HA1630Q01/02/03 Series Low Voltage Operation CMOS Quad Operational Amplifier REJ03D0802-0100 Rev.1.00 Mar 10, 2006 Description The HA1630Q01/02/03 are dual CMOS Operational Amplifiers realizing low voltage operation, low input offset voltage and low supply current. In addition to a low operating voltage from 1.8V, these device output can achieve full swing output voltage capability extending to either supply. Available in an ultra-small TSSOP-14 package that occupies only 1/2 the area of the SOP-14 package. Features • Low power and single supply operation • Low input offset voltage • Low supply current (per channel) • Maximum output voltage • Low input bias current VDD = 1.8 to 5.5 V VIO = 4.0 mV Max IDD = 15 µA Typ (HA1630Q01) IDD = 50 µA Typ (HA1630Q02) IDD = 100 µA Typ (HA1630Q03) VOH = 2.9 V Min (at VDD = 3.0 V) IIB = 1 pA Typ Ordering Information Type No. Package Name Package Code HA1630Q01T HA1630Q02T TTP-14D TTP-14D PTSP0014JA-B PTSP0014JA-B HA1630Q03T TTP-14D PTSP0014JA-B Rev.1.00 Mar 10, 2006 page 1 of 23 HA1630Q01/02/03 Series Pin Arrangement VOUT1 1 VIN1(–) 2 14 VOUT4 − + + − VIN1(+) 3 12 VIN4(+) VDD 4 VIN2(+) 5 13 VIN4(–) 11 VSS − + + − 10 VIN3(+) VIN2(–) 6 9 VIN3(–) VOUT2 7 8 VOUT3 Equivalent Circuit (per one channel) VDD VIN(–) VIN(+) VSS Rev.1.00 Mar 10, 2006 page 2 of 23 VOUT HA1630Q01/02/03 Series Absolute Maximum Ratings (Ta = 25°C) Items Supply voltage Symbol Ratings 7 Unit V VDD Differential input voltage Input voltage VIN(diff) VIN –VDD to +VDD –0.3 to +VDD V V Power dissipation Operating temp. Range PT Topr 400 –40 to +85 mW °C Storage temp. Range Tstg –55 to +125 Note: 1. Do not apply Input Voltage exceeding VDD or 7 V. °C Note 1 Electrical Characteristics (VDD = 3.0 V, Ta = 25°C) Min Typ Max Unit Input offset voltage Input offset current Items VIO IIO — — — (1.0) 4.0 — mV pA Vin = 1.5 V Vin = 1.5 V Input bias current Output high voltage IIB VOH — 2.9 (1.0) — — — pA V Vin = 1.5 V RL = 1 MΩ Output source current IO SOURCE 6 25 12 50 — — µA VOH = 2.5 V (HA1630Q01) VOH = 2.5 V (HA1630Q02) Output low voltage VOL 50 — 100 — — 0.1 Output sink current IO SINK — — (0.8) (1.0) — — Common mode input voltage range VCM — –0.1 to 2.1 (1.2) — — — Slew rate SR — — (0.125) (0.50) — — Voltage gain AV — 60 (1.00) 80 — — Gain bandwidth product BW — — (200) (680) — — Power supply rejection ratio PSRR — 60 (1200) 80 — — dB Common mode rejection ratio Supply current CMRR IDD 60 — 80 60 — 120 dB µA — — 200 400 400 800 Note: Symbol 1. ( ) : Design specification Rev.1.00 Mar 10, 2006 page 3 of 23 V mA Test Condition VOH = 2.5 V (HA1630Q03) RL = 1 MΩ VOL = 0.5 V (HA1630Q01) VOL = 0.5 V (HA1630Q02) VOL = 0.5 V (HA1630Q03) V V/µs CL = 20 pF (HA1630Q01) CL = 20 pF (HA1630Q02) CL = 20 pF (HA1630Q03) dB kHz CL = 20 pF (HA1630Q01) CL = 20 pF (HA1630Q02) CL = 20 pF (HA1630Q03) RL = ∞ (HA1630Q01) RL = ∞ (HA1630Q02) RL = ∞ (HA1630Q03) HA1630Q01/02/03 Series Table of Graphs Electrical Characteristics HA1630Q01 Figure HA1630Q02 Figure HA1630Q03 Figure Test Circuit Supply current IDD vs Supply voltage vs Ambient temperature 1-1 1-2 2-1 2-2 3-1 3-2 2 Output high