Le71HR0073 Le78D11/FXS/FXO Line Module User’s Guide Rev. A, Ver. 2 October 4, 2007 Document Number: 081213 A Voice Solution For more information about all Zarlink products visit our Web Site at www.zarlink.com Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request. Purchase of Zarlink’s I2C components conveys a license under the Philips I2C Patent rights to use these components in an I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink, ZL, the Zarlink Semiconductor logo and the Legerity logo and combinations thereof, VoiceEdge, VoicePort, SLAC, ISLIC, ISLAC and VoicePath are trademarks of Zarlink Semiconductor Inc. TECHNICAL DOCUMENTATION - NOT FOR RESALE TABLE OF CONTENTS CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Documentation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Design Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Referenced Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CHAPTER 2 QUICK START GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Set-Up Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 How the Circuit Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 CHAPTER 3 SYSTEM DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.1 System Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.2 Le78D110VC Codec Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.3 Le77S111TC SLIC Device Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1.4 FXO Interface features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CHAPTER 4 CIRCUIT DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.1 FXS Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.1.1 Transmission and Loop Feed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.1.2 Surge Suppression of the FXS Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.1.3 PWM Switching Power Supply of the FXS Section . . . . . . . . . . . . . . . . . . . . . . . . 10 4.2 FXO Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2.1 Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2.2 Lightning and AC fault protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2.3 Line In Use Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2.4 FXO Operation Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 CHAPTER 5 PERFORMANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Coefficients and WinSLAC™ 2 .0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.1 FXS Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.2 FXO Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1.3 Operation Script (VP Script) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 FXS Transmission Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.1 FXS Return Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.2 FXS Attenuation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.3 FXS Gain Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.4 FXS Total Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2.5 FXS Longitudinal Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 FXO Transmission Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.1 FXO Return loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.2 FXO Attenuation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.3 FXO Gain Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.4 FXO Total Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.5 FXO Longitudinal Balance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.6 FXO Return loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3.7 FXO Attenuation Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CHAPTER 6 PRINTED CIRCUIT BOARD DOCUMENTATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.1 Schematic Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Document ID# 081213 Date: Rev: A Version: Distribution: Public Document 1 1 1 2 7 7 8 8 8 8 13 13 13 13 13 15 16 17 18 19 20 21 21 22 23 24 25 26 27 Oct 4, 2007 2 Le71HR0073 6.2 6.3 6.4 6.5 6.6 6.7 Line Module User Guide Jumper Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parts Placement Strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Signal Routing and Grounding Strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.1 Routing Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5.2 Switching Power Supply Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference Design Schematics and BOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6.1 Le71HR0073 Reference Design Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.6.2 Le71HR0073 Reference Design BOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Layout Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Zarlink Semiconductor Inc. 29 29 29 30 30 31 32 32 34 35 CHAPTER 1 1.1 INTRODUCTION DOCUMENTATION OVERVIEW This document describes one of a series of Zarlink line modules. Each module is a complete standalone solution applicable to a specific target market or application. When used with Zarlink’s VoicePath software and the VP demo board, a fully functional, multi-channel telecommunications network can be realized. The Le71HR0073 Le78D11/FXS/FXO line module provides a complete two-channel voice implementation. Optimized for voice-over-broadband applications with internal balanced ringing, the line module features all necessary circuitry between the PCM backplane and the two-wire interface, including line protection and an on-board independent switching power supply. The FXO circuit, which use CPC5621 Clare DAA chip and the associated circuit, draws the loop current from FXS and accepts the caller ID. It also perform ring detection and line-in-use detections. 