F206NIA200SA-M105F preliminary datasheet flowNPC 2 600V/200A Features flow2 housing ● Neutral-point-Clamped inverter ● High power flow2 housing ● Low Inductance Layout Target Applications Schematic ● UPS ● Solar inverters Types ● F206NIA200SA Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 155 200 A 600 A 245 372 W ±20 V 6 360 μs V 175 °C 600 V Buck IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80°C Tc=80°C tp limited by Tjmax Tj=Tjmax Th=80°C Tc=80°C Tj≤150°C VGE=15V Tjmax Buck Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25°C IF Tj=Tjmax Th=80°C Tc=80°C 109 144 A Repetitive peak forward current IFRM tp limited by Tjmax Tc=100°C 600 A Power dissipation per Diode Ptot Tj=Tjmax Th=80°C Tc=80°C 158 239 W 175 °C Maximum Junction Temperature Copyright by Vincotech Tjmax 1 Revision: 4 F206NIA200SA-M105F preliminary datasheet Maximum Ratings Tj=25°C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 154 200 A 600 A 245 372 W ±20 V Tj≤150°C 6 μs VGE=15V 360 V 175 °C 600 V 136 145 A 600 A 190 190 W 175 °C 600 V 138 183 A 600 A 190 287 W Tjmax 175 °C Storage temperature Tstg -40…+125 °C Operation temperature under switching condition Top -40…+(Tjmax - 25) °C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Boost IGBT Collector-emitter break down voltage DC collector current VCE IC Th=80°C Tc=80°C Tj=Tjmax Repetitive peak collector current ICpuls tp limited by Tjmax Power dissipation per IGBT Ptot Tj=Tjmax Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Th=80°C Tc=80°C Tjmax Boost Inverse Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tc=25°C IF Tj=Tjmax Th=80°C Tc=80°C Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Tjmax Boost Diode Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25°C Th=80°C Tc=80°C Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature Th=80°C Tc=80°C Thermal Properties Insulation Properties Insulation voltage Copyright by Vincotech Vis t=2s DC voltage 2 Revision: 4 F206NIA200SA-M105F preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,51 1,75 1,85 Buck IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off current incl. Diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,0032 200 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 0,66 700 Rgoff=4 Ω Rgon=4 Ω 350 ±15 200 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C V V mA nA Ω 1 tr td(off) Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 240 245 42 42 310 341 71 104 3,14 4,22 6,14 7,89 ns mWs 12320 f=1MHz 25 0 Tj=25°C pF 768 366 700 15 200 Tj=25°C nC 2100 Thermal grease thickness≤50um λ = 1 W/mK 0,39 K/W 0,26 Buck Diode Diode forward voltage Peak reverse recovery current VF IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current Reverse recovered energy Rgoff=4 Ω 350 ±15 di(rec)max /dt Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC Copyright by Vincotech 200 Thermal grease thickness≤50um λ = 1 W/mK 200 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 1,5 1,77 1,89 136 172 137 269 8,5 16,2 3158 2901 2,02 3,66 3,3 V A ns μC A/μs mWs 0,60 K/W 0,40 3 Revision: 4 F206NIA200SA-M105F preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1,05 1,51 1,75 1,85 Boost IGBT Gate emitter threshold voltage VGE(th) VCE=VGE 0,0032 Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off incl diode ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time 200 tf Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 0,66 700 Rgoff=4 Ω Rgon=4 Ω ±15 350 200 Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C V V mA nA Ω 1 tr td(off) Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C Tj=25°C Tj=125°C 233 239 43 45 309 335 65 88 3,95 4,87 5,88 7,64 ns mWs 12320 f=1MHz 0 25 15 700 Tj=25°C 768 Tj=25°C 2100 pF 366 200 Thermal grease thickness≤50um λ = 1 W/mK nC 0,39 K/W 0,26 Boost Inverse Diode Diode forward voltage VF Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 200 Tj=25°C Tj=125°C 1,5 Thermal grease thickness≤50um λ = 1 W/mK 1,60 1,64 3,3 V 0,50 K/W 0,33 Boost Diode Diode forward voltage Reverse leakage current Peak reverse recovery current VF Ir 600 IRRM Reverse recovery time trr Reverse recovered charge Qrr Peak rate of fall of recovery current 200 Rgoff=4 Ω ±15 350 di(rec)max /dt Reverse recovery energy Erec Thermal resistance chip to heatsink per chip RthJH Thermal resistance chip to case per chip RthJC 200 Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C Tj=25°C Tj=150°C 1,5 1,60 1,65 3,3 600 132 163 138 211 9,1 16,5 2672 1616 2,17 4,15 Thermal grease thickness≤50um λ = 1 W/mK V μA A ns μC A/μs mWs 0,50 K/W 0,33 Thermistor Rated resistance R Deviation of R100 ΔR/R Power dissipation P T=25°C R100=1486 Ω T=100°C Power dissipation constant Ω 22000 -5 5 % T=25°C 200 mW T=25°C 2 mW/K B-value B(25/50) Tol. ±3% T=25°C 3950 K B-value B(25/100) Tol. ±3% T=25°C 3996 K Vincotech NTC Reference Copyright by Vincotech B 4 Revision: 4 F206NIA200SA-M105F preliminary datasheet Buck IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) IC (A) 600 IC (A) 600 500 500 400 400 300 300 200 200 100 100 0 0 0 1 At tp = Tj = VGE from 2 3 V CE (V) 4 5 0 1 At tp = Tj = VGE from 350 μs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 2 3 V CE (V) 4 350 μs 25 °C 7 V to 17 V in steps of 1 V FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) IF (A) 400 IC (A) 200 5 Tj = 25°C Tj = 25°C 350 160 300 250 120 Tj = Tjmax-25°C 200 80 150 100 40 Tj = Tjmax-25°C 50 0 0 0 2 4 At tp = VCE = 350 10 μs V Copyright by Vincotech 6 8 10 V GE (V) 12 0 At tp = 5 0,5 350 1 1,5 2 2,5 V F (V) 3 μs Revision: 4 F206NIA200SA-M105F preliminary datasheet Buck IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 20 E (mWs) E (mWs) 20 Eon High T 16 16 Eoff High T Eon Low T 12 12 Eoff Low T Eoff Low T Eoff High T 8 8 Eon High T 4 4 Eon Low T 0 0 0 100 200 300 I C (A) 0 400 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G (W) 20 With an inductive load at Tj = °C 25/125 VCE = 350 V VGE = ±15 V IC = 200 A FRED Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) E (mWs) 5 E (mWs) FRED Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) Erec High T 5 4 4 3 3 Erec High T Erec Low T 2 2 Erec Low T 1 1 0 0 0 100 200 300 I C (A) 0 400 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Copyright by Vincotech 4 8 12 16 R G (W) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 200 A 6 Revision: 4 F206NIA200SA-M105F preliminary datasheet Buck IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) 1,00 tdoff tdon t (ms) t (ms) 1,00 tdoff tdon tf 0,10 0,10 tr tr tf 0,01 0,01 0,00 0,00 0 100 200 300 I C (A) 400 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G (W) 20 