F206NIA200SA-M105F Maximum Ratings

F206NIA200SA-M105F
preliminary datasheet
flowNPC 2
600V/200A
Features
flow2 housing
● Neutral-point-Clamped inverter
● High power flow2 housing
● Low Inductance Layout
Target Applications
Schematic
● UPS
● Solar inverters
Types
● F206NIA200SA
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
155
200
A
600
A
245
372
W
±20
V
6
360
μs
V
175
°C
600
V
Buck IGBT
Collector-emitter break down voltage
DC collector current
Repetitive peak collector current
VCE
IC
ICpulse
Power dissipation per IGBT
Ptot
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Tj=Tjmax
Th=80°C
Tc=80°C
Tj≤150°C
VGE=15V
Tjmax
Buck Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
109
144
A
Repetitive peak forward current
IFRM
tp limited by Tjmax
Tc=100°C
600
A
Power dissipation per Diode
Ptot
Tj=Tjmax
Th=80°C
Tc=80°C
158
239
W
175
°C
Maximum Junction Temperature
Copyright by Vincotech
Tjmax
1
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
154
200
A
600
A
245
372
W
±20
V
Tj≤150°C
6
μs
VGE=15V
360
V
175
°C
600
V
136
145
A
600
A
190
190
W
175
°C
600
V
138
183
A
600
A
190
287
W
Tjmax
175
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Boost IGBT
Collector-emitter break down voltage
DC collector current
VCE
IC
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
Boost Inverse Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tc=25°C
IF
Tj=Tjmax
Th=80°C
Tc=80°C
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
Boost Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
Copyright by Vincotech
Vis
t=2s
DC voltage
2
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,51
1,75
1,85
Buck IGBT
Gate emitter threshold voltage
VGE(th)
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off current incl. Diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
VCE=VGE
0,0032
200
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
0,66
700
Rgoff=4 Ω
Rgon=4 Ω
350
±15
200
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
V
V
mA
nA
Ω
1
tr
td(off)
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
240
245
42
42
310
341
71
104
3,14
4,22
6,14
7,89
ns
mWs
12320
f=1MHz
25
0
Tj=25°C
pF
768
366
700
15
200
Tj=25°C
nC
2100
Thermal grease
thickness≤50um
λ = 1 W/mK
0,39
K/W
0,26
Buck Diode
Diode forward voltage
Peak reverse recovery current
VF
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
Reverse recovered energy
Rgoff=4 Ω
350
±15
di(rec)max
/dt
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
Copyright by Vincotech
200
Thermal grease
thickness≤50um
λ = 1 W/mK
200
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,5
1,77
1,89
136
172
137
269
8,5
16,2
3158
2901
2,02
3,66
3,3
V
A
ns
μC
A/μs
mWs
0,60
K/W
0,40
3
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1,05
1,51
1,75
1,85
Boost IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0032
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
200
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
0,66
700
Rgoff=4 Ω
Rgon=4 Ω
±15
350
200
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
mA
nA
Ω
1
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
233
239
43
45
309
335
65
88
3,95
4,87
5,88
7,64
ns
mWs
12320
f=1MHz
0
25
15
700
Tj=25°C
768
Tj=25°C
2100
pF
366
200
Thermal grease
thickness≤50um
λ = 1 W/mK
nC
0,39
K/W
0,26
Boost Inverse Diode
Diode forward voltage
VF
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
200
Tj=25°C
Tj=125°C
1,5
Thermal grease
thickness≤50um
λ = 1 W/mK
1,60
1,64
3,3
V
0,50
K/W
0,33
Boost Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
600
IRRM
Reverse recovery time
trr
Reverse recovered charge
Qrr
Peak rate of fall of recovery current
200