1.2 DESIGN OBJECTIVES Zarlink’s Le71HR0073 Le78D11/FXS/FXO line module was designed to meet the following objectives: • Be fully hardware and software compatible with Zarlink’s VoicePath™ demo platform • Optimized for 12-V applications • Supply up to 30 mA loop current and up to 90 V peak ringing voltage • Feature a performance optimized layout • Have two-wire port impedance of 600 Ω with option for complex impedance • Include over-voltage and over-current line protection Figure 1–1 Le71HR0073 Le78D11/FXS/FXO Line Module 1 Zarlink Semiconductor Inc. Le71HR0073 1.3 Line Module User Guide REFERENCED DOCUMENTS The following documents are referred to in this document and may be helpful. 1. Le78D11 Data Sheet, document ID# 080697 2. Le77S11 Data Sheet, document ID# 081052 3. Le77D11 / Le78D11 Chip Set User’s Guide, document ID# 080716 4. WinSLAC™ Software User’s Guide, document ID# 080779 5. VoicePath™ Demo Board User’s Guide, document ID# 080756 6. Mini-PBX Demo Application User’s Guide, document ID# 080722 7. Le71HR0023 770 Series 90Vpk Ringing Line Module, document ID# 081115 8. Layout Considerations for the Le77D112 and Le9502 Devices, document ID# 081013 9. DS-CPC5620/CPC5621-R03 data sheet at www.clare.com 2 Zarlink Semiconductor Inc. CHAPTER 2 2.1 QUICK START GUIDE SET-UP PROCEDURE Zarlink reference designs mate to Zarlink VoicePath™ demo boards and utilize Zarlink VoicePath software. Refer to Figure 2–1. Figure 2–1 Generic Demonstration Set-Up Diagram PC terminal window serial port cable power supply FXS/FXO line module VP demo board Le71HP0200 FXS/FXS line module FXS FXS FXO FXS VP demo board Le71HP0200 RJ11 cable CO side PBX side telephone telephone The VoicePath demo board accommodates up to four telephone interfaces. It is supplied with an external power supply module and accepts an optional high voltage power supply and ringer source module (for external unbalanced ringing applications). Mini-PBX firmware is contained within the VoicePath demo board’s EEPROM and interfaces to the PC through the serial port. Quick start steps: 1. Assemble the components as depicted in Figure 2–1. 2. Initiate any generic terminal software on the PC and configure the COM port. 3. Apply power to the VP demo boards and line modules. Note: If the VP demo board’s FLASH is loaded with the correct firmware for the installed line module and configured for autorun, the terminal program will display the reference design application menu. If it is not, acquire the appropriate application HEX file from =DUOLQN. 4. Reset the VP demo board by pressing the RESET button then, within 3 seconds, pressing A on your keyboard. 5. At VP-MON> prompt, type XA <CR> to erase FLASH. Then type W <CR> to write. 6. Select Send File from terminal program’s FILE menu, then select and send the HEX application file. Once the file is loaded, reset the board (refer to Step 4.). This starts the application. 3 Zarlink Semiconductor Inc. Le71HR0073 Line Module User Guide 7. One serial COM port can be shared by first loading the program file into the Le71HR0023 line module, then connecting to the Le71HR0073 line module to load the second program. 2.2 HOW THE CIRCUIT WORKS In this arrangement, two VoicePath demo boards acts as the CO and the PBX. The setup requires that the line module port of the VoicePath demo board be populated with an Le71HR0023 line module, and the Le71HR0073 board sets on top the second line module. Refer to Chapter 2, on page 4 Figure 2–2 System Demo Setup Diagram Serial Power Power Serial RJ-45 RJ-45 Le78D11 Le71HR0023 Line Module Zarlink VoicePath Demo Board Le71HP0200 101 (FXS) Le77D11 Le71HR0073 Line Module Le78D11 Le77S11 CPC5621 Zarlink VoicePath Demo Board Le71HP0200 RJ-11 Bank 102 (FXS) RJ-11 Bank 101 (FXS) 102 (FXO) Lines 101 and 102 are both FXS lines and belong to the Le71HR0023 line module. Line 102 on the Le71HR0073 board, being an FXO line, cannot receive or place telephone calls. Therefore, the 102 phone number is unavailable, and the caller will hear a fast-busy tone if the number is dialed. Line 101 on the Le71HR0073 board, being FXS, can be mapped to the FXO line and will send and receive calls via the FXO. In its default configuration, the Mini-PBX does not map the Le71HR0073 FXS line to the FXO line. To map these lines together so that calls can be generated from the FXS port and routed through the FXO port, the user should follow these steps when the serial port is connected to the VPDB of the Le71HR0073 board: 1. Select Top Menu Option ’F’ - Configure Line Features 2. In Configure Line Features Menu, select option ’U’ - FXO Support Options At that point the user is provided a menu that will find the FXO line (line 102) and a list of the FXS lines that the FXO line can be mapped to. The user should enter ’B’ at this menu to select line 102 as the FXO line to affect, then enter ’I’ to select the FXS line 101 to map. At this point, the FXO line and FXS line on the Le71HR0073 board are logically mapped. This means that the FXO on Line 102 mimics the hook state of Line 101. Likewise, Line 101 rings whenever ringing is detected on Line 102. The examples in the remainder of this section assume a setup like the one shown in Figure 2–2, with Line 102 of the Le71HR0073 board (FXO line) physically connected to Line 102 of the Le71HR0023 board (FXS line). It is convenient to think of the Le71HR0073 FXS/FXO reference design board as the PBX and the Le71HR0023 line module as the Central Office or VoIP. 4 Zarlink Semiconductor Inc. Le71HR0073 Line Module User Guide The following actions occur when Line 101 on the Le71HR0073 board goes off-hook: 1. The MiniPBX detects off-hook on Line 101 (Le71HR0073). 2. Since Line 101 is mapped to Line 102 on the Le71HR0073 board, Line 102 (FXO) is placed in the Off-hook state. 3. Since the FXO line is physically connected to Line 102 of the Le71HR0023 board (FXS line), the MiniPBX running the Le71HR0023 board detects off-hook on Line 102. 