10-F006PPA006SB-M682B Maximum Ratings

10-F006PPA006SB-M682B
preliminary datasheet
flowPIM0+PFC 2nd
600V/6A
Features
flowPIM0+PFC 2nd
● Clip in PCB mounting
●Trench Fieldstop IGBT's for low saturation losses
● Latest generation superjunction MOSFET for PFC
Target Applications
Schematic
● Industrial Drives
● Embedded Drives
Types
● 10-F006PPA006SB-M682B
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
1600
V
Input Rectifier Diode
Repetitive peak reverse voltage
VRRM
DC forward current
IFAV
Surge forward current
IFSM
I2t-value
I2t
Power dissipation per Diode
Ptot
Maximum Junction Temperature
Copyright by Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
tp=10ms
Tj=150°C
Tj=Tjmax
Tjmax
1
Th=80°C
Tc=80°C
26
36
A
200
A
200
A2s
32
48
W
150
°C
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
10
11
A
59
A
PFC MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
VDS
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
EAS
ID=3,4A
VDD=50V
Tj=25°C
418
mJ
Avalanche energy, repetitive
EAR
ID=3,4A
VDD=50V
Tj=25°C
0.63
mJ
Avalanche current, repetitive
IAR
Tj=25°C
3,4
A
MOSFET dv/dt ruggedness
dv/dt
50
V/ns
Avalanche energy, single pulse
Tj=Tjmax
Th=80°C
Tc=80°C
47
Power dissipation
Ptot
Gate-source peak voltage
VGS
20
V
Reverse diode dv/dt
dv/dt
15
V/ns
Maximum Junction Temperature
Tjmax
150
°C
600
V
12
12
A
18
A
32
49
W
175
°C
70
W
PFC Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
PFC Shunt
DC forward current
Power dissipation per Shunt
Copyright by Vincotech
IF
Tc=25°C
10
A
Ptot
Tc=25°C
5
W
2
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
9
13
A
18
A
18
A
28
43
W
20
V
µs
Inverter Transistor
Collector-emitter break down voltage
DC collector current
Pulsed collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Maximum Junction Temperature
Th=80°C
Tc=80°C
tp limited by Tjmax
VCE ≤ 400V, Tj ≤ Top max
Turn off safe operating area
Short circuit ratings
Tj=Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
tSC
Tj≤150°C
6
VCC
VGE=15V
360
V
175
°C
600
V
13
16
A
12
A
21
32
W
175
°C
Tjmax
Inverter Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
3
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
500
V
DC link Capacitor
Max.DC voltage
Tc=25°C
VMAX
Thermal Properties
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Insulation Properties
Insulation voltage
Comparative tracking index
Copyright by Vincotech
Vis
t=2s
DC voltage
CTI
>200
4
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Min
Typ
Unit
Max
Input Rectifier Diode
Forward voltage
VF
Threshold voltage (for power loss calc. only)
Vto
25
Slope resistance (for power loss calc. only)
rt
25
Reverse current
Ir
Thermal resistance chip to heatsink per chip
RthJH
25
1600
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,20
1,17
0,92
0,81
10,9
14,4
V
V
mΩ
0.05
Thermal grease
thickness≤50um
λ = 1 W/mK
2,20
mA
K/W
PFC MOSFET
Static drain to source ON resistance
Gate threshold voltage
Gate to Source Leakage Current
RDS(on)
V(GS)th
IDSS
Turn On Delay Time
td(ON)
Turn off delay time
Fall time
6
VGS=VDS
IGSS
Zero Gate Voltage Drain Current
Rise Time
10
0,00063
20
0
0
600
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
QGE
Rgoff=4 Ω
