Si841x/2x Data Sheet

Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
L O W - P OWER, S INGLE AND D U A L - C HANNEL
D IGITA L I S O L A T O R S
Features

High-speed operation
DC to 150 Mbps
 No start-up initialization required
 Wide Operating Supply Voltage:
2.6–5.5 V
 Up to 5000 VRMS isolation


High electromagnetic immunity
Ultra low power (typical)
5 V Operation:
< 2.6 mA/channel at 1 Mbps
< 6.8 mA/channel at 100 Mbps
2.70 V Operation:
< 2.3 mA/channel at 1 Mbps
< 4.6 mA/channel at 100 Mbps







Schmitt trigger inputs
Selectable fail-safe mode
Default high or low output
Precise timing (typical)
11 ns propagation delay max
1.5 ns pulse width distortion
0.5 ns channel-channel skew
2 ns propagation delay skew
5 ns minimum pulse width
Transient immunity 45 kV/µs
AEC-Q100 qualification
Wide temperature range
–40 to 125 °C at 150 Mbps
RoHS compliant packages
SOIC-16 wide body
SOIC-8 narrow body
Applications




Industrial automation systems
Medical electronics
 Hybrid electric vehicles
 Isolated switch mode supplies
Isolated ADC, DAC
Motor control
 Power inverters
 Communication systems
Safety Regulatory Approvals

UL 1577 recognized
Up to 5000 VRMS for 1 minute

CSA component notice 5A approval
IEC 60950-1, 61010-1, 60601-1
(reinforced insulation)

VDE certification conformity
IEC 60747-5-5
(VDE0884 Part 5)
EN60950-1 (reinforced insulation)
Ordering Information:
See page 29.
Description
Silicon Lab's family of ultra-low-power digital isolators are CMOS devices offering
substantial data rate, propagation delay, power, size, reliability, and external BOM
advantages when compared to legacy isolation technologies. The operating
parameters of these products remain stable across wide temperature ranges and
throughout device service life for ease of design and highly uniform performance.
All device versions have Schmitt trigger inputs for high noise immunity and only
require VDD bypass capacitors.
Data rates up to 150 Mbps are supported, and all devices achieve worst-case
propagation delays of less than 10 ns. Ordering options include a choice of
isolation ratings (up to 5 kV) and a selectable fail-safe operating mode to control
the default output state during power loss. All products are safety certified by UL,
CSA, and VDE, and products in wide-body packages support reinforced insulation
withstanding up to 5 kVRMS.
Rev. 1.3 3/14
Copyright © 2014 by Silicon Laboratories
Si8410/20/21 / Si8422/23
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
2
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
TABLE O F C ONTENTS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
3.2. Under Voltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4. Fail-Safe Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4. Pin Descriptions (Wide-Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5. Pin Descriptions (Narrow-Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7. Package Outline: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8. Land Pattern: 16-Pin Wide-Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9. Package Outline: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
10. Land Pattern: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
11. Top Marking: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
12. Top Marking: 8-Pin Narrow-Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Rev. 1.3
3
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
1. Electrical Specifications
Table 1. Electrical Characteristics
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 ºC)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
VDD Undervoltage Threshold
VDD Negative-Going Lockout
Hysteresis
Positive-Going Input Threshold
Negative-Going Input Threshold
Input Hysteresis
High Level Input Voltage
Low Level Input Voltage
High Level Output Voltage
Low Level Output Voltage
Input Leakage Current
Output Impedance1
VDDUV+
VDDHYS
VDD1, VDD2 rising
2.15
45
2.3
75
2.5
95
V
mV
—
—
0.45
—
—
4.8
0.2
—
50
1.9
1.4
0.50
—
0.8
—
0.4
±10
—
V
V
V
V
V
V
V
µA

