 1 kHz, 10 kHz 30 kHz LPF ON VIN VSS 9. Slew Rate, SR 10. Gain, AV & Phase, GBW VDD VDD RF = 680 kΩ RS = 6.8 kΩ − + VO 1 MΩ − + 20 pF VSS Rev.1.00 Mar 10, 2006 page 21 of 23 VO 1 MΩ RS = 6.8 kΩ VSS 20 pF HA1630S04/05/06 Series Package Dimensions JEITA Package Code SC-74A Package Name MPAK-5 RENESAS Code PLSP0005ZB-A Previous Code MPAK-5 / MPAK-5V MASS[Typ.] 0.015g D A e Q E HE LP L A c Reference Dimension in Millimeters Symbol Min Nom Max L1 A3 A x M S b A e A2 A e1 A1 y S S b b1 I1 c1 c b2 A-A Section JEITA Package Code Pattern of terminal position areas RENESAS Code SC-88A Previous Code PTSP0005ZC-A D CMPAK-5 / CMPAK-5V A A1 A2 A3 b b1 c c1 D E e HE L L1 LP x y b2 e1 I1 Q 1.0 0 1.0 0.35 0.1 2.8 1.5 2.5 0.3 0.1 0.2 1.1 0.25 0.42 0.4 0.13 0.11 2.95 1.6 0.95 2.8 1.3 0.1 1.2 0.5 0.15 3.1 1.8 3.0 0.7 0.5 0.6 0.05 0.05 0.55 2.15 0.85 0.3 MASS[Typ.] 0.006g A e Q c E HE LP L A A x M L1 S Reference Symbol A3 b A A A1 A2 A3 b b1 c c1 D E e e A2 A A1 y S S e1 b b1 c1 l1 c b2 A-A Section Rev.1.00 Mar 10, 2006 page 22 of 23 Pattern of terminal position areas HE L L1 LP x y Dimension in Millimeters Min 0.8 0 0.8 0.15 0.1 1.8 1.15 1.8 0.3 0.1 0.2 Nom 0.9 0.25 0.22 0.2 0.13 0.11 2.0 1.25 0.65 2.1 b2 e1 1.5 l1 Q 0.25 Max 1.1 0.1 1.0 0.3 0.15 2.2 1.35 2.4 0.7 0.5 0.6 0.05 0.05 0.35 0.9 HA1630S04/05/06 Series Taping & Reel Specification [Taping] Package Code MPAK-5 CMPAK-5 W 8 8 P 4 4 Ao 3.3 2.25 Bo 3.3 2.45 Ko 1.5 1.1 E 1.75 1.75 F 3.5 3.5 D1 1.05 1.05 Maximum Storage No. 3,000 pcs/reel 3,000 pcs/reel 4.0 φ 1.5 Unit: mm E 2.0 Cover tape B0 W F A0 D1 P Tape withdraw direction [Ordering Information] Ordering Unit 3,000 pcs 9.0 Mark Indication Index band Marking 1 D = Contorol code ( or blank) Rev.1.00 Mar 10, 2006 page 23 of 23 1D : HA1630S04 1E : HA1630S05 1F : HA1630S06 φ178 ± 2 2.0 ± 0.5 W2 9 9 4 ± 0.5 W1 11.4 11.4 0° Tape width 8 8 12 [Reel] Package MPAK-5 CMPAK-5 11.4 φ13 ± 0.5 K0 Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein. http://www.renesas.com RENESAS SALES OFFICES Refer to "http://www.renesas.com/en/network" for the latest and detailed information. Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501 Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900 Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898 Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071 Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145 Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510 © 2006. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon .6.0