Rgon=4 Ω
10
400
6
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,4
203
398
3,0
100
1000
17
16
2
2
103
113
6
9
0,045
0,091
0,006
0,007
QGS
Gate to drain charge
QGD
32
Input capacitance
Ciss
1400
Output capacitance
Coss
Gate resistance
RG
480
0/10
f=1MHz
RthJH
V
nA
nA
ns
mWs
63
Gate to source charge
Thermal resistance chip to heatsink per chip
mΩ
3,6
0
9,5
100
Tj=25°C
nC
7,6
pF
Tj=25°C
85
Thermal grease
thickness≤50um
λ = 1 W/mK
6
Ω
1,51
K/W
PFC Diode
Forward voltage
Reverse leakage current
VF
Irm
Peak recovery current
IRRM
Reverse recovery time
trr
Reverse recovery charge
Qrr
Reverse recovered energy
Erec
Peak rate of fall of recovery current
Thermal resistance chip to heatsink per chip
6
600
Rgon=4 Ω
10
400
di(rec)max
/dt
RthJH
Thermal grease
thickness≤50um
λ = 1 W/mK
6
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,83
1,66
V
50
500
29
31
9
15
0,12
0,29
0,013
0,042
12276
7905
µA
A
ns
µC
mWs
A/µs
2,95
K/W
PFC Shunt
R1 value
R
Temperature coeficient
tc
Internal heat resistance
Rthi
Inductance
Copyright by Vincotech
50
mΩ
30
20°C to 60°C
10
3
L
5
ppm/K
K/W
nH
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
Inverter Transistor
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,00009
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Collector-emitter saturation voltage
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
6
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
1,52
1,71
300
Rgoff=64 Ω
Rgon=64 Ω
±15
400
6
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
0,027
mA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
103
101
23
26
154
177
96
105
0,19
0,25
0,21
0,27
ns
mWs
368
f=1MHz
0
25
±15
480
Tj=25°C
pF
28
11
6
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
42
nC
3,38
K/W
Inverter Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
Reverse recovered energy
Thermal resistance chip to heatsink per chip
VF
6
IRRM
trr
Qrr
Rgon=64 Ω
400
±15
di(rec)max
/dt
Erec
RthJH
6
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,25
Thermal grease
thickness≤50um
λ = 1 W/mK
1,62
1,53
3
4
236
341
0,32
0,60
12
30
0,09
0,17
1,95
V
A
ns
µC
A/µs
mWs
4,44
K/W
100
nF
22000
Ω
DC link Capacitor
C value
C
Thermistor
Rated resistance
R
Deviation of R100
ǑR/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=100°C
Power dissipation constant
%
210
mW
T=25°C
3,5
mW/K
B(25/50)
Tol. ±3%
T=25°C
B-value
B(25/100)
Tol. ±3%
T=25°C
Copyright by Vincotech
5
T=25°C
B-value
Vincotech NTC Reference
-5
K
4000
K
A
6
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
Output inverter IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
18
IC (A)
IC (A)
18
15
15
12
12
9
9
6
6
3
3
0
0
0
1
At
tp =
Tj =
VGE from
2
3
4
V CE (V)
5
0
At
tp =
Tj =
VGE from
250
µs
25
°C
7 V to 17 V in steps of 1 V
Output inverter IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
IC (A)
IF (A)
18
5
15
4
12
3
9
2
6
4
V CE (V)
5
µs
250
125
°C
7 V to 17 V in steps of 1 V
Output inverter FWD
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
6
Tj = Tjmax-25°C
1
Tj = 25°C
Tj = Tjmax-25°C
1
3
Tj = 25°C
0
0
0
At
tp =
VCE =
2
250
10
4
6
8
V GE (V)
10
0
At
tp =
µs
V
Copyright by Vincotech
7
0,6
250
1,2
1,8
2,4
V F (V)
3
µs
