F206NIA300SA-M106F preliminary datasheet NPC Application flowNPC2 600V/300A General conditions BUCK = = = = VGEon VGEoff Rgon Rgoff 15 V -15 V 4Ω 4Ω Vout= 230 VAC Figure 1. Buck IGBT BOOST = = = = VGEon VGEoff Rgon Rgoff 15 V -15 V 4Ω 4Ω Figure 2. Typical average static loss as a function of Buck FRED Typical average static loss as a function of output current IoRMS Ploss=f(Iout) 250 ●UPS 200 φ=90º Ploss (W) Ploss (W) φ=0º 180 160 200 140 120 150 100 80 100 φ=0º 60 40 50 φ=180º 20 φ=180º 0 0 0 50 100 Conditions: parameter: Tj= φ 150 150 from 200 250 300I (A) out 0 350 °C 0° in to 12 50 100 Conditions: parameter: 180° Tj= φ 150 150 from steps 200 Buck IGBT 300 I out (A) 0° to 12 180° steps Figure 4. Typical average static loss as a function of phase displacement φ Ploss=f(φ) 350 °C in Figure 3. 250 Buck FRED Typical average static loss as a function of phase displacement φ Ploss=f(φ) 200 Ploss (W) Ploss (W) 250 200 IoutRMS=Imax 180 160 IoutRMS=Imax 140 150 120 100 100 80 60 50 40 20 IoutRMS=6%Imin 0 IoutRMS=6% Imax 0 0 Conditions: parameter: 20 40 Tj= IoRMS 60 80 150 from in steps of Copyright by Vincotech 100 120 140 160 180 φ(º ) 200 0 °C 20 A 40 to Conditions: parameter: 300 A A 20 40 Tj= IoRMS 60 80 150 from in steps of 1 100 120 140 160 180 φ(º ) 200 °C 20 A 40 to 300 A A Revision: 4 F206NIA300SA-M106F preliminary datasheet flowNPC2 NPC Application Figure 5. Buck IGBT 600V/300A Figure 6. Buck FRED Typical average switching loss as a function of phase displacement φ Ploss=f(φ) phase displacement φ Ploss=f(φ) Ploss (W) Typical average switching loss as a function of Ploss (W) 160 45 40 140 IoutRMS=Imax 35 120 30 IoutRMS=Imax 100 25 80 20 60 15 IoutRMS=6% Imax 40 10 20 5 IoutRMS=6% Imax 0 0 20 40 Conditions: parameter: 60 80 100 120 Tj= fsw= 150 16 °C kHz DC link= IoRMS 700 from V 140 φ(º ) 180 0 200 20 40 Conditions: 20 A in steps of 160 40 to 300 A parameter: 60 100 120 Tj= fsw= 150 16 °C kHz DC link= IoRMS 700 from V A Figure 7. 80 20 A in steps of Buck IGBT 140 40 to 180 φ(º ) 200 300 A A Figure 8. Typical total loss as a function of phase displacement φ and output current IoRMS Ploss=f(IoRMS;φ) 160 Buck FRED Typical total loss as a function of phase displacement φ and output current IoRMS Ploss=f(IoRMS;φ) 300 IoutR 300 P loss (W) 280 P loss (W) 280 330-360 260 200-220 260 300-330 240 180-200 240 270-300 220 160-180 220 240-270 200 210-240 180 180-210 160 IoutR 0 200 140-160 180 120-140 160 100-120 140 150-180 120-150 140 120 80-100 120 100 60-80 100 90-120 80 80 40-60 60-90 60 60 20-40 30-60 40 40 0-30 0-20 0 15 30 45 60 75 90 20 105 120 135 150 165 180 0 15 30 45 60 75 90 φ(º ) 20 105 120 135 150 165 180 φ(º ) Conditions: Tj= 150 °C DC link= fsw= 700 16 V kHz Copyright by Vincotech Conditions: 2 Tj= 150 °C DC link= fsw= 700 16 V kHz Revision: 4 F206NIA300SA-M106F preliminary datasheet NPC Application flowNPC2 Figure 9. for Buck IGBT+FRED 600V/300A Figure 10. for Buck IGBT+FRED Typical available output current as a function of phase displacement φ Typical available output current as a function of switching frequency fsw Iout=f(φ) Iout=f(fsw) 350 Iout (A) Iout (A) 350 Th=50°C Th=50°C 300 300 250 250 200 200 150 150 Th=100°C Th=100°C 100 100 50 50 0 0 15 30 45 60 75 90 105 120 135 150 165 0 180 1 φ Conditions: Tj= Tjmax-25 °C fsw= parameter: 700 V Heatsink temp. Th from 50 °C to in 10 °C 16 kHz Conditions: DC link= parameter: 100 steps Figure 11. °C 10 fsw (kHz) φ= 0 ° Tj= Tjmax-25 °C DC link= Heatsink temp. Th from in 700 50 10 100 V °C to °C 100 steps °C for Buck IGBT+FRED Typical available 50Hz output current as a function of fsw and phase displacement φ Iout=f(fsw,φ) 180 I out (A) φ 165 150 280-320 