EN25Q32C EN25Q32C 32 Megabit Serial Flash Memory with 4Kbyte Uniform Sector FEATURES • • • - Single power supply operation Full voltage range: 2.7-3.6 volt Serial Interface Architecture SPI Compatible: Mode 0 and Mode 3 32 M-bit Serial Flash 32 M-bit/4,096 K-byte/16,384 pages 256 bytes per programmable page • • • • - Standard, Dual or Quad SPI Standard SPI: CLK, CS#, DI, DO, WP# Dual SPI: CLK, CS#, DQ0, DQ1, WP# Quad SPI: CLK, CS#, DQ0, DQ1, DQ2, DQ3 High performance 104MHz clock rate for Standard SPI 104MHz clock rate for two data bits 104MHz clock rate for four data bits Low power consumption 10mA typical active current 1 μA typical power down current Uniform Sector Architecture: 1024 sectors of 4-Kbyte 128 blocks of 32-Kbyte 64 blocks of 64-Kbyte Any sector or block can be erased individually • Software and Hardware Write Protection: - Write Protect all or portion of memory via software - Enable/Disable protection with WP# pin • High performance program/erase speed - Page program time: 0.6ms typical - Sector erase time: 30ms typical - 32KB Block erase time 100ms typical - 64KB Block erase time 200ms typical - Chip erase time: 12 seconds typical • Lockable 512 byte OTP security sector • Support Serial Flash Discoverable Parameters (SFDP) signature • Read Unique ID Number • Minimum 100K endurance cycle • Package Options - 8 pins SOP 200mil body width - 16 pins SOP 300mil body width - 8 contact VDFN (5x6mm) - 8 pins PDIP - All Pb-free packages are compliant RoHS, Halogen-Free and REACH. • Industrial temperature Range GENERAL DESCRIPTION The EN25Q32C is a 32 Megabit (4,096 K-byte) Serial Flash memory, with enhanced write protection mechanisms. The EN25Q32C supports the standard Serial Peripheral Interface (SPI), and a high performance Dual/Quad output as well as Dual/Quad I/O using SPI pins: Serial Clock, Chip Select, Serial DQ0(DI), DQ1(DO), DQ2(WP#) and DQ3(NC). SPI clock frequencies of up to 104MHz are supported allowing equivalent clock rates of 208MHz (104MHz x 2) for Dual Output and 416MHz (104MHz x 4) for Quad Output when using the Dual/Quad I/O Fast Read instructions. The memory can be programmed 1 to 256 bytes at a time, using the Page Program instruction. The EN25Q32C is designed to allow either single Sector/Block at a time or full chip erase operation. The EN25Q32C can be configured to protect part of the memory as the software protected mode. The device can sustain a minimum of 100K program/erase cycles on each sector or block. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 1 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure.1 CONNECTION DIAGRAMS CS# 1 8 VCC DO (DQ1) 2 7 NC (DQ3) WP# (DQ2) 3 6 CLK 4 5 DI (DQ0) VSS 8 - LEAD SOP CS# 1 8 VCC DO (DQ1) 2 7 HOLD# (DQ3) WP# (DQ2) 3 6 CLK 4 5 DI (DQ0) VSS 8 - LEAD VDFN 16 - LEAD SOP This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 2 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 2. BLOCK DIAGRAM Flash Memory X-Decoder Address Buffer And Latches Y-Decoder I/O Buffers and Data Latches Control Logic Serial Interface CS# CLK DI (DQ0) DO (DQ1) WP# (DQ2) NC (DQ3) Note: 1. DQ0 and DQ1 are used for Dual and Quad instructions. 2. DQ0 ~ DQ3 are used for Quad instructions. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 3 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Table 1. Pin Names Symbol Pin Name CLK Serial Clock Input DI (DQ0) Serial Data Input (Data Input Output 0) DO (DQ1) Serial Data Output (Data Input Output 1) CS# Chip Select WP# (DQ2) Write Protect (Data Input Output 2) NC (DQ3) Not Connect (Data Input Output 3) Vcc Supply Voltage (2.7-3.6V) Vss Ground NC No Connect *1 *1 *2 *2 Note: 1. DQ0 and DQ1 are used for Dual and Quad instructions. 2. DQ2 ~ DQ3 are used for Quad instructions. SIGNAL DESCRIPTION Serial Data Input, Output and IOs (DI, DO and DQ0, DQ1, DQ2, DQ3) The EN25Q32C support standard SPI, Dual SPI and Quad SPI operation. Standard SPI instructions use the unidirectional DI (input) pin to serially write instructions, addresses or data to the device on the rising edge of the Serial Clock (CLK) input pin. Standard SPI also uses the unidirectional DO (output) to read data or status from the device on the falling edge CLK. Dual and Quad SPI instruction use the bidirectional IO pins to serially write instruction, addresses or data to the device on the rising edge of CLK and read data or status from the device on the falling edge of CLK. Serial Clock (CLK) The SPI Serial Clock Input (CLK) pin provides the timing for serial input and output operations. ("See SPI Mode") Chip Select (CS#) The SPI Chip Select (CS#) pin enables and disables device operation. When CS# is high the