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
Output inverter IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
0,7
E (mWs)
0,5
Eon High T
Eon High T
Eoff High T
0,6
Eon Low T
0,5
Eoff Low T
0,4
0,4
Eon Low T
0,3
Eoff High T
0,3
0,2
Eoff Low T
0,2
0,1
0,1
0
0
0
2
4
6
8
10
I C (A)
0
12
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
±15
V
Rgon =
64
Ω
Rgoff =
64
Ω
32
64
96
128
160
192
224
256
288
RG( Ω )
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
±15
V
IC =
6
A
Output inverter FWD
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(IC)
E (mWs)
E (mWs)
0,25
Erec
Tj = Tjmax -25°C
0,20
Output inverter FWD
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,25
0,20
Tj = Tjmax -25°C
0,15
0,15
Erec
Erec
0,10
0,10
Tj = 25°C
Erec
0,05
0,05
Tj = 25°C
0,00
0,00
0
2
4
6
8
10
I C (A)
12
0
With an inductive load at
Tj =
°C
25/125
VCE =
400
V
VGE =
±15
V
Rgon =
64
Ω
Copyright by Vincotech
32
64
96
128
160
192
224
256
288
RG( Ω )
With an inductive load at
Tj =
25/125
°C
VCE =
400
V
VGE =
±15
V
IC =
6
A
8
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
Output inverter IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
1,00
t ( µs)
1,00
tdoff
tdoff
tf
0,10
tf
0,10
tdon
tr
tdon
tr
0,01
0,01
0,00
0,00
0
2
4
6
8
10
I C (A)
12
0
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
±15
V
Rgon =
64
Ω
Rgoff =
64
Ω
32
64
96
128
160
192
224
256
288
RG( Ω )
With an inductive load at
Tj =
125
°C
VCE =
400
V
VGE =
±15
V
IC =
6
A
Output inverter FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(IC)
Output inverter FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,5
trr
0,4
trr
Tj = Tjmax -25°C
t rr( µs)
t rr( µs)
0,5
0,4
Tj = Tjmax -25°C
trr
0,3
0,3
trr
0,2
Tj = 25°C
0,2
Tj = 25°C
0,2
0,1
0,1
0,0
0
0
2
At
Tj =
VCE =
VGE =
Rgon =
25/125
400
±15
64
4
6
8
10
I C (A)
12
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
9
32
64
25/125
400
6
±15
96
128
160
192
224
256
288
R gon ( Ω )
°C
V
A
V
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Output Inverter
Output inverter FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Output inverter FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
1
Qrr( µC)
Qrr( µC)
0,8
Tj = Tjmax -25°C
0,8
Qrr
Tj = Tjmax -25°C
0,6
Qrr
0,6
0,4
0,4
Qrr
Qrr
Tj = 25°C
0,2
Tj = 25°C
0,2
0
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
2
25/125
400
±15
64
4
6
8
10
I C (A)
0
12
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
32
64
25/125
400
6
±15
96
128
160
192
224
256
288
R gon ( Ω)
°C
V
A
V
Output inverter FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
8
IrrM (A)
IrrM (A)
5
4
IRRM
Tj = Tjmax -25°C
6
IRRM
3
Tj = 25°C
4
2
Tj = Tjmax - 25°C
IRRM
Tj = 25°C
2
1
IRRM
0
0
0
2
At
Tj =
VCE =
VGE =
Rgon =
25/125
400
±15
64
4
6
8
10
I C (A)
0
12
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
10
32
64
25/125
400
6
±15
96
128
160
192
224
256
288
R gon ( Ω )
°C
V
A
V
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Output Inverter
Output inverter FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(IC)
1200
direc / dt (A/ µs)
350
direc / dt (A/µ s)
Output inverter FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dI0/dt
dIo/dtLow T
