30 F206NIA300SA M106F P4 19

F206NIA300SA-M106F
preliminary datasheet
NPC Application
flowNPC2
600V/300A
General conditions
BUCK
=
=
=
=
VGEon
VGEoff
Rgon
Rgoff
15 V
-15 V
4Ω
4Ω
Vout= 230 VAC
Figure 1.
Buck IGBT
BOOST
=
=
=
=
VGEon
VGEoff
Rgon
Rgoff
15 V
-15 V
4Ω
4Ω
Figure 2.
Typical average static loss as a function of
Buck FRED
Typical average static loss as a function of
output current IoRMS
Ploss=f(Iout)
250
●UPS
200
φ=90º
Ploss (W)
Ploss (W)
φ=0º
180
160
200
140
120
150
100
80
100
φ=0º
60
40
50
φ=180º
20
φ=180º
0
0
0
50
100
Conditions:
parameter:
Tj=
φ
150
150
from
200
250
300I (A)
out
0
350
°C
0°
in
to
12
50
100
Conditions:
parameter:
180°
Tj=
φ
150
150
from
steps
200
Buck IGBT
300
I out (A)
0°
to
12
180°
steps
Figure 4.
Typical average static loss as a function of
phase displacement φ
Ploss=f(φ)
350
°C
in
Figure 3.
250
Buck FRED
Typical average static loss as a function of
phase displacement φ
Ploss=f(φ)
200
Ploss (W)
Ploss (W)
250
200
IoutRMS=Imax
180
160
IoutRMS=Imax
140
150
120
100
100
80
60
50
40
20
IoutRMS=6%Imin
0
IoutRMS=6% Imax
0
0
Conditions:
parameter:
20
40
Tj=
IoRMS
60
80
150
from
in steps of
Copyright by Vincotech
100
120
140
160
180
φ(º )
200
0
°C
20 A
40
to
Conditions:
parameter:
300 A
A
20
40
Tj=
IoRMS
60
80
150
from
in steps of
1
100
120
140
160
180
φ(º )
200
°C
20 A
40
to
300 A
A
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
flowNPC2
NPC Application
Figure 5.
Buck IGBT
600V/300A
Figure 6.
Buck FRED
Typical average switching loss as a function of
phase displacement φ
Ploss=f(φ)
phase displacement φ
Ploss=f(φ)
Ploss (W)
Typical average switching loss as a function of
Ploss (W)
160
45
40
140
IoutRMS=Imax
35
120
30
IoutRMS=Imax
100
25
80
20
60
15
IoutRMS=6% Imax
40
10
20
5
IoutRMS=6% Imax
0
0
20
40
Conditions:
parameter:
60
80
100
120
Tj=
fsw=
150
16
°C
kHz
DC link=
IoRMS
700
from
V
140
φ(º )
180
0
200
20
40
Conditions:
20 A
in steps of
160
40
to
300 A
parameter:
60
100
120
Tj=
fsw=
150
16
°C
kHz
DC link=
IoRMS
700
from
V
A
Figure 7.
80
20 A
in steps of
Buck IGBT
140
40
to
180
φ(º )
200
300 A
A
Figure 8.
Typical total loss as a function of
phase displacement φ and output current IoRMS
Ploss=f(IoRMS;φ)
160
Buck FRED
Typical total loss as a function of
phase displacement φ and output current IoRMS
Ploss=f(IoRMS;φ)
300
IoutR
300
P loss (W)
280
P loss (W)
280
330-360
260
200-220
260
300-330
240
180-200
240
270-300
220
160-180
220
240-270
200
210-240
180
180-210
160
IoutR
0
200
140-160
180
120-140
160
100-120
140
150-180
120-150
140
120
80-100
120
100
60-80
100
90-120
80
80
40-60
60-90
60
60
20-40
30-60
40
40
0-30
0-20
0
15
30
45
60
75
90
20
105 120 135 150 165 180
0
15
30
45
60
75 90
φ(º )
20
105 120 135 150 165 180
φ(º )
Conditions:
Tj=
150
°C
DC link=
fsw=
700
16
V
kHz
Copyright by Vincotech
Conditions:
2
Tj=
150
°C
DC link=
fsw=
700
16
V
kHz
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
NPC Application
flowNPC2
Figure 9.