4. The MiniPBX places dial tone on Line 102. This dial tone may also be heard on Line 101 of the Le71HR0073 board since the FXO and FXS (Le71HR0073) voice path is connected. 5. Digits may now be dialed by Line 101 (either DTMF or Pulse) on the Le71HR0073 module and decoded by Line 102 on the Le71HR0023 board. For example, Line 101 on Le71HR0073 could place a call to Line 101 on Le71HR0023. The following actions occur when Line 101 dials Line 102 on the Le71HR0023 board: 1. The MiniPBX places a cadenced ring on Line 102 (Le71HR0023 FXS). 2. The resulting ringing on Line 102 (FXO line) of Le71HR0073 is detected. 3. The MiniPBX places ringing on Line 101 of Le71HR0073 board to match that detected on the FXO line. If Line 101 of Le71HR0073 is taken off-hook, then the first three steps described in the previous sequence occur, and a voice path is connected between Lines 101 of the Le71HR0023 board and 101 of Le71HR0073 board. 5 Zarlink Semiconductor Inc. Le71HR0073 6 Zarlink Semiconductor Inc. Line Module User Guide CHAPTER 3 3.1 SYSTEM DESCRIPTION FEATURES The Le71HR0073 line module features Zarlink’s Le78D110 Dual Channel Subscriber Line AudioProcessing Circuit, Zarlink’s Le77D112 Dual Channel or Le77S11 Single Channel Subscriber Line Interface Circuit and a FXO, Clare DAA based circuit. Figure 3–1 Line Module Block Diagram +3.3V +3.3V Lightning Protection Dual Channel Single Channel PTC PCM Highway L e 7 8 D 1 1 PTC L e 7 7 S 1 1 uP Interface +12V Single Channel Switching Power Supply +3.3V Fuse FXO circuit Lightning Protection 7 Zarlink Semiconductor Inc. Le71HR0073 3.1.1 3.1.2 3.1.3 3.1.4 Line Module User Guide System Features – Integrated dual-channel chip set – Optimized for voice-over-broadband applications – Line test capability (GR-909 compliant for the Le77S11/Le78D11 chip set) – Over-voltage and over-current line protection – Requires minimal external components Le78D110VC Codec Features – Dual-channel device – Integrated signal generation (ringing, DTMF, metering, Caller ID) – Integrated tone detection (DTMF, modem, FAX) – Integrated loop-test and self-test features – Integrated switching power supply support – Transmit and receive gain and equalization – Worldwide AC input impedance scaling – A-law, µlaw, ADPCM, or linear coding – Flexible PCM and µP interfaces – 3.3V CMOS Le77S111TC SLIC Device Features – Single channel device – Integrated boost switching power supply controller – 3.3 V plus 8 V to 40 V (12 V nominal) supplies – Up to 90 Vpk sinusoidal or trapezoidal ringing at 5 REN with DC offset – Configurable constant current feed – Programmable loop-detect/ring-trip threshold – On-hook transmission – Low standby power – Thermally enhanced package FXO Interface features – Optical isolated solid state DAA – Loop start signaling – CID signal reception function – Ring detection – Polarity reversal detections – FXO line in use detection – 3 KVrms line isolation – Complies with the following requirements: TIA/EIA/IS-968 (FCC part 68), UL1950, UL60950, EN60950, IEC60950, EN55022B, CISPR22B, EN55024, and TBR21. 8 Zarlink Semiconductor Inc. CHAPTER 4 CIRCUIT DESIGN 4.1 FXS FUNCTIONS 4.1.1 Transmission and Loop Feed Transconductance amplifiers within the Le77S11 SLIC device generate and sense currents on the subscriber loop. These amplifiers also facilitate the conversion to voltage signals which interface to the Le78D11 SLAC™ device. Communication between the devices is voltage-driven with gain in both the receive path and transmit path by gain stages in the Le78D11 codec and resistor RIMT. The programmability from Le78D11 SLAC device could generate the coefficients to match worldwide termination impedances without changing the hardware. Figure 4–1 Analog FXS Interface Component Diagram VOUT VIN VIN VIMT 1/2 PCM Highway L e 7 8 D 1 1 RIMT VHP CHP CFLT L e 7 7 S 1 1 + VAB - RDC VDC RDC Loop feed current is set by programming the appropriate Le78D11 SLAC device register with knowledge of the value of RDC. Refer to the data sheet for details. 4.1.2 Surge Suppression of the FXS Section Overvoltage and overcurrent suppression circuits are included on the line module (refer to Figure 4–2, FXS Line Protection Component Diagram, on page 10.) Overvoltage protection, via the TISP61089 device, is voltage tracking and senses the regulated supply voltage generated by the switching regulator circuit. In this way, subscriber loop interface nodes are held between ground potential and the regulated voltage VREG. Overcurrent protection is provided by the MZ2L-50R PTC devices which ramp to a high impedance value once the threshold current of 50 mA has been exceeded. Below this threshold current, the devices act as nominal 50-Ω resistors. 9 Zarlink Semiconductor Inc. Le71HR0073 Line Module User Guide Figure 4–2 FXS Line Protection Component Diagram MZ2L-50R 1/2 L e 7 7 S 1 1 L e 7 8 D 1 1 VREG TISP 61089 MZ2L-50R 4.1.3 PWM Switching Power Supply of the FXS Section The switching power supply topology for the Le77S11 device operates as a pulse width modulated buck-boost section. The component values are chosen for nominal 12-V input with up to −100-V output. The circuit varies the pulse width of the control signal delivered to the base of the PNP transistor. The nominal frequency of this signal is 85.3 kHz. When the transistor is turned on, it applies voltage to an inductor which draws a linearly increasing current. When it is turned off, the inductor current ramps down, charging the output capacitor through a rectifier diode. This establishes a large negative voltage across this capacitor which passes through a low-pass LC filter to smooth out ripple (VREG). Refer to Figure 4–3. Figure 4–3 FXS PWM Switching Power Supply Component Diagram VREG 1/2 L e 7 8 D 1 1 +12V L e 7 7 S 1 1 RCS Chopper Clock 10 Zarlink Semiconductor Inc. Le71HR0073 4.2 FXO FUNCTIONS 