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 200 A FRED Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) FRED Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) 0,50 t rr(ms) t rr(ms) 0,35 0,30 trr High T 0,40 trr High T 0,25 0,30 0,20 trr Low T 0,15 0,20 trr Low T 0,10 0,10 0,05 0,00 0,00 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 ±15 4 200 300 I C (A) 0 400 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 7 4 25/125 350 200 ±15 8 12 16 R gon (W) 20 °C V A V Revision: 4 F206NIA200SA-M105F preliminary datasheet Buck FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) 25 20 Qrr (mC) Qrr (mC) Qrr High T 20 Qrr High T 16 15 12 Qrr Low T Qrr Low T 10 8 5 4 0 0 At 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 ±15 4 200 300 I C (A) 400 0 4 At Tj = VR = IF = VGE = °C V V Ω FRED 25/125 350 200 ±15 12 16 240 250 IrrM (A) R g on ( Ω) 20 °C V A V FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) IrrM (A) Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 8 200 200 160 IRRM High T 150 120 IRRM High T 100 IRRM Low T 80 IRRM Low T 50 40 0 0 0 100 At Tj = VCE = VGE = Rgon = 25/125 350 ±15 4 200 300 I C (A) 400 °C V V Ω Copyright by Vincotech 8 0 4 At Tj = VR = IF = VGE = 25/125 350 200 ±15 8 12 16 R gon (W) 20 °C V A V Revision: 4 F206NIA200SA-M105F preliminary datasheet Buck FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 7500 direc / dt (A/ms) direc / dt (A/ms) 10000 di0/dtHigh T 6000 dI0/dtHigh T 8000 dIo/dtLow T 6000 4500 dIrec/dtLow T 4000 3000 dIrec/dtHigh T dI0/dtLow T 2000 1500 dIrec/dtLow T dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 ±15 4 200 I C (A) 300 0 400 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 4 25/125 350 200 ±15 8 12 R gon (W) 16 20 °C V A V FRED Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 ZthJH (K/W) ZthJH (K/W) 100 10-1 -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-2 10-2 10-5 10-4 At D= RthJH = 10-3 10-2 10-1 100 t p (s) 10-5 1011 At D= RthJH = tp / T 0,39 K/W 10-4 10-3 0,60 R (C/W) 0,02 0,10 0,07 0,11 0,05 0,02 R (C/W) 0,04 0,12 0,18 0,19 0,04 0,04 9 100 t p (s) 1011 K/W FRED thermal model values Copyright by Vincotech 10-1 tp / T IGBT thermal model values Tau (s) 1,2E+01 2,6E+00 4,8E-01 5,9E-02 1,3E-02 4,9E-04 10-2 Tau (s) 9,1E+00 1,6E+00 1,9E-01 3,1E-02 3,5E-03 2,8E-04 Revision: 4 F206NIA200SA-M105F preliminary datasheet Buck IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 250 IC (A) Ptot (W) 500 400 200 300 150 200 100 100 50 0 0 0 At Tj = 50 175 100 150 T h ( o C) 200 0 At Tj = VGE = °C FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) 200 °C V FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 200 IF (A) Ptot (W) 300 250 150 200 100 150 100 50 50 0 0 0 At Tj = 50 175 100 150 T h ( o C) 0 200 At Tj = °C Copyright by Vincotech 10 50 175 100 150 T h ( o C) 200 °C Revision: 4 F206NIA200SA-M105F preliminary datasheet Buck IGBT Figure 25 Safe operating area as a function of collector-emitter voltage IC = f(VCE) IGBT Figure 26 Gate voltage vs Gate charge VGE = f(Qg) 103 100uS VGE (V) IC (A) 20 10uS 100uS 102 15 120V 100mS 10 DC 1 10mS 1mS 480V 10 10 0 5 10 -1 100 At D= Th = VGE = Tj = 101 102 0 V CE (V) 103 0 At IC = single pulse 80 ºC ±15 V Tjmax ºC Copyright by Vincotech 11 250 200 500 750 1000 1250 Q g (nC)1500 A Revision: 4 F206NIA200SA-M105F