for Buck IGBT+FRED
600V/300A
Figure 10.
for Buck IGBT+FRED
Typical available output current as a function of
phase displacement φ
Typical available output current as a function of
switching frequency fsw
Iout=f(φ)
Iout=f(fsw)
350
Iout (A)
Iout (A)
350
Th=50°C
Th=50°C
300
300
250
250
200
200
150
150
Th=100°C
Th=100°C
100
100
50
50
0
0
15
30
45
60
75
90
105
120
135
150
165
0
180
1
φ
Conditions:
Tj= Tjmax-25 °C
fsw=
parameter:
700
V
Heatsink temp.
Th from
50
°C to
in
10
°C
16 kHz
Conditions:
DC link=
parameter:
100
steps
Figure 11.
°C
10
fsw (kHz)
φ= 0 °
Tj= Tjmax-25 °C
DC link=
Heatsink temp.
Th from
in
700
50
10
100
V
°C to
°C
100
steps
°C
for Buck IGBT+FRED
Typical available 50Hz output current as a function of
fsw and phase displacement φ
Iout=f(fsw,φ)
180
I out (A)
φ
165
150
280-320
135
240-280
120
200-240
105
160-200
90
120-160
75
80-120
60
40-80
45
0-40
30
15
fsw (kHz)
Conditions:
2
4
8
16
32
64
0
128
Tj= Tjmax-25 °C
DC link=
Th=
700
80
Copyright by Vincotech
V
°C
3
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
flowNPC2
NPC Application
Figure 12.
Boost IGBT
600V/300A
Figure 13.
Typical average static loss as a function of
output current
Ploss=f(Iout)
Boost FRED
Typical average static loss as a function of
output current
Ploss=f(Iout)
300
Ploss (W)
Ploss (W)
300
φ=0º
φ=180º
250
250
200
200
150
150
100
100
50
50
φ=180º
φ=0º
0
0
0
50
100
Conditions:
parameter:
150
Tj=
150
φ
from
in
200
250
300
Iout (A)
350
0
°C
50
100
Conditions:
0°
12
to
steps
Figure 14.
180º
parameter:
Boost IGBT
150
Tj=
150
φ
from
in
250
300
Iout (A)
350
°C
0°
12
to
steps
Figure 15.
Typical average static loss
as a function of phase displacement
Ploss=f(φ)
180º
Boost FRED
Typical average static loss
as a function of phase displacement
Ploss=f(φ)
FRED D1
300
Ploss (W)
300
Ploss (W)
200
IoutRMS=Imax
IoutRMS=Imax
250
250
200
200
150
150
100
100
50
50
IoutRMS=6% Imax
IoutRMS=6% Imax
0
0
0
Conditions:
parameter:
20
40
Tj=
IoRMS
60
80
150
from
in steps of
Copyright by Vincotech
100
120
140
160
180
φ(º )
200
0
°C
20 A
to
Conditions:
parameter:
300 A
40 A
20
40
Tj=
IoRMS
60
80
150
from
in steps of
4
100
120
140
160
180
φ(º )
200
°C
20 A
to
300 A
40 A
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
flowNPC2
NPC Application
Figure 16.
Boost IGBT
600V/300A
Figure 17.
Boost FRED
Ploss (W)
Typical average switching loss as a function of
phase displacement
Ploss=f(φ)
Ploss (W)
Typical average switching loss as a function of
phase displacement
Ploss=f(φ)
160
IoutRMS=Imax
40
IoutRMS=Imax
140
45
35
120
30
100
25
80
20
60
15
40
10
IoutRMS=6% Imax
5
20
IoutRMS=6% Imax
0
0
40
80
100
Tj=
150
°C
DC link=
IoRMS
700
from
V
Conditions:
parameter:
60
in steps of
120
140
160
fsw=
20 A
to
40 A
A
Figure 18.
