10-F006PPA006SB-M682B preliminary datasheet flowPIM0+PFC 2nd 600V/6A Features flowPIM0+PFC 2nd ● Clip in PCB mounting ●Trench Fieldstop IGBT's for low saturation losses ● Latest generation superjunction MOSFET for PFC Target Applications Schematic ● Industrial Drives ● Embedded Drives Types ● 10-F006PPA006SB-M682B Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 1600 V Input Rectifier Diode Repetitive peak reverse voltage VRRM DC forward current IFAV Surge forward current IFSM I2t-value I2t Power dissipation per Diode Ptot Maximum Junction Temperature Copyright by Vincotech Tj=Tjmax Th=80°C Tc=80°C tp=10ms Tj=150°C Tj=Tjmax Tjmax 1 Th=80°C Tc=80°C 26 36 A 200 A 200 A2s 32 48 W 150 °C Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 10 11 A 59 A PFC MOSFET Drain to source breakdown voltage DC drain current Pulsed drain current VDS ID IDpulse Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax EAS ID=3,4A VDD=50V Tj=25°C 418 mJ Avalanche energy, repetitive EAR ID=3,4A VDD=50V Tj=25°C 0.63 mJ Avalanche current, repetitive IAR Tj=25°C 3,4 A MOSFET dv/dt ruggedness dv/dt 50 V/ns Avalanche energy, single pulse Tj=Tjmax Th=80°C Tc=80°C 47 Power dissipation Ptot Gate-source peak voltage VGS 20 V Reverse diode dv/dt dv/dt 15 V/ns Maximum Junction Temperature Tjmax 150 °C 600 V 12 12 A 18 A 32 49 W 175 °C 70 W PFC Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Th=80°C Tc=80°C Tjmax PFC Shunt DC forward current Power dissipation per Shunt Copyright by Vincotech IF Tc=25°C 10 A Ptot Tc=25°C 5 W 2 Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 9 13 A 18 A 18 A 28 43 W 20 V µs Inverter Transistor Collector-emitter break down voltage DC collector current Pulsed collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Maximum Junction Temperature Th=80°C Tc=80°C tp limited by Tjmax VCE ≤ 400V, Tj ≤ Top max Turn off safe operating area Short circuit ratings Tj=Tjmax Tj=Tjmax Th=80°C Tc=80°C tSC Tj≤150°C 6 VCC VGE=15V 360 V 175 °C 600 V 13 16 A 12 A 21 32 W 175 °C Tjmax Inverter Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Copyright by Vincotech Tjmax 3 Th=80°C Tc=80°C Th=80°C Tc=80°C Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 500 V DC link Capacitor Max.DC voltage Tc=25°C VMAX Thermal Properties Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Insulation Properties Insulation voltage Comparative tracking index Copyright by Vincotech Vis t=2s DC voltage CTI >200 4 Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Min Typ Unit Max Input Rectifier Diode Forward voltage VF Threshold voltage (for power loss calc. only) Vto 25 Slope resistance (for power loss calc. only) rt 25 Reverse current Ir Thermal resistance chip to heatsink per chip RthJH 25 1600 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,20 1,17 0,92 0,81 10,9 14,4 V V mΩ 0.05 Thermal grease thickness≤50um λ = 1 W/mK 2,20 mA K/W PFC MOSFET Static drain to source ON resistance Gate threshold voltage Gate to Source Leakage Current RDS(on) V(GS)th IDSS Turn On Delay Time td(ON) Turn off delay time Fall time 6 VGS=VDS IGSS Zero Gate Voltage Drain Current Rise Time 10 0,00063 20 0 0 600 tr td(OFF) tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Total