preliminary datasheet Boost IGBT Figure 1 Typical output characteristics IC = f(VCE) IGBT Figure 2 Typical output characteristics IC = f(VCE) 600 IC (A) IC (A) 600 450 450 300 300 150 150 0 0 0,0 1,0 At tp = Tj = VGE from 2,0 3,0 V CE (V) 4,0 0,0 5,0 At tp = Tj = VGE from 250 μs 25 °C 7 V to 17 V in steps of 1 V IGBT Figure 3 Typical transfer characteristics IC = f(VGE) 1,0 2,0 3,0 V CE (V) 4,0 250 μs 125 °C 7 V to 17 V in steps of 1 V FRED Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 250 5,0 IF (A) IC (A) 400 350 200 300 250 150 200 Tj = Tjmax-25°C 100 Tj = 25°C Tj = Tjmax-25°C 150 100 50 Tj = 25°C 50 0 0 0 At tp = VCE = 2 250 10 4 6 8 10 12 V GE (V) 14 0 At tp = μs V Copyright by Vincotech 12 0,5 250 1 1,5 2 2,5 V F (V) 3 μs Revision: 4 F206NIA200SA-M105F preliminary datasheet Boost IGBT Figure 5 Typical switching energy losses as a function of collector current E = f(IC) IGBT Figure 6 Typical switching energy losses as a function of gate resistor E = f(RG) 20 E (mWs) E (mWs) 20 Eon High T Eon Low T 16 16 Eoff High T Eoff High T 12 12 Eoff Low T Eoff Low T Eon High T 8 8 Eon Low T 4 4 0 0 0 100 200 300 0 400 I C (A) With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 201 A IGBT Figure 7 Typical reverse recovery energy loss as a function of collector current Erec = f(Ic) IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 7,5 E (mWs) E (mWs) 6 Erec High T 5 6 4 4,5 3 Erec Low T Erec High T 3 2 Erec Low T 1,5 1 0 0 0 100 200 300 I C (A) 400 0 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Copyright by Vincotech 4 8 12 16 RG (Ω ) 20 With an inductive load at Tj = 25/125 °C VCE = 350 V VGE = ±15 V IC = 201 A 13 Revision: 4 F206NIA200SA-M105F preliminary datasheet Boost IGBT Figure 9 Typical switching times as a function of collector current t = f(IC) IGBT Figure 10 Typical switching times as a function of gate resistor t = f(RG) t ( μs) 1 t ( μs) 1 tdoff tdon tdoff tdon 0,1 tr 0,1 tf tf tr 0,01 0,01 0,001 0,001 0 100 200 300 I C (A) 400 0 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V Rgon = 4 Ω Rgoff = 4 Ω 4 8 12 16 R G( Ω ) 20 With an inductive load at Tj = 125 °C VCE = 350 V VGE = ±15 V IC = 201 A FRED FRED 0,40 0,40 t rr(ms) Figure 12 Typical reverse recovery time as a function of IGBT turn on gate resistor trr = f(Rgon) t rr(ms) Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) 0,32 trr High T 0,32 trr High T 0,24 0,24 trr Low T 0,16 trr Low T 0,16 0,08 0,08 0,00 0,00 0 100 At Tj = VCE = VGE = Rgon = 25/125 350 ±15 4 200 300 I C (A) 400 0 At Tj = VR = IF = VGE = °C V V Ω Copyright by Vincotech 14 4 25/125 350 201 ±15 8 12 16 R gon (W) 20 °C V A V Revision: 4 F206NIA200SA-M105F preliminary datasheet Boost FRED Figure 13 Typical reverse recovery charge as a function of collector current Qrr = f(IC) FRED Figure 14 Typical reverse recovery charge as a function of IGBT turn on gate resistor Qrr = f(Rgon) Qrr (mC) 20 Qrr (mC) 25 Qrr High T 20 16 Qrr High T 15 12 Qrr Low T Qrr Low T 10 8 5 4 0 0 At 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 ±15 4 200 300 I C (A) 400 0 At Tj = VR = IF = VGE = °C V V Ω FRED Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 4 25/125 350 201 ±15 8 12 16 R g on ( Ω) 20 °C V A V FRED Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 250 IrrM (A) IrrM (A) 250 IRRM High T 200 200 IRRM