Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) L O W - P OWER, S INGLE AND D U A L - C HANNEL D IGITA L I S O L A T O R S Features High-speed operation DC to 150 Mbps No start-up initialization required Wide Operating Supply Voltage: 2.6–5.5 V Up to 5000 VRMS isolation High electromagnetic immunity Ultra low power (typical) 5 V Operation: < 2.6 mA/channel at 1 Mbps < 6.8 mA/channel at 100 Mbps 2.70 V Operation: < 2.3 mA/channel at 1 Mbps < 4.6 mA/channel at 100 Mbps Schmitt trigger inputs Selectable fail-safe mode Default high or low output Precise timing (typical) 11 ns propagation delay max 1.5 ns pulse width distortion 0.5 ns channel-channel skew 2 ns propagation delay skew 5 ns minimum pulse width Transient immunity 45 kV/µs AEC-Q100 qualification Wide temperature range –40 to 125 °C at 150 Mbps RoHS compliant packages SOIC-16 wide body SOIC-8 narrow body Applications Industrial automation systems Medical electronics Hybrid electric vehicles Isolated switch mode supplies Isolated ADC, DAC Motor control Power inverters Communication systems Safety Regulatory Approvals UL 1577 recognized Up to 5000 VRMS for 1 minute CSA component notice 5A approval IEC 60950-1, 61010-1, 60601-1 (reinforced insulation) VDE certification conformity IEC 60747-5-5 (VDE0884 Part 5) EN60950-1 (reinforced insulation) Ordering Information: See page 29. Description Silicon Lab's family of ultra-low-power digital isolators are CMOS devices offering substantial data rate, propagation delay, power, size, reliability, and external BOM advantages when compared to legacy isolation technologies. The operating parameters of these products remain stable across wide temperature ranges and throughout device service life for ease of design and highly uniform performance. All device versions have Schmitt trigger inputs for high noise immunity and only require VDD bypass capacitors. Data rates up to 150 Mbps are supported, and all devices achieve worst-case propagation delays of less than 10 ns. Ordering options include a choice of isolation ratings (up to 5 kV) and a selectable fail-safe operating mode to control the default output state during power loss. All products are safety certified by UL, CSA, and VDE, and products in wide-body packages support reinforced insulation withstanding up to 5 kVRMS. Rev. 1.3 3/14 Copyright © 2014 by Silicon Laboratories Si8410/20/21 / Si8422/23 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) 2 Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) TABLE O F C ONTENTS Section Page 1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 3.2. Under Voltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4. Fail-Safe Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4. Pin Descriptions (Wide-Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5. Pin Descriptions (Narrow-Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7. Package Outline: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 8. Land Pattern: 16-Pin Wide-Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 9. Package Outline: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 10. Land Pattern: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 11. Top Marking: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 12. Top Marking: 8-Pin Narrow-Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Rev. 1.3 3 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) 1. Electrical Specifications Table 1. Electrical Characteristics (VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 ºC) Parameter Symbol Test Condition Min Typ Max Unit VDD Undervoltage Threshold VDD Negative-Going Lockout Hysteresis Positive-Going Input Threshold Negative-Going Input Threshold Input Hysteresis High Level Input Voltage Low Level Input Voltage High Level Output Voltage Low Level Output Voltage Input Leakage Current Output Impedance1 VDDUV+ VDDHYS VDD1, VDD2 rising 2.15 45 2.3 75 2.5 95 V mV — — 0.45 — — 4.8 0.2 — 50 1.9 1.4 0.50 — 0.8 — 0.4 ±10 — V V V V V V V µA Si8410Ax, Bx VDD1 VDD2 VDD1 VDD2 Si8420Ax, Bx VDD1 VDD2 VDD1 VDD2 Si8421Ax, Bx VDD1 VDD2 VDD1 VDD2 Si8422Ax, Bx VDD1 VDD2 VDD1 VDD2 Si8423Ax, Bx VDD1 VDD2 VDD1 VDD2 VT+ All inputs rising 1.6 VT– All inputs falling 1.1 0.40 VHYS 2.0 VIH — VIL loh = –4 mA VDD1,VDD2 – 0.4 VOH lol = 4 mA — VOL — IL ZO — DC Supply Current (All inputs 0 V or at Supply) All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC — — — — 1.0 1.0 3.0 1.0 1.5 1.5 4.5 1.5 All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC — — — — 1.3 1.7 5.8 1.7 2.0 2.6 8.7 2.6 All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC — — — — 1.7 1.7 3.7 3.7 2.6 2.6 5.6 5.6 All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC — — — — 3.7 3.7 1.7 1.7 5.6 5.6 2.6 2.6 All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC — — — — 5.4 1.7 1.3 1.7 8.1 2.6 2.0 2.6 mA mA mA mA mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. 