device is deselected and the Serial Data Output (DO, or DQ0, DQ1, DQ2 and DQ3) pins are at high impedance. When deselected, the devices power consumption will be at standby levels unless an internal erase, program or status register cycle is in progress. When CS# is brought low the device will be selected, power consumption will increase to active levels and instructions can be written to and data read from the device. After power-up, CS# must transition from high to low before a new instruction will be accepted. Write Protect (WP#) The Write Protect (WP#) pin can be used to prevent the Status Register from being written. Used in conjunction with the Status Register’s Block Protect (BP0, BP1, BP2 and BP3) bits and Status Register Protect (SRP) bits, a portion or the entire memory array can be hardware protected. The WP# function is only available for standard SPI and Dual SPI operation, when during Quad SPI, this pin is the Serial Data IO (DQ2) for Quad I/O operation. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 4 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C MEMORY ORGANIZATION The memory is organized as: z 4,194,304 bytes z Uniform Sector Architecture 128 blocks of 32-Kbyte 64 blocks of 64-Kbyte 1,024 sectors of 4-Kbyte z 16,386 pages (256 bytes each) Each page can be individually programmed (bits are programmed from 1 to 0). The device is Sector, Block or Chip Erasable but not Page Erasable. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 5 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Table 2. Uniform Block Sector Architecture 32 …. 33 16 0120FFFh 011FFFFh 272 271 0110000h 010F000h 0110FFFh 010FFFFh …. 34 0120000h 011F000h …. 35 17 288 287 …. 36 …. 18 …. 012FFFFh …. 012F000h …. 303 256 0100000h 0100FFFh …. 210000h 20F000h 210FFFh 20FFFFh …. 528 527 …. …. …. …. …. …. …. 220FFFh 21FFFFh …. …. …. …. …. …. …. …. …. …. 220000h 21F000h 512 200000h 200FFFh Sector 31 255 29 14 28 27 13 26 00FFFFFh 240 239 00F0000h 00EF000h 00F0FFFh 00EFFFFh …. 30 00FF000h 224 223 00E0000h 00DF000h 00E0FFFh 00DFFFFh …. 15 Address range …. 32K Block 208 00D0000h 00D0FFFh …. …. 37 544 543 …. 01D0FFFh 22FFFFh 5 47 002F000h 002FFFFh 2 4 3 1 2 1 0 0 …. 01D0000h 22F000h 32 31 0020000h 001F000h 0020FFFh 001FFFFh …. …. 464 …. …. …. 01E0FFFh 01DFFFFh …. 01E0000h 01DF000h …. …. 480 479 …. 58 …. 59 29 01F0FFFh 01EFFFFh …. 60 01F0000h 01EF000h …. 61 30 496 495 …. 62 559 16 15 0010000h 000F000h 0010FFFh 000FFFFh …. 01FFFFFh 64K Block 2D0FFFh …. 01FF000h 64 2D0000h …. 511 65 32 720 …. 63 31 Address range 66 2E0FFFh 2DFFFFh …. Sector 67 33 2E0000h 2DF000h …. 32K Block 68 736 735 …. 300FFFh 69 34 2F0FFFh 2EFFFFh …. 300000h 90 2F0000h 2EF000h …. 768 91 45 752 751 …. 310FFFh 30FFFFh 92 2FFFFFh …. 310000h 30F000h 93 46 2FF000h …. …. …. 784 783 …. …. …. 96 320FFFh 31FFFFh …. 97 48 320000h 31F000h …. 98 800 799 …. 99 49 …. 32FFFFh 94 …. 32F000h 767 …. …. 3D0FFFh …. …. …. 3D0000h …. …. …. 976 …. 3E0FFFh 3DFFFFh 815 100 …. 3E0000h 3DF000h 101 50 64K Block 992 991 …. …. 122 …. 123 61 3F0FFFh 3EFFFFh …. 124 3F0000h 3EF000h …. 125 62 1008 1007 …. 126 95 47 Address range …. 3FFFFFh Sector …. 3FF000h 32K Block …. 1023 64K Block …. 127 63 Address range …. Sector …. 32K Block …. 64K Block 0 0000000h 0000FFFh This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 6 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C OPERATING FEATURES Standard SPI Modes The EN25Q32C is accessed through a SPI compatible bus consisting of four signals: Serial Clock (CLK), Chip Select (CS#), Serial Data Input (DI) and Serial Data Output (DO). Both SPI bus operation Modes 0 (0,0) and 3 (1,1) are supported. The primary difference between Mode 0 and Mode 3, as shown in Figure 3, concerns the normal state of the CLK signal when the SPI bus master is in standby and data is not being transferred to the Serial Flash. For Mode 0 the CLK signal is normally low. For Mode 3 the CLK signal is normally high. In either case data input on the DI pin is sampled on the rising edge of the CLK. Data output on the DO pin is clocked out on the falling edge of CLK. Figure 3. SPI Modes Dual SPI Instruction The EN25Q32C supports Dual SPI operation when using the “Dual Output Fast Read and Dual I/O Fast Read “ (3Bh and BBh) instructions. These instructions allow data to be transferred to or from the Serial Flash memory at two to three times the rate possible with the standard SPI. The Dual Read instructions are ideal for quickly downloading code from Flash to RAM upon power-up (code-shadowing) or for application that cache code-segments to RAM for execution. The Dual output feature simply allows the SPI input pin to also serve as an