gate charge QGE Rgoff=4 Ω Rgon=4 Ω 10 400 6 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,4 203 398 3,0 100 1000 17 16 2 2 103 113 6 9 0,045 0,091 0,006 0,007 QGS Gate to drain charge QGD 32 Input capacitance Ciss 1400 Output capacitance Coss Gate resistance RG 480 0/10 f=1MHz RthJH V nA nA ns mWs 63 Gate to source charge Thermal resistance chip to heatsink per chip mΩ 3,6 0 9,5 100 Tj=25°C nC 7,6 pF Tj=25°C 85 Thermal grease thickness≤50um λ = 1 W/mK 6 Ω 1,51 K/W PFC Diode Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Erec Peak rate of fall of recovery current Thermal resistance chip to heatsink per chip 6 600 Rgon=4 Ω 10 400 di(rec)max /dt RthJH Thermal grease thickness≤50um λ = 1 W/mK 6 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 2,83 1,66 V 50 500 29 31 9 15 0,12 0,29 0,013 0,042 12276 7905 µA A ns µC mWs A/µs 2,95 K/W PFC Shunt R1 value R Temperature coeficient tc Internal heat resistance Rthi Inductance Copyright by Vincotech 50 mΩ 30 20°C to 60°C 10 3 L 5 ppm/K K/W nH Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 Inverter Transistor Gate emitter threshold voltage VGE(th) VCE=VGE 0,00009 VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Collector-emitter saturation voltage Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 6 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH 1,52 1,71 300 Rgoff=64 Ω Rgon=64 Ω ±15 400 6 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V 0,027 mA nA Ω none tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 103 101 23 26 154 177 96 105 0,19 0,25 0,21 0,27 ns mWs 368 f=1MHz 0 25 ±15 480 Tj=25°C pF 28 11 6 Tj=25°C Thermal grease thickness≤50um λ = 1 W/mK 42 nC 3,38 K/W Inverter Diode Diode forward voltage Peak reverse recovery current Reverse recovery time Reverse recovered charge Peak rate of fall of recovery current Reverse recovered energy Thermal resistance chip to heatsink per chip VF 6 IRRM trr Qrr Rgon=64 Ω 400 ±15 di(rec)max /dt Erec RthJH 6 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,25 Thermal grease thickness≤50um λ = 1 W/mK 1,62 1,53 3 4 236 341 0,32 0,60 12 30 0,09 0,17 1,95 V A ns µC A/µs mWs 4,44 K/W 100 nF 22000 Ω DC link Capacitor C value C Thermistor Rated resistance R Deviation of R100 ǑR/R Power dissipation P T=25°C R100=1486 Ω T=100°C Power dissipation constant % 210 mW T=25°C 3,5 mW/K B(25/50) Tol. ±3% T=25°C B-value B(25/100) Tol. ±3% T=25°C Copyright by Vincotech 5 T=25°C B-value Vincotech NTC Reference -5 K 4000 K A 6 Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Output Inverter Output inverter IGBT Figure 1 Typical output characteristics IC = f(VCE) Output inverter IGBT Figure 2 Typical output characteristics IC = f(VCE) 18 IC (A) IC (A) 18 15 15 12 12 9 9 6 6 3 3 0 0 0 1 At tp = Tj = VGE from 2 3 4 V CE (V) 5 0 At tp = Tj = VGE from 250 µs 25 °C 7 V to 17 V in steps of 1 V Output inverter IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 IC (A) IF (A) 18 5 15 4 12 3 9 2 6 4 V CE (V) 5 µs 250 125 °C 7 V to 17 V in steps of 1 V Output inverter FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 6 Tj = Tjmax-25°C 1 Tj = 25°C Tj = Tjmax-25°C 1 3 Tj = 25°C 0 0 0 At tp = VCE = 2 250 10 4 6 8 V GE (V) 10 0 At tp = µs V Copyright by Vincotech 7 0,6 250 1,2 1,8 2,4 V F (V) 3 µs Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Output Inverter Output inverter IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) Output inverter IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) E (mWs) 0,7 E (mWs) 0,5 Eon High T Eon High T Eoff High T 0,6 Eon Low T 0,5 Eoff Low T 0,4 0,4 Eon Low T 0,3 Eoff High T 0,3 0,2 Eoff Low T 0,2 0,1 0,1 0 0 0 2 4 6 8 10 I C (A) 0 12 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = ±15 V Rgon = 64 Ω Rgoff = 64 Ω 32 64 96 128 160 192 224 256 288 RG( Ω ) With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = ±15 V IC = 6 A Output inverter FWD Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(IC) E (mWs) E (mWs) 0,25 Erec Tj = Tjmax -25°C 0,20 Output inverter FWD Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,25 0,20 Tj = Tjmax -25°C 0,15 0,15 Erec Erec 0,10 0,10 Tj = 25°C Erec 0,05 0,05 Tj = 25°C 0,00 0,00 0 2 4 6 8 10 I C (A) 12 0 With an inductive load at Tj = °C 25/125 VCE = 400 V VGE = ±15 V Rgon = 64 Ω Copyright by Vincotech 32 64 96 128 160 192 224 256 288 RG( Ω ) With an inductive load at Tj = 25/125 °C VCE = 400 V VGE = ±15 V IC = 6 A 8 Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Output Inverter Output inverter IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) Output inverter IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) 1,00 t ( µs) 1,00 tdoff tdoff tf 0,10 tf 0,10 tdon tr tdon tr 0,01 0,01 0,00 0,00 0 2 4 6 8 10 I C (A) 12 0 With an inductive load at Tj = 125 °C VCE = 400 V VGE = ±15 V Rgon = 64 Ω Rgoff = 64 Ω 32 64 96 128 160 192 224 256 288 RG( Ω ) With an inductive load at Tj = 125 °C VCE = 400 V VGE = ±15 V IC = 6 A Output inverter FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(IC) Output inverter FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,5 trr 0,4 trr Tj = Tjmax -25°C t rr( µs) t rr( µs) 0,5 0,4 Tj = Tjmax -25°C trr 0,3 0,3 trr 0,2 Tj = 25°C 0,2 Tj = 25°C 0,2 0,1 0,1 0,0 0 0 2 At Tj = VCE = VGE = Rgon = 25/125 400 ±15 64 4 6 8 10 I C (A) 12 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 9 32 64 25/125 400 6 ±15 96 128 160 192 224 256 288 R gon ( Ω ) °C V A V Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Output Inverter Output inverter FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) Output inverter FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 1 Qrr( µC) Qrr( µC) 0,8 Tj = Tjmax -25°C 0,8 Qrr Tj = Tjmax -25°C 0,6 Qrr 0,6 0,4 0,4 Qrr Qrr Tj = 25°C 0,2 Tj = 25°C 0,2 0 0 0 At At Tj = VCE = VGE = Rgon = 2 25/125 400 ±15 64 4 6 8 10 I C (A) 0 12 At Tj = VR = IF = VGE = °C V V Ω Output inverter FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 32 64 25/125 400 6 ±15 96 128 160 192 224 256 288 R gon ( Ω) °C V A V Output inverter FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 8 IrrM (A) IrrM (A) 5 4 IRRM Tj = Tjmax -25°C 6 IRRM 3 Tj = 25°C 4 2 Tj = Tjmax - 25°C IRRM Tj = 25°C 2 1 IRRM 0 0 0 2 At Tj = VCE = VGE = Rgon = 25/125 400 ±15 64 4 6 8 10 I C (A) 0 12 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 10 32 64 25/125 400 6 ±15 96 128 160 192 224 256 288 R gon ( Ω ) °C V A V Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Output