Low T 150 150 100 100 IRRM High T IRRM Low T 50 50 0 0 0 100 At Tj = VCE = VGE = Rgon = 25/125 350 ±15 4 200 300 I C (A) 400 °C V V Ω Copyright by Vincotech 15 0 4 At Tj = VR = IF = VGE = 25/125 350 201 ±15 8 12 16 R gon (W) 20 °C V A V Revision: 4 F206NIA200SA-M105F preliminary datasheet Boost FRED Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) 7500 10000 direc / dt (A/ms) direc / dt (A/ms) FRED Figure 18 Typical rate of fall of forward and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) di0/dtHigh T 6000 8000 dIo/dtLow T 6000 4500 dIrec/dtLow T 3000 4000 dI0/dtLow T dIrec/dtHigh T dI0/dtHigh T 2000 1500 dIrec/dtLow T dIrec/dtHigh T 0 0 0 At Tj = VCE = VGE = Rgon = 100 25/125 350 ±15 4 200 I C (A) 300 0 400 At Tj = VR = IF = VGE = °C V V Ω IGBT Figure 19 IGBT transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/125 350 201 ±15 8 12 °C V A V FRED ZthJH (K/W) ZthJH (K/W) 100 -1 -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 R gon (W) 20 16 Figure 20 FRED transient thermal impedance as a function of pulse width ZthJH = f(tp) 100 10 4 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -2 -2 10 10-5 10-4 At D= RthJH = tp / T 0,39 10-3 10-2 10-1 100 t p (s) 101 1 10-5 At D= RthJH = K/W 10-4 tp / T 0,50 10-3 FRED thermal model values R (C/W) 0,02 0,10 0,07 0,11 0,05 0,02 R (C/W) 0,04 0,10 0,09 0,18 0,05 0,04 Copyright by Vincotech 16 10-1 100 t p (s) 101 1 K/W IGBT thermal model values Tau (s) 1,2E+01 2,6E+00 4,8E-01 5,9E-02 1,3E-02 4,9E-04 10-2 Tau (s) 9,6E+00 1,7E+00 2,6E-01 3,6E-02 7,1E-03 4,0E-04 Revision: 4 F206NIA200SA-M105F preliminary datasheet Boost IGBT Figure 21 Power dissipation as a function of heatsink temperature Ptot = f(Th) IGBT Figure 22 Collector current as a function of heatsink temperature IC = f(Th) 500 Ptot (W) IC (A) 240 200 400 160 300 120 200 80 100 40 0 0 0 50 At Tj = 175 100 150 T h ( o C) 200 0 At Tj = VGE = ºC FRED Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 T h ( o C) ºC V FRED Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 240 IF (A) Ptot (W) 350 200 300 200 250 160 200 120 150 80 100 40 50 0 0 0 At Tj = 50 175 100 150 Th ( o C) 200 0 At Tj = ºC Copyright by Vincotech 17 50 175 100 150 Th ( o C) 200 ºC Revision: 4 F206NIA200SA-M105F preliminary datasheet Boost Boost Inverse Diode Figure 25 Typical diode forward current as a function of forward voltage IF = f(VF) Boost Inverse Diode Figure 26 Diode transient thermal impedance as a function of pulse width ZthJH = f(tp) 400 0 IF (A) 10 ZthJC (K/W) Tj = 25°C 350 300 250 Tj = Tjmax-25°C 200 -1 10 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 150 100 50 0 10-2 0 At tp = 0,5 1 1,5 VF (V) 2,5 μs 250 Boost Inverse Diode Figure 27 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-5 10-4 10-3 At D= RthJH = tp / T 0,50 K/W 10-2 10-1 100 t p (s) 101 1 Boost Inverse Diode Figure 28 Forward current as a function of heatsink temperature IF = f(Th) 200 350 IF (A) Ptot (W) 2 300 160 250 120 200 150 80 100 40 50 0 0 0 At Tj = 50 175 100 150 Th ( o C) 0 200 At Tj = ºC Copyright by Vincotech 18 50 175 100 150 Th ( o C) 200 ºC Revision: 4 F206NIA200SA-M105F preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R/Ω 25000 20000 15000 10000 5000 0 25 50 Copyright by Vincotech 75 100 T (°C) 125 19 Revision: 4 F206NIA200SA-M105F preliminary