4.2.1 Transmission Line Module User Guide The FXO is based on Clare LITELINK III Phone line Interface IC (silicon DAA) CPC5621, and acts like a telephone set or modem. The gains in the transmit and receive paths are set by both on-chip amplifiers and the codec/filter. There are analog gain blocks and digital gain blocks for both transmit path and received path. A total of 18 dB can be adjusted in gain and loss via each direction. The maximum level on the two-wire line is limited by the supply voltage, minimum loop current, and the front end components chosen in the applications. The AC termination default setting is for 600 Ω. With Zarlink codec/filter programmability, it is possible to match most worldwide complex terminations without changing components. The WinSLAC™ program will calculate the filters automatically after user specified termination network. In order to meet the IV curve requirements of some countries, additional component adjustments may be necessary. The Le78D11 codec/filter state controls the FXO interface on/off hook operation. The codec/filter Reverse Polarity state places the FXO in the On-hook condition. The codec/filter Active state places the FXO interface in the Off-hook condition. The circuit is incorporated with L00P/911 function to detect the parallel handset off hook request during the FXO off hook condition. 4.2.2 Lightning and AC fault protection The circuit includes one fast acting fuse (429.001) from Littlefuse and one Sidactor (T2300SA) from Teccor. This design complies with ITU K.21 requirements. 4.2.3 Line In Use Detection The line-in-use detection circuit consists of the following: a high voltage attenuation network, and CPC5710 Phone Line Monitor (PLM) IC from Clare, attenuation from tip and ring voltage, with proper gain setting, and an attenuation RC network to convert the line voltage to current with filtering then feeding into the IMT2 (A to D converter) of the Le78D11 device. By setting an appropriate threshold for On/Off hook detections, Normal and Polarity Reversal detections, the codec/filter will report each event after it happens, then take further action according to the system software programming. Addtionally, the circuit will knowledge the line lost event and distinguish between pulse dial and ring interruption. 4.2.4 FXO Operation Table DAA Line State (Le78D11) OFF-HOOK (C1) CID (C2) NOTES CID Control (Disconnect) 0 (false) 1 (true) CID is Active Low On Hook/ Ring Detect (Pol. Rev.) 1 (true) 1 (true) Off Hook (Active) 1 (true) 0 (false) OFF_HOOK is Active Low For detailed information on operating the CPC5621 in various modes, refer to the Clare CPC5620/ CPC5621 data sheet. 11 Zarlink Semiconductor Inc. Le71HR0073 12 Zarlink Semiconductor Inc. Line Module User Guide CHAPTER 5 5.1 PERFORMANCE COEFFICIENTS AND WINSLAC™ 2 .0 Coefficient files were generated from Zarlink’s WinSLAC™ 2.0 software and used to program filters and to set gains. 5.1.1 FXS Coefficients The following schematic was used to generate FXS coefficients. Figure 5–1 WinSLAC™ Software/Le77S11 Device Schematic X2 Le77S11 X2 6 Le77S11 VIN 6 VIN TIP 1 VOUT TIP 3 3 1 VIN VIN VOUT VOUT RIMT RIMT 100K 100K RING 2 RING 2 4 VHP VHP TIP TIP 50 50 RFA RFA RING RING 50 50 5 5 CFILT CFILT LPF LPF 7 7 CHP CHP 1.5uF 1.5uF VOUT RFB RFB CLP 4.7uF CLP RSA RSA 475K RSB RSB 475K 475K 475K 0 0 0 0 4.7uF 0 0 Coefficients were generated as follows: 5.1.2 • 600-Ω termination • Receive relative level = 0 dBr • Transmit relative level = 0 dBr • A-Law encoding (or µ-Law) FXO Coefficients Coefficient files are provided in the following script. Circuit is optimized for 600-Ω AC termination only. Coefficients were generated as follows: 5.1.3 • 600-Ω termination • Receive relative level = 0 dBr • Transmit relative level = 0 dBr • A-Law encoding (or µ-Law) Operation Script (VP Script) Refer to the FXO/FXS test operation script on the following page. This script is different than the Mini-PBX software mentioned in Chapter 2. 13 Zarlink Semiconductor Inc. Le71HR0073 Line Module User Guide # This script is modified from the original VoSLIC/SLAC line module application # This script will set up the VPDB for FXO/FXS test operation. # The following two lines depend on how jumper 4 (JP4) # is set on the eval board. If it is set to 1,2 then line # one is used. If it is set to 2,3 then the second line is needed. #vpdBrd DIO Combined vpdBrd DIO Separate # Sets up the VPDB for E1 vpdBrd FrmMode e1 acifBrd CS10 acifBrd MClk 2.048MHz vpdBrd TMode Master acifDut HwReset acifDut DCR1Wrt 93 ;# setup clock acifDut XR_CsWrt 3F after 50 foreach ele {01 02} { acifDut ECWrt $ele acifDut ChnCnfg8Wrt 80 ;# work around due to A2 change } acifDut Calibrate after 10 foreach ele {01 02} { acifDut ECWrt $ele acifDut ChnCnfg8Wrt 00 ;# unset SP_EN bit to prevent noise on the line } # multiple channel writes are not valid for A2 # so this loop is used to load the coeffs. into # one after other. foreach ele {01} { acifDut ECWrt $ele;# enable channel X # FXS section acifDut ZWrt 7F5C0036FCB3FF0900E30166001B acifDut RWrt 85BB008EFF12006701A2FE414110 acifDut XWrt 0000FE3C0214FFCEFE99FF4E40D6 acifDut GRCWrt 270F acifDut GXCWrt FE74 acifDut B1Wrt FFB7FFA0FFE8018913B428E011F4 acifDut B2Wrt FDD88148FFBBFFBBFFBAFFB9FFB9 acifDut ELTWrt 04 acifDut EPGWrt 04 acifDut AdptBCtlWrt 02201C00 acifDut AnGnDISNWrt 02 acifDut ChnCnfg1Wrt 00 acifDut ChnCnfg3Wrt 00 ;# A-law encoding #acifDut ChnCnfg3Wrt 40 ;# u-law encoding acifDut LpSuperWrt 2080001813007F14100C7F # For demo purpose, Rx level set -6dBr, Tx level set 0dbr for FXS #acifDut SigGenAWrt 000001015B4C2CCD0000;# 20Hz, 70V amp., 0V offset #acifDut SigGenAWrt FF38FCBC14E62CCD0000 ;#20Hz, 70V amp., 0 offset, trap 1.2 crest #acifDut SigGenAWrt FF38FCBC14E6299AFC29 ;#20Hz, 65V amp., -6V offset, trap 1.2 