Inverter Output inverter FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(IC) 1200 direc / dt (A/ µs) 350 direc / dt (A/µ s) Output inverter FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) dI0/dt dIo/dtLow T dIrec/dt 300 dI0/dt dIrec/dt 1000 250 dIo/dtLow T 800 di0/dtHigh T 200 di0/dtHigh T 600 dIrec/dtLow T 150 400 100 dIrec/dtHigh T dIrec/dtHigh T 200 50 dIrec/dtLow T 0 0 0 At Tj = VCE = VGE = Rgon = 2 25/125 400 ±15 64 4 6 8 10 I C (A) 0 12 At Tj = VR = IF = VGE = °C V V Ω Output inverter IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 64 25/125 400 6 ±15 96 128 160 192 224 256 288 R gon ( Ω ) °C V A V Output inverter FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 Zth-JH (K/W) 101 ZthJH (K/W) 10 32 0 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10 0 10 -1 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-5 At D= RthJH = 10-4 10-2 10-1 100 t p (s) 1021 10-5 At D= RthJH = tp / T 3,38 Thermal grease R (C/W) 0,16 0,70 1,11 0,55 0,34 0,53 10-3 K/W RthJH = 2,74 K/W IGBT thermal model values Phase change interface Tau (s) 1,710 0,168 0,044 0,008 0,001 0,000 Copyright by Vincotech R (C/W) 0,13 0,56 0,90 0,45 0,27 0,43 10-4 R (C/W) 0,20 0,90 1,46 0,65 0,56 0,67 11 10-2 10-1 100 t p (s) 1021 tp / T 4,44 Thermal grease Tau (s) 1,387 0,136 0,036 0,007 0,001 0,000 10-3 K/W RthJH = 3,60 K/W FWD thermal model values Phase change interface Tau (s) 1,973 0,162 0,039 0,007 0,001 0,000 R (C/W) 0,16 0,73 1,18 0,53 0,46 0,54 Tau (s) 1,600 0,131 0,032 0,005 0,001 0,000 Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Output Inverter Output inverter IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) Output inverter IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 15 IC (A) Ptot (W) 60 50 12 40 9 30 6 20 3 10 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGE = °C 175 Output inverter FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 175 15 100 150 T h ( o C) 200 °C V Output inverter FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 20 IF (A) Ptot (W) 40 30 15 20 10 10 5 0 0 0 At Tj = 50 50 175 100 150 T h ( o C) 200 0 At Tj = °C Copyright by Vincotech 12 50 175 100 150 T h ( o C) 200 °C Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Output Inverter Output inverter IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) Output inverter IGBT Figure 26 Gate voltage vs Gate charge VGE = f(QGE) IC (A) VGE (V) 18 10 16 2 14 120V 1mS 10mS 100uS 12 100mS 480V DC 101 10 8 100 6 4 10-1 2 0 10-1 10 0 At D= Th = VGE = 10 1 10 V CE (V) 2 0 103 At IC = single pulse 80 ºC ±15 V Tjmax ºC Tj = Output inverter IGBT Figure 27 10 6 20 30 40 Q g (nC) 60 A Output inverter IGBT Figure 28 Short circuit withstand time as a function of gate-emitter voltage tsc = f(VGE) 50 Typical short circuit collector current as a function of gate-emitter voltage VGE = f(QGE) tsc (µS) IC (sc) 14 100 12 80 10 60 8 6 40 4 20 2 0 0 10 11 12 13 14 V GE (V) 15 12 13 14 At VCE = 600 V At VCE ≤ 600 V Tj ≤ 175 ºC Tj = 175 ºC Copyright by Vincotech 13 15 16 17 18 19 V (V) 20 GE Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Output Inverter IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 25 20 IC MAX