φ(º )
180
0
20
40
60
80
100
120
140
160
200
16 kHz
Conditions:
300 A
parameter:
Tj=
150
°C
DC link=
IoRMS
700
from
V
in steps of
Boost IGBT
16 kHz
20 A
to
300 A
40 A
A
Boost FRED
Typical total loss as a function of phase displacement
and IoutRMS
Ploss=f(IoRMS;φ)
Ploss=f(IoRMS;φ)
280
P loss (W)
300
IoutR
300
280
P loss (W)
260
260
240
240
270-300
220
270-300
220
240-270
200
240-270
200
180
210-240
180
180-210
160
210-240
160
180-210
140
140
150-180
150-180
120
120
120-150
120-150
100
100
90-120
90-120
80
80
60-90
60-90
60
60
30-60
30-60
40
0-30
0
Conditions:
200
fsw=
Figure 19.
Typical total loss as a function of phase displacement
and IoutRMS
180
φ(º )
MS
20
IoutR
0
15
30
45
60
75
90
Tj=
150
°C
DC link=
fsw=
700
16
V
kHz
Copyright by Vincotech
40
0-30
20
105 120 135 150 165 180
φ(º )
0
15
Conditions:
5
30
45
60
75 90
φ(º )
20
105 120 135 150 165 180
Tj=
150
°C
DC link=
fsw=
700
16
V
kHz
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
NPC Application
flowNPC2
Figure 20.
Boost IGBT+FRED
600V/300A
Figure 21.
Typical available output current as a function of
of phase displacement
Iout=f(φ)
Boost IGBT+FRED
Typical available output current
as a function of switching frequency
Iout=f(fsw)
Th=50°C
350
Iout (A)
Iout (A)
350
Th=50°C
300
300
250
250
200
200
Th=100°C
150
150
100
Th=100°C
100
50
50
0
0
15
30
45
60
75
90
105
120
135
150
165
0
180
1
φ(º )
Conditions:
Tj= Tjmax-25 °C
DC link=
700
V
parameter:
Th from
in
fsw=
Heatsink temp.
50
°C to
10
°C
16 kHz
Conditions:
10
Figure 22.
°C
f sw (kHz)
Th from
in
Heatsink temp.
50
°C to
10
°C
1000
φ= 90°
Tj= Tjmax-25 °C
DC link=
700
V
parameter:
100
steps
100
100
steps
°C
Boost IGBT+FRED
Typical available 50Hz output current as a function of
fsw and phase displacement
Iout=f(fsw,φ)
180
I out (A)
φ
165
150
270-300
135
240-270
120
210-240
105
180-210
90
150-180
120-150
75
90-120
60
60-90
45
30-60
30
0-30
15
2
Conditions:
4
8
16
32
64
0
128
fsw (kHz)
Tj= Tjmax-25 °C
DC link=
Th=
700
80
Copyright by Vincotech
V
°C
6
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
NPC Application
flowNPC2
Figure 23.
per MODULE
600V/300A
Figure 24.
Typical available output current as a function of
heat sink temperature
Iout=f(Th)
per MODULE
Typical available output current
as a function of phase displacement
Iout=f(φ)
350
Th=50°C
Iout (A)
Iout (A)
350
300
300
2kHz
250
250
200
200
150
150
100
100
50
50
Th=100°C
φ
128kHz
0
0
60
65
Conditions:
70
75
80
85
90
0
o
95T h ( C) 100
Tj= Tjmax-25 °C
DC link=
φ=
parameter:
Conditions:
700
V
0°
Switching freq.
fsw from
2
in steps of factor 2
15
30
parameter:
128
Figure 25.
kHz
Th from
in
per MODULE
60
75
90
105
120
135
150
50
10
°C to
°C
100
steps
per MODULE
Typical available 50Hz output current as a function of
fsw and phase displacement
Iout=f(fsw,φ)
180
350
Iout (A)
180
700
V
16
kHz
Heatsink temp.