Si8410Ax, Bx
VDD1
VDD2
VDD1
VDD2
Si8420Ax, Bx
VDD1
VDD2
VDD1
VDD2
Si8421Ax, Bx
VDD1
VDD2
VDD1
VDD2
Si8422Ax, Bx
VDD1
VDD2
VDD1
VDD2
Si8423Ax, Bx
VDD1
VDD2
VDD1
VDD2
VT+
All inputs rising
1.6
VT–
All inputs falling
1.1
0.40
VHYS
2.0
VIH
—
VIL
loh = –4 mA
VDD1,VDD2 – 0.4
VOH
lol = 4 mA
—
VOL
—
IL
ZO
—
DC Supply Current (All inputs 0 V or at Supply)
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
1.0
1.0
3.0
1.0
1.5
1.5
4.5
1.5
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
1.3
1.7
5.8
1.7
2.0
2.6
8.7
2.6
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
1.7
1.7
3.7
3.7
2.6
2.6
5.6
5.6
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
3.7
3.7
1.7
1.7
5.6
5.6
2.6
2.6
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
5.4
1.7
1.3
1.7
8.1
2.6
2.0
2.6
mA
mA
mA
mA
mA
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
4
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
Table 1. Electrical Characteristics (Continued)
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 ºC)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
1 Mbps Supply Current (All inputs = 500 kHz square wave, CL = 15 pF on all outputs)
Si8410Ax, Bx
VDD1
—
2.0
3.0
VDD2
—
1.1
1.7
Si8420Ax, Bx
VDD1
—
3.5
5.3
VDD2
—
1.9
2.9
Si8421Ax, Bx
—
2.8
4.2
VDD1
VDD2
—
2.8
4.2
Si8422Ax, Bx
VDD1
—
2.8
4.2
VDD2
—
2.8
4.2
Si8423Ax, Bx
VDD1
—
3.4
5.1
VDD2
—
1.9
2.9
10 Mbps Supply Current (All inputs = 5 MHz square wave, CL = 15 pF on all outputs)
Si8410Bx
VDD1
VDD2
Si8420Bx
VDD1
VDD2
Si8421Bx
VDD1
VDD2
Si8422Bx
VDD1
VDD2
Si8423Bx
VDD1
VDD2
mA
mA
mA
mA
mA
—
—
2.1
1.5
3.1
2.1
mA
—
—
3.6
2.6
5.4
3.6
mA
—
—
3.2
3.2
4.5
4.5
mA
—
—
3.2
3.2
4.5
4.5
mA
—
—
3.4
2.5
5.1
3.5
mA
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Rev. 1.3
5
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
Table 1. Electrical Characteristics (Continued)
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 ºC)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
100 Mbps Supply Current (All inputs = 50 MHz square wave, CL = 15 pF on all outputs)
Si8410Bx
VDD1
VDD2
Si8420Bx
VDD1
VDD2
Si8421Bx
VDD1
VDD2
Si8422Bx
VDD1
VDD2
Si8423Bx
VDD1
VDD2
—
—
2.1
5.0
3.1
6.3
mA
—
—
3.7
9.8
5.4
12.3
mA
—
—
6.8
6.8
8.5
8.5
mA
—
—
6.8
6.8
8.5
8.5
mA
—
—
3.4
9.2
5.1
11.5
mA
—
—
—
1.0
250
35
Mbps
ns
ns
Timing Characteristics
Si841xAx, Si842xAx
Maximum Data Rate
Minimum Pulse Width
Propagation Delay
Pulse Width Distortion
|tPLH - tPHL|
Propagation Delay Skew2
Channel-Channel Skew
Si841xBx, Si842xBx
Maximum Data Rate
Minimum Pulse Width
Propagation Delay
Pulse Width Distortion
|tPLH - tPHL|
Propagation Delay Skew2
Channel-Channel Skew
All Models
Output Rise Time
Output Fall Time
Peak Eye Diagram Jitter
Common Mode Transient
Immunity
Start-up Time3
tPHL, tPLH
See Figure 1
0
—
—
PWD
See Figure 1
—
—
25
ns
tPSK(P-P)
tPSK
—
—
—
—
40
35
ns
ns
tPHL, tPLH
See Figure 1
0
—
4.0
—
—
8.0
150
6.0
11
Mbps
ns
ns
PWD
See Figure 1
—
1.5
3.0
ns
—
—
2.0
0.5
3.0
1.5
ns
ns
tJIT(PK)
CL = 15 pF
CL = 15 pF
See Figure 6
—
—
—
2.0
2.0
350
4.0
4.0
—
ns
ns
ps
CMTI
VI = VDD or 0 V
20
45
—
kV/µs
—
15
40
µs
tPSK(P-P)
tPSK
tr
tf
tSU
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
6
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
1.4 V
Typical
Input
tPLH
tPHL
90%
90%
10%
10%
1.4 V
Typical
Output
tr
tf
Figure 1. Propagation Delay Timing
Rev. 1.3
7
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
Table 2. Electrical Characteristics
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)
Parameter
Symbol
Test Condition
VDD Undervoltage Threshold
VDDUV+ VDD1, VDD2 rising
VDD Negative-Going Lockout
Hysteresis
VDDHYS
Min
Typ
Max
Unit
2.15
2.3
2.5
V
45
75
95
mV
Positive-Going Input Threshold
VT+
All inputs rising
1.6
—
1.9
V
Negative-Going Input Threshold
VT–
All inputs falling
1.1
—
1.4
V
Input Hysteresis
VHYS
0.40
0.45
0.50
V
High Level Input Voltage
VIH
2.0
—
—
V
Low Level Input Voltage
VIL
—
—
0.8
V
High Level Output Voltage
VOH
loh = –4 mA
VDD1,VDD2 – 0.4
3.1
—
V
Low Level Output Voltage
VOL
lol = 4 mA
—
0.2
0.4
V
IL
—
—
±10
µA
ZO
—
50
—