voltage VOH vs Output source current vs Supply voltage 1-3 1-4 2-3 2-4 3-3 3-4 4 Output source current Output low voltage IO SOURCE VOL vs Ambient temperature vs Output sink current 1-5 1-6 2-5 2-6 3-5 3-6 6 5 Output sink current Input offset voltage IO SINK VIO vs Ambient temperature Distribution 1-7 1-8 2-7 2-8 3-7 3-8 6 1 vs Supply voltage vs Ambient temperature 1-9 1-10 2-9 2-10 3-9 3-10 Common mode input voltage range Power supply rejection ratio VCM vs Ambient temperature 1-11 2-11 3-11 7 PSRR vs Frequency 1-12 2-12 3-12 1 Common mode rejection ratio Voltage gain & phase angle CMRR vs Frequency 1-13 2-13 3-13 7 AV vs Frequency 1-14 2-14 3-14 10 Input bias current IIB vs Ambient temperature vs Input voltage 1-15 1-16 2-15 2-16 3-15 3-16 3 Slew Rate (rising) Slew Rate (falling) SRr SRf vs Ambient temperature vs Ambient temperature 1-17 1-18 2-17 2-18 3-17 3-18 9 Large signal transient response Small signal transient response 1-19 2-19 3-19 1-20 2-20 3-20 vs. Output voltage p-p vs. Output voltage p-p — — 2-21 2-22 3-21 3-22 vs Frequency 1-21 2-23 3-23 vs Frequency 1-22 2-24 3-24 Slew rate Total harmonic distortion + noise (0 dB) (40 dB) Maximum p-p output voltage Voltage noise density Rev.1.00 Mar 10, 2006 page 4 of 23 8 HA1630Q01/02/03 Series Main Characteristics (HA1630Q01) Figure 1-1. HA1630Q01 Supply Current vs. Supply Voltage Figure 1-2. HA1630Q01 Supply Current vs. Ambient Temperature 50 Ta = 25°C Supply Current IDD (µA) Supply Current IDD (µA) 50 40 30 20 10 0 1 2 3 4 5 Supply Voltage VDD (V) VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 40 30 20 10 0 −40 6 6 Ta = 25°C 5 VDD = 5.5 V 4 3 VDD = 3.0 V 2 VDD = 1.8 V 1 0 6 Ta = 25°C RL = 1 MΩ 5 RL = 510 kΩ 4 3 2 1 0 5 10 15 20 Output Source Current IOSOURCE (µA) Figure 1-5. HA1630Q01 Output Source Current vs. Ambient Temperature 50 Output Source Current IOSOURCE (µA) 100 Figure 1-4. HA1630Q01 Output High Voltage vs. Supply Voltage Output High Voltage VOH (V) Output High Voltage VOH (V) Figure 1-3. HA1630Q01 Output High Voltage vs. Output Source Current −20 0 20 40 60 80 Ambient Temperature Ta (°C) 40 30 20 VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 10 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 5 of 23 100 1 2 3 4 5 Supply Voltage VDD (V) 6 HA1630Q01/02/03 Series Figure 1-7. HA1630Q01 Output Sink Current vs. Ambient Temperature 2.0 2.0 Output Sink Current IOSINK (mA) Output Low Voltage VOL (V) Figure 1-6. HA1630Q01 Output Low Voltage vs. Output Sink Current VDD = 5.0 V 1.5 VDD = 3.0 V VDD = 1.8 V 1.0 0.5 0 0 0.5 Output Sink Current IOSINK (mA) VDD = 5.0 V VDD = 3.0 V 1.5 1.0 VDD = 1.8 V 0.5 0 −40 1.0 Figure 1-8. HA1630Q01 Input Offset Voltage Distribution Input Offset Voltage VIO (mV) Percentage (%) Ta = 25°C VDD = 3.0 V 30 20 10 0 −4 −3 −2 −1 0 1 2 3 Input Offset Voltage VIO (mV) 4 4 Ta = 25°C VIN = 0.5 V 3 2 1 0 −1 −2 −3 −4 1 2 Common Mode Input Voltage VCM (V) Input Offset Voltage VIO (mV) 6 3.0 4 VDD = 1.8 V, VIN = 0.9 V VDD = 3.0 V, VIN = 1.5 V 2 1 0 VDD = 5.0 V, VIN = 2.5 V −1 −2 −3 −4 −40 3 4 5 Supply Voltage VDD (V) Figure 1-11. HA1630Q01 Common Mode Input