4 Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Table 1. Electrical Characteristics (Continued) (VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 ºC) Parameter Symbol Test Condition Min Typ Max Unit 1 Mbps Supply Current (All inputs = 500 kHz square wave, CL = 15 pF on all outputs) Si8410Ax, Bx VDD1 — 2.0 3.0 VDD2 — 1.1 1.7 Si8420Ax, Bx VDD1 — 3.5 5.3 VDD2 — 1.9 2.9 Si8421Ax, Bx — 2.8 4.2 VDD1 VDD2 — 2.8 4.2 Si8422Ax, Bx VDD1 — 2.8 4.2 VDD2 — 2.8 4.2 Si8423Ax, Bx VDD1 — 3.4 5.1 VDD2 — 1.9 2.9 10 Mbps Supply Current (All inputs = 5 MHz square wave, CL = 15 pF on all outputs) Si8410Bx VDD1 VDD2 Si8420Bx VDD1 VDD2 Si8421Bx VDD1 VDD2 Si8422Bx VDD1 VDD2 Si8423Bx VDD1 VDD2 mA mA mA mA mA — — 2.1 1.5 3.1 2.1 mA — — 3.6 2.6 5.4 3.6 mA — — 3.2 3.2 4.5 4.5 mA — — 3.2 3.2 4.5 4.5 mA — — 3.4 2.5 5.1 3.5 mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. Rev. 1.3 5 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) Table 1. Electrical Characteristics (Continued) (VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 ºC) Parameter Symbol Test Condition Min Typ Max Unit 100 Mbps Supply Current (All inputs = 50 MHz square wave, CL = 15 pF on all outputs) Si8410Bx VDD1 VDD2 Si8420Bx VDD1 VDD2 Si8421Bx VDD1 VDD2 Si8422Bx VDD1 VDD2 Si8423Bx VDD1 VDD2 — — 2.1 5.0 3.1 6.3 mA — — 3.7 9.8 5.4 12.3 mA — — 6.8 6.8 8.5 8.5 mA — — 6.8 6.8 8.5 8.5 mA — — 3.4 9.2 5.1 11.5 mA — — — 1.0 250 35 Mbps ns ns Timing Characteristics Si841xAx, Si842xAx Maximum Data Rate Minimum Pulse Width Propagation Delay Pulse Width Distortion |tPLH - tPHL| Propagation Delay Skew2 Channel-Channel Skew Si841xBx, Si842xBx Maximum Data Rate Minimum Pulse Width Propagation Delay Pulse Width Distortion |tPLH - tPHL| Propagation Delay Skew2 Channel-Channel Skew All Models Output Rise Time Output Fall Time Peak Eye Diagram Jitter Common Mode Transient Immunity Start-up Time3 tPHL, tPLH See Figure 1 0 — — PWD See Figure 1 — — 25 ns tPSK(P-P) tPSK — — — — 40 35 ns ns tPHL, tPLH See Figure 1 0 — 4.0 — — 8.0 150 6.0 11 Mbps ns ns PWD See Figure 1 — 1.5 3.0 ns — — 2.0 0.5 3.0 1.5 ns ns tJIT(PK) CL = 15 pF CL = 15 pF See Figure 6 — — — 2.0 2.0 350 4.0 4.0 — ns ns ps CMTI VI = VDD or 0 V 20 45 — kV/µs — 15 40 µs tPSK(P-P) tPSK tr tf tSU Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. 6 Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) 1.4 V Typical Input tPLH tPHL 90% 90% 10% 10% 1.4 V Typical Output tr tf Figure 1. Propagation Delay Timing Rev. 1.3 7 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) Table 2. Electrical Characteristics (VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C) Parameter Symbol Test Condition VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising VDD Negative-Going Lockout Hysteresis VDDHYS Min Typ Max Unit 2.15 2.3 2.5 V 45 75 95 mV Positive-Going Input Threshold VT+ All inputs rising 1.6 — 1.9 V Negative-Going Input Threshold VT– All inputs falling 1.1 — 1.4 V Input Hysteresis VHYS 0.40 0.45 0.50 V High Level Input Voltage VIH 2.0 — — V Low Level Input Voltage VIL — — 0.8 V High Level Output Voltage VOH loh = –4 mA VDD1,VDD2 – 0.4 3.1 — V Low Level Output Voltage VOL lol = 4 mA — 0.2 0.4 V IL — — ±10 µA ZO — 50 — Input Leakage Current Output Impedance (Si8410/20)1 DC Supply Current (All inputs 0 V or at supply) Si8410Ax, Bx VDD1 VDD2 VDD1 VDD2 All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC — — — — 1.0 1.0 3.0 1.0 1.5 1.5 4.5 1.5 Si8420Ax, Bx VDD1 VDD2 VDD1 VDD2 All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC — — — — 1.3 1.7 5.8 1.7 2.0 2.6 8.7 2.6 Si8421Ax, Bx VDD1 VDD2 VDD1 VDD2 All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC — — — — 1.7 1.7 3.7 3.7 2.6 2.6 5.6 5.6 Si8422Ax, Bx VDD1 VDD2 VDD1 VDD2 All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC — — — — 3.7 3.7 1.7 1.7 5.6 5.6 2.6 2.6 Si8423Ax, Bx VDD1 VDD2 VDD1 VDD2 All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC — — — — 5.4 1.7 1.3 1.7 8.1 2.6 2.0 2.6 mA mA mA mA mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. 