Input Leakage Current
Output Impedance
(Si8410/20)1
DC Supply Current (All inputs 0 V or at supply)
Si8410Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
1.0
1.0
3.0
1.0
1.5
1.5
4.5
1.5
Si8420Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
1.3
1.7
5.8
1.7
2.0
2.6
8.7
2.6
Si8421Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
1.7
1.7
3.7
3.7
2.6
2.6
5.6
5.6
Si8422Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
3.7
3.7
1.7
1.7
5.6
5.6
2.6
2.6
Si8423Ax, Bx
VDD1
VDD2
VDD1
VDD2
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
5.4
1.7
1.3
1.7
8.1
2.6
2.0
2.6
mA
mA
mA
mA
mA
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
8
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
Table 2. Electrical Characteristics (Continued)
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
1 Mbps Supply Current (All inputs = 500 kHz square wave, CL = 15 pF on all outputs)
Si8410Ax, Bx
VDD1
VDD2
—
—
2.0
1.1
3.0
1.7
mA
Si8420Ax, Bx
VDD1
VDD2
—
—
3.5
1.9
5.3
2.9
mA
Si8421Ax, Bx
VDD1
VDD2
—
—
2.8
2.8
4.2
4.2
mA
Si8422Ax, Bx
VDD1
VDD2
—
—
2.8
2.8
4.2
4.2
mA
Si8423Ax, Bx
VDD1
VDD2
—
—
3.4
1.9
5.1
2.9
mA
10 Mbps Supply Current (All inputs = 5 MHz square wave, CL = 15 pF on all outputs)
Si8410Bx
VDD1
VDD2
—
—
2.0
1.3
3.0
1.8
mA
Si8420Bx
VDD1
VDD2
—
—
3.5
2.3
5.3
3.2
mA
Si8421Bx
VDD1
VDD2
—
—
3.0
3.0
4.4
4.4
mA
Si8422Bx
VDD1
VDD2
—
—
3.0
3.0
4.4
4.4
mA
Si8423Bx
VDD1
VDD2
—
—
3.4
2.2
5.1
3.1
mA
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Rev. 1.3
9
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
Table 2. Electrical Characteristics (Continued)
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
100 Mbps Supply Current (All inputs = 50 MHz square wave, CL = 15 pF on all outputs)
Si8410Bx
VDD1
VDD2
—
—
2.0
3.6
3.0
4.5
mA
Si8420Bx
VDD1
VDD2
—
—
4.5
7.0
5.3
8.8
mA
Si8421Bx
VDD1
VDD2
—
—
5.3
5.3
6.6
6.6
mA
Si8422Bx
VDD1
VDD2
—
—
5.3
5.3
6.6
6.6
mA
Si8423Bx
VDD1
VDD2
—
—
3.4
6.6
5.1
8.3
mA
Maximum Data Rate
0
—
1.0
Mbps
Minimum Pulse Width
—
—
250
ns
Timing Characteristics
Si841xAx, Si842xAx
Propagation Delay
tPHL, tPLH
See Figure 1
—
—
35
ns
PWD
See Figure 1
—
—
25
ns
tPSK(P-P)
—
—
40
ns
tPSK
—
—
35
ns
Maximum Data Rate
0
—
150
Mbps
Minimum Pulse Width
—
—
6.0
ns
Pulse Width Distortion
|tPLH – tPHL|
Propagation Delay Skew2
Channel-Channel Skew
Si841xBx, Si842xBx
Propagation Delay
Pulse Width Distortion
|tPLH – tPHL|
Propagation Delay Skew2
Channel-Channel Skew
tPHL, tPLH
See Figure 1
4.0
8.0
11
ns
PWD
See Figure 1
—
1.5
3.0
ns
tPSK(P-P)
—
2.0
3.0
ns
tPSK
—
0.5
1.5
ns
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
10
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
Table 2. Electrical Characteristics (Continued)
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
Output Rise Time
tr
CL = 15 pF
—
2.0
4.0
ns
Output Fall Time
tf
CL = 15 pF
—
2.0
4.0
ns
Peak Eye Diagram Jitter
tJIT(PK)
See Figure 6
—
350
—
ps
Common Mode Transient
Immunity
Start-up Time3
CMTI
VI = VDD or 0 V
20
45
—
kV/µs
—
15
40
µs
All Models
tSU
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Rev. 1.3
11
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
Table 3. Electrical Characteristics1
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Unit
VDD Undervoltage Threshold
VDD Negative-Going Lockout
Hysteresis
Positive-Going Input Threshold
Negative-Going Input Threshold
Input Hysteresis
High Level Input Voltage
Low Level Input Voltage
High Level Output Voltage
VDDUV+
VDDHYS
VDD1, VDD2 rising
2.15
45
2.3
75
2.5
95
V
mV
VT+
VT–
VHYS
VIH
VIL
VOH
All inputs rising
All inputs falling
—
—
0.45
—
—
2.3
1.9
1.4
0.50
—
0.8
—
V
V
V
V
V
V
0.2
—
50
0.4
±10
—
V
µA