crest acifDut SigGenAWrt 000001015B4C399A0000 ;#20Hz, 90V amp., 0 offset, sine acifDut Activate 14 Zarlink Semiconductor Inc. Le71HR0073 Line Module User Guide } foreach ele {02} { acifDut ECWrt $ele;# enable channel X # FXO section acifDut ZWrt 7F5CFFFDFF5BFFB3001F0061002A acifDut RWrt 83CF000000000000000000004000 acifDut XWrt 0000FD6002500074FBDC01B03F50 acifDut GRCWrt 52B3 acifDut GXCWrt F152 acifDut B1Wrt 001F002A002FFE77F186E611F603 acifDut B2Wrt 01238148002100200027002C0025 acifDut ELTWrt 04 acifDut EPGWrt 04 acifDut AdptBCtlWrt 02201C00 acifDut AnGnDISNWrt 00 acifDut ChnCnfg1Wrt 00 acifDut ChnCnfg3Wrt 00 ;# A-law encoding #acifDut ChnCnfg3Wrt 40 ;# u-law encoding acifDut GDMaskWrt 11 ;# Enable parallel off hook detect on VS2 interrupt acifDut SlacStatWrt 30 # standby on hook, pol. rev.is off hook for FXO #For demo purpose, Rx level set 0dBr, Tx level set -6dbr for FXO acifDut Activate acifDut SlacStatWrt 38; #pol.rev.state is on-hook FXO acifDut ChnCnfg8Wrt C0 ;# set SP_EN bit to enable VS interrupt & extras acifDut Activate acifDut ChnCnfg6Wrt 3F ;# set no mask for MHOOK=0 and MGNK=0 } acifDut ECWrt 02 # # # # 5.2 Once this code has been run the part is ready for half channel testing. Enable either channel and put the SLIC into whatever state is needed. FXS TRANSMISSION PERFORMANCE The following graphs illustrate transmission performance using the W&G PCM-4. 15 Zarlink Semiconductor Inc. Le71HR0073 5.2.1 Line Module User Guide FXS Return Loss Figure 5–2 Two-Wire Return Loss Two Wire Return Loss 600 (B11) (Li: −−−, Lo: −−−, Input Level −10, a−law) 50 40 Loss (dB) 30 20 10 4000 3000 2000 1000 0 0 Frequency (Hz) Figure 5–3 Four-Wire Return Loss Four Wire Return Loss (A23) D−D 600 (Li: −−−, Lo: −−−, Input Level −10, a−law) 50 40 Loss (dB) 30 20 10 Frequency (Hz) 16 Zarlink Semiconductor Inc. 4000 3000 2000 1000 0 0 Le71HR0073 5.2.2 Line Module User Guide FXS Attenuation Distortion Figure 5–4 Receive Path Attenuation Distortion Attenuation Distortion (A11) D−A 600 (Li: −−−, Lo: 0, Input Level −10, a−law) Level offset at 1KHz: 0.12 (dB) 0.5 0.25 0 −0.25 Level (dB) −0.5 −0.75 −1 −1.25 −1.5 −1.75 4000 3000 2000 1000 0 −2 Frequency (Hz) Figure 5–5 Transmit Path Attenuation Distortion Attenuation Distortion (A11) A−D 600 (Li: 0, Lo: −−−, Input Level −10, a−law) Level offset at 1KHz: 0.33 (dB) 0.5 0.25 0 −0.25 −0.75 −1 −1.25 −1.5 −1.75 Frequency (Hz) 17 Zarlink Semiconductor Inc. 4000 3000 2000 1000 −2 0 Level (dB) −0.5 Le71HR0073 5.2.3 Line Module User Guide FXS Gain Tracking Figure 5–6 Receive Path Gain Tracking Gain Tracking (A43) D−A 600 (Li: −−−, Lo: 0, a−law) Overload Comp.: @+3.00 dBm0 = +0.00 dB, @+6.00 dBm0 = −1.73 dB, @+7.00 dBm0 = −2.55 dB, ICN: PSOPH (A61) −79.96 dBm0, 300Hz...3350Hz (A63) −77.62 dBm0 1.5 1 Gain (dB) 0.5 0 −0.5 −1 −10 0 −10 0 −20 −30 −40 −50 −60 −1.5 Level (dB) Figure 5–7 Transmit Path Gain Tracking Gain Tracking (A43) A−D 600 (Li: 0, Lo: −−−, a−law) Overload Comp.: @+3.00 dBm0 = −0.01 dB, @+6.00 dBm0 = −1.90 dB, @+9.00 dBm0 = −4.48 dB, ICN: PSOPH (A61) −79.62 dBm0, 300Hz...3350Hz (A63) −76.75 dBm0 1.5 1 0 −0.5 −1 Level (dB) 18 Zarlink Semiconductor Inc. −20 −30 −40 −50 −1.5 −60 Gain (dB) 0.5 Le71HR0073 5.2.4 Line Module User Guide FXS Total Distortion Figure 5–8 Receive Path Total Distortion Total Distortion (A56) D−A 600 (Li: −−−, Lo: 0, a−law) Harmonic Dis 2nd (A91): +52.22, 3rd (A92): +52.64 (dB) Intermod. Dis 2nd (A93): +54.62, 3rd (A94): +52.27 (dB) 50 40 Distortion (dB) 30 20 10 0 10 0 10 −10 −20 −30 −40 −50 −60 0 Level (dB) Figure 5–9 Transmit Path Total Distortion Total Distortion (A56) A−D 600 (Li: 0, Lo: −−−, a−law) Harmonic Dis 2nd (A91): +54.19, 3rd (A92): +53.36 (dB) Intermod. Dis 2nd (A93): +54.81, 3rd (A94): +55.09 (dB) 50 40 Distortion (dB) 30 20 10 Level (dB) 19 Zarlink Semiconductor Inc. −10 −20 −30 −40 −50 −60 0 Le71HR0073 5.2.5 Line Module User Guide FXS Longitudinal Balance Figure 5–10 Longitudinal Balance Longitudinal Balance (B21) 600 (Li: −−−, Lo: −−−, Input Level −10, a−law) 70 60 50 Distortion (dB) 40 30 20 10 Frequency (Hz) 20 Zarlink Semiconductor Inc. 4000 3000 2000 1000 0 0 Le71HR0073 5.3 Line Module User Guide FXO TRANSMISSION PERFORMANCE The following graphs illustrate transmission performance using the W&G PCM-4. 5.3.1 FXO Return loss Figure 5–11 Two-Wire Return Loss Two Wire Return Loss 600 (B11) (Li: −−−, Lo: −−−, Input Level −10, a−law) 50 40 Loss (dB) 30 20 10 3000 4000 3000 4000 2000 1000 0 0 Frequency (Hz) Figure 5–12 Four-Wire Return Loss Four Wire Return Loss (A23) D−D 600 (Li: −−−, Lo: −−−, Input Level −10, a−law) 50 40 Loss (dB) 30 20 10 2000 1000 0 0 Frequency (Hz) 21 Zarlink Semiconductor Inc. Le71HR0073 5.3.2 Line Module User Guide FXO Attenuation Distortion Figure 5–13 Receive Path Attenuation Distortion Attenuation Distortion (A11) D−A 600 (Li: −−−, Lo: 0, Input Level −10, a−law) Level offset at 1KHz: −0.1 (dB) 0.5 0.25 0 −0.25 Level (dB) −0.5 −0.75 −1 −1.25 −1.5 −1.75 4000 3000 2000 1000 0 −2 Frequency (Hz) Figure 5–14 Transmit Path Attenuation Distortion Attenuation Distortion (A11) A−D 600 (Li: 0, Lo: −−−, Input Level −10, a−law) Level offset at 1KHz: 0.5 (dB) 0.5 0.25 0 −0.25 −0.75 −1 −1.25 −1.5 −1.75 Frequency (Hz) 22 Zarlink Semiconductor Inc. 4000 3000 2000 1000 −2 0 Level (dB) −0.5 Le71HR0073 5.3.3 Line Module User Guide FXO Gain Tracking Figure 5–15 Receive Path Gain Tracking Gain Tracking (A43) D−A 600 (Li: −−−, Lo: 0, a−law) Overload Comp.: @+3.00 dBm0 = −0.01 dB, @+6.00 dBm0 = −1.75 dB, @+7.00 dBm0 = −2.56 dB, ICN: PSOPH (A61) −78.25 dBm0, 300Hz...3350Hz (A63) −75.76 dBm0 1.5 1 Gain (dB) 0.5 0 −0.5 −1 0 −10 −20 −30 −40 −50 −60 −1.5 Level (dB) Figure 5–16 Transmit Path Gain Tracking Gain Tracking (A43) A−D 600 (Li: 0, Lo: −−−, a−law) Overload Comp.: @+3.00 dBm0 = −0.10 dB, @+6.00 dBm0 = −2.15 dB, @+9.00 dBm0 = −4.86 dB, ICN: PSOPH (A61) −79.19 dBm0, 300Hz...3350Hz (A63) −76.27 dBm0 1.5 1 0 −0.5 −1 Level (dB) 23 Zarlink Semiconductor Inc. 0 −10 −20 −30 −40 −50 −1.5 −60 Gain (dB) 0.5 Le71HR0073 5.3.4 Line Module User Guide FXO Total Distortion Figure 5–17 Receive Path Total Distortion Total Distortion (A56) D−A 600 (Li: −−−, Lo: 0, a−law) Harmonic Dis 2nd (A91): +52.26, 3rd (A92): +54.36 (dB) Intermod. Dis 2nd (A93): +54.58, 3rd (A94): +52.06 (dB) 50 40 Distortion (dB) 30 20 10 10 0 −10 −20 −30 −40 −50 −60 0 Level (dB) Figure 5–18 Transmit Path Total Distortion Total Distortion (A56) A−D 600 (Li: 0, Lo: −−−, a−law) Harmonic Dis 2nd (A91): +56.40, 3rd (A92): +51.33 (dB) Intermod. Dis 2nd (A93): +54.31, 3rd (A94): +53.13 (dB) 50 40 Distortion (dB) 30 20 10 Level (dB) 24 Zarlink Semiconductor Inc. 10 0 −10 −20 −30 −40 −50 −60 0 Le71HR0073 5.3.5 Line Module User Guide FXO Longitudinal Balance Longitudinal Balance (B21) 600 (Li: −−−, Lo: −−−, Input Level −10, a−law) 70 60 50 Distortion (dB) 40 30 20 10 Frequency (Hz) 25 Zarlink Semiconductor Inc. 3000 2000 1000 0 0 Le71HR0073 5.3.6 Line Module User Guide FXO Return loss Figure 5–19 Two-Wire Return Loss Two Wire Return Loss (A23) A−A ETSI (Li: 1.49, Lo: 1.49, Input Level 0, a−law) 50 40 Loss (dB) 30 20 10 4000 3000 2000 1000 0 0 Frequency (Hz) Figure 5–20 Four-Wire Return Loss Four Wire Return Loss (A23) D−D ETSI (Li: −−−, Lo: −−−, Input Level 0, a−law) 50 40 Loss (dB) 30 20 10 Frequency (Hz) 26 Zarlink Semiconductor Inc. 4000 3000 2000 1000 0 0 Le71HR0073 5.3.7 Line Module User Guide FXO Attenuation Distortion Figure 5–21 Receive Path Attenuation Distortion Attenuation Distortion (A11) D−A ETSI (Li: −−−, Lo: 1.49, Input Level 0, a−law) Level offset at 1KHz: +0.52(dB) 0.5 0.25 0 −0.25 Level (dB) −0.5 −0.75 −1 −1.25 −1.5 −1.75 4000 3000 2000 1000 0 −2 Frequency (Hz) Figure 5–22 Transmit Path Attenuation Distortion Attenuation Distortion (A11) A−D ETSI (Li: 1.49, Lo: −−−, Input Level 0, a−law) Level offset at 1KHz: −0.26 (dB) 0.5 0.25 0 −0.25 −0.75 −1 −1.25 −1.5 −1.75 Frequency (Hz) 27 Zarlink Semiconductor Inc. 4000 3000 2000 1000 −2 0 Level (dB) −0.5 Le71HR0073 28 Zarlink Semiconductor Inc. Line Module User Guide CHAPTER 6 6.1 PRINTED CIRCUIT BOARD DOCUMENTATION SCHEMATIC UPDATES The following schematic updates were made from revision A to revision B: 6.2 • Tip and Ring interface on FXS page renamed between TIP1and RING1 to match the chip A/B pins. • TIP2 has been moved after the F1 and renamed TIP2A to enforce the protection scheme on line sense circuit input of FXO page. • Snoop inputs on IC2 has been changed to match the corresponding polarity on FXO page. JUMPER OPTIONS There are no jumpers on the line module. 6.3 ID EEPROM The Le71HR0073 reference design PCB features a Dallas Semiconductor DS2433 4K bit 1-wire EEPROM. While not critical to board operation, this memory is integral to proper demo system operation. The memory is factory loaded with a reference design identification, a serial number, and max. battery operation range for ringing. 6.4 PARTS PLACEMENT STRATEGY Parts placement on revision A of the reference design was intended to be logical as well as efficient to conserve PCB area. However, the rational flow of signals to and from the digital backplane through the Tip/Ring interface was considered first before minimizing board space. Furthermore, from a practical perspective, parts placement was dictated by the routing strategy. Parts were often placed where they would facilitate the preferred routing. There are two jumpers on the PCB, J5 3.3V and J4 12V, for debugging purposes. They can be cut to measure the currents. There are eleven test points placed around the PCB for DC voltages, grounds, and AC interface monitoring between the SLIC, FXO and codec/filter. No ground plane should be underneath the high voltage circuit around the primary area of the FXO section. The isolation barrier should keep at least 150mil for 5KV surge. Snoop circuit should keep at least 150mil space to unrelated metal. Refer the schematic for detail requirement. Q1 heat sink should keep as big as possible, multiple vias used through both top and bottom coppers for better heat dissipation. Ground flood copper should cover between primary and secondary of the IC2 to reduce the noise. There was sufficient room to place the ICs and most of the larger switching power supply components on the top layer of the PCB. Many smaller discrete components and the surge suppression circuits are on the bottom layer. 29 Zarlink Semiconductor Inc. Le71HR0073 Line Module User Guide Figure 6–1 Line Module Parts Placement Diagram Le77S11 Le78D11 Switching Power Supply FXO Circuit 6.5 SIGNAL ROUTING AND GROUNDING STRATEGY The size of the PCB board was predetermined because the location of the interface connector to the VP Demo board was already defined. Only four layers were used due to cost considerations. Since the primary objective was to produce a reference design rather than a production design, no special grounding features needed to be provided. This flexibility allowed employment of a single unified ground plane to provide the best noise performance. Further supporting the single unified ground plane was the fact that the Le77S11 device is housed in a thermally-enhanced package with an exposed heat slug on the underside. This heat slug should be soldered to a large internal copper plane to improve heat sinking, and this copper plane should be electrically tied to ground. This single internal copper ground plane also made sense for thermal reasons. With one internal layer assigned to ground, and the top and bottom layers used for signal routing, the other internal layer was available for power supply routing and any other general signal routing which could not be easily accommodated on the top or bottom layers. 