VCE MAX Ic 10 Ic CHIP MODULE 15 5 0 0 100 200 300 400 500 600 700 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3phase SPWM Copyright by Vincotech 14 Revision: 1 10-F006PPA006SB-M682B preliminary datasheet PFC PFC MOSFET Figure 1 Typical output characteristics ID = f(VDS) PFC MOSFET Figure 2 Typical output characteristics ID = f(VDS) 35 ID (A) ID (A) 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 0 2 At tp = Tj = VGS from 4 6 V DS (V) 8 0 10 At tp = Tj = VGS from µs 250 25 °C 0 V to 20 V in steps of 2 V PFC MOSFET Figure 3 Typical transfer characteristics 2 4 6 8 PFC FWD 35 ID (A) IF (A) 10 10 µs 250 125 °C 0 V to 20 V in steps of 2 V Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) ID = f(VGS) V DS (V) 30 8 25 6 20 15 4 Tj = Tjmax-25°C Tj = Tjmax-25°C 10 2 Tj = 25°C 5 Tj = 25°C 0 0 0 At tp = VDS = 1 250 10 2 3 4 5 V GS (V) 6 0 At tp = µs V Copyright by Vincotech 15 1 250 2 3 4 V F (V) 5 µs Revision: 1 10-F006PPA006SB-M682B preliminary datasheet PFC PFC MOSFET Figure 5 Typical switching energy losses as a function of collector current E = f(ID) PFC MOSFET Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 0,12 Eon E (mWs) Eon E (mWs) 0,15 Tj = Tjmax -25°C 0,12 0,09 0,09 Eon 0,06 Eon Tj =25°C 0,06 0,03 0,03 Eoff Eoff Eoff Eoff 0 0 0 2 4 6 8 10 I C (A) 12 0 With an inductive load at Tj = °C 25/125 VDS = 400 V VGS = 10 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = 6 A PFC MOSFET Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) PFC MOSFET Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 0,05 E (mWs) E (mWs) 0,06 Erec Tj = Tjmax - 25°C Erec 0,05 0,04 0,04 0,03 Tj = Tjmax -25°C 0,03 0,02 Erec 0,02 Tj = 25°C 0,01 0,01 Erec Tj = 25°C 0,00 0,00 0 2 4 6 8 10 I C (A) 0 12 With an inductive load at Tj = °C 25/125 VDS = 400 V VGS = 10 V Rgon = 4 Ω Rgoff = 4 Ω Copyright by Vincotech 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C VDS = 400 V VGS = 10 V ID = 6 A 16 Revision: 1 10-F006PPA006SB-M682B preliminary datasheet PFC PFC MOSFET PFC MOSFET 1,00 1,00 t ( µs) Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( µs) Figure 9 Typical switching times as a function of collector current t = f(ID) tdoff tdoff 0,10 0,10 tdon tdon 0,01 0,01 tr tr 0,00 0,00 0 2 4 6 8 10 I D (A) 12 0 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 10 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 RG (Ω ) 16 20 With an inductive load at Tj = 125 °C VDS = 400 V VGS = 10 V IC = 6 A PFC FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) PFC FWD Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,04 t rr( µs) t rr( µs) 0,02 trr 0,015 trr 0,03 Tj = Tjmax-25°C 0,01 0,02 trr trr 0,005 0,01 Tj = 25°C 0 0,00 0 At Tj = VCE = VGE = Rgon = 2 25/125 400 10 4,01 4 6 8 10 I C (A) 12 0 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 17 4 25/125 400 6 10 8 12 16 R gon ( Ω ) 20 °C V A V Revision: 1 10-F006PPA006SB-M682B preliminary datasheet PFC PFC FWD Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) PFC FWD Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 0,4 0,4 Qrr ( µC) Qrr Qrr ( µC) Tj = Tjmax - 25°C 0,3 Tj = Tjmax - 25°C 0,3 Qrr 0,2 0,2 Qrr Tj = 25°C 0,1 Tj = 25°C 0,1 0 Qrr 0,0 0 At At Tj = VCE = VGE = Rgon = 2 