Rgoff=4 Ω
±15
350
di(rec)max
/dt
Reverse recovery energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Thermal resistance chip to case per chip
RthJC
200
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
Tj=25°C
Tj=150°C
1,5
1,60
1,65
3,3
600
132
163
138
211
9,1
16,5
2672
1616
2,17
4,15
Thermal grease
thickness≤50um
λ = 1 W/mK
V
μA
A
ns
μC
A/μs
mWs
0,50
K/W
0,33
Thermistor
Rated resistance
R
Deviation of R100
ΔR/R
Power dissipation
P
T=25°C
R100=1486 Ω
T=100°C
Power dissipation constant
Ω
22000
-5
5
%
T=25°C
200
mW
T=25°C
2
mW/K
B-value
B(25/50) Tol. ±3%
T=25°C
3950
K
B-value
B(25/100) Tol. ±3%
T=25°C
3996
K
Vincotech NTC Reference
Copyright by Vincotech
B
4
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Buck
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
600
IC (A)
600
500
500
400
400
300
300
200
200
100
100
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
1
At
tp =
Tj =
VGE from
350
μs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
2
3
V CE (V)
4
350
μs
25
°C
7 V to 17 V in steps of 1 V
FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
IF (A)
400
IC (A)
200
5
Tj = 25°C
Tj = 25°C
350
160
300
250
120
Tj = Tjmax-25°C
200
80
150
100
40
Tj = Tjmax-25°C
50
0
0
0
2
4
At
tp =
VCE =
350
10
μs
V
Copyright by Vincotech
6
8
10
V GE (V)
12
0
At
tp =
5
0,5
350
1
1,5
2
2,5
V F (V)
3
μs
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Buck
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
20
E (mWs)
E (mWs)
20
Eon High T
16
16
Eoff High T
Eon Low T
12
12
Eoff Low T
Eoff Low T
Eoff High T
8
8
Eon High T
4
4
Eon Low T
0
0
0
100
200
300
I C (A)
0
400
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G (W)
20
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
±15
V
IC =
200
A
FRED
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
E (mWs)
5
E (mWs)
FRED
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
Erec High T
5
4
4
3
3
Erec High T
Erec Low T
2
2
Erec Low T
1
1
0
0
0
100
200
300
I C (A)
0
400
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Copyright by Vincotech
4
8
12
16
R G (W)
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
200
A
6
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Buck
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
tdon
t (ms)
t (ms)
1,00
tdoff
tdon
tf
0,10
0,10
tr
tr
tf
0,01
0,01
0,00
0,00
0
100
200
300
I C (A)
400
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G (W)
20
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
200
A
FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,50
t rr(ms)
t rr(ms)
0,35
0,30
trr High T
0,40
trr High T
0,25
0,30
0,20
trr Low T
0,15
0,20
trr Low T
0,10
0,10
0,05
0,00
0,00
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
±15
4
200
300
I C (A)
0
400
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
7
4
25/125
350
200
±15
8
12
16
R gon (W)
20
°C
V
A
V
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Buck
FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
25
20
Qrr (mC)
Qrr (mC)
Qrr High T
20
Qrr High T
16
15
12
Qrr Low T
Qrr Low T
10
8
5
4
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
±15
4
200
300
I C (A)
400
0
4
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FRED
25/125
350
200
±15
12
16
240
250
IrrM (A)
R g on ( Ω)
20
°C
V
A
V
FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
200
200
160
IRRM High T
150
120
IRRM High T
100
IRRM Low T
80
IRRM Low T
50
40
0
0
0
100
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
4
200
300
I C (A)
400
°C
V
V
Ω
Copyright by Vincotech
8
0
4
At
Tj =
VR =
IF =
VGE =
25/125
350
200
±15
8
12
16
R gon (W)
20
°C
V
A
V
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Buck
FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
7500
direc / dt (A/ms)
direc / dt (A/ms)
10000
di0/dtHigh T
6000
dI0/dtHigh T
8000
dIo/dtLow T
6000
4500
dIrec/dtLow T
4000
3000
dIrec/dtHigh T
dI0/dtLow T
2000
1500
dIrec/dtLow T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
±15
4
200
I C (A)
300
0
400
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
4
25/125
350
200
±15
8
12
R gon (W)
16
20
°C
V
A
V
FRED
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
ZthJH (K/W)
ZthJH (K/W)
100
10-1
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-2
10-2
10-5
10-4
At
D=
RthJH =
10-3
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
tp / T
0,39
K/W
10-4
10-3
0,60
R (C/W)
0,02
0,10
0,07
0,11
0,05
0,02
R (C/W)
0,04
0,12
0,18
0,19
0,04
0,04
9
100
t p (s)
1011
K/W
FRED thermal model values
Copyright by Vincotech
10-1
tp / T
IGBT thermal model values
Tau (s)
1,2E+01
2,6E+00
4,8E-01
5,9E-02
1,3E-02
4,9E-04
10-2
Tau (s)
9,1E+00
1,6E+00
1,9E-01
3,1E-02
3,5E-03
2,8E-04
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Buck
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
250
IC (A)
Ptot (W)
500
400
200
300
150
200
100
100
50
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
°C
FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
200
°C
V
FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
200
IF (A)
Ptot (W)
300
250
150
200
100
150
100
50
50
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
0
200
At
Tj =
°C
Copyright by Vincotech
10
50
175
100
150
T h ( o C)
200
°C
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Buck
IGBT
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
IGBT
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
103
100uS
VGE (V)
IC (A)
20
10uS
100uS
102
15
120V
100mS
10
DC
1
10mS
1mS
480V
10
10
0
5
10
-1
100
At
D=
Th =
VGE =
Tj =
101
102
0
V CE (V)
103
0
At
IC =
single pulse
80
ºC
±15
V
Tjmax
ºC
Copyright by Vincotech
11
250
200
500
750
1000
1250 Q g (nC)1500
A
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Boost
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
600
IC (A)
IC (A)
600
450
450
300
300
150
150
0
0
0,0
1,0
At
tp =
Tj =
VGE from
2,0
3,0
V CE (V)
4,0
0,0
5,0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1,0
2,0
3,0
V CE (V)
4,0
250
μs
125
°C
7 V to 17 V in steps of 1 V
FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
250
5,0
IF (A)
IC (A)
400
350
200
300
250
150
200
Tj = Tjmax-25°C
100
Tj = 25°C
Tj = Tjmax-25°C
150
100
50
Tj = 25°C
50
0
0
0
At
tp =
VCE =
2
250
10
4
6
8
10
12
V GE (V) 14
0
At
tp =
μs
V
Copyright by Vincotech
12
0,5
250
1
1,5
2
2,5
V F (V)
3
μs
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Boost
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
20
E (mWs)
E (mWs)
20
Eon High T
Eon Low T
16
16
Eoff High T
Eoff High T
12
12
Eoff Low T
Eoff Low T
Eon High T
8
8
Eon Low T
4
4
0
0
0
100
200
300
0
400
I C (A)
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
201
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
7,5
E (mWs)
E (mWs)
6
Erec High T
5
6
4
4,5
3
Erec Low T
Erec High T
3
2
Erec Low T
1,5
1
0
0
0
100
200
300
I C (A)
400
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Copyright by Vincotech
4
8
12
16
RG (Ω )
20
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
±15
V
IC =
201
A
13
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Boost
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( μs)
1
t ( μs)
1
tdoff
tdon
tdoff
tdon
0,1
tr
0,1
tf
tf
tr
0,01
0,01
0,001
0,001
0
100
200
300
I C (A)
400
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
Rgon =
4
Ω
Rgoff =
4
Ω
4
8
12
16
R G( Ω )
20