dIrec/dt
300
dI0/dt
dIrec/dt
1000
250
dIo/dtLow T
800
di0/dtHigh T
200
di0/dtHigh T
600
dIrec/dtLow T
150
400
100
dIrec/dtHigh T
dIrec/dtHigh T
200
50
dIrec/dtLow T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
2
25/125
400
±15
64
4
6
8
10
I C (A)
0
12
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Output inverter IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
64
25/125
400
6
±15
96
128
160
192
224
256
288
R gon ( Ω )
°C
V
A
V
Output inverter FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
Zth-JH (K/W)
101
ZthJH (K/W)
10
32
0
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10
0
10
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-5
At
D=
RthJH =
10-4
10-2
10-1
100
t p (s)
1021
10-5
At
D=
RthJH =
tp / T
3,38
Thermal grease
R (C/W)
0,16
0,70
1,11
0,55
0,34
0,53
10-3
K/W
RthJH =
2,74
K/W
IGBT thermal model values
Phase change interface
Tau (s)
1,710
0,168
0,044
0,008
0,001
0,000
Copyright by Vincotech
R (C/W)
0,13
0,56
0,90
0,45
0,27
0,43
10-4
R (C/W)
0,20
0,90
1,46
0,65
0,56
0,67
11
10-2
10-1
100
t p (s)
1021
tp / T
4,44
Thermal grease
Tau (s)
1,387
0,136
0,036
0,007
0,001
0,000
10-3
K/W
RthJH =
3,60
K/W
FWD thermal model values
Phase change interface
Tau (s)
1,973
0,162
0,039
0,007
0,001
0,000
R (C/W)
0,16
0,73
1,18
0,53
0,46
0,54
Tau (s)
1,600
0,131
0,032
0,005
0,001
0,000
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
Output inverter IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
15
IC (A)
Ptot (W)
60
50
12
40
9
30
6
20
3
10
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
175
Output inverter FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
175
15
100
150
T h ( o C)
200
°C
V
Output inverter FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
20
IF (A)
Ptot (W)
40
30
15
20
10
10
5
0
0
0
At
Tj =
50
50
175
100
150
T h ( o C)
200
0
At
Tj =
°C
Copyright by Vincotech
12
50
175
100
150
T h ( o C)
200
°C
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Output Inverter
Output inverter IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
Output inverter IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(QGE)
IC (A)
VGE (V)
18
10
16
2
14
120V
1mS
10mS
100uS
12
100mS
480V
DC
101
10
8
100
6
4
10-1
2
0
10-1
10
0
At
D=
Th =
VGE =
10
1
10
V CE (V)
2
0
103
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Tj =
Output inverter IGBT
Figure 27
10
6
20
30
40
Q g (nC)
60
A
Output inverter IGBT
Figure 28
Short circuit withstand time as a function of
gate-emitter voltage
tsc = f(VGE)
50
Typical short circuit collector current as a function of
gate-emitter voltage
VGE = f(QGE)
tsc (µS)
IC (sc)
14
100
12
80
10
60
8
6
40
4
20
2
0
0
10
11
12
13
14
V GE (V)
15
12
13
14
At
VCE =
600
V
At
VCE ≤
600
V
Tj ≤
175
ºC
Tj =
175
ºC
Copyright by Vincotech
13
15
16
17
18
19 V (V) 20
GE
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Output Inverter
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
25
20
IC MAX
VCE MAX
Ic
10
Ic CHIP
MODULE
15
5
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3phase SPWM
Copyright by Vincotech
14
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
PFC
PFC MOSFET
Figure 1
Typical output characteristics
ID = f(VDS)
PFC MOSFET