Low Level Output Voltage
Input Leakage Current
Output Impedance2
Si8410Ax, Bx
VDD1
VDD2
VDD1
VDD2
Si8420Ax, Bx
VDD1
VDD2
VDD1
VDD2
Si8421Ax, Bx
VDD1
VDD2
VDD1
VDD2
Si8422Ax, Bx
VDD1
VDD2
VDD1
VDD2
1.6
1.1
0.40
2.0
—
loh = –4 mA
VDD1,VDD2 – 0.
4
VOL
lol = 4 mA
—
—
IL
ZO
—
DC Supply Current (All inputs 0 V or at supply)
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
1.0
1.0
3.0
1.0
1.5
1.5
4.5
1.5
mA
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
1.3
1.7
5.8
1.7
2.0
2.6
8.7
2.6
mA
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
1.7
1.7
3.7
3.7
2.6
2.6
5.6
5.6
mA
All inputs 0 DC
All inputs 0 DC
All inputs 1 DC
All inputs 1 DC
—
—
—
—
3.7
3.7
1.7
1.7
5.6
5.6
2.6
2.6
mA
Notes:
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is
constrained to TA = 0 to 85 °C.
2. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
4. Start-up time is the time period from the application of power to valid data at the output.
12
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
Table 3. Electrical Characteristics1 (Continued)
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)
Parameter
Symbol
Test Condition
Min
Typ
Max
Si8423Ax, Bx
All inputs 0 DC
—
5.4
8.1
VDD1
VDD2
All inputs 0 DC
—
1.7
2.6
VDD1
All inputs 1 DC
—
1.3
2.0
VDD2
All inputs 1 DC
—
1.7
2.6
1 Mbps Supply Current (All inputs = 500 kHz square wave, CL = 15 pF on all outputs)
Si8410Ax, Bx
VDD1
—
2.0
3.0
VDD2
—
1.1
1.7
Si8420Ax, Bx
—
3.5
5.3
VDD1
VDD2
—
1.9
2.9
Si8421Ax, Bx
VDD1
—
2.8
4.2
VDD2
—
2.8
4.2
Si8422Ax, Bx
VDD1
—
2.8
4.2
VDD2
—
2.8
4.2
Si8423Ax, Bx
—
3.3
5.0
VDD1
VDD2
—
1.8
2.8
10 Mbps Supply Current (All inputs = 5 MHz square wave, CL = 15 pF on all outputs)
Si8410Bx
VDD1
VDD2
Si8420Bx
VDD1
VDD2
Si8421Bx
VDD1
VDD2
Unit
mA
mA
mA
mA
mA
mA
—
—
2.0
1.1
3.0
1.7
mA
—
—
3.5
2.1
5.3
3.0
mA
—
—
2.9
2.9
4.3
4.3
mA
Notes:
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is
constrained to TA = 0 to 85 °C.
2. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
4. Start-up time is the time period from the application of power to valid data at the output.
Rev. 1.3
13
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
Table 3. Electrical Characteristics1 (Continued)
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)
Min
Typ
Max
Unit
—
—
2.9
2.9
4.3
4.3
mA
—
3.4
5.1
—
2.0
2.9
100 Mbps Supply Current (All inputs = 50 MHz square wave, CL = 15 pF on all outputs)
mA
Parameter
Si8422Bx
VDD1
VDD2
Si8423Bx
VDD1
VDD2
Symbol
Test Condition
Si8410Bx
VDD1
VDD2
Si8420Bx
VDD1
VDD2
Si8421Bx
VDD1
VDD2
Si8422Bx
VDD1
VDD2
Si8423Bx
VDD1
VDD2
—
—
2.0
2.0
3.0
3.0
mA
—
—
3.5
5.5
5.3
6.9
mA
—
—
4.6
4.6
5.8
5.8
mA
—
—
4.6
4.6
5.8
5.8
mA
—
—
3.4
5.2
5.1
6.5
mA
0
—
—
—
—
—
—
—
1.0
250
35
25
Mbps
ns
ns
ns
—
—
—
—
40
35
ns
ns
0
—
150
Mbps
Timing Characteristics
Si841xAx, Si842xAx
Maximum Data Rate
Minimum Pulse Width
Propagation Delay
Pulse Width Distortion
|tPLH - tPHL|
Propagation Delay Skew3
Channel-Channel Skew
Si841xBx, Si842xBx
Maximum Data Rate
tPHL, tPLH
PWD
See Figure 1
See Figure 1
tPSK(P-P)
tPSK
Notes:
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is
constrained to TA = 0 to 85 °C.
2. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
4. Start-up time is the time period from the application of power to valid data at the output.
14
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
Table 3. Electrical Characteristics1 (Continued)
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)
Parameter
Minimum Pulse Width
Propagation Delay
Pulse Width Distortion
|tPLH - tPHL|
Propagation Delay Skew3
Channel-Channel Skew
All Models
Output Rise Time
Output Fall Time
Symbol
Test Condition
Min
Typ
Max
Unit
tPHL, tPLH
PWD
See Figure 1
See Figure 1
—
4.0
—
—
8.0
1.5
6.0
11
3.0
ns
ns
ns
—
—
2.0
0.5
3.0
1.5
ns
ns
tPSK(P-P)
tPSK
tr
tf
CL = 15 pF
CL = 15 pF
—
—
2.0
2.0
4.0
4.0
ns
ns
Peak Eye Diagram Jitter
tJIT(PK)
See Figure 6
—
350
—
ps
Common Mode Transient
Immunity
Start-up Time4
CMTI
VI = VDD or 0 V
20
45
—
kV/µs
—
15
40
µs
tSU
Notes:
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is
constrained to TA = 0 to 85 °C.
2. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
4. Start-up time is the time period from the application of power to valid data at the output.
Table 4. Absolute Maximum Ratings1
Parameter
Symbol
Min
Typ
Max
Unit
TSTG
–65
—
150
C°
Operating Temperature
TA
–40
—
125
C°
Junction Temperature
TJ
—
—
150
°C
VDD1, VDD2
–0.5
—
6.0
V
Input Voltage
VI
–0.5
—
VDD + 0.5
V
Output Voltage
VO
–0.5
—
VDD + 0.5
V
Output Current Drive Channel
IO
—
—
10
mA
Lead Solder Temperature (10 s)
—
—
260
C°
Maximum Isolation Voltage (1 s) NB SOIC-8
—
—
4500
VRMS
Maximum Isolation Voltage (1 s) WB SOIC-16
—
—
6500
VRMS
Storage Temperature
2
Supply Voltage
Notes:
1. Permanent device damage may occur if the above absolute maximum ratings are exceeded. Functional operation
should be restricted to conditions as specified in the operational sections of this data sheet.
2. VDE certifies storage temperature from –40 to 150 °C.
Rev. 1.3
15
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
Table 5. Recommended Operating Conditions
Parameter
Ambient Operating Temperature*
Supply Voltage
Symbol
Min
Typ
Max
Unit
TA
–40
25
125
C°
VDD1
2.70
—
5.5
V
VDD2
2.70
—
5.5
V
*Note: The maximum ambient temperature is dependent upon data frequency, output loading, the number of operating
channels, and supply voltage.
Table 6. Regulatory Information*
CSA
The Si84xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.
61010-1: Up to 600 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage.
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.
60601-1: Up to 125 VRMS reinforced insulation working voltage; up to 380 VRMS basic insulation working voltage.
VDE
The Si84xx is certified according to IEC 60747-5-5. For more details, see File 5006301-4880-0001.
60747-5-5: Up to 891 Vpeak for basic insulation working voltage.
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.
UL
The Si84xx is certified under UL1577 component recognition program. For more details, see File E257455.
Rated up to 5000 VRMS isolation voltage for basic insulation.
*Note: Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec.
Regulatory Certifications apply to 5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec.
For more information, see "6. Ordering Guide" on page 29.
16
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
Table 7. Insulation and Safety-Related Specifications
Value
Parameter
Symbol
Test Condition
WB
SOIC-16
NB
SOIC-8
Unit
Nominal Air Gap (Clearance)1
L(IO1)
8.0 min
4.9 min
mm
Nominal External Tracking (Creepage)1
L(IO2)
8.0 min
4.01 min
mm
0.014
0.008
mm
600
600
VRMS
ED
0.019
0.040
mm
RIO
101,2
101,2