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
±15
V
IC =
201
A
FRED
FRED
0,40
0,40
t rr(ms)
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
t rr(ms)
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
0,32
trr High T
0,32
trr High T
0,24
0,24
trr Low T
0,16
trr Low T
0,16
0,08
0,08
0,00
0,00
0
100
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
4
200
300
I C (A)
400
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
Copyright by Vincotech
14
4
25/125
350
201
±15
8
12
16
R gon (W)
20
°C
V
A
V
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Boost
FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
Qrr (mC)
20
Qrr (mC)
25
Qrr High T
20
16
Qrr High T
15
12
Qrr Low T
Qrr Low T
10
8
5
4
0
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
±15
4
200
300
I C (A)
400
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
4
25/125
350
201
±15
8
12
16
R g on ( Ω)
20
°C
V
A
V
FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
250
IrrM (A)
IrrM (A)
250
IRRM High T
200
200
IRRM Low T
150
150
100
100
IRRM High T
IRRM Low T
50
50
0
0
0
100
At
Tj =
VCE =
VGE =
Rgon =
25/125
350
±15
4
200
300
I C (A)
400
°C
V
V
Ω
Copyright by Vincotech
15
0
4
At
Tj =
VR =
IF =
VGE =
25/125
350
201
±15
8
12
16
R gon (W)
20
°C
V
A
V
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Boost
FRED
Figure 17
Typical rate of fall of forward
and reverse recovery current as a
function of collector current
dI0/dt,dIrec/dt = f(Ic)
7500
10000
direc / dt (A/ms)
direc / dt (A/ms)
FRED
Figure 18
Typical rate of fall of forward
and reverse recovery current as a
function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
di0/dtHigh T
6000
8000
dIo/dtLow T
6000
4500
dIrec/dtLow T
3000
4000
dI0/dtLow T
dIrec/dtHigh T
dI0/dtHigh T
2000
1500
dIrec/dtLow T
dIrec/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
100
25/125
350
±15
4
200
I C (A)
300
0
400
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
IGBT transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
25/125
350
201
±15
8
12
°C
V
A
V
FRED
ZthJH (K/W)
ZthJH (K/W)
100
-1
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10
R gon (W) 20
16
Figure 20
FRED transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
100
10
4
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-2
-2
10
10-5
10-4
At
D=
RthJH =
tp / T
0,39
10-3
10-2
10-1
100
t p (s)
101 1
10-5
At
D=
RthJH =
K/W
10-4
tp / T
0,50
10-3
FRED thermal model values
R (C/W)
0,02
0,10
0,07
0,11
0,05
0,02
R (C/W)
0,04
0,10
0,09
0,18
0,05
0,04
Copyright by Vincotech
16
10-1
100
t p (s)
101 1
K/W
IGBT thermal model values
Tau (s)
1,2E+01
2,6E+00
4,8E-01
5,9E-02
1,3E-02
4,9E-04
10-2
Tau (s)
9,6E+00
1,7E+00
2,6E-01
3,6E-02
7,1E-03
4,0E-04
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Boost
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
500
Ptot (W)
IC (A)
240
200
400
160
300
120
200
80
100
40
0
0
0
50
At
Tj =
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
ºC
V
FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
240
IF (A)
Ptot (W)
350
200
300
200
250
160
200
120
150
80
100
40
50
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
200
0
At
Tj =
ºC
Copyright by Vincotech
17
50
175
100
150
Th ( o C)
200
ºC
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Boost
Boost Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Boost Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
400
0
IF (A)
10
ZthJC (K/W)
Tj = 25°C
350
300
250
Tj = Tjmax-25°C
200
-1
10
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
150
100
50
0
10-2
0
At
tp =
0,5
1
1,5
VF (V)
2,5
μs
250
Boost Inverse Diode
Figure 27
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