Voltage vs. Ambient Temperature Figure 1-10. HA1630Q01 Input Offset Voltage vs. Ambient Temperature 3 100 Figure 1-9. HA1630Q01 Input Offset Voltage vs. Supply Voltage 50 40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 6 of 23 100 2.0 VDD = 3.0 V 1.0 0 −1.0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) 100 HA1630Q01/02/03 Series Power Supply Rejection Ratio PSRR (dB) Figure 1-12. HA1630Q01 Power Supply Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Common Mode Rejection Ratio CMRR (dB) Figure 1-13. HA1630Q01 Common Mode Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Figure 1-14. HA1630Q01 Open Loop Voltage Gain and Phase Angle vs. Frequency 225 80 Ta = 25°C VDD = 3.0 V 180 RL = 1 MΩ CL = 20 pF 135 Open Loop Voltage Gain 60 40 90 Phase Angle 20 45 0 0 Phase Margin: 50 deg −20 −40 10 100 1k 10k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 7 of 23 100k −45 −90 1M Phase Angle (deg) Open Loop Voltage Gain AVOL (dB) 100 HA1630Q01/02/03 Series 200 VDD = 3.0 V 100 0 −100 −200 −40 Figure 1-16. HA1630Q01 Input Bias Current vs. Input Voltage Input Bias Current IIB (pA) Input Bias Current IIB (pA) Figure 1-15. HA1630Q01 Input Bias Current vs. Ambient Temperature −20 0 20 40 60 80 Ambient Temperature Ta (°C) 200 100 0 −100 −200 100 0.5 1.0 1.5 2.0 Input Voltage VIN (V) 2.5 3.0 0.20 0.20 VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 0.15 Slew Rate SRf (V/µs) Slew Rate SRr (V/µs) 0 Figure 1-18. HA1630Q01 Slew Rate (falling) vs. Ambient Temperature Figure 1-17. HA1630Q01 Slew Rate (rising) vs. Ambient Temperature 0.10 0.05 0 −40 Ta = 25°C VDD = 3.0 V −20 0 20 40 60 80 100 VDD = 5.0 V VDD = 3.0 V 0.15 0.10 VDD = 1.8 V 0.05 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Ambient Temperature Ta (°C) Figure 1-19. HA1630Q01 Large Signal Transient Response Figure 1-20. HA1630Q01 Small Signal Transient Response Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF Rev.1.00 Mar 10, 2006 page 8 of 23 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF HA1630Q01/02/03 Series Output Voltage Vout p-p (V) Figure 1-21. HA1630Q01 Voltage Output p-p vs. Frequency 3.5 3.0 2.5 2.0 Gain = 40 dB, Vp-p = 0.03 V Ta = 25°C VDD = 3.0 V Gain = 20 dB, Vp-p = 0.3 V Gain = 0 dB, Vp-p = 2.5 V 1.5 1.0 0.5 0 100 1k 10k Frequency f (Hz) 100k Figure 1-22. HA1630Q01 Voltage Noise Density vs. Frequency Voltage Noise Density (nV/√Hz) 200 100 0 100 Rev.1.00 Mar 10, 2006 page 9 of 23 Frequency f (Hz) 10k 1M HA1630Q01/02/03 Series Main Characteristics (HA1630Q02) Figure 2-1. HA1630Q02 Supply Current vs. Supply Voltage 200 Ta = 25°C Supply Current IDD (µA) Supply Current IDD (µA) 200 Figure 2-2. HA1630Q02 Supply Current vs. Ambient Temperature 160 120 80 40 0 1 2 3 4 5 Supply Voltage VDD (V) VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 160 120 80 40 0 −40 6 6 Ta = 25°C 5 VDD = 5.0 V 4 3 VDD = 3.0 V 2 VDD = 1.8 V 1 0 6 Ta = 25°C RL = 1 MΩ 5 RL = 120 kΩ 4 3 2 1 0 10 20 30 40 50 60 Output Source Current IOSOURCE (µA) Figure 2-5. HA1630Q02 Output Source Current vs. Ambient Temperature 100 Output Source Current IOSOURCE (µA) 100 Figure 2-4. HA1630Q02 