2.0
1.0
pF
4.0
4.0
pF
Minimum Internal Gap (Internal Clearance)
Tracking Resistance
(Proof Tracking Index)
PTI
Erosion Depth
Resistance (Input-Output)
2
Capacitance (Input-Output)2
Input Capacitance
CIO
3
IEC60112
f = 1 MHz
CI
Notes:
1. The values in this table correspond to the nominal creepage and clearance values as detailed in “7. Package Outline:
16-Pin Wide Body SOIC”, “9. Package Outline: 8-Pin Narrow Body SOIC”. VDE certifies the clearance and creepage
limits as 8.5 mm minimum for the WB SOIC-16 package and 4.7 mm minimum for the NB SOIC-8 package. UL does
not impose a clearance and creepage minimum for component level certifications. CSA certifies the clearance and
creepage limits as 3.9 mm minimum for the NB SOIC-8 and 7.6 mm minimum for the WB SOIC-16 package.
2. To determine resistance and capacitance, the Si84xx is converted into a 2-terminal device. Pins 1–8 (1–4, NB SOIC-8)
are shorted together to form the first terminal and pins 9–16 (5–8, NB SOIC-8) are shorted together to form the second
terminal. The parameters are then measured between these two terminals.
3. Measured from input pin to ground.
Table 8. IEC 60664-1 (VDE 0844 Part 5) Ratings
Parameter
Basic Isolation Group
Installation Classification
Test Conditions
Specification
NB SOIC8
WB SOIC 16
I
I
Rated Mains Voltages < 150 VRMS
I-IV
I-IV
Rated Mains Voltages < 300 VRMS
I-III
I-IV
Rated Mains Voltages < 400 VRMS
I-II
I-III
Rated Mains Voltages < 600 VRMS
I-II
I-III
Material Group
Rev. 1.3
17
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
Table 9. IEC 60747-5-5 Insulation Characteristics for Si84xxxx*
Characteristic
Parameter
Maximum Working Insulation
Voltage
Symbol
WB
SOIC-16
NB SOIC-8
891
560
Method b1
(VIORM x 1.875 = VPR, 100%
Production Test, tm = 1 sec,
Partial Discharge < 5 pC)
1671
1050
t = 60 sec
6000
4000
2
2
>109
>109
VIORM
Input to Output Test Voltage
Transient Overvoltage
Test Condition
VIOTM
Pollution Degree
(DIN VDE 0110, Table 1)
Insulation Resistance at TS,
VIO = 500 V
RS
Unit
Vpeak
Vpeak