8 Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Table 2. Electrical Characteristics (Continued) (VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max Unit 1 Mbps Supply Current (All inputs = 500 kHz square wave, CL = 15 pF on all outputs) Si8410Ax, Bx VDD1 VDD2 — — 2.0 1.1 3.0 1.7 mA Si8420Ax, Bx VDD1 VDD2 — — 3.5 1.9 5.3 2.9 mA Si8421Ax, Bx VDD1 VDD2 — — 2.8 2.8 4.2 4.2 mA Si8422Ax, Bx VDD1 VDD2 — — 2.8 2.8 4.2 4.2 mA Si8423Ax, Bx VDD1 VDD2 — — 3.4 1.9 5.1 2.9 mA 10 Mbps Supply Current (All inputs = 5 MHz square wave, CL = 15 pF on all outputs) Si8410Bx VDD1 VDD2 — — 2.0 1.3 3.0 1.8 mA Si8420Bx VDD1 VDD2 — — 3.5 2.3 5.3 3.2 mA Si8421Bx VDD1 VDD2 — — 3.0 3.0 4.4 4.4 mA Si8422Bx VDD1 VDD2 — — 3.0 3.0 4.4 4.4 mA Si8423Bx VDD1 VDD2 — — 3.4 2.2 5.1 3.1 mA Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. Rev. 1.3 9 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) Table 2. Electrical Characteristics (Continued) (VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max Unit 100 Mbps Supply Current (All inputs = 50 MHz square wave, CL = 15 pF on all outputs) Si8410Bx VDD1 VDD2 — — 2.0 3.6 3.0 4.5 mA Si8420Bx VDD1 VDD2 — — 4.5 7.0 5.3 8.8 mA Si8421Bx VDD1 VDD2 — — 5.3 5.3 6.6 6.6 mA Si8422Bx VDD1 VDD2 — — 5.3 5.3 6.6 6.6 mA Si8423Bx VDD1 VDD2 — — 3.4 6.6 5.1 8.3 mA Maximum Data Rate 0 — 1.0 Mbps Minimum Pulse Width — — 250 ns Timing Characteristics Si841xAx, Si842xAx Propagation Delay tPHL, tPLH See Figure 1 — — 35 ns PWD See Figure 1 — — 25 ns tPSK(P-P) — — 40 ns tPSK — — 35 ns Maximum Data Rate 0 — 150 Mbps Minimum Pulse Width — — 6.0 ns Pulse Width Distortion |tPLH – tPHL| Propagation Delay Skew2 Channel-Channel Skew Si841xBx, Si842xBx Propagation Delay Pulse Width Distortion |tPLH – tPHL| Propagation Delay Skew2 Channel-Channel Skew tPHL, tPLH See Figure 1 4.0 8.0 11 ns PWD See Figure 1 — 1.5 3.0 ns tPSK(P-P) — 2.0 3.0 ns tPSK — 0.5 1.5 ns Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. 10 Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Table 2. Electrical Characteristics (Continued) (VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max Unit Output Rise Time tr CL = 15 pF — 2.0 4.0 ns Output Fall Time tf CL = 15 pF — 2.0 4.0 ns Peak Eye Diagram Jitter tJIT(PK) See Figure 6 — 350 — ps Common Mode Transient Immunity Start-up Time3 CMTI VI = VDD or 0 V 20 45 — kV/µs — 15 40 µs All Models tSU Notes: 1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 3. Start-up time is the time period from the application of power to valid data at the output. Rev. 1.3 11 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) Table 3. Electrical Characteristics1 (VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max Unit VDD Undervoltage Threshold VDD Negative-Going Lockout Hysteresis Positive-Going Input Threshold Negative-Going Input Threshold Input Hysteresis High Level Input Voltage Low Level Input Voltage High Level Output Voltage VDDUV+ VDDHYS VDD1, VDD2 rising 2.15 45 2.3 75 2.5 95 V mV VT+ VT– VHYS VIH VIL VOH All inputs rising All inputs falling — — 0.45 — — 2.3 1.9 1.4 0.50 — 0.8 — V V V V V V 0.2 — 50 0.4 ±10 — V µA Low Level Output Voltage Input Leakage Current Output Impedance2 Si8410Ax, Bx VDD1 VDD2 VDD1 VDD2 Si8420Ax, Bx VDD1 VDD2 VDD1 VDD2 Si8421Ax, Bx VDD1 VDD2 VDD1 VDD2 Si8422Ax, Bx VDD1 VDD2 VDD1 VDD2 1.6 1.1 0.40 2.0 — loh = –4 mA VDD1,VDD2 – 0. 4 VOL lol = 4 mA — — IL ZO — DC Supply Current (All inputs 0 V or at supply) All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC — — — — 1.0 1.0 3.0 1.0 1.5 1.5 4.5 1.5 mA All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC — — — — 1.3 1.7 5.8 1.7 2.0 2.6 8.7 2.6 mA All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC — — — — 1.7 1.7 3.7 3.7 2.6 2.6 5.6 5.6 mA All inputs 0 DC All inputs 0 DC All inputs 1 DC All inputs 1 DC — — — — 3.7 3.7 1.7 1.7 5.6 5.6 2.6 2.6 mA Notes: 1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is constrained to TA = 0 to 85 °C. 2. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 4. Start-up time is the time period from the application of power to valid data at the output. 12 Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Table 3. Electrical Characteristics1 (Continued) (VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C) Parameter Symbol Test Condition Min Typ Max Si8423Ax, Bx All inputs 0 DC — 5.4 8.1 VDD1 VDD2 All inputs 0 DC — 1.7 2.6 VDD1 All inputs 1 DC — 1.3 2.0 VDD2 All inputs 1 DC — 1.7 2.6 1 Mbps Supply Current (All inputs = 500 kHz square wave, CL = 15 pF on all outputs) Si8410Ax, Bx VDD1 — 2.0 3.0 VDD2 — 1.1 1.7 Si8420Ax, Bx — 3.5 5.3 VDD1 VDD2 — 1.9 2.9 Si8421Ax, Bx VDD1 — 2.8 4.2 VDD2 — 2.8 4.2 Si8422Ax, Bx VDD1 — 2.8 4.2 VDD2 — 2.8 4.2 Si8423Ax, Bx — 3.3 5.0 VDD1 VDD2 — 1.8 2.8 10 Mbps Supply Current (All inputs = 5 MHz square wave, CL = 15 pF on all outputs) Si8410Bx VDD1 VDD2 Si8420Bx VDD1 VDD2 Si8421Bx VDD1 VDD2 Unit mA mA mA mA mA mA — — 2.0 1.1 3.0 1.7 mA — — 3.5 2.1 5.3 3.0 mA — — 2.9 2.9 4.3 4.3 mA Notes: 1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is constrained to TA = 0 to 85 °C. 2. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 4. Start-up time is the time period from the application of power to valid data at the output. Rev. 1.3 13 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) Table 3. Electrical Characteristics1 (Continued) (VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C) Min Typ Max Unit — — 2.9 2.9 4.3 4.3 mA — 3.4 5.1 — 2.0 2.9 100 Mbps Supply Current (All inputs = 50 MHz square wave, CL = 15 pF on all outputs) mA Parameter Si8422Bx VDD1 VDD2 Si8423Bx VDD1 VDD2 Symbol Test Condition Si8410Bx VDD1 VDD2 Si8420Bx VDD1 VDD2 Si8421Bx VDD1 VDD2 Si8422Bx VDD1 VDD2 Si8423Bx VDD1 VDD2 — — 2.0 2.0 3.0 3.0 mA — — 3.5 5.5 5.3 6.9 mA — — 4.6 4.6 5.8 5.8 mA — — 4.6 4.6 5.8 5.8 mA — — 3.4 5.2 5.1 6.5 mA 0 — — — — — — — 1.0 250 35 25 Mbps ns ns ns — — — — 40 35 ns ns 0 — 150 Mbps Timing Characteristics Si841xAx, Si842xAx Maximum Data Rate Minimum Pulse Width Propagation Delay Pulse Width Distortion |tPLH - tPHL| Propagation Delay Skew3 Channel-Channel Skew Si841xBx, Si842xBx Maximum Data Rate tPHL, tPLH PWD See Figure 1 See Figure 1 tPSK(P-P) tPSK Notes: 1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is constrained to TA = 0 to 85 °C. 2. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 4. Start-up time is the time period from the application of power to valid data at the output. 14 Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Table 3. Electrical Characteristics1 (Continued) (VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C) Parameter Minimum Pulse Width Propagation Delay Pulse Width Distortion |tPLH - tPHL| Propagation Delay Skew3 Channel-Channel Skew All Models Output Rise Time Output Fall Time Symbol Test Condition Min Typ Max Unit tPHL, tPLH PWD See Figure 1 See Figure 1 — 4.0 — — 8.0 1.5 6.0 11 3.0 ns ns ns — — 2.0 0.5 3.0 1.5 ns ns tPSK(P-P) tPSK tr tf CL = 15 pF CL = 15 pF — — 2.0 2.0 4.0 4.0 ns ns Peak Eye Diagram Jitter tJIT(PK) See Figure 6 — 350 — ps Common Mode Transient Immunity Start-up Time4 CMTI VI = VDD or 0 V 20 45 — kV/µs — 15 40 µs tSU Notes: 1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is constrained to TA = 0 to 85 °C. 2. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the same supply voltages, load, and ambient temperature. 4. Start-up time is the time period from the application of power to valid data at the output. Table 4. Absolute Maximum Ratings1 Parameter Symbol Min Typ Max Unit TSTG –65 — 150 C° Operating Temperature TA –40 — 125 C° Junction Temperature TJ — — 150 °C VDD1, VDD2 –0.5 — 6.0 V Input Voltage VI –0.5 — VDD + 0.5 V Output Voltage VO –0.5 — VDD + 0.5 V Output Current Drive Channel IO — — 10 mA Lead Solder Temperature (10 s) — — 260 C° Maximum Isolation Voltage (1 s) NB SOIC-8 — — 4500 VRMS Maximum Isolation Voltage (1 s) WB SOIC-16 — — 6500 VRMS Storage Temperature 2 Supply Voltage Notes: 1. Permanent device damage may occur if the above absolute maximum ratings are exceeded. Functional operation should be restricted to conditions as specified in the operational sections of this data sheet. 2. VDE certifies storage temperature from –40 to 150 °C. Rev. 1.3 15 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) Table 5. Recommended Operating Conditions Parameter Ambient Operating Temperature* Supply Voltage Symbol Min Typ Max Unit TA –40 25 125 C° VDD1 2.70 — 5.5 V VDD2 2.70 — 5.5 V *Note: The maximum ambient temperature is dependent upon data frequency, output loading, the number of operating channels, and supply voltage. Table 6. Regulatory Information* CSA The Si84xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873. 61010-1: Up to 600 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage. 60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage. 60601-1: Up to 125 VRMS reinforced insulation working voltage; up to 380 VRMS basic insulation working voltage. VDE The Si84xx is certified according to IEC 60747-5-5. For more details, see File 5006301-4880-0001. 60747-5-5: Up to 891 Vpeak for basic insulation working voltage. 60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage. UL The Si84xx is certified under UL1577 component recognition program. For more details, see File E257455. Rated up to 5000 VRMS isolation voltage for basic insulation. *Note: Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec. Regulatory Certifications apply to 5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec. For more information, see "6. Ordering Guide" on page 29. 