6.5.1 Routing Priority From this layering strategy, three levels of routing priority were assigned. The highest priority level was given to signals involving the switching power supply. This included the analog tip/ring nodes and the associated surge suppression circuits. Secondary priority was given to analog signals between the Le78D11 and Le77S11 devices and the FXO circuit, as well as to logic level power supply traces. Finally, third priority was given to digital interface signals and purely static signals. 30 Zarlink Semiconductor Inc. Le71HR0073 Line Module User Guide Essentially, higher routing priority tends to favor direct traces on a single layer without the use of vias. Where highest priority could not be accommodated, traces which carry current remained viafree. Vias were employed instead in traces sensing voltage but not carrying any significant level of current. Where current carrying traces needed vias, large non-inductive vias were used and, where appropriate, multiple vias (two or more) were used for extra current carrying capability. 6.5.2 Switching Power Supply Routing Switching power supply routing, the most critical area within the line module’s layout, follows the layout guidelines discussed in Zarlink application note Layout Considerations for the Le77D112 and Le9502 Devices, document ID# 081013. 31 Zarlink Semiconductor Inc. 6.6 6.6.1 A B C D E F G H RING1 RING2 J4 MCLK DXA FS IDCS CS DCLK 1 8 8 2 4 6 8 10 12 14 16 18 20 2 J3 J2 1 3 5 7 9 11 13 15 17 19 +12V J1 DS2433 NC NC DATA GND U3 2 4 6 8 10 12 14 16 18 20 22 24 26 1 2 3 4 2 4 6 8 10 12 14 16 18 20 VPOS NC NC NC NC 1 3 5 7 9 11 13 15 17 19 21 23 25 8 7 6 5 1 3 5 7 9 11 13 15 17 19 1 J5 PCLK DRA DOUT RS 2 3.3V TIP1 TIP2 3.3V C3 0.1uF C1 0.1uF 7 3.3V 17 29 4 10K 24 10 31 2 22 16 13 18 19 21 20 12 11 14 15 23 C2 0.1uF R28 Note: DXAPU 10K 3.3V 7 IMT2 VDC2 VB2 VA2 VS2 F2 C12 C22 C32 VIN2 VOUT2 IREF VREF CHCLK IMT1 VDC1 VB1 VA1 VS1 F1 C11 C21 C31 VIN1 VOUT1 Le78D11 TQFP DGND1 DGND2 AGND1 AGND2 TSCA MCLK DCLK PCLK FS DXA DRA CS INT DIN DOUT RS VCCD VCCA1 VCCA2 U1 RREF RDC1 69.8K RVIN2 100K VREF 20.0K 3.3V + 6 7 2 4 44 1 41 38 39 40 43 42 3 8 5 29 10 11 9 13 12 AGND NC NC NC NC NC VCC AGND AGND NC NC AGND FSET VREF CHCLK LPF IMT RDC VHP CFLT F C1 C2 C3 VOUT VIN VCC 32 237K 237K 34 32 35 36 37 33 30 31 28 26 27 24 20 22 21 25 CBD1 27nF TP9 BGND CNPR1 0.1uF CHS1 1000pF TP8 VREG 1 180 Ohm RBD1 BAV99XCT DD1 2 3 VPOS CESR1 0.1uF 200v NOTE: 3 4 DXAPU 10K is not populated when used with Zarlink Voice Path Demo Board. J4, J5 buss-wire jumpers can be cut for current measurement U2 can be use for both Le77D11 or Le77S11 Voltage rating on CSW1 and CSW2 must be greater than VPOS. Capacitor CESR1 should be located close to the gate on UT1. NOTES: 3 NC pin connections on Le77S112 (single channel SLIC) is made possible for Le77D112 (dual channel SLIC) use also. Extra traces indicated how to terminated unused pins. NOTES: AGND AGND NC NC AGND AGND NC NC VSW ILS SD BGND NPRFLT B A CHS 23 RSB11 RSB21 VREG 237K 237K 4 CVRG12 0.1uF 200V RSA11 RSA21 Zarlink Semiconductor Inc. 5 475K RVS1 Le77S112_eTQFP U2 LINE_IN_USE_DET LOOP/911 RING_DET CID OFF_HOOK VIN2 VOUT2 280K RRAMP CLPF1 4.7uF DNP 200pF eTQFP-44 package (Le77D11) features an exposed heat slug on the underside which is thermally tied to a large internal copper ground plane which acts as a heat sink. NOTES: 44 40 42 41 43 5 8 7 6 1 3 38 39 9 33 37 35 36 100K CIMT1 16 28 34 19 18 17 25 26 27 14 6 32 CHP1 1.5uF 3.3V 15 RIMT1 RVOUT1 CVCC 10K 0.1uF VREF 5 30 6 REFERENCE DESIGN SCHEMATICS AND BOM Le71HR0073 Reference Design Schematic Le71HR0073 ePAD 45 K1 A A K1 5 6 7 8 TISP61089BDR K2 NC G K1 UT1 DD3 4148CC-SOT 1 2 3 B CREG11 1uF 200v E 2 1 1 1 2 2 + 0.1 5% 1/4W RLIM1 NOTE: CSW2 220uF 25v ES2C C QSW1 FZT955/SOT 150 uH LVREG1 DSW1 LSW1 47uH 50 PTCB1 50 PTCA1 2 CFL11 CSW1 0.1uF 50v 1uF 200v Date: Size C TP7 VPOS 1uF 200v CFL12 TIP1 VPOS RING1 Leming Xu Thursday, January 29, 2004 Author: Document Number Sheet 1 1 of 2 Rev B Le71HR0073 1FXS/1FXO Line Module with Le78D11/CPC5621 Note: change on rev. B compare to rev. A: 1. swape between TIP1 and RING1 label to match the chip A/B name scheme. Title 1 FXS INTERFACE On board switcher for Ringing and DC Battery 4 3 2 1 2 A B C D E F G H Line Module User Guide A B C D E F G H VOUT2 LOOP/911 VIN2 CID RING_DET OFF_HOOK 8 LOOP/911 RRXF 130K Off-Hook (ACTIVE) On Hook/Ring Detect (POL. REV.) RSNP 1.5M 0 (false) 1 (true) 1 (true) CID (C2) 1 (true) 7 220pF CSNP+ 220pF RSNP-2 REF TXF ZTX ZNT TXSL BRNTS GAT NTF DCS1 DCS2 ZDC BRPB RXS VDDL 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 RPB 1.82M RSNP+1 1.82M 68.1R 60.4K 6 CGAT 100pF 3 RZDC 8.2R RVDDL 2R RNTF RDCS2 1.69M 309K 0.1uF, 100V CNTS Please CDCS 27nF RNTS 1M RHTF 143K RDCS1b 6.49M RDCS1a 6.49M RHNT DNP RHTX 340K RNTX 154K BR+ RZNT 187R BAT240A NOTES TP0 33 4 Zarlink Semiconductor Inc. 5 R29 23.2K R30 2.55K Notes: U14 and U15 will replace DB1 for Japan application. LINE_IN_USE_DET will cover the POLARITY and APOH functions LINE_IN_USE_DET LINE_IN_USE_DET 3.3V 3.3V 1 2 3 BAT240A DNP U14 150 1 2 3 1 1 2 3 4 0.1uF C63 DNP 8 7 6 5 3 R31 2.55K 5710 VDD VSS COUT INCMP IN+ OUT- OUT+ U5 C62 => 350V rules, 25mils Barrier 4 100 8.06Mohm RLS-2 OV1 SIDACTOR P3100SC 2 Date: Size C Title F1 2 429.001 littlefuse 1A 1 RING2 1 Author: Jack Moriarty, Leming Xu Thursday, January 29, 2004 Sheet 2 Document Number of 2 Rev B Le71HR0073 1FXS/1FXO Line Module with Le78D11/CPC5621 Note: change on rev. B compare to rev. A: 1. move the sensing input from TIP2 to TIP1A. 2. swape the snoop circuit inputs with correct polarity. DC LINE SENSE Color blocks are for layout information RLS-1 8.06Mohm RLS 210K RLS+1 8.06Mohm RLS+2 8.06Mohm RING2 TIP2A 150 TIP2A 2 DIODE BRIDGE DB1 TIP2 FXO INTERFACE A B C D