Output High Voltage vs. Supply Voltage Output High Voltage VOH (V) Output High Voltage VOH (V) Figure 2-3. HA1630Q02 Output High Voltage vs. Output Source Current −20 0 20 40 60 80 Ambient Temperature Ta (°C) 80 60 VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 40 20 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 10 of 23 100 1 2 3 4 5 Supply Voltage VDD (V) 6 HA1630Q01/02/03 Series Figure 2-7. HA1630Q02 Output Sink Current vs. Ambient Temperature 2.5 2.0 VDD = 5.0 V Output Sink Current IOSINK (mA) Output Low Voltage VOL (V) Figure 2-6. HA1630Q02 Output Low Voltage vs. Output Sink Current 1.5 VDD = 5.0 V VDD = 3.0 V 1.0 VDD = 1.8 V 0.5 0 0 0.5 1.0 Output Sink Current IOSINK (mA) VDD = 3.0 V 2.0 1.5 1.0 VDD = 1.8 V 0.5 0 −40 1.5 Figure 2-8. HA1630Q02 Input Offset Voltage Distribution Input Offset Voltage VIO (mV) Percentage (%) Ta = 25°C VDD = 3.0 V 30 20 10 0 −4 −3 −2 −1 0 1 2 3 Input Offset Voltage VIO (mV) 4 4 Ta = 25°C VIN = 0.5 V 3 2 1 0 −1 −2 −3 −4 1 2 VDD = 1.8 V, VIN = 0.9 V 2 Common Mode Input Voltage VCM (V) Input Offset Voltage VIO (mV) 6 3.0 4 VDD = 3.0 V, VIN = 1.5 V 1 0 −1 VDD = 5.0 V, VIN = 2.5 V −2 −3 −4 −40 3 4 5 Supply Voltage VDD (V) Figure 2-11. HA1630Q02 Common Mode Input Voltage vs. Ambient Temperature Figure 2-10. HA1630Q02 Input Offset Voltage vs. Ambient Temperature 3 100 Figure 2-9. HA1630Q02 Input Offset Voltage vs. Supply Voltage 50 40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 11 of 23 100 2.0 VDD = 3.0 V 1.0 0 −1.0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) 100 HA1630Q01/02/03 Series Power Supply Rejection Ratio PSRR (dB) Figure 2-12. HA1630Q02 Power Supply Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Common Mode Rejection Ratio CMRR (dB) Figure 2-13. HA1630Q02 Common Mode Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Figure 2-14. HA1630Q02 Open Loop Voltage Gain and Phase Angle vs. Frequency 225 80 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF Open Loop Voltage Gain 60 40 135 90 Phase Angle 20 0 45 0 Phase Margin: 50 deg −20 −40 10 180 −45 100 1k 10k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 12 of 23 100k 1M −90 10M Phase Angle (deg) Open Loop Voltage Gain AVOL (dB) 100 HA1630Q01/02/03 Series 200 VDD = 3.0 V 100 0 −100 −200 0 Figure 2-16. HA1630Q02 Input Bias Current vs. Input Voltage Input Bias Current IIB (pA) Input Bias Current IIB (pA) Figure 2-15. HA1630Q02 Input Bias Current vs. Ambient Temperature 25 50 75 Ambient Temperature Ta (°C) 200 100 0 −100 −200 100 Figure 2-17. HA1630Q02 Slew Rate (rising) vs. Ambient Temperature 0.5 1.0 1.5 2.0 Input Voltage VIN (V) 2.5 3.0 0.8 Slew Rate SRf (V/µs) Slew Rate SRr (V/µs) 0 Figure 2-18. HA1630Q02 Slew Rate (falling) vs. Ambient Temperature 0.8 VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 0.7 0.6 0.5 0.4 0.3 −40 Ta = 25°C VDD = 3.0 V −20 0 20 40 60 80 100 0.7 VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 0.6 0.5 0.4 0.3 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Ambient Temperature Ta (°C) Figure 2-19. HA1630Q02 Large Signal Transient Response Figure 2-20. HA1630Q02 Small Signal