16 Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Table 7. Insulation and Safety-Related Specifications Value Parameter Symbol Test Condition WB SOIC-16 NB SOIC-8 Unit Nominal Air Gap (Clearance)1 L(IO1) 8.0 min 4.9 min mm Nominal External Tracking (Creepage)1 L(IO2) 8.0 min 4.01 min mm 0.014 0.008 mm 600 600 VRMS ED 0.019 0.040 mm RIO 101,2 101,2 2.0 1.0 pF 4.0 4.0 pF Minimum Internal Gap (Internal Clearance) Tracking Resistance (Proof Tracking Index) PTI Erosion Depth Resistance (Input-Output) 2 Capacitance (Input-Output)2 Input Capacitance CIO 3 IEC60112 f = 1 MHz CI Notes: 1. The values in this table correspond to the nominal creepage and clearance values as detailed in “7. Package Outline: 16-Pin Wide Body SOIC”, “9. Package Outline: 8-Pin Narrow Body SOIC”. VDE certifies the clearance and creepage limits as 8.5 mm minimum for the WB SOIC-16 package and 4.7 mm minimum for the NB SOIC-8 package. UL does not impose a clearance and creepage minimum for component level certifications. CSA certifies the clearance and creepage limits as 3.9 mm minimum for the NB SOIC-8 and 7.6 mm minimum for the WB SOIC-16 package. 2. To determine resistance and capacitance, the Si84xx is converted into a 2-terminal device. Pins 1–8 (1–4, NB SOIC-8) are shorted together to form the first terminal and pins 9–16 (5–8, NB SOIC-8) are shorted together to form the second terminal. The parameters are then measured between these two terminals. 3. Measured from input pin to ground. Table 8. IEC 60664-1 (VDE 0844 Part 5) Ratings Parameter Basic Isolation Group Installation Classification Test Conditions Specification NB SOIC8 WB SOIC 16 I I Rated Mains Voltages < 150 VRMS I-IV I-IV Rated Mains Voltages < 300 VRMS I-III I-IV Rated Mains Voltages < 400 VRMS I-II I-III Rated Mains Voltages < 600 VRMS I-II I-III Material Group Rev. 1.3 17 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) Table 9. IEC 60747-5-5 Insulation Characteristics for Si84xxxx* Characteristic Parameter Maximum Working Insulation Voltage Symbol WB SOIC-16 NB SOIC-8 891 560 Method b1 (VIORM x 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC) 1671 1050 t = 60 sec 6000 4000 2 2 >109 >109 VIORM Input to Output Test Voltage Transient Overvoltage Test Condition VIOTM Pollution Degree (DIN VDE 0110, Table 1) Insulation Resistance at TS, VIO = 500 V RS Unit Vpeak Vpeak *Note: Maintenance of the safety data is ensured by protective circuits. The Si84xx provides a climate classification of 40/125/21. Table 10. IEC Safety Limiting Values1 Max Parameter Symbol Case Temperature TS Safety Input, Output, or Supply Current IS Device Power Dissipation2 PD Test Condition JA = 140 °C/W (NB SOIC-8), 100 °C (WB SOIC-16), VI = 5.5 V, TJ = 150 °C, TA = 25 °C WB SOIC- NB SOIC16 8 Unit 150 150 °C 220 160 mA 150 150 mW Notes: 1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figures 2 and 3. 2. The Si84xx is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 ºC, CL = 15 pF, input a 150 Mbps 50% duty cycle square wave. 18 Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) Table 11. Thermal Characteristics Parameter Safety-Limiting Values (mA) IC Junction-to-Air Thermal Resistance Symbol WB SOIC-16 NB SOIC-8 Unit JA 100 140 ºC/W 500 460 VDD1, VDD2 = 2.70 V 375 360 250 VDD1, VDD2 = 3.3 V 220 VDD1, VDD2 = 5.5 V 125 0 0 50 100 150 Case Temperature (ºC) 200 Safety-Limiting Values (mA) Figure 2. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-5 400 320 VDD1, VDD2 = 2.70 V 300 270 200 VDD1, VDD2 = 3.3 V 160 VDD1, VDD2 = 5.5 V 100 0 0 50 100 150 Case Temperature (ºC) 200 Figure 3. (NB SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN EN 60747-5-5 Rev. 1.3 19 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) 2. Functional Description 2.1. Theory of Operation The operation of an Si84xx channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified block diagram for a single Si84xx channel is shown in Figure 4. Transmitter Receiver RF OSCILLATOR A MODULATOR SemiconductorBased Isolation Barrier DEMODULATOR B Figure 4. Simplified Channel Diagram A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See Figure 5 for more details. Input Signal Modulation Signal Output Signal Figure 5. Modulation Scheme 20 Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) 2.2. Eye Diagram Figure 6 illustrates an eye-diagram taken on an Si8422. For the data source, the test used an Anritsu (MP1763C) Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8422 were captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of 150 Mbps. The results also show that 2 ns pulse width distortion and 350 ps peak jitter were exhibited. Figure 6. Eye Diagram Rev. 1.3 21 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) 3. Device Operation Device behavior during start-up, normal operation, and shutdown is shown in Figure 7, where UVLO+ and UVLOare the positive-going and negative-going thresholds respectively. Refer to Table 12 to determine outputs when power supply (VDD) is not present. Table 12. Si84xx Logic Operation Table VI Input1,4 VDDI State1,2,3 VDDO State1,2,3 VO Output1,4 H P P H L P P L X5 UP P Comments Normal operation. H6 (Si8422/23) Upon transition of VDDI from unpowered to (Si8410/20/21) powered, VO returns to the same state as VI in less than 1 µs. L6 X5 P UP Undetermined Upon transition of VDDO from unpowered to powered, VO returns to the same state as VI within 1 µs. Notes: 1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals. 2. Powered (P) state is defined as 2.72.60 V < VDD < 5.5 V. 3. Unpowered (UP) state is defined as VDD = 0 V. 4. X = not applicable; H = Logic High; L = Logic Low. 5. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current. 6. See "6. Ordering Guide" on page 29 for details. This is the selectable fail-safe operating mode (ordering option). Some devices have default output state = H, and some have default output state = L, depending on the ordering part number (OPN). 22 Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) 3.1. Device Startup Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following this, the outputs follow the states of inputs. 3.2. Under Voltage Lockout Under Voltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its specified operating circuits range. Both Side A and Side B each have their own undervoltage lockout monitors. Each side can enter or exit UVLO independently. For example, Side A unconditionally enters UVLO when VDD1 falls below VDD1(UVLO–) and exits UVLO when VDD1 rises above VDD1(UVLO+). Side B operates the same as Side A with respect to its VDD2 supply. UVLO+ UVLO- VDD1 UVLO+ UVLO- VDD2 INPUT tSTART tSD tSTART tSTART tPHL tPLH OUTPUT Figure 7. Device Behavior during Normal Operation Rev. 1.3 23 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) 3.3. Layout Recommendations To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the safety extra-low voltage circuits (SELV is a circuit with <30 VAC) by a certain distance (creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating (commonly referred to as working voltage protection). Table 6 on page 16 and Table 7 on page 17 detail the working voltage and creepage/clearance capabilities of the Si84xx. These tables also detail the component standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, 60601-1, etc.) requirements before starting any design that uses a digital isolator. 3.3.1. Supply Bypass The Si841x/2x family requires a 0.1 µF bypass capacitor between VDD1 and GND1 and VDD2 and GND2. The capacitor should be placed as close as possible to the package. To enhance the robustness of a design, it is further recommended that the user also add 1 µF bypass capacitors and include 100 resistors in series with the inputs and outputs if the system is excessively noisy. 3.3.2. Pin Connections No connect pins are not internally connected. They can be left floating, tied to VDD, or tied to GND. 3.3.3. Output Pin Termination The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces. 3.4. Fail-Safe Operating Mode Si84xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input supply is unpowered) can either be a logic high or logic low when the output supply is powered. See Table 12 on page 22 and "6. Ordering Guide" on page 29 for more information. 24 Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) 3.5. Typical Performance Characteristics 30 30 25 25 Current (mA) Current (mA) The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer to Tables 1, 2, and 3 for actual specification limits. 20 5V 15 3.3V 10 5 20 3.3V 10 5 2.70V 2.70V 0 0 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Figure 8. Si8410 Typical VDD1 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation Figure 11. Si8410 Typical VDD2 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load) 30 25 25 Current (mA) 30 20 5V 15 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Data Rate (Mbps) Data Rate (Mbps) Current (mA) 5V 15 3.3V 10 2.70V 5 20 5V 15 3.3V 10 2.70V 5 0 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 0 Data Rate (Mbps) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Data Rate (Mbps) Figure 9. Si8420 Typical VDD1 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation Figure 12. Si8420 Typical VDD2 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load) 30 30 5V 20 15 25 Current (mA) Current (mA) 25 3.3V 10 5 2.70V 0 5V 20 15 3.3V 10 5 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 2.70V 0 Data Rate (Mbps) 0 Figure 10. Si8421 Typical VDD1 or VDD2 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load) 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Data Rate (Mbps) Figure 13. Si8422 Typical VDD1 or VDD2 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load) Rev. 1.3 25 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) 30 Current (mA) 25 20 5V 15 3.3V 10 2.70V 5 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Data Rate (Mbps) Figure 14. Si8423 Typical VDD1 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation 30 Current (mA) 25 20 5V 15 3.3V 10 2.70V 5 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Data Rate (Mbps) Figure 15. Si8423 Typical VDD2 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load) 10 Falling Edge Delay (ns) 9 8 7 Rising Edge 6 5 -40 -20 0 20 40 60 80 100 120 Temperature (Degrees C) Figure 16. Propagation Delay vs. Temperature 26 Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) 4. Pin Descriptions (Wide-Body SOIC) GND2 GND1 NC NC VDD1 A1 RF XMITR NC NC I s o l a t i o n VDD2 RF RCVR GND1 NC Si8410 WB SOIC-16 Name GND2 GND1 NC NC VDD1 B1 A1 RF XMITR NC A2 RF XMITR NC NC NC GND1 GND2 NC I s o l a t i o n VDD2 GND2 GND1 NC VDD1 RF RCVR B1 A1 RF XMITR RF RCVR B2 A2 RF RCVR NC NC NC Si8420/23 WB SOIC-16 GND2 I s o l a t i o n Type VDD2 VDD1 NC B1 A1 RF RCVR RF XMITR B2 A2 RF RF XMITR XMITR NC NC NC GND1 Si8421 WB SOIC-16 SOIC-16 Pin# SOIC-16 Pin# Si8410 Si842x NC NC RF RCVR GND1 NC GND2 GND1 GND2 I s o l a t i o n VDD2 RF XMITR B1 RF RCVR B2 NC NC NC GND2 Si8422 WB SOIC-16 Description GND1 1 1 Ground Side 1 ground. NC* 2, 5, 6, 8,10, 11, 12, 15 2, 6, 8,10, 11, 15 No Connect VDD1 3 3 Supply A1 4 4 Digital I/O Side 1 digital input or output. A2 NC 5 Digital I/O Side 1 digital input or output. GND1 7 7 Ground Side 1 ground. GND2 9 9 Ground Side 2 ground. B2 NC 12 Digital I/O Side 2 digital input or output. B1 13 13 Digital I/O Side 2 digital input or output. VDD2 14 14 Supply Side 2 power supply. GND2 16 16 Ground Side 2 ground. NC Side 1 power supply. *Note: No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND. Rev. 1.3 27 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) 5. Pin Descriptions (Narrow-Body SOIC) VDD1 A1 RF RCVR A2 RF RF RCVR XMITR I s o l a t i o n VDD2 VDD1 RF XMITR B1 A1 RF XMITR RF XMITR RCVR B2 A2 RF XMITR GND2 GND1 VDD2 RF RCVR B1 RF RCVR B2 GND2 GND1 Si8423 NB SOIC-8 Si8422 NB SOIC-8 28 I s o l a t i o n Name SOIC-8 Pin# Si842x Type VDD1 1 Supply Side 1 power supply. GND1 4 Ground Side 1 ground. A1 2 Digital I/O Side 1 digital input or output. A2 3 Digital I/O Side 1 digital input or output. B1 7 Digital I/O Side 2 digital input or output. B2 6 Digital I/O Side 2 digital input or output. VDD2 8 Supply Side 2 power supply. GND2 5 Ground Side 2 ground. Rev. 1.3 Description Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) 6. Ordering Guide Table 13. Ordering Guide1,2,3 Ordering Part Number (OPN) Number of Number of Maximum Inputs Inputs Data Rate VDD1 Side VDD2 Side (Mbps) Default Output State Si8422AB-D-IS 1 1 1 High Si8422BB-D-IS 1 1 150 High Si8423AB-D-IS 2 0 1 High Si8423BB-D-IS 2 0 150 High Si8410AD-D-IS4 1 0 1 Low 4 1 0 150 Low Si8420AD-D-IS4 2 0 1 Low Si8420BD-D-IS4 2 0 150 Low Si8421AD-D-IS4 1 1 1 Low Si8421BD-D-IS4 1 1 150 Low Si8422AD-D-IS 1 1 1 High Si8422BD-D-IS 1 1 150 High Si8423AD-D-IS 2 0 1 High Si8423BD-D-IS 2 0 150 High Si8410BD-D-IS Isolation Rating Temp Range Package Type 2.5 kVrms –40 to 125 °C NB SOIC-8 5.0 kVrms –40 to 125 °C WB SOIC-16 Notes: 1. All devices >1 kVRMS are AEC-Q100 qualified. 2. “Si” and “SI” are used interchangeably. 3. All packages are RoHS-compliant with peak solder reflow temperatures of 260 °C according to the JEDEC industry standard classifications. 4. Refer to Si8410/20/21 data sheet for information regarding 2.5 kV rated versions of these products. Rev. 1.3 29 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) 7. Package Outline: 16-Pin Wide Body SOIC Figure 17 illustrates the package details for the Si84xx Digital Isolator. Table 14 lists the values for the dimensions shown in the illustration. Figure 17. 16-Pin Wide Body SOIC Table 14. Package Diagram Dimensions Millimeters Symbol Min Max A — 2.65 A1 0.1 0.3 D 10.3 BSC E 10.3 BSC E1 7.5 BSC b 0.31 0.51 c 0.20 0.33 e 30 1.27 BSC h 0.25 0.75 L 0.4 1.27 0° 7° Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) 8. Land Pattern: 16-Pin Wide-Body SOIC Figure 18 illustrates the recommended land pattern details for the Si84xx in a 16-pin wide-body SOIC. Table 15 lists the values for the dimensions shown in the illustration. Figure 18. 16-Pin SOIC Land Pattern Table 15. 16-Pin Wide Body SOIC Land Pattern Dimensions Dimension Feature (mm) C1 Pad Column Spacing 9.40 E Pad Row Pitch 1.27 X1 Pad Width 0.60 Y1 Pad Length 1.90 Notes: 1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN for Density Level B (Median Land Protrusion). 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. Rev. 1.3 31 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) 9. Package Outline: 8-Pin Narrow Body SOIC Figure 19 illustrates the package details for the Si84xx. Table 16 lists the values for the dimensions shown in the illustration. Figure 19. 