25/125 400 10 4 4 6 8 10 I C (A) 12 0 4 At Tj = °C V V Ω 25/125 400 6 10 VR = IF = VGS = PFC FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 8 12 R gon ( Ω) 16 °C V A V PFC FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 40 IrrM (A) 40 20 IrrM (A) IRRM Tj = Tjmax - 25°C IRRM 30 30 Tj = Tjmax -25°C Tj = 25°C Tj = 25°C 20 IRRM 20 IRRM 10 10 0 0 0 At Tj = VCE = VGE = Rgon = 2 25/125 400 10 4 4 6 8 10 I C (A) 12 0 At Tj = VR = IF = VGS = °C V V Ω Copyright by Vincotech 18 4 25/125 400 6 10 8 12 16 R gon ( Ω ) 20 °C V A V Revision: 1 10-F006PPA006SB-M682B preliminary datasheet PFC PFC FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) PFC FWD Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 15000 direc / dt (A/ µs) 14000 direc / dt (A/ µs) dI0/dt dIrec/dt 12000 Tj = 25°C dI0/dt dIrec/dt 12000 10000 9000 8000 Tj = 25°C Tj = Tjmax - 25°C 6000 6000 Tj = 25°C 4000 Tj = Tjmax - 25°C Tj = Tjmax -25°C 3000 2000 0 0 0 At Tj = VCE = VGE = Rgon = 2 25/125 400 10 4 4 6 8 10 I C (A) 0 12 At Tj = VR = IF = VGS = °C V V Ω PFC MOSFET Figure 19 IGBT/MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/125 400 6 10 8 12 16 20 °C V A V PFC FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 R gon ( Ω) ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10-2 10 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 t p (s) K/W RthJH = 1,22 IGBT thermal model values Thermal grease Phase change interface R (C/W) 0,07 0,21 0,65 0,31 0,15 0,11 R (C/W) 0,06 0,17 0,53 0,25 0,12 0,09 Tau (s) 2,94 0,46 0,12 0,03 0,01 0,00 Copyright by Vincotech -2 10-5 10110 At D= RthJH = tp / T 1,51 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 K/W Tau (s) 2,38 0,37 0,09 0,02 0,01 0,00 19 10-4 10-3 10-2 10-1 100 t p (s) 10110 tp / T 2,95 K/W RthJH = 2,39 FWD thermal model values Thermal grease Phase change interface R (C/W) 0,11 0,51 1,04 0,58 0,45 0,27 R (C/W) 0,09 0,41 0,84 0,47 0,37 0,22 Tau (s) 2,95 0,31 0,08 0,01 0,00 0,00 K/W Tau (s) 2,39 0,26 0,06 0,01 0,00 0,00 Revision: 1 10-F006PPA006SB-M682B preliminary datasheet PFC PFC MOSFET Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) PFC MOSFET Figure 22 Collector/Drain current as a function of heatsink temperature IC = f(Th) 15 Ptot (W) IC (A) 100 80 12 60 9 40 6 20 3 0 0 0 At Tj = 50 100 150 T h ( o C) 200 0 At Tj = VGS = ºC 150 PFC FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 150 10 100 150 200 ºC V PFC FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 15 IF (A) Ptot (W) 60 T h ( o C) 50 12 40 9 30 6 20 3 10 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = ºC Copyright by Vincotech 20 50 175 100 150 T h ( o C) 200 ºC Revision: 1 10-F006PPA006SB-M682B preliminary datasheet PFC PFC MOSFET Figure 25 Safe operating area as a function of drain-source voltage ID = f(VDS) PFC MOSFET Figure 26 Gate voltage vs Gate charge VGS = f(Qg) 10 ID (A) VGS (V) 103 9 120V 8 10 2 480V 7 6 100uS 5 101 4 3 10 DC 0 10mS 100mS 1mS 2 1 0 10 - 10 102 0 At D= Th = VGS = 0 10 V DS (V) At ID = single pulse 80 ºC V 10 Tjmax ºC Tj = 10 6 20 30 40 50 60 Qg (nC) 70 A IGBT Figure 29 Reverse bias safe operating area IC = f(VCE) IC (A) 25 IC MAX Ic MODULE 15 Ic CHIP 20 VCE MAX 10 5 0 0 100 200 300 400 500 