Figure 2
Typical output characteristics
ID = f(VDS)
35
ID (A)
ID (A)
35
30
30
25
25
20
20
15
15
10
10
5
5
0
0
0
2
At
tp =
Tj =
VGS from
4
6
V DS (V)
8
0
10
At
tp =
Tj =
VGS from
µs
250
25
°C
0 V to 20 V in steps of 2 V
PFC MOSFET
Figure 3
Typical transfer characteristics
2
4
6
8
PFC FWD
35
ID (A)
IF (A)
10
10
µs
250
125
°C
0 V to 20 V in steps of 2 V
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
ID = f(VGS)
V DS (V)
30
8
25
6
20
15
4
Tj = Tjmax-25°C
Tj = Tjmax-25°C
10
2
Tj = 25°C
5
Tj = 25°C
0
0
0
At
tp =
VDS =
1
250
10
2
3
4
5
V GS (V)
6
0
At
tp =
µs
V
Copyright by Vincotech
15
1
250
2
3
4
V F (V)
5
µs
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
PFC
PFC MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(ID)
PFC MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
0,12
Eon
E (mWs)
Eon
E (mWs)
0,15
Tj = Tjmax -25°C
0,12
0,09
0,09
Eon
0,06
Eon
Tj =25°C
0,06
0,03
0,03
Eoff
Eoff
Eoff
Eoff
0
0
0
2
4
6
8
10
I C (A)
12
0
With an inductive load at
Tj =
°C
25/125
VDS =
400
V
VGS =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
6
A
PFC MOSFET
Figure 7
Typical reverse recovery energy loss
as a function of collector (drain) current
Erec = f(Ic)
PFC MOSFET
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,05
E (mWs)
E (mWs)
0,06
Erec
Tj = Tjmax - 25°C
Erec
0,05
0,04
0,04
0,03
Tj = Tjmax -25°C
0,03
0,02
Erec
0,02
Tj = 25°C
0,01
0,01
Erec
Tj = 25°C
0,00
0,00
0
2
4
6
8
10
I C (A)
0
12
With an inductive load at
Tj =
°C
25/125
VDS =
400
V
VGS =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
Copyright by Vincotech
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
VDS =
400
V
VGS =
10
V
ID =
6
A
16
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
PFC
PFC MOSFET
PFC MOSFET
1,00
1,00
t ( µs)
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( µs)
Figure 9
Typical switching times as a
function of collector current
t = f(ID)
tdoff
tdoff
0,10
0,10
tdon
tdon
0,01
0,01
tr
tr
0,00
0,00
0
2
4
6
8
10
I D (A)
12
0
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
10
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
RG (Ω )
16
20
With an inductive load at
Tj =
125
°C
VDS =
400
V
VGS =
10
V
IC =
6
A
PFC FWD
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
PFC FWD
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,04
t rr( µs)
t rr( µs)
0,02
trr
0,015
trr
0,03
Tj = Tjmax-25°C
0,01
0,02
trr
trr
0,005
0,01
Tj = 25°C
0
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
2
25/125
400
10
4,01
4
6
8
10
I C (A)
12
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
17
4
25/125
400
6
10
8
12
16
R gon ( Ω )
20
°C
V
A
V
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
PFC
PFC FWD
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
PFC FWD
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
0,4
0,4
Qrr ( µC)
Qrr
Qrr ( µC)
Tj = Tjmax - 25°C
0,3
Tj = Tjmax - 25°C
0,3
Qrr
0,2
0,2
Qrr
Tj = 25°C
0,1
Tj = 25°C
0,1
0
Qrr
0,0
0
At
At
Tj =
VCE =
VGE =
Rgon =
2
25/125
400
10
4
4
6
8
10
I C (A)
12
0
4
At
Tj =
°C
V
V
Ω
25/125
400
6
10
VR =
IF =
VGS =
PFC FWD
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
12
R gon ( Ω)
16
°C
V
A
V
PFC FWD
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