Transient Response Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF Rev.1.00 Mar 10, 2006 page 13 of 23 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF HA1630Q01/02/03 Series Figure 2-21. HA1630Q02 Total Harmonic Distortion + Noise vs. Output Voltage p-p 10 VDD = 3.0 V Ta = 25°C Gain = 0 dB 1 T.H.D. + Noise (%) T.H.D. + Noise (%) 10 Figure 2-22. HA1630Q02 Total Harmonic Distortion + Noise vs. Output Voltage p-p 0.1 f = 10 kHz 0.01 f = 1 kHz f = 100 Hz 0.001 1 0.5 1.0 1.5 2.0 2.5 3.0 f = 1 kHz 0.1 f = 100 Hz 0.01 0.001 0 f = 10 kHz VDD = 3.0 V Ta = 25°C Gain = 40 dB 0 Output Voltage Vout p-p (V) 0.5 1.0 1.5 2.0 2.5 Output Voltage Vout p-p (V) Voltage Output Vout p-p (V) Figure 2-23. HA1630Q02 Voltage Output p-p vs. Frequency 3.5 Ta = 25°C VDD = 3.0 V Gain = 40 dB, Vp-p = 0.03 V 3.0 2.5 2.0 Gain = 20 dB, Vp-p = 0.3 V Gain = 0 dB, Vp-p = 2.5 V 1.5 1.0 0.5 0 100 1k 10k Frequency f (Hz) 100k Figure 2-24. HA1630Q02 Voltage Noise Density vs. Frequency Voltage Noise Density (nV/√Hz) 200 100 0 100 10k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 14 of 23 1M 3.0 HA1630Q01/02/03 Series Main Characteristics (HA1630Q03) Figure 3-1. HA1630Q03 Supply Current vs. Supply Voltage 400 Ta = 25°C Supply Current IDD (µA) Supply Current IDD (µA) 400 Figure 3-2. HA1630Q03 Supply Current vs. Ambient Temperature 300 200 100 0 1 2 3 4 5 Supply Voltage VDD (V) VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 300 200 100 0 −40 6 6 Ta = 25°C 5 VDD = 5.5 V 4 3 VDD = 3.0 V 2 VDD = 1.8 V 1 0 6 Ta = 25°C RL = 1 MΩ 5 RL = 51 kΩ 4 3 2 1 0 50 100 150 Output Source Current IOSOURCE (µA) Figure 3-5. HA1630Q03 Output Source Current vs. Ambient Temperature 200 Output Source Current IOSOURCE (µA) 100 Figure 3-4. HA1630Q03 Output High Voltage vs. Supply Voltage Output High Voltage VOH (V) Output High Voltage VOH (V) Figure 3-3. HA1630Q03 Output High Voltage vs. Output Source Current −20 0 20 40 60 80 Ambient Temperature Ta (°C) 150 VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 100 50 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 15 of 23 100 1 2 3 4 5 Supply Voltage VDD (V) 6 HA1630Q01/02/03 Series Figure 3-7. HA1630Q03 Output Sink Current vs. Ambient Temperature 2.5 2.0 VDD = 5.0 V 1.5 Output Sink Current IOSINK (mA) Output Low Voltage VOL (V) Figure 3-6. HA1630Q03 Output Low Voltage vs. Output Sink Current VDD = 5.0 V VDD = 3.0 V 1.0 VDD = 1.8 V 0.5 0 0 0.5 1.0 Output Sink Current IOSINK (mA) 2.0 VDD = 3.0 V 1.5 1.0 VDD = 1.8 V 0.5 0 −40 1.5 Figure 3-8. HA1630Q03 Input Offset Voltage Distribution Input Offset Voltage VIO (mV) Percentage (%) Ta = 25°C VDD = 3.0 V 30 20 10 0 −4 −3 −2 −1 0 1 2 3 Input Offset Voltage VIO (mV) 4 4 Ta = 25°C VIN = 0.5 V 3 2 1 0 −1 −2 −3 −4 1 2 Common Mode Input Voltage VCM (V) Input Offset Voltage VIO (mV) 6 3.0 4 VDD = 1.8 V, VIN = 0.9 V 2 VDD = 3.0 V, VIN = 1.5 V 1 0 −1 VDD = 5.0 V, VIN = 2.5 V −2 −3 −4 −40 3 4 5 Supply Voltage VDD (V) Figure 3-11. HA1630Q03 Common Mode Input Voltage vs. Ambient Temperature Figure 3-10. HA1630Q03 Input Offset Voltage vs. Ambient Temperature 3 100 Figure 3-9. HA1630Q03 Input Offset