600 700 V CE (V) At Tj = Tjmax-25 Uccminus=Uccplus ºC Switching mode : 3phase SPWM Copyright by Vincotech 21 Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Input Rectifier Bridge Rectifier diode Figure 1 Typical diode forward current as a function of forward voltage IF= f(VF) Rectifier diode Figure 2 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 80 1 ZthJC (K/W) IF (A) 10 60 100 40 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 20 Tj = Tjmax-25°C Tj = 25°C 10-2 0 0 0,5 At tp = 1 1,5 V F (V) 2 10 At D= RthJH = µs 250 -5 Rectifier diode Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10 -4 10 -3 10 -2 10 -1 10 t p (s) 1 10 10 tp / T 2,20 K/W Rectifier diode Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 70 0 60 40 50 30 40 30 20 20 10 10 0 0 0 At Tj = 50 150 100 150 T h ( o C) 0 200 At Tj = ºC Copyright by Vincotech 22 50 150 100 150 T h ( o C) 200 ºC Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic 24000 Thermistor Figure 2 Typical NTC resistance values R/Ω R(T ) = R25 ⋅ e B25/100⋅ 1 − 1 T T 25 [Ω] 20000 16000 12000 8000 4000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 23 Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Switching Definitions Output Inverter General conditions = 125 °C Tj = 64 Ω Rgon Rgoff = 64 Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 125 % % tdoff VCE IC 100 150 VGE 90% VCE 90% 75 VGE VCE IC 100 VGE 50 tdon tEoff 50 25 IC 1% VCE 3% IC10% VGE10% 0 tEon 0 -50 -25 -0,2 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,2 -15 15 400 6 0,18 0,54 0,4 time (us) 2,9 0,6 3 3,2 3,3 3,4 time(us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs Output inverter IGBT Figure 3 3,1 -15 15 400 6 0,10 0,27 V V V A µs µs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 125 200 fitted % % VCE IC Ic 100 150 IC 90% 75 VCE 100 IC 60% IC90% 50 tr IC 40% 50 25 IC10% IC10% 0 0 tf -25 -50 0 VC (100%) = IC (100%) = tf = 0,1 0,2 400 6 0,11 Copyright by Vincotech 0,3 0,4 time (us) 0,5 3 VC (100%) = IC (100%) = tr = V A µs 24 3,05 3,1 400 6 0,03 3,15 3,2 3,25 time(us) 3,3 V A µs Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Switching Definitions Output Inverter Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 125 150 Pon % % Eoff 100 125 Poff Eon 100 75 75 50 50 IC 1% 25 25 VGE 90% 0 tEoff -25 -0,2 VCE 3% VGE 10% 0 tEon -25 0 0,2 0,4 0,6 2,9 time (us) Poff (100%) = Eoff (100%) = tEoff = 2,41 0,27 0,54 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs Output inverter IGBT Figure 7 Gate voltage vs Gate charge (measured) 3,1 3,2 2,41 0,25 0,27 3,3 time(us) 3,4 kW mJ µs Output inverter FWD Figure 8 Turn-off Switching Waveforms & definition of trr 150 VGE (V) 20 % Id 15 100 10 trr 50 5 Vd 0 0 IRRM 10% fitted -5 -50 IRRM 90% IRRM 100% -10 -100 -15 -150 -20 -10 0 10 20 30 40 50 60 3 70 3,1 3,2 3,3 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -15 15 400 6 65,25 Copyright by Vincotech 3,4 3,5 3,6 time(us) Qg (nC) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 25 400 6 -4 0,34 V A A µs Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Switching Definitions Output Inverter Output inverter FWD Figure 9 Output inverter FWD Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 