10-5
10-4
10-3
At
D=
RthJH =
tp / T
0,50
K/W
10-2
10-1
100
t p (s)
101 1
Boost Inverse Diode
Figure 28
Forward current as a
function of heatsink temperature
IF = f(Th)
200
350
IF (A)
Ptot (W)
2
300
160
250
120
200
150
80
100
40
50
0
0
0
At
Tj =
50
175
100
150
Th ( o C)
0
200
At
Tj =
ºC
Copyright by Vincotech
18
50
175
100
150
Th ( o C)
200
ºC
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)
NTC-typical temperature characteristic
R/Ω
25000
20000
15000
10000
5000
0
25
50
Copyright by Vincotech
75
100
T (°C)
125
19
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Switching Definitions BUCK IGBT
General conditions
= 125 °C
Tj
= 4Ω
Rgon
Rgoff
= 4Ω
Output inverter IGBT
Figure 1
Output inverter IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
200
140
IC
120
tdoff
160
VCE
100
VCE 90%
VGE 90%
120
VCE
80
%
80
IC
%60
VGE
tdon
40
40
tEoff
IC 1%
20
VCE3%
IC10%
VGE10%
VGE
0
0
tEon
-20
-0,2
-40
-0,1
0
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,1
0,2
0,3
time (us)
-15
15
700
201
0,34
0,59
V
V
V
A
μs
μs
0,4
0,5
0,6
0,7
3,8
3,9
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
Output inverter IGBT
Figure 3
4
4,1
4,2
4,3
time(us)
-15
15
700
201
0,25
0,45
4,4
4,6
4,7
V
V
V
A
μs
μs
Output inverter IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
4,5
Turn-on Switching Waveforms & definition of tr
140
190
fitted
120
Ic
VCE
IC
160
100
IC 90%
130
80
VCE
100
IC 60%
%60
IC90%
%
40
70
IC 40%
tr
40
20
IC10%
0
IC10%
10
tf
-20
0,15
VC (100%) =
IC (100%) =
tf =
0,2
0,25
0,3
700
201
0,10
Copyright by Vincotech
0,35
time (us)
0,4
0,45
0,5
-20
0,55
4,1
VC (100%) =
IC (100%) =
tr =
V
A
μs
20
4,15
4,2
time(us)
4,25
700
201
0,04
4,3
4,35
4,4
4,45
V
A
μs
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter IGBT
Figure 5
Output inverter IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
140
%
Eoff
Poff
%
120
100
Eon
100
80
80
60
Pon
60
40
40
20
20
0
-20
-0,2
VCE3%
0
tEoff
VGE90%
VGE10%
tEon
IC 1%
-20
-0,1
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
140,86
7,89
0,59
0,2
0,3
time (us)
0,4
0,5
0,6
3,8
0,7
3,9
4
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
Output inverter FRED
Figure 7
Gate voltage vs Gate charge (measured)
4,1
4,2
4,3
time(us)
140,86
4,22
0,45
4,4
4,5
4,6
4,7
kW
mJ
μs
Output inverter IGBT
Figure 8
Turn-off Switching Waveforms & definition of trr
20
120
15
Id
80
fitted
trr
10
40
VGE (V)
5
Vd
%
0
0
IRRM10%
-5
-40
-10
IRRM90%
-80
-15
IRRM100%
-20
-500
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
-120
0
500
-15
15
700
201
2106,06
Copyright by Vincotech
1000
Qg (nC)
1500
2000
4,1
2500
4,2
4,3
4,4
4,5
4,6
4,7
4,8
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
21
700
201
-172
0,27
V
A
A
μs
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Switching Definitions BUCK MOSFET
Output inverter FRED
Figure 9
Output inverter FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
120
150
Erec
Qrr
Id
100
100
80
tQrr
50
tErec
60
%
%
40
0
20
Prec
-50
0
-100
-20
3,9
Id (100%) =
Qrr (100%) =
tQrr =
4,1
4,3
4,5
201
16,20
0,55
A
μC
μs
4,7
4,9
time(us)
5,1
4
4,15
Prec (100%) =
Erec (100%) =
tErec =
4,3
4,45
140,86
3,66
0,55
4,6
4,75
4,9
5,05
5,2
time(us)
kW
mJ
μs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
Copyright by Vincotech
Figure 12
BOOST stage switching measurement circuit
22
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
Standard in flow2 housing
Ordering Code
in DataMatrix as
30-F206NIA200SA-M105F
M105F
in packaging barcode as
M105F
Outline
Pinout
Copyright by Vincotech
23
Revision: 4
F206NIA200SA-M105F
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Copyright by Vincotech
24
Revision: 4