*Note: Maintenance of the safety data is ensured by protective circuits. The Si84xx provides a climate classification of
40/125/21.
Table 10. IEC Safety Limiting Values1
Max
Parameter
Symbol
Case Temperature
TS
Safety Input, Output, or
Supply Current
IS
Device Power Dissipation2
PD
Test Condition
JA = 140 °C/W (NB SOIC-8), 100 °C
(WB SOIC-16),
VI = 5.5 V, TJ = 150 °C, TA = 25 °C
WB SOIC- NB SOIC16
8
Unit
150
150
°C
220
160
mA
150
150
mW
Notes:
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figures 2 and 3.
2. The Si84xx is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 ºC, CL = 15 pF, input a 150 Mbps 50% duty cycle square
wave.
18
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
Table 11. Thermal Characteristics
Parameter
Safety-Limiting Values (mA)
IC Junction-to-Air Thermal Resistance
Symbol
WB SOIC-16
NB SOIC-8
Unit
JA
100
140
ºC/W
500
460
VDD1, VDD2 = 2.70 V
375 360
250
VDD1, VDD2 = 3.3 V
220
VDD1, VDD2 = 5.5 V
125
0
0
50
100
150
Case Temperature (ºC)
200
Safety-Limiting Values (mA)
Figure 2. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-5
400
320
VDD1, VDD2 = 2.70 V
300 270
200
VDD1, VDD2 = 3.3 V
160
VDD1, VDD2 = 5.5 V
100
0
0
50
100
150
Case Temperature (ºC)
200
Figure 3. (NB SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-5
Rev. 1.3
19
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
2. Functional Description
2.1. Theory of Operation
The operation of an Si84xx channel is analogous to that of an opto coupler, except an RF carrier is modulated
instead of light. This simple architecture provides a robust isolated data path and requires no special
considerations or initialization at start-up. A simplified block diagram for a single Si84xx channel is shown in
Figure 4.
Transmitter
Receiver
RF
OSCILLATOR
A
MODULATOR
SemiconductorBased Isolation
Barrier
DEMODULATOR
B
Figure 4. Simplified Channel Diagram
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier.
Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The
Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See
Figure 5 for more details.
Input Signal
Modulation Signal
Output Signal
Figure 5. Modulation Scheme
20
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
2.2. Eye Diagram
Figure 6 illustrates an eye-diagram taken on an Si8422. For the data source, the test used an Anritsu (MP1763C)
Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8422 were
captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of
150 Mbps. The results also show that 2 ns pulse width distortion and 350 ps peak jitter were exhibited.
Figure 6. Eye Diagram
Rev. 1.3
21
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
3. Device Operation
Device behavior during start-up, normal operation, and shutdown is shown in Figure 7, where UVLO+ and UVLOare the positive-going and negative-going thresholds respectively. Refer to Table 12 to determine outputs when
power supply (VDD) is not present.
Table 12. Si84xx Logic Operation Table
VI Input1,4 VDDI State1,2,3 VDDO State1,2,3
VO Output1,4
H
P
P
H
L
P
P
L
X5
UP
P
Comments
Normal operation.
H6 (Si8422/23) Upon transition of VDDI from unpowered to
(Si8410/20/21) powered, VO returns to the same state as VI in
less than 1 µs.
L6
X5
P
UP
Undetermined
Upon transition of VDDO from unpowered to
powered, VO returns to the same state as VI
within 1 µs.
Notes:
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals.
2. Powered (P) state is defined as 2.72.60 V < VDD < 5.5 V.
3. Unpowered (UP) state is defined as VDD = 0 V.
4. X = not applicable; H = Logic High; L = Logic Low.
5. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.
6. See "6. Ordering Guide" on page 29 for details. This is the selectable fail-safe operating mode (ordering option). Some
devices have default output state = H, and some have default output state = L, depending on the ordering part number
(OPN).
22
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
3.1. Device Startup
Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following this,
the outputs follow the states of inputs.
3.2. Under Voltage Lockout
Under Voltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or
when VDD is below its specified operating circuits range. Both Side A and Side B each have their own undervoltage
lockout monitors. Each side can enter or exit UVLO independently. For example, Side A unconditionally enters
UVLO when VDD1 falls below VDD1(UVLO–) and exits UVLO when VDD1 rises above VDD1(UVLO+). Side B operates
the same as Side A with respect to its VDD2 supply.
UVLO+
UVLO-
VDD1
UVLO+
UVLO-
VDD2
INPUT
tSTART
tSD
tSTART
tSTART
tPHL
tPLH
OUTPUT
Figure 7. Device Behavior during Normal Operation
Rev. 1.3
23
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
3.3. Layout Recommendations
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically
separated from the safety extra-low voltage circuits (SELV is a circuit with <30 VAC) by a certain distance
(creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those
creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating
(commonly referred to as working voltage protection). Table 6 on page 16 and Table 7 on page 17 detail the
working voltage and creepage/clearance capabilities of the Si84xx. These tables also detail the component
standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for
end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, 60601-1, etc.)
requirements before starting any design that uses a digital isolator.
3.3.1. Supply Bypass
The Si841x/2x family requires a 0.1 µF bypass capacitor between VDD1 and GND1 and VDD2 and GND2. The
capacitor should be placed as close as possible to the package. To enhance the robustness of a design, it is further
recommended that the user also add 1 µF bypass capacitors and include 100  resistors in series with the inputs
and outputs if the system is excessively noisy.
3.3.2. Pin Connections
No connect pins are not internally connected. They can be left floating, tied to VDD, or tied to GND.
3.3.3. Output Pin Termination