Figure 26.
Typical available output current as a function of
switching frequency
Iout=f(fsw)
165
Tj= Tjmax-25 °C
DC link=
fsw=
kHz to
45
I out (A)
Th=50°C
φ
165
300
150
270-300
135
250
240-270
210-240
120
180-210
105
Th=100°C
200
150-180
90
150
120-150
100
90-120
75
60-90
60
30-60
45
50
0-30
30
0
1
10
f sw (kHz)
15
100
f sw (kHz)
Conditions:
Tj= Tjmax-25 °C
DC link=
parameter:
Th from
in
50
10
φ=
0°
Conditions:
700
V
Heatsink temp.
°C to
°C
Copyright by Vincotech
2
4
8
16
32
64
0
128
Tj= Tjmax-25 °C
DC link=
Th=
700
80
V
°C
100
steps
7
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
NPC Application
flowNPC2
Figure 27.
per MODULE
Figure 28.
per MODULE
Typical efficiency as a function of output power
η=f(Pout)
efficiency (%)
Typical efficiency as a function of output power
η=f(Pout)
efficiency (%)
600V/300A
100,0
99,5
100,0
2kHz
99,0
98,0
99,0
97,0
98,5
φ=180º
96,0
98,0
95,0
97,5
φ=0º
97,0
94,0
96,5
93,0
96,0
92,0
128kHz
91,0
95,5
Pout (kVA)
Pout (kVA)
90,0
95,0
0,0
10,0
Conditions:
20,0
30,0
40,0
50,0
60,0
70,0
0,0
80,0
Tj= Tjmax-25 °C
fsw=
16
kHz
Conditions:
DC link=
parameter:
10,0
700
V
phase displacement
φ
from
0°
in steps of 30 °
parameter:
to
Figure 29.
30,0
40,0
60,0
70,0
80,0
φ= 0 °
128
Figure 30.
kHz
per MODULE
Typical available output power as a function of
Typical loss distribution as a function of
heat sink temperature
Pout=f(Th)
output current
Pout=f(Th)
Pout (kW)
50,0
Tj= Tjmax-25 °C
DC link=
700
V
Switching freq.
fsw from
2
kHz to
in steps of factor 2
180 °
per MODULE
20,0
80
800,0
70
700,0
Loss distribution
Boost
IGBT
static
2kHz
60
Buck
Diode
switch
50
40
Buck
Diode
static
600,0
500,0
400,0
300,0
30
20
Buck
IGBT
switch
10
Buck
IGBT
static
200,0
100,0
128kHz
0,0
0
60
65
70
75
80
85
90
95
o
20
100
40
60
80
100 120 140 160 180 200 220
T h ( C)
Conditions:
parameter:
Tj= Tjmax-25 °C
DC link=
700
φ=
0
Switching freq.
fsw from
2
kHz to
in steps of factor 2
Copyright by Vincotech
Iout (A)
Conditions:
V
°
Tj= Tjmax-25 °C
fsw=
16
kHz
DC link=
φ=
128
240 260 280 300
700
0°
V
kHz
8
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
NPC Application
flowNPC2
Figure 31.
Typical relativ loss distribution as a function of
output current
Pout=f(Th)
600V/300A
per MODULE
1,0
Loss distribution
0,9
Boost
IGBT static
0,8
0,7
Buck
Diode
switch
Buck
Diode
static
Buck IGBT
switch
0,6
0,5
0,4
0,3
0,2
Buck IGBT
static
0,1
0,0
20
40
60
80
100 120 140 160 180 200 220 240 260 280 300
Iout (A)
Conditions:
Tj= Tjmax-25 °C
16
kHz
fsw=
DC link=
700
V
φ=
0°
Copyright by Vincotech
9
Revision: 4
F206NIA300SA-M106F
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
10
Revision: 4