135 240-280 120 200-240 105 160-200 90 120-160 75 80-120 60 40-80 45 0-40 30 15 fsw (kHz) Conditions: 2 4 8 16 32 64 0 128 Tj= Tjmax-25 °C DC link= Th= 700 80 Copyright by Vincotech V °C 3 Revision: 4 F206NIA300SA-M106F preliminary datasheet flowNPC2 NPC Application Figure 12. Boost IGBT 600V/300A Figure 13. Typical average static loss as a function of output current Ploss=f(Iout) Boost FRED Typical average static loss as a function of output current Ploss=f(Iout) 300 Ploss (W) Ploss (W) 300 φ=0º φ=180º 250 250 200 200 150 150 100 100 50 50 φ=180º φ=0º 0 0 0 50 100 Conditions: parameter: 150 Tj= 150 φ from in 200 250 300 Iout (A) 350 0 °C 50 100 Conditions: 0° 12 to steps Figure 14. 180º parameter: Boost IGBT 150 Tj= 150 φ from in 250 300 Iout (A) 350 °C 0° 12 to steps Figure 15. Typical average static loss as a function of phase displacement Ploss=f(φ) 180º Boost FRED Typical average static loss as a function of phase displacement Ploss=f(φ) FRED D1 300 Ploss (W) 300 Ploss (W) 200 IoutRMS=Imax IoutRMS=Imax 250 250 200 200 150 150 100 100 50 50 IoutRMS=6% Imax IoutRMS=6% Imax 0 0 0 Conditions: parameter: 20 40 Tj= IoRMS 60 80 150 from in steps of Copyright by Vincotech 100 120 140 160 180 φ(º ) 200 0 °C 20 A to Conditions: parameter: 300 A 40 A 20 40 Tj= IoRMS 60 80 150 from in steps of 4 100 120 140 160 180 φ(º ) 200 °C 20 A to 300 A 40 A Revision: 4 F206NIA300SA-M106F preliminary datasheet flowNPC2 NPC Application Figure 16. Boost IGBT 600V/300A Figure 17. Boost FRED Ploss (W) Typical average switching loss as a function of phase displacement Ploss=f(φ) Ploss (W) Typical average switching loss as a function of phase displacement Ploss=f(φ) 160 IoutRMS=Imax 40 IoutRMS=Imax 140 45 35 120 30 100 25 80 20 60 15 40 10 IoutRMS=6% Imax 5 20 IoutRMS=6% Imax 0 0 40 80 100 Tj= 150 °C DC link= IoRMS 700 from V Conditions: parameter: 60 in steps of 120 140 160 fsw= 20 A to 40 A A Figure 18. φ(º ) 180 0 20 40 60 80 100 120 140 160 200 16 kHz Conditions: 300 A parameter: Tj= 150 °C DC link= IoRMS 700 from V in steps of Boost IGBT 16 kHz 20 A to 300 A 40 A A Boost FRED Typical total loss as a function of phase displacement and IoutRMS Ploss=f(IoRMS;φ) Ploss=f(IoRMS;φ) 280 P loss (W) 300 IoutR 300 280 P loss (W) 260 260 240 240 270-300 220 270-300 220 240-270 200 240-270 200 180 210-240 180 180-210 160 210-240 160 180-210 140 140 150-180 150-180 120 120 120-150 120-150 100 100 90-120 90-120 80 80 60-90 60-90 60 60 30-60 30-60 40 0-30 0 Conditions: 200 fsw= Figure 19. Typical total loss as a function of phase displacement and IoutRMS 180 φ(º ) MS 20 IoutR 0 15 30 45 60 75 90 Tj= 150 °C DC link= fsw= 700 16 V kHz Copyright by Vincotech 40 0-30 20 105 120 135 150 165 180 φ(º ) 0 15 Conditions: 5 30 45 60 75 90 φ(º ) 20 105 120 135 150 165 180 Tj= 150 °C DC link= fsw= 700 16 V kHz Revision: 4 F206NIA300SA-M106F preliminary datasheet NPC Application flowNPC2 Figure 20. Boost IGBT+FRED 600V/300A Figure 21. Typical available output current as a function of of phase displacement Iout=f(φ) Boost IGBT+FRED Typical available output current as a function of switching frequency Iout=f(fsw) Th=50°C 350 Iout (A) Iout (A) 350 Th=50°C 300 300 250 250 200 200 Th=100°C 150 150 100 Th=100°C 100 50 50 0 0 15 30 45 60 75 90 105 120 135 150 165 0 180 1 φ(º ) Conditions: Tj= Tjmax-25 °C DC link= 700 V parameter: Th from in fsw= Heatsink temp. 50 °C to 10 °C 16 kHz Conditions: 10 Figure 22. °C f sw (kHz) Th from in Heatsink temp. 50 °C to 10 °C 1000 φ= 90° Tj= Tjmax-25 °C DC link= 700 V parameter: 100 steps 100 100 steps °C Boost IGBT+FRED Typical available 50Hz output current as a function of fsw and phase displacement Iout=f(fsw,φ) 180 