output during this instruction. When using Dual SPI instructions the DI and DO pins become bidirectional I/O pins; DQ0 and DQ1. All other operations use the standard SPI interface with single output signal. Quad I/O SPI Modes The EN25Q32C supports Quad input / output operation when using the Quad I/O Fast Read (EBh).This instruction allows data to be transferred to or from the Serial Flash memory at four to six times the rate possible with the standard SPI. The Quad Read instruction offer a significant improvement in continuous and random access transfer rates allowing fast code-shadowing to RAM or for application that cache code-segments to RAM for execution. When using Quad SPI instruction the DI and DO pins become bidirectional I/O pins; DQ0 and DQ1, and the WP# and NC pins become DQ2 and DQ3 respectively. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 7 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 4. Quad I/O SPI Modes Full Quad SPI Modes (QPI) The EN25Q32C also supports Full Quad SPI Mode (QPI) function while using the Enable Quad Peripheral Interface mode (EQPI) (38h). When using Quad SPI instruction the DI and DO pins become bidirectional I/O pins; DQ0 and DQ1, and the WP# and NC pins become DQ2 and DQ3 respectively. Figure 5. Full Quad SPI Modes This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 8 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Page Programming To program one data byte, two instructions are required: Write Enable (WREN), which is one byte, and a Page Program (PP) or Quad Input Page Program (QPP) sequence, which consists of four bytes plus data. This is followed by the internal Program cycle (of duration tPP). To spread this overhead, the Page Program (PP) or Quad Input Page Program (QPP) instruction allows up to 256 bytes to be programmed at a time (changing bits from 1 to 0) provided that they lie in consecutive addresses on the same page of memory. Sector Erase, Half Block Erase, Block Erase and Chip Erase The Page Program (PP) or Quad Input Page Program (QPP) instruction allows bits to be reset from 1 to 0. Before this can be applied, the bytes of memory need to have been erased to all 1s (FFh). This can be achieved a sector at a time, using the Sector Erase (SE) instruction, half a block at a time using the Half Block Erase (HBE) instruction, a block at a time using the Block Erase (BE) instruction or throughout the entire memory, using the Chip Erase (CE) instruction. This starts an internal Erase cycle (of duration tSE, tHBE, tBE or tCE). The Erase instruction must be preceded by a Write Enable (WREN) instruction. Polling During a Write, Program or Erase Cycle A further improvement in the time to Write Status Register (WRSR), Program (PP, QPP) or Erase (SE, HBE, BE or CE) can be achieved by not waiting for the worst case delay (tW, tPP, tSE, tHBE, tBE or tCE). The Write In Progress (WIP) bit is provided in the Status Register so that the application program can monitor its value, polling it to establish when the previous Write cycle, Program cycle or Erase cycle is complete. Active Power, Stand-by Power and Deep Power-Down Modes When Chip Select (CS#) is Low, the device is enabled, and in the Active Power mode. When Chip Select (CS#) is High, the device is disabled, but could remain in the Active Power mode until all internal cycles have completed (Program, Erase, and Write Status Register). The device then goes into the Stand-by Power mode. The device consumption drops to ICC1. The Deep Power-down mode is entered when the specific instruction (the Enter Deep Power-down Mode (DP) instruction) is executed. The device consumption drops further to ICC2. The device remains in this mode until another specific instruction (the Release from Deep Power-down Mode and Read Device ID (RDI) instruction) is executed. All other instructions are ignored while the device is in the Deep Power-down mode. This can be used as an extra software protection mechanism, when the device is not in active use, to protect the device from inadvertent Write, Program or Erase instructions. Write Protection Applications that use non-volatile memory must take into consideration the possibility of noise and other adverse system conditions that may compromise data integrity. To address this concern the EN25Q32C provides the following data protection mechanisms: z Power-On Reset and an internal timer (tPUW) can provide protection against inadvertent changes while the power supply is outside the operating specification. z Program, Erase and Write Status Register instructions are checked that they consist of a number of clock pulses that is a multiple of