The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination
of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving
loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
3.4. Fail-Safe Operating Mode
Si84xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input
supply is unpowered) can either be a logic high or logic low when the output supply is powered. See Table 12 on
page 22 and "6. Ordering Guide" on page 29 for more information.
24
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
3.5. Typical Performance Characteristics
30
30
25
25
Current (mA)
Current (mA)
The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer
to Tables 1, 2, and 3 for actual specification limits.
20
5V
15
3.3V
10
5
20
3.3V
10
5
2.70V
2.70V
0
0
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Figure 8. Si8410 Typical VDD1 Supply Current
vs. Data Rate 5, 3.3, and 2.70 V Operation
Figure 11. Si8410 Typical VDD2 Supply Current
vs. Data Rate 5, 3.3, and 2.70 V Operation
(15 pF Load)
30
25
25
Current (mA)
30
20
5V
15
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Data Rate (Mbps)
Data Rate (Mbps)
Current (mA)
5V
15
3.3V
10
2.70V
5
20
5V
15
3.3V
10
2.70V
5
0
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0
Data Rate (Mbps)
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Data Rate (Mbps)
Figure 9. Si8420 Typical VDD1 Supply Current
vs. Data Rate 5, 3.3, and 2.70 V Operation
Figure 12. Si8420 Typical VDD2 Supply Current
vs. Data Rate 5, 3.3, and 2.70 V Operation
(15 pF Load)
30
30
5V
20
15
25
Current (mA)
Current (mA)
25
3.3V
10
5
2.70V
0
5V
20
15
3.3V
10
5
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
2.70V
0
Data Rate (Mbps)
0
Figure 10. Si8421 Typical VDD1 or VDD2 Supply
Current vs. Data Rate 5, 3.3, and 2.70 V
Operation (15 pF Load)
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Data Rate (Mbps)
Figure 13. Si8422 Typical VDD1 or VDD2 Supply
Current vs. Data Rate 5, 3.3, and 2.70 V
Operation (15 pF Load)
Rev. 1.3
25
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
30
Current (mA)
25
20
5V
15
3.3V
10
2.70V
5
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Data Rate (Mbps)
Figure 14. Si8423 Typical VDD1 Supply Current
vs. Data Rate 5, 3.3, and 2.70 V Operation
30
Current (mA)
25
20
5V
15
3.3V
10
2.70V
5
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Data Rate (Mbps)
Figure 15. Si8423 Typical VDD2 Supply Current
vs. Data Rate 5, 3.3, and 2.70 V Operation
(15 pF Load)
10
Falling Edge
Delay (ns)
9
8
7
Rising Edge
6
5
-40
-20
0
20
40
60
80
100
120
Temperature (Degrees C)
Figure 16. Propagation Delay
vs. Temperature
26
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
4. Pin Descriptions (Wide-Body SOIC)
GND2
GND1
NC
NC
VDD1
A1
RF
XMITR
NC
NC
I
s
o
l
a
t
i
o
n
VDD2
RF
RCVR
GND1
NC
Si8410 WB SOIC-16
Name
GND2
GND1
NC
NC
VDD1
B1
A1
RF
XMITR
NC
A2
RF
XMITR
NC
NC
NC
GND1
GND2
NC
I
s
o
l
a
t
i
o
n
VDD2
GND2
GND1
NC
VDD1
RF
RCVR
B1
A1
RF
XMITR
RF
RCVR
B2
A2
RF
RCVR
NC
NC
NC
Si8420/23 WB SOIC-16
GND2
I
s
o
l
a
t
i
o
n
Type
VDD2
VDD1
NC
B1
A1
RF
RCVR
RF
XMITR
B2
A2
RF
RF
XMITR
XMITR
NC
NC
NC
GND1
Si8421 WB SOIC-16
SOIC-16 Pin# SOIC-16 Pin#
Si8410
Si842x
NC
NC
RF
RCVR
GND1
NC
GND2
GND1
GND2
I
s
o
l
a
t
i
o
n
VDD2
RF
XMITR
B1
RF
RCVR
B2
NC
NC
NC
GND2
Si8422 WB SOIC-16
Description
GND1
1
1
Ground
Side 1 ground.
NC*
2, 5, 6, 8,10,
11, 12, 15
2, 6, 8,10,
11, 15
No Connect
VDD1
3
3
Supply
A1
4
4
Digital I/O
Side 1 digital input or output.
A2
NC
5
Digital I/O
Side 1 digital input or output.
GND1
7
7
Ground
Side 1 ground.
GND2
9
9
Ground
Side 2 ground.
B2
NC
12
Digital I/O
Side 2 digital input or output.
B1
13
13
Digital I/O
Side 2 digital input or output.
VDD2
14
14
Supply
Side 2 power supply.
GND2
16
16
Ground
Side 2 ground.
NC
Side 1 power supply.
*Note: No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.
Rev. 1.3
27
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
5. Pin Descriptions (Narrow-Body SOIC)
VDD1
A1
RF
RCVR
A2
RF
RF
RCVR
XMITR
I
s
o
l
a
t
i
o
n
VDD2
VDD1
RF
XMITR
B1
A1
RF
XMITR
RF
XMITR
RCVR
B2
A2
RF
XMITR
GND2
GND1
VDD2
RF
RCVR
B1
RF
RCVR
B2
GND2
GND1
Si8423 NB SOIC-8
Si8422 NB SOIC-8
28
I
s
o
l
a
t
i
o
n
Name
SOIC-8 Pin#
Si842x
Type
VDD1
1
Supply
Side 1 power supply.
GND1
4
Ground
Side 1 ground.
A1
2
Digital I/O
Side 1 digital input or output.
A2
3
Digital I/O
Side 1 digital input or output.
B1
7
Digital I/O
Side 2 digital input or output.
B2
6
Digital I/O
Side 2 digital input or output.
VDD2
8
Supply
Side 2 power supply.
GND2
5
Ground
Side 2 ground.
Rev. 1.3
Description
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
6. Ordering Guide
Table 13. Ordering Guide1,2,3
Ordering Part
Number (OPN)
Number of Number of Maximum
Inputs
Inputs
Data Rate
VDD1 Side VDD2 Side (Mbps)
Default
Output
State
Si8422AB-D-IS
1
1
1
High
Si8422BB-D-IS
1
1
150
High
Si8423AB-D-IS
2
0
1
High
Si8423BB-D-IS
2
0
150
High
Si8410AD-D-IS4
1
0
1
Low
4
1
0
150
Low
Si8420AD-D-IS4
2
0
1
Low
Si8420BD-D-IS4
2
0
150
Low
Si8421AD-D-IS4
1
1
1
Low
Si8421BD-D-IS4
1
1
150
Low
Si8422AD-D-IS
1
1
1
High
Si8422BD-D-IS
1
1
150
High
Si8423AD-D-IS
2
0
1
High
Si8423BD-D-IS
2
0
150
High
Si8410BD-D-IS
Isolation
Rating
Temp
Range
Package
Type
2.5 kVrms
–40 to 125 °C
NB SOIC-8
5.0 kVrms
–40 to 125 °C
WB SOIC-16
Notes:
1. All devices >1 kVRMS are AEC-Q100 qualified.
2. “Si” and “SI” are used interchangeably.
3. All packages are RoHS-compliant with peak solder reflow temperatures of 260 °C according to the JEDEC industry
standard classifications.
4. Refer to Si8410/20/21 data sheet for information regarding 2.5 kV rated versions of these products.
Rev. 1.3
29
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
7. Package Outline: 16-Pin Wide Body SOIC
Figure 17 illustrates the package details for the Si84xx Digital Isolator. Table 14 lists the values for the dimensions
shown in the illustration.
Figure 17. 16-Pin Wide Body SOIC
Table 14. Package Diagram Dimensions
Millimeters
Symbol
Min
Max
A
—
2.65
A1
0.1
0.3
D
10.3 BSC
E
10.3 BSC
E1
7.5 BSC
b
0.31
0.51
c
0.20
0.33
e
30
1.27 BSC
h
0.25
0.75
L
0.4
1.27