I out (A) φ 165 150 270-300 135 240-270 120 210-240 105 180-210 90 150-180 120-150 75 90-120 60 60-90 45 30-60 30 0-30 15 2 Conditions: 4 8 16 32 64 0 128 fsw (kHz) Tj= Tjmax-25 °C DC link= Th= 700 80 Copyright by Vincotech V °C 6 Revision: 4 F206NIA300SA-M106F preliminary datasheet NPC Application flowNPC2 Figure 23. per MODULE 600V/300A Figure 24. Typical available output current as a function of heat sink temperature Iout=f(Th) per MODULE Typical available output current as a function of phase displacement Iout=f(φ) 350 Th=50°C Iout (A) Iout (A) 350 300 300 2kHz 250 250 200 200 150 150 100 100 50 50 Th=100°C φ 128kHz 0 0 60 65 Conditions: 70 75 80 85 90 0 o 95T h ( C) 100 Tj= Tjmax-25 °C DC link= φ= parameter: Conditions: 700 V 0° Switching freq. fsw from 2 in steps of factor 2 15 30 parameter: 128 Figure 25. kHz Th from in per MODULE 60 75 90 105 120 135 150 50 10 °C to °C 100 steps per MODULE Typical available 50Hz output current as a function of fsw and phase displacement Iout=f(fsw,φ) 180 350 Iout (A) 180 700 V 16 kHz Heatsink temp. Figure 26. Typical available output current as a function of switching frequency Iout=f(fsw) 165 Tj= Tjmax-25 °C DC link= fsw= kHz to 45 I out (A) Th=50°C φ 165 300 150 270-300 135 250 240-270 210-240 120 180-210 105 Th=100°C 200 150-180 90 150 120-150 100 90-120 75 60-90 60 30-60 45 50 0-30 30 0 1 10 f sw (kHz) 15 100 f sw (kHz) Conditions: Tj= Tjmax-25 °C DC link= parameter: Th from in 50 10 φ= 0° Conditions: 700 V Heatsink temp. °C to °C Copyright by Vincotech 2 4 8 16 32 64 0 128 Tj= Tjmax-25 °C DC link= Th= 700 80 V °C 100 steps 7 Revision: 4 F206NIA300SA-M106F preliminary datasheet NPC Application flowNPC2 Figure 27. per MODULE Figure 28. per MODULE Typical efficiency as a function of output power η=f(Pout) efficiency (%) Typical efficiency as a function of output power η=f(Pout) efficiency (%) 600V/300A 100,0 99,5 100,0 2kHz 99,0 98,0 99,0 97,0 98,5 φ=180º 96,0 98,0 95,0 97,5 φ=0º 97,0 94,0 96,5 93,0 96,0 92,0 128kHz 91,0 95,5 Pout (kVA) Pout (kVA) 90,0 95,0 0,0 10,0 Conditions: 20,0 30,0 40,0 50,0 60,0 70,0 0,0 80,0 Tj= Tjmax-25 °C fsw= 16 kHz Conditions: DC link= parameter: 10,0 700 V phase displacement φ from 0° in steps of 30 ° parameter: to Figure 29. 30,0 40,0 60,0 70,0 80,0 φ= 0 ° 128 Figure 30. kHz per MODULE Typical available output power as a function of Typical loss distribution as a function of heat sink temperature Pout=f(Th) output current Pout=f(Th) Pout (kW) 50,0 Tj= Tjmax-25 °C DC link= 700 V Switching freq. fsw from 2 kHz to in steps of factor 2 180 ° per MODULE 20,0 80 800,0 70 700,0 Loss distribution Boost IGBT static 2kHz 60 Buck Diode switch 50 40 Buck Diode static 600,0 500,0 400,0 300,0 30 20 Buck IGBT switch 10 Buck IGBT static 200,0 100,0 128kHz 0,0 0 60 65 70 75 80 85 90 95 o 20 100 40 60 80 100 120 140 160 180 200 220 T h ( C) Conditions: parameter: Tj= Tjmax-25 °C DC link= 700 φ= 0 Switching freq. fsw from 2 kHz to in steps of factor 2 Copyright by Vincotech Iout (A) Conditions: V ° Tj= Tjmax-25 °C fsw= 16 kHz DC link= φ= 128 240 260 280 300 700 0° V kHz 8 Revision: 4 F206NIA300SA-M106F preliminary datasheet NPC Application flowNPC2 Figure 31. Typical relativ loss distribution as a function of output current Pout=f(Th) 600V/300A per MODULE 1,0 Loss distribution 0,9 Boost IGBT static 0,8 0,7 Buck Diode switch Buck Diode static Buck IGBT switch 0,6 0,5 0,4 0,3 0,2 Buck IGBT static 0,1 0,0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 Iout (A) Conditions: Tj= Tjmax-25 °C 16 kHz fsw= DC link= 700 V φ= 0° Copyright by Vincotech 9 Revision: 4 F206NIA300SA-M106F preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 10 Revision: 4