Voltage vs. Supply Voltage 50 40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) −20 0 20 40 60 80 Ambient Temperature Ta (°C) Rev.1.00 Mar 10, 2006 page 16 of 23 100 VCM (High) 2.0 VDD = 3.0 V 1.0 0 −1.0 −40 VCM (Low) −20 0 20 40 60 80 Ambient Temperature Ta (°C) 100 HA1630Q01/02/03 Series Power Supply Rejection Ratio PSRR (dB) Figure 3-12. HA1630Q03 Power Supply Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Common Mode Rejection Ratio CMRR (dB) Figure 3-13. HA1630Q03 Common Mode Rejection Ratio vs. Frequency 120 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF 100 80 60 40 20 0 10 100 1k 10k 100k 1M Frequency f (Hz) Figure 3-14. HA1630Q03 Open Loop Voltage Gain and Phase Angle vs. Frequency 225 80 Ta = 25°C VDD = 3.0 V 180 RL = 1 MΩ CL = 20 pF 135 Open Loop Voltage Gain 60 40 90 Phase Angle 20 45 0 0 Phase Margin: 50 deg −20 −40 10 −45 100 1k 10k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 17 of 23 100k 1M −90 10M Phase Angle (deg) Open Loop Voltage Gain AVOL (dB) 100 HA1630Q01/02/03 Series 200 VDD = 3.0 V 100 0 −100 −200 0 Figure 3-16. HA1630Q03 Input Bias Current vs. Input Voltage Input Bias Current IIB (pA) Input Bias Current IIB (pA) Figure 3-15. HA1630Q03 Input Bias Current vs. Ambient Temperature 20 40 60 80 Ambient Temperature Ta (°C) 200 100 0 −100 −200 100 1.5 VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V Slew Rate SRf (V/µs) Slew Rate SRr (V/µs) 1.2 0.9 0.6 0.3 0 −40 −20 0 20 40 0 60 80 100 0.5 1.0 1.5 2.0 Input Voltage VIN (V) 2.5 1.2 VDD = 5.0 V VDD = 3.0 V VDD = 1.8 V 0.9 0.6 0.3 0 −40 −20 0 20 40 60 80 Ambient Temperature Ta (°C) Ambient Temperature Ta (°C) Figure 3-19. HA1630Q03 Large Signal Transient Response Figure 3-20. HA1630Q03 Small Signal Transient Response Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF Rev.1.00 Mar 10, 2006 page 18 of 23 3.0 Figure 3-18. HA1630Q03 Slew Rate (falling) vs. Ambient Temperature Figure 3-17. HA1630Q03 Slew Rate (rising) vs. Ambient Temperature 1.5 Ta = 25°C VDD = 3.0 V 100 Ta = 25°C VDD = 3.0 V RL = 1 MΩ CL = 20 pF HA1630Q01/02/03 Series Figure 3-21. HA1630Q03 Total Harmonic Distortion + Noise vs. Output Voltage p-p 10 VDD = 3.0 V Ta = 25°C Gain = 0 dB 1 T.H.D. + Noise (%) T.H.D. + Noise (%) 10 Figure 3-22. HA1630Q03 Total Harmonic Distortion + Noise vs. Output Voltage p-p 0.1 f = 10 kHz 0.01 f = 1 kHz f = 100 Hz 1 f = 10 kHz f = 1 kHz 0.1 f = 100 Hz 0.01 V = 3.0 V DD Ta = 25°C Gain = 40 dB 0.001 0.001 0 0.5 1.0 1.5 2.0 2.5 3.0 0 Output Voltage Vout p-p (V) 0.5 1.0 1.5 2.0 2.5 Output Voltage Vout p-p (V) Voltage Output Vout p-p (V) Figure 3-23. HA1630Q03 Voltage Output p-p vs. Frequency 3.5 Ta = 25°C VDD = 3.0 V Gain = 40 dB, Vp-p = 0.03 V 3.0 2.5 2.0 Gain = 20 dB, Vp-p = 0.3 V Gain = 0 dB, Vp-p = 2.5 V 1.5 1.0 0.5 0 100 1k 10k Frequency f (Hz) 100k 1M Figure 3-24. HA1630Q03 Voltage Noise Density vs. Frequency Voltage Noise Density (nV/√Hz) 200 100 0 100 10k Frequency f (Hz) Rev.1.00 Mar 10, 2006 page 19 of 23 3.0 HA1630Q01/02/03 Series Test Circuits 1. Power Supply Rejection Ratio, PSRP & Voltage Offset, VIO VIO VDD VIO = VO − RF RS 2 × RS R S + RF PSRR − + VO RS VDD VDD PSRR = −20log 2 VO1 − VO2 VDD1 − VDD2 × RS RS + RF Measure VO corresponding to VDD1 = 1.8 V and VDD2 = 5.5 V 2. Supply Current, IDD 3. Input Bias Current, IIB VDD VDD A − + − + VDD VDD 2 2 4. Output High Voltage, VOH VOH VDD RL = 1 MΩ VIN1 = VDD / 2 − 0.05 V VIN2 = VDD / 2 + 0.05 V − + VIN1 VIN2 VO RL 5. Output Low Voltage, VOL VOL VDD RL = 1 MΩ VIN1 = VDD / 2 + 0.05 V VIN2 = VDD / 2 − 0.05 V − + VIN1 VIN2 Rev.1.00 Mar 10, 2006 page 20 of 23 RL VO A HA1630Q01/02/03 Series 6. Output Source Current, IOSOURCE & Output Sink Current, IOSINK VDD IOSOURCE VO = VDD − 0.5 V VIN1 = VDD / 2 − 0.05 V VIN2 = VDD / 2 + 0.05 V − + VIN1 A IOSINK VIN2 VO = + 0.5 V VIN1 = VDD / 2 + 0.05 V VIN2 = VDD / 2 − 0.05 V VO 7. Common Mode Input Voltage, VCM & Common Mode Rejection Ratio, CMRR VDD CMRR RF RS RS VO1 − VO2 CMRR = −20log − + VIN1 − VIN2 VO RF × RS RS + RF Measure VO corresponding to VIN1 = 0 V and VIN2 = 2.1 V VDD VIN 2 8. Total Harmonic Distortion, THD VDD RF Gain Variable RS THD VDD Gain Variable 1 + RF / RS = 100 freq = 100 Hz, 1 kHz, 10 kHz Gain = +1 − + − + VO VIN VO VIN VSS VSS 9. Slew Rate, SR 10. Gain, AV & Phase, GBW VDD VDD RF RS − + − + VO 1 MΩ 20 pF VSS Rev.1.00 Mar 10, 2006 page 21 of 23 VO 1 MΩ RS VSS 20 pF HA1630Q01/02/03 Series Package Dimensions JEITA Package Code P-TSSOP14-4.4x5-0.65 RENESAS Code PTSP0014JA-B *1 Previous Code TTP-14DV MASS[Typ.] 0.05g D F 14 8 NOTE) 1. DIMENSIONS"*1 (Nom)"AND"*2" DO NOT INCLUDE MOLD FLASH. 2. DIMENSION"*3"DOES NOT INCLUDE TRIM OFFSET. HE c *2 E bp Index mark Terminal cross section ( Ni/Pd/Au plating ) 1 Reference Symbol 7 *3 Z bp x M L1 A e A1 θ L y Detail F Rev.1.00 Mar 10, 2006 page 22 of 23 D E A2 A1 A bp b1 c c1 θ HE e x y Z L L1 Dimension in Millimeters Min Nom Max 5.00 5.30 4.40 0.03 0.07 0.10 1.10 0.15 0.20 0.25 0.10 0.15 0.20 0° 8° 6.20 6.40 6.60 0.65 0.13 0.10 0.83 0.4 0.5 0.6 1.0 HA1630Q01/02/03 Series Taping & Reel Specification [Taping] W 12 P 8 Ao 6.5 Bo 5.1 Ko 1.5 E F 5.5 D1 1.6 4.0 φ 1.5 Maximum Storage No. 2,000 pcs/reel Unit: mm 1.75 Package Code TSSOP-14 2.0 Cover Tape W B0 F A0 K0 D1 P Tape withdraw direction Tape width 12 W1 17.4 φ13.0 ± 0.5 [Reel] Package TSSOP-14 W2 13.4 φ 330 ± 10 17.4 [Ordering Information] Ordering Unit 2,000 pcs 2.0 Mark Indication 14 8 (1) to (4) (5),(8) to (10) (6), (7) (11), (12) (1) (8) (9) (2) (3) (4) (5) (6) (7) (10) (11) (12) 1 7 Index hole Rev.1.00 Mar 10, 2006 page 23 of 23 Week code Space Product Name 0Q01 HA1630Q01 0Q02 HA1630Q02 0Q03 HA1630Q03 13.4 2.0 Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein. http://www.renesas.com RENESAS SALES OFFICES Refer to "http://www.renesas.com/en/network" for the latest and detailed information. Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501 Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900 Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898 Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071 Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145 Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510 © 2006. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon .6.0