40
IrrM (A)
40
20
IrrM (A)
IRRM
Tj = Tjmax - 25°C
IRRM
30
30
Tj = Tjmax -25°C
Tj = 25°C
Tj = 25°C
20
IRRM
20
IRRM
10
10
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
2
25/125
400
10
4
4
6
8
10
I C (A)
12
0
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
Copyright by Vincotech
18
4
25/125
400
6
10
8
12
16
R gon ( Ω )
20
°C
V
A
V
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
PFC
PFC FWD
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
PFC FWD
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
15000
direc / dt (A/ µs)
14000
direc / dt (A/ µs)
dI0/dt
dIrec/dt
12000
Tj = 25°C
dI0/dt
dIrec/dt
12000
10000
9000
8000
Tj = 25°C
Tj = Tjmax - 25°C
6000
6000
Tj = 25°C
4000
Tj = Tjmax - 25°C
Tj = Tjmax -25°C
3000
2000
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
2
25/125
400
10
4
4
6
8
10
I C (A)
0
12
At
Tj =
VR =
IF =
VGS =
°C
V
V
Ω
PFC MOSFET
Figure 19
IGBT/MOSFET transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/125
400
6
10
8
12
16
20
°C
V
A
V
PFC FWD
Figure 20
FWD transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
R gon ( Ω)
ZthJH (K/W)
ZthJH (K/W)
101
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
10-2
10
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
t p (s)
K/W
RthJH =
1,22
IGBT thermal model values
Thermal grease
Phase change interface
R (C/W)
0,07
0,21
0,65
0,31
0,15
0,11
R (C/W)
0,06
0,17
0,53
0,25
0,12
0,09
Tau (s)
2,94
0,46
0,12
0,03
0,01
0,00
Copyright by Vincotech
-2
10-5
10110
At
D=
RthJH =
tp / T
1,51
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
K/W
Tau (s)
2,38
0,37
0,09
0,02
0,01
0,00
19
10-4
10-3
10-2
10-1
100
t p (s)
10110
tp / T
2,95
K/W
RthJH =
2,39
FWD thermal model values
Thermal grease
Phase change interface
R (C/W)
0,11
0,51
1,04
0,58
0,45
0,27
R (C/W)
0,09
0,41
0,84
0,47
0,37
0,22
Tau (s)
2,95
0,31
0,08
0,01
0,00
0,00
K/W
Tau (s)
2,39
0,26
0,06
0,01
0,00
0,00
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
PFC
PFC MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
PFC MOSFET
Figure 22
Collector/Drain current as a
function of heatsink temperature
IC = f(Th)
15
Ptot (W)
IC (A)
100
80
12
60
9
40
6
20
3
0
0
0
At
Tj =
50
100
150
T h ( o C)
200
0
At
Tj =
VGS =
ºC
150
PFC FWD
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
10
100
150
200
ºC
V
PFC FWD
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
15
IF (A)
Ptot (W)
60
T h ( o C)
50
12
40
9
30
6
20
3
10
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
20
50
175
100
150
T h ( o C)
200
ºC
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
PFC
PFC MOSFET
Figure 25
Safe operating area as a function
of drain-source voltage
ID = f(VDS)
PFC MOSFET
Figure 26
Gate voltage vs Gate charge
VGS = f(Qg)
10
ID (A)
VGS (V)
103
9
120V
8
10
2
480V
7
6
100uS
5
101
4
3
10
DC
0
10mS
100mS
1mS
2
1
0
10
-
10
102
0
At
D=
Th =
VGS =
0
10
V DS (V)
At
ID =
single pulse
80
ºC
V
10
Tjmax
ºC
Tj =
10
6
20
30
40
50
60
Qg (nC)
70
A
IGBT
Figure 29
Reverse bias safe operating area
IC = f(VCE)
IC (A)
25
IC MAX
Ic
MODULE
15
Ic CHIP
20
VCE MAX
10
5
0
0
100
200
300
400
500
600
700
V CE (V)
At
Tj =
Tjmax-25
Uccminus=Uccplus
ºC
Switching mode :
3phase SPWM
Copyright by Vincotech