0°
7°
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
8. Land Pattern: 16-Pin Wide-Body SOIC
Figure 18 illustrates the recommended land pattern details for the Si84xx in a 16-pin wide-body SOIC. Table 15
lists the values for the dimensions shown in the illustration.
Figure 18. 16-Pin SOIC Land Pattern
Table 15. 16-Pin Wide Body SOIC Land Pattern Dimensions
Dimension
Feature
(mm)
C1
Pad Column Spacing
9.40
E
Pad Row Pitch
1.27
X1
Pad Width
0.60
Y1
Pad Length
1.90
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN
for Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card
fabrication tolerance of 0.05 mm is assumed.
Rev. 1.3
31
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
9. Package Outline: 8-Pin Narrow Body SOIC
Figure 19 illustrates the package details for the Si84xx. Table 16 lists the values for the dimensions shown in the
illustration.

Figure 19. 8-pin Small Outline Integrated Circuit (SOIC) Package
Table 16. Package Diagram Dimensions
Symbol
Millimeters
Min
Max
A
1.35
1.75
A1
0.10
0.25
A2
1.40 REF
1.55 REF
B
0.33
0.51
C
0.19
0.25
D
4.80
5.00
E
3.80
4.00
e
32
1.27 BSC
H
5.80
6.20
h
0.25
0.50
L
0.40
1.27

0
8
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
10. Land Pattern: 8-Pin Narrow Body SOIC
Figure 20 illustrates the recommended land pattern details for the Si84xx in an 8-pin narrow-body SOIC. Table 17
lists the values for the dimensions shown in the illustration.
Figure 20. PCB Land Pattern: 8-Pin Narrow Body SOIC
Table 17. PCM Land Pattern Dimensions (8-Pin Narrow Body SOIC)
Dimension
Feature
(mm)
C1
Pad Column Spacing
5.40
E
Pad Row Pitch
1.27
X1
Pad Width
0.60
Y1
Pad Length
1.55
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for
Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card
fabrication tolerance of 0.05 mm is assumed.
Rev. 1.3
33
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
11. Top Marking: 16-Pin Wide Body SOIC
Si84XYSV
YYWWTTTTTT
e4
TW
Figure 21. Isolator Top Marking
Table 18. Top Marking Explanation
Line 1 Marking:
Base Part Number
Ordering Options
Line 2 Marking:
YY = Year
WW = Workweek
Assigned by assembly subcontractor. Corresponds to the
year and workweek of the mold date.
TTTTTT = Mfg Code
Manufacturing code from assembly house.
Circle = 1.7 mm Diameter
(Center-Justified)
“e4” Pb-Free Symbol.
Country of Origin ISO Code
Abbreviation
TW = Taiwan.
Line 3 Marking:
Si84 = Isolator product series
XY = Channel Configuration
X = # of data channels (2, 1)
(See Ordering Guide for more
Y = # of reverse channels (1, 0)1,2
information).
S = Speed Grade
A = 1 Mbps; B = 150 Mbps
V = Insulation rating
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5 kV
Notes:
1. The Si8422 has one reverse channel.
2. The Si8423 has zero reverse channels.
34
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
12. Top Marking: 8-Pin Narrow-Body SOIC
Si84XYSV
YYWWRF
e3 AIXX
Figure 22. Isolator Top Marking
Table 19. Top Marking Explanations
Line 1 Marking:
Line 2 Marking:
Base Part Number
Ordering Options
(See Ordering Guide for more
information).
Si84 = Isolator product series
XY = Channel Configuration
X = # of data channels (2, 1)
Y = # of reverse channels (1, 0)1,2
S = Speed Grade
A = 1 Mbps; B = 150 Mbps
V = Insulation rating
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5 kV
YY = Year
WW = Workweek
Assigned by assembly subcontractor. Corresponds to
the year and workweek of the mold date.
R = Product (OPN) Revision
F = Wafer Fab
Line 3 Marking:
Circle = 1.1 mm Diameter
Left-Justified
“e3” Pb-Free Symbol.
First two characters of the manufacturing code.
A = Assembly Site
I = Internal Code
XX = Serial Lot Number
Last four characters of the manufacturing code.
Notes:
1. The Si8422 has one reverse channel.
2. The Si8423 has zero reverse channels.
Rev. 1.3
35
Si8410/20/21 (5 kV)
Si8 422/23 ( 2. 5 & 5 k V)
DOCUMENT CHANGE LIST
Revision 0.1 to Revision 1.0

Updated “ Features” on page 1.
Updated
transient immunity

Removed Block Diagram from page 1.
 Added chip graphics on page 1.
 Added Peak Eye Diagram jitter in Tables 1, 2, and 3.
Updated







transient immunity
Moved Table 12 to page 22.
Added "3. Device Operation" on page 22.
Added "3.4. Fail-Safe Operating Mode" on page 24.
Moved “Typical Performance Characteristics” to
page 25.
Deleted RF Radiated Emissions section.
Deleted RF Magnetic and Common-Mode Transient
Immunity section.
Updated MSL rating to MSL2A.
Revision 1.0 to Revision 1.1


Numerous text edits.
Added notes to Tables 18 and 19.
Revision 1.1 to Revision 1.2

Updated Timing Characteristics in Tables 1, 2, and 3.
Revision 1.2 to Revision 1.3

Added references to AEC-Q100 qualified throughout.
 Changed all 60747-5-2 references to 60747-5-5.
 Updated Table 13 “Ordering Guide”.
Added
table Notes 1 and 2.
references to moisture sensitivity levels.
Added Revision D ordering information.
Removed older revisions.
Removed

36
Updated "11. Top Marking: 16-Pin Wide Body SOIC"
on page 34.
Rev. 1.3
Si8410/20/21 (5 kV)
Si8422/23 (2.5 & 5 kV)
CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
Patent Notice
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analogintensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
Rev. 1.3
37