E F G H Line Module User Guide Either DB1 or U14 and U15 will be used. Footprints may overlap. BR- Space to unrelated metal in mils. RZTX 3.32K CBR 0.01uF, >350V 3 DNP U15 *Spacing should be 150mil from green section to fuchsia section. RGAT 47R CREF 0.1uF OFF_HOOK is active low CID is active low 1.82M RSNP+2 RSNP-1 RTXF 1001.82M 100 150* CPC5621 CSNP- VDDM TXSM TXTX+ TX -MODE GND -OH RING -CID RXRX+ SNP+ SNPRXF RX IC2 S Heatpad on all levels from front to back, with maximum via holes. make pad area as large as possible. Q1 CPC5602C D1 2 G D2 4 1 FXO Line State Table 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 (true) 0 (false) RMODE DNP CID Control (DISCONNECT) CFA 0.1uF CTX0.1uF RTX 80.6K CTX1 0.1uF OFF_HOOK (C1) TP10 RHA 100K TP2 RING_DET RTX1 200K CVDDM1 0.1uF RVDDM 10 DAA Line State (Le78D11) AGND TP6 TP3 OFF_HOOK 0.22uF CRX+ TP1 0.22uF CTX+ CID TP5 TP4 VIN_FXO VOUT2 CVDDM 10uF 3.3V Le71HR0073 Reference Design Schematic (cont.) Le71HR0073 + - 6.6.2 CSW2 IC2 U14, U15 U5 F1 QSW1, DSW1, DD3 DD1, J1 J2, J3 LSW1, LVREG1, DB1 OV1 Q1 PTCA1, PTCB1 U1 U2 U3 UT1, J4, J5 TP0,TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8, TP9, TP10 RLIM1, RBD1, RDC1, RREF RIMT1, RHA, RVIN2 RRAMP RVS1, RSA21, RSB21, RSA11, RSB11 DXAPU, R28, RVOUT1, RDCS1A,RDCS1B RDCS2 R29 RGAT R30, R31 RHNT, RMODE, C63 RHTF RHTX RLS RLS-1,RLS+1,RLS-2,RLS+2 RNTF RNTS RNTX RPB RRXF RSNP RSNP-1,RSNP+1, RSNP-2,RSNP+2 RTX RTX1 RTXF RVDDL RVDDM RZDC 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 8 59 60 61 62 63 64 65 66 67 68 69 37 9 10 11 12 13 14 Le71HR0073 BOM Reference Designator CIMT CHS1, CBD1, CDCS CBR CGAT CNTS CSNP-,CSNP+ CTX+, CRX+ CVDDM CNPR1,C1,C2,C3,CVCC,CREF,CVDDM1, C62,CTX1,CTX-,CFA CVRG12, CESR1, CHP1, CLPF1, CREG11, CFL11,CFL12, CSW1 0 1 2 3 4 5 6 7 8 Item 1 1 1 1 3 1 1 4 3 2 1 1 1 2 3 1 1 1 4 1 1 1 1 1 1 4 1 1 1 1 1 1 11 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 220uF 0.1uF 1.5uF 4.7uF 1uF 0.1uF 0.1uF 200pF 1000pF 27nF 0.01uF 100pF 0.1 220PF 0.22uF 10uF Value CHIP RES CHIP RES CHIP RES CHIP RES CHIP RES CHIP RES CHIP RES CHIP RES CHIP RES CHIP RES CHIP RES CHIP RES CHIP RES CHIP RES CHIP_RES CHIP RES CHIP RES CHIP_RES CHIP_RES CHIP_RES CHIP_RES CHIP_RES CHIP RES CHIP RES CHIP RES CHIP RES CHIP RES CHIP RES CHIP RES CHIP RES CHIP RES CHIP RES test points 0.1 180 20K 69.8K 100K 280K 475K 237K 10K 6.49M 1.69M 23.2K 47 2.55K DNP 143K 340K 210K 8.06Mohm 309K 1M 154K 68.1 130K 1.5M 1.82M 80.6K 200K 60.4K 2 10 8.2 DNP LITELINK ALF BRIDGE SCHOTTKY LINE MON 1206 1A transistor diode dual diode dual diode header header inductor 47uH inductor 150uH BR_RECT 1A TRAN SUPP VAR13 PWR MOS PTC 50 IC IC IC surge suppressor dog-born 100 mil - aluminum electrolytic ceramic cap ceramic cap tantalum cap ceramic cap ceramic cap ceramic cap 11 2 1 1 3 1 ceramic cap ceramic cap ceramic cap ceramic cap ceramic cap ceramic cap ceramic cap ceramic cap ceramic cap Part Type 1 1 2 1 1 1 2 2 1 Qty Le71HR0073 Reference Design BOM 34 - 350V - 600V 5KV 250V 25V 200V 6.3V 6.3V 300V 50V 16V 50V 50V 16V 300V 16V 100V 2000V 10V 10V Voltage/Wattage Zarlink Semiconductor Inc. 5% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% 5% 5% 1% - 10% 20% 10% 10% 20% 10% 10% 10% 10% 10% 10% 10% 10% 10% 5% Tol, 1% Match 10% 10% Tolerance Le71HR0073 1/16W 1/16W 1/16W 1/16W 1/16W 1/16W 1/16W 1/16W 1/16W 1/4W 1/16W 1/16W 1/16W 1/16W 1/16W 1/16W 1/4W 1/16W 1/16W 1/16W 1/16W 1/16W 1/16W Wattage 1210 0805 0603 0603 0603 0603 0603 1206 0603 0603 0603 0603 0603 0603 0603 0603 0603 0603 1206 0603 0603 0603 0603 0603 0603 1206 0603 0603 0603 0603 0603 0603 44-TQFP 44-eTQFP 8SOIC-208 D008 100mil DIL DO-214AA SOT223 DIP32_SOL SOT23 SOIC-8 1206 SOT-223 SMB SOT-23 SOT-23 2.54mm 1.27mm 12.5sq radial 1206 0805 3216 1825 0805 0603 0603 0603 0603 0805 0603 1206 1808 0603 1206 Package X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X SM X X X X X X TH Panasonic ERJ_14RSJR10U DigiKey P.10SCT-ND Panasonic ERJ-6ENF1820 Panasonic ERJ-3EKF2002V Panasonic ERJ-3EKF6982V Panasonic ERJ-3EKF1003V Panasonic ERJ-3EKF2803V Panasonic ERJ-3EKF4753V Panasonic ERJ-8ENF2373V Panasonic ERJ-3EKF1002V IMS RCI-0603-6494F IMS RCI-0603-1694F IMS RCI-0603-2322F IMS RCI-0603-47R0F IMS RCI-0603-2551F IMS RCI-0603-1433F IMS RCI-0603-3403F IMS RCI-0603-2103F IMS RCI-0603-8064F IMS RCI-0603-3093F IMS RCI-0603-1004F IMS RCI-0603-1543F IMS RCI-0603-68R1F IMS RCI-0603-1303F AVX CR10155GT IMC RCI-1206-1824F AVX CR10803FT IMS RCI-0603-2003F AVX CR10603FT AVX CR102R0FT AVX CR10100FT AVX CR108R2FT Do not populate Clare CPC5621 Infineon BAT240A Clare CPC5710N Littlefuse 429.001 Zetex FZT955 General Semiconductor ES2C Fairchild MMBD4148CC Digi_Key BAV99ZXTR-ND Samtec SSQ-113-01-S-D Samtec SMS-110-01-S-D Cooper Coiltronics DR127-470 Coilcraft 1812LS154X_B Shindengen S1NB60 Teccor P3100SC Clare CPC5602C Asiacom MZ2L-50R Le78D110VC rev. A2 VoSLAC Le77S112TC VoSLIC Dallas Semiconductor DS2433S Bourns TISP61089BDR place buss wire between two holes Nichicon / UPW1E221MPH GMC31X7R104K200NT Panasonic ECJ-2YB0J155K Panasonic ECS-T0JY475R Tecate CMC300105KX1825T060 Digi-key / PCC 1840CT-ND, 0805 Panasonic ECJ-1VB1C104K Panasonic ECJ-1VB1H201K Panasonic ECJ-1VB1H102K Kemet C0603C273K4RAC AVX 12067C103KAT1A Tecate CMC016101KY0603T Tecate CMC100104KX0603T Tecate CMC-2K0/221FN1808T#1-10 Tecate CMC010224KY0603T Tecate CMC010106KX51206T Vendor / Part Number Line Module User Guide Le71HR0073 6.7 Line Module User Guide LAYOUT PLOTS Figure 6–2 Component Copper Layer Confidential Release Under Legerity NDA Figure 6–3 Ground Plane Layer Confidential Release Under Legerity NDA 35 Zarlink Semiconductor Inc. Le71HR0073 Line Module User Guide Figure 6–4 Power Plane Layer Confidential Release Under Legerity NDA Figure 6–5 Solder Copper Layer Confidential Release Under Legerity NDA 36 Zarlink Semiconductor Inc.