21
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Input Rectifier Bridge
Rectifier diode
Figure 1
Typical diode forward current as
a function of forward voltage
IF= f(VF)
Rectifier diode
Figure 2
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
80
1
ZthJC (K/W)
IF (A)
10
60
100
40
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
20
Tj = Tjmax-25°C
Tj = 25°C
10-2
0
0
0,5
At
tp =
1
1,5
V F (V)
2
10
At
D=
RthJH =
µs
250
-5
Rectifier diode
Figure 3
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10
-4
10
-3
10
-2
10
-1
10
t p (s)
1
10 10
tp / T
2,20
K/W
Rectifier diode
Figure 4
Forward current as a
function of heatsink temperature
IF = f(Th)
50
IF (A)
Ptot (W)
70
0
60
40
50
30
40
30
20
20
10
10
0
0
0
At
Tj =
50
150
100
150
T h ( o C)
0
200
At
Tj =
ºC
Copyright by Vincotech
22
50
150
100
150
T h ( o C)
200
ºC
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
24000
Thermistor
Figure 2
Typical NTC resistance values
R/Ω
R(T ) = R25 ⋅ e



 B25/100⋅ 1 − 1  
 T T 

25  


[Ω]
20000
16000
12000
8000
4000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
23
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Switching Definitions Output Inverter
General conditions
= 125 °C
Tj
= 64 Ω
Rgon
Rgoff
= 64 Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
125
%
%
tdoff
VCE
IC
100
150
VGE 90%
VCE 90%
75
VGE
VCE
IC
100
VGE
50
tdon
tEoff
50
25
IC 1%
VCE 3%
IC10%
VGE10%
0
tEon
0
-50
-25
-0,2
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,2
-15
15
400
6
0,18
0,54
0,4
time (us)
2,9
0,6
3
3,2
3,3
3,4
time(us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
Output inverter IGBT
Figure 3
3,1
-15
15
400
6
0,10
0,27
V
V
V
A
µs
µs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
125
200
fitted
%
%
VCE
IC
Ic
100
150
IC 90%
75
VCE
100
IC 60%
IC90%
50
tr
IC 40%
50
25
IC10%
IC10%
0
0
tf
-25
-50
0
VC (100%) =
IC (100%) =
tf =
0,1
0,2
400
6
0,11
Copyright by Vincotech
0,3
0,4
time (us)
0,5
3
VC (100%) =
IC (100%) =
tr =
V
A
µs
24
3,05
3,1
400
6
0,03
3,15
3,2
3,25
time(us)
3,3
V
A
µs
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Switching Definitions Output Inverter
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
125
150
Pon
%
%
Eoff
100
125
Poff
Eon
100
75
75
50
50
IC 1%
25
25
VGE 90%
0
tEoff
-25
-0,2
VCE 3%
VGE 10%
0
tEon
-25
0
0,2
0,4
0,6
2,9
time (us)
Poff (100%) =
Eoff (100%) =
tEoff =
2,41
0,27
0,54
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
Output inverter IGBT
Figure 7
Gate voltage vs Gate charge (measured)
3,1
3,2
2,41
0,25
0,27
3,3
time(us)
3,4
kW
mJ
µs
Output inverter FWD
Figure 8
Turn-off Switching Waveforms & definition of trr
150
VGE (V)
20
%
Id
15
100
10
trr
50
5
Vd
0
0
IRRM 10%
fitted
-5
-50
IRRM 90%
IRRM 100%
-10
-100
-15
-150
-20
-10
0
10
20
30
40
50
60
3
70
3,1
3,2
3,3
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-15
15
400
6
65,25
Copyright by Vincotech
3,4
3,5
3,6
time(us)
Qg (nC)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
25
400
6
-4
0,34
V
A
A
µs
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Switching Definitions Output Inverter
Output inverter FWD
Figure 9
Output inverter FWD
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