150 125 % Erec % Qrr Id 100 100 tErec 75 tQrr 50 50 0 25 Prec -50 0 -100 -25 2,8 3 3,2 3,4 3,6 3,8 4 3 time(us) Id (100%) = Qrr (100%) = tQrr = 6 0,60 0,73 Copyright by Vincotech Prec (100%) = Erec (100%) = tErec = A µC µs 26 3,2 3,4 2,41 0,17 0,73 3,6 3,8 time(us) 4 kW mJ µs Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Switching Definitions PFC General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω PFC MOSFET Figure 1 PFC MOSFET Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 125 600 tdoff % IC % 500 100 VGE 90% VCE 90% 400 75 VGE IC 300 50 tEoff IC 1% 200 25 VCE 0 tdon VGE10% 0 -25 VGE VCE 100 IC10% VCE3% tEon -50 -0,1 -0,05 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0 0 10 400 6 0,11 0,14 0,05 0,1 time (us) -100 2,98 0,15 3 3,02 3,06 time(us) VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A µs µs PFC MOSFET Figure 3 3,04 0 10 400 6 0,02 0,03 V V V A µs µs PFC MOSFET Figure 4 Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr 600 125 % fitted IC 100 % VCE Ic 500 Ic 90% 75 400 Ic 60% 50 300 Ic 40% 200 25 Ic10% 0 VCE 100 tf tr -50 0,02 0,04 0,06 0,08 0,1 0,12 -100 3,01 0,14 IC 90% IC 10% 0 -25 3,015 3,02 3,025 VC (100%) = IC (100%) = tf = 400 6 0,01 Copyright by Vincotech 3,03 3,035 3,04 time(us) time (us) VC (100%) = IC (100%) = tr = V A µs 27 400 6 0,002 V A µs Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Switching Definitions PFC PFC MOSFET Figure 5 PFC MOSFET Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 200 500 % Pon % 400 150 300 Eoff 100 200 50 Eon 100 Poff U ge90% 0 -50 -0,1 -0,05 Poff (100%) = Eoff (100%) = tEoff = 0 0 Ic 1% 0,05 2,45 0,01 0,14 0,1 tEon time (us) -100 2,98 0,15 3 Pon (100%) = Eon (100%) = tEon = kW mJ µs PFC MOSFET Figure 7 3,02 2,45 0,09 0,0325 3,04 time(us) 3,06 kW mJ µs PFC FWD Figure 8 Gate voltage vs Gate charge (measured) Uge (V) Uce 3% U ge10% tEoff Turn-off Switching Waveforms & definition of trr 12 200 % 10 100 8 0 6 -100 4 -200 2 -300 0 -400 -2 -500 -4 -600 2,975 Id trr Ud IRRM10% IRRM90% IRRM100% fitted -10 0 10 20 30 40 50 60 2,995 3,015 3,035 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = 0 10 400 6 51,14 Copyright by Vincotech 3,055 3,075 time(us) Qg (nC) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 28 400 6 -31 0,02 V A A µs Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Switching Definitions PFC PFC FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr (tQrr= integrating time for Qrr) Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) PFC FWD 350 200 % % Prec 300 150 Id 250 Qrr 100 200 tQint 150 50 Erec 100 tErec 0 50 -50 0 -50 -100 3 Id (100%) = Qrr (100%) = tQint = 3,01 3,02 3,03 6 0,29 0,03 A µC µs Copyright by Vincotech 3,04 3 3,05 time(us)3,06 3,01 Prec (100%) = Erec (100%) = tErec = 29 3,02 2,45 0,04 0,03 3,03 3,04 3,05 3,06 3,07 time(us) kW mJ µs Revision: 1 10-F006PPA006SB-M682B preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version without thermal paste 17mm housing Ordering Code 10-F006PPA006SB-M682B in DataMatrix as M682B in packaging barcode as M682-B Outline Pinout Copyright by Vincotech 30 Revision: 1 10-F006PPA006SB-M682B preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 31 Revision: 1