8-pin Small Outline Integrated Circuit (SOIC) Package Table 16. Package Diagram Dimensions Symbol Millimeters Min Max A 1.35 1.75 A1 0.10 0.25 A2 1.40 REF 1.55 REF B 0.33 0.51 C 0.19 0.25 D 4.80 5.00 E 3.80 4.00 e 32 1.27 BSC H 5.80 6.20 h 0.25 0.50 L 0.40 1.27 0 8 Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) 10. Land Pattern: 8-Pin Narrow Body SOIC Figure 20 illustrates the recommended land pattern details for the Si84xx in an 8-pin narrow-body SOIC. Table 17 lists the values for the dimensions shown in the illustration. Figure 20. PCB Land Pattern: 8-Pin Narrow Body SOIC Table 17. PCM Land Pattern Dimensions (8-Pin Narrow Body SOIC) Dimension Feature (mm) C1 Pad Column Spacing 5.40 E Pad Row Pitch 1.27 X1 Pad Width 0.60 Y1 Pad Length 1.55 Notes: 1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for Density Level B (Median Land Protrusion). 2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed. Rev. 1.3 33 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) 11. Top Marking: 16-Pin Wide Body SOIC Si84XYSV YYWWTTTTTT e4 TW Figure 21. Isolator Top Marking Table 18. Top Marking Explanation Line 1 Marking: Base Part Number Ordering Options Line 2 Marking: YY = Year WW = Workweek Assigned by assembly subcontractor. Corresponds to the year and workweek of the mold date. TTTTTT = Mfg Code Manufacturing code from assembly house. Circle = 1.7 mm Diameter (Center-Justified) “e4” Pb-Free Symbol. Country of Origin ISO Code Abbreviation TW = Taiwan. Line 3 Marking: Si84 = Isolator product series XY = Channel Configuration X = # of data channels (2, 1) (See Ordering Guide for more Y = # of reverse channels (1, 0)1,2 information). S = Speed Grade A = 1 Mbps; B = 150 Mbps V = Insulation rating A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5 kV Notes: 1. The Si8422 has one reverse channel. 2. The Si8423 has zero reverse channels. 34 Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) 12. Top Marking: 8-Pin Narrow-Body SOIC Si84XYSV YYWWRF e3 AIXX Figure 22. Isolator Top Marking Table 19. Top Marking Explanations Line 1 Marking: Line 2 Marking: Base Part Number Ordering Options (See Ordering Guide for more information). Si84 = Isolator product series XY = Channel Configuration X = # of data channels (2, 1) Y = # of reverse channels (1, 0)1,2 S = Speed Grade A = 1 Mbps; B = 150 Mbps V = Insulation rating A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5 kV YY = Year WW = Workweek Assigned by assembly subcontractor. Corresponds to the year and workweek of the mold date. R = Product (OPN) Revision F = Wafer Fab Line 3 Marking: Circle = 1.1 mm Diameter Left-Justified “e3” Pb-Free Symbol. First two characters of the manufacturing code. A = Assembly Site I = Internal Code XX = Serial Lot Number Last four characters of the manufacturing code. Notes: 1. The Si8422 has one reverse channel. 2. The Si8423 has zero reverse channels. Rev. 1.3 35 Si8410/20/21 (5 kV) Si8 422/23 ( 2. 5 & 5 k V) DOCUMENT CHANGE LIST Revision 0.1 to Revision 1.0 Updated “ Features” on page 1. Updated transient immunity Removed Block Diagram from page 1. Added chip graphics on page 1. Added Peak Eye Diagram jitter in Tables 1, 2, and 3. Updated transient immunity Moved Table 12 to page 22. Added "3. Device Operation" on page 22. Added "3.4. Fail-Safe Operating Mode" on page 24. Moved “Typical Performance Characteristics” to page 25. Deleted RF Radiated Emissions section. Deleted RF Magnetic and Common-Mode Transient Immunity section. Updated MSL rating to MSL2A. Revision 1.0 to Revision 1.1 Numerous text edits. Added notes to Tables 18 and 19. Revision 1.1 to Revision 1.2 Updated Timing Characteristics in Tables 1, 2, and 3. Revision 1.2 to Revision 1.3 Added references to AEC-Q100 qualified throughout. Changed all 60747-5-2 references to 60747-5-5. Updated Table 13 “Ordering Guide”. Added table Notes 1 and 2. references to moisture sensitivity levels. Added Revision D ordering information. Removed older revisions. Removed 36 Updated "11. Top Marking: 16-Pin Wide Body SOIC" on page 34. Rev. 1.3 Si8410/20/21 (5 kV) Si8422/23 (2.5 & 5 kV) CONTACT INFORMATION Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 Tel: 1+(512) 416-8500 Fax: 1+(512) 416-9669 Toll Free: 1+(877) 444-3032 Please visit the Silicon Labs Technical Support web page: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request. Patent Notice Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analogintensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team. The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages. Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc. Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders. Rev. 1.3 37