125
%
Erec
%
Qrr
Id
100
100
tErec
75
tQrr
50
50
0
25
Prec
-50
0
-100
-25
2,8
3
3,2
3,4
3,6
3,8
4
3
time(us)
Id (100%) =
Qrr (100%) =
tQrr =
6
0,60
0,73
Copyright by Vincotech
Prec (100%) =
Erec (100%) =
tErec =
A
µC
µs
26
3,2
3,4
2,41
0,17
0,73
3,6
3,8
time(us)
4
kW
mJ
µs
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Switching Definitions PFC
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
PFC MOSFET
Figure 1
PFC MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
125
600
tdoff
%
IC
%
500
100
VGE 90%
VCE 90%
400
75
VGE
IC
300
50
tEoff
IC 1%
200
25
VCE
0
tdon
VGE10%
0
-25
VGE
VCE
100
IC10%
VCE3%
tEon
-50
-0,1
-0,05
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0
0
10
400
6
0,11
0,14
0,05
0,1
time (us)
-100
2,98
0,15
3
3,02
3,06
time(us)
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
µs
µs
PFC MOSFET
Figure 3
3,04
0
10
400
6
0,02
0,03
V
V
V
A
µs
µs
PFC MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
Turn-on Switching Waveforms & definition of tr
600
125
%
fitted
IC
100
%
VCE
Ic
500
Ic 90%
75
400
Ic 60%
50
300
Ic 40%
200
25
Ic10%
0
VCE
100
tf
tr
-50
0,02
0,04
0,06
0,08
0,1
0,12
-100
3,01
0,14
IC 90%
IC 10%
0
-25
3,015
3,02
3,025
VC (100%) =
IC (100%) =
tf =
400
6
0,01
Copyright by Vincotech
3,03
3,035
3,04
time(us)
time (us)
VC (100%) =
IC (100%) =
tr =
V
A
µs
27
400
6
0,002
V
A
µs
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Switching Definitions PFC
PFC MOSFET
Figure 5
PFC MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
200
500
%
Pon
%
400
150
300
Eoff
100
200
50
Eon
100
Poff
U ge90%
0
-50
-0,1
-0,05
Poff (100%) =
Eoff (100%) =
tEoff =
0
0
Ic 1%
0,05
2,45
0,01
0,14
0,1
tEon
time (us)
-100
2,98
0,15
3
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
µs
PFC MOSFET
Figure 7
3,02
2,45
0,09
0,0325
3,04
time(us)
3,06
kW
mJ
µs
PFC FWD
Figure 8
Gate voltage vs Gate charge (measured)
Uge (V)
Uce 3%
U ge10%
tEoff
Turn-off Switching Waveforms & definition of trr
12
200
%
10
100
8
0
6
-100
4
-200
2
-300
0
-400
-2
-500
-4
-600
2,975
Id
trr
Ud
IRRM10%
IRRM90%
IRRM100%
fitted
-10
0
10
20
30
40
50
60
2,995
3,015
3,035
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
0
10
400
6
51,14
Copyright by Vincotech
3,055
3,075
time(us)
Qg (nC)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
28
400
6
-31
0,02
V
A
A
µs
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Switching Definitions PFC
PFC FWD
Figure 9
Turn-on Switching Waveforms & definition of tQrr
(tQrr= integrating time for Qrr)
Figure 10
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
PFC FWD
350
200
%
%
Prec
300
150
Id
250
Qrr
100
200
tQint
150
50
Erec
100
tErec
0
50
-50
0
-50
-100
3
Id (100%) =
Qrr (100%) =
tQint =
3,01
3,02
3,03
6
0,29
0,03
A
µC
µs
Copyright by Vincotech
3,04
3
3,05 time(us)3,06
3,01
Prec (100%) =
Erec (100%) =
tErec =
29
3,02
2,45
0,04
0,03
3,03
3,04
3,05
3,06
3,07
time(us)
kW
mJ
µs
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 17mm housing
Ordering Code
10-F006PPA006SB-M682B
in DataMatrix as
M682B
in packaging barcode as
M682-B
Outline
Pinout
Copyright by Vincotech
30
Revision: 1
10-F006PPA006SB-M682B
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
31
Revision: 1