datasheet Switching Definitions BUCK IGBT General conditions = 125 °C Tj = 4Ω Rgon Rgoff = 4Ω Output inverter IGBT Figure 1 Output inverter IGBT Figure 2 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 200 140 IC 120 tdoff 160 VCE 100 VCE 90% VGE 90% 120 VCE 80 % 80 IC %60 VGE tdon 40 40 tEoff IC 1% 20 VCE3% IC10% VGE10% VGE 0 0 tEon -20 -0,2 -40 -0,1 0 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,1 0,2 0,3 time (us) -15 15 700 201 0,34 0,59 V V V A μs μs 0,4 0,5 0,6 0,7 3,8 3,9 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = Output inverter IGBT Figure 3 4 4,1 4,2 4,3 time(us) -15 15 700 201 0,25 0,45 4,4 4,6 4,7 V V V A μs μs Output inverter IGBT Figure 4 Turn-off Switching Waveforms & definition of tf 4,5 Turn-on Switching Waveforms & definition of tr 140 190 fitted 120 Ic VCE IC 160 100 IC 90% 130 80 VCE 100 IC 60% %60 IC90% % 40 70 IC 40% tr 40 20 IC10% 0 IC10% 10 tf -20 0,15 VC (100%) = IC (100%) = tf = 0,2 0,25 0,3 700 201 0,10 Copyright by Vincotech 0,35 time (us) 0,4 0,45 0,5 -20 0,55 4,1 VC (100%) = IC (100%) = tr = V A μs 20 4,15 4,2 time(us) 4,25 700 201 0,04 4,3 4,35 4,4 4,45 V A μs Revision: 4 F206NIA200SA-M105F preliminary datasheet Switching Definitions BUCK MOSFET Output inverter IGBT Figure 5 Output inverter IGBT Figure 6 Turn-off Switching Waveforms & definition of tEoff Turn-on Switching Waveforms & definition of tEon 120 140 % Eoff Poff % 120 100 Eon 100 80 80 60 Pon 60 40 40 20 20 0 -20 -0,2 VCE3% 0 tEoff VGE90% VGE10% tEon IC 1% -20 -0,1 0 Poff (100%) = Eoff (100%) = tEoff = 0,1 140,86 7,89 0,59 0,2 0,3 time (us) 0,4 0,5 0,6 3,8 0,7 3,9 4 Pon (100%) = Eon (100%) = tEon = kW mJ μs Output inverter FRED Figure 7 Gate voltage vs Gate charge (measured) 4,1 4,2 4,3 time(us) 140,86 4,22 0,45 4,4 4,5 4,6 4,7 kW mJ μs Output inverter IGBT Figure 8 Turn-off Switching Waveforms & definition of trr 20 120 15 Id 80 fitted trr 10 40 VGE (V) 5 Vd % 0 0 IRRM10% -5 -40 -10 IRRM90% -80 -15 IRRM100% -20 -500 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = -120 0 500 -15 15 700 201 2106,06 Copyright by Vincotech 1000 Qg (nC) 1500 2000 4,1 2500 4,2 4,3 4,4 4,5 4,6 4,7 4,8 time(us) Vd (100%) = Id (100%) = IRRM (100%) = trr = V V V A nC 21 700 201 -172 0,27 V A A μs Revision: 4 F206NIA200SA-M105F preliminary datasheet Switching Definitions BUCK MOSFET Output inverter FRED Figure 9 Output inverter FRED Figure 10 Turn-on Switching Waveforms & definition of tQrr (tQrr = integrating time for Qrr) Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) 120 150 Erec Qrr Id 100 100 80 tQrr 50 tErec 60 % % 40 0 20 Prec -50 0 -100 -20 3,9 Id (100%) = Qrr (100%) = tQrr = 4,1 4,3 4,5 201 16,20 0,55 A μC μs 4,7 4,9 time(us) 5,1 4 4,15 Prec (100%) = Erec (100%) = tErec = 4,3 4,45 140,86 3,66 0,55 4,6 4,75 4,9 5,05 5,2 time(us) kW mJ μs Measurement circuits Figure 11 BUCK stage switching measurement circuit Copyright by Vincotech Figure 12 BOOST stage switching measurement circuit 22 Revision: 4 F206NIA200SA-M105F preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Standard in flow2 housing Ordering Code in DataMatrix as 30-F206NIA200SA-M105F M105F in packaging barcode as M105F Outline Pinout Copyright by Vincotech 23 Revision: 4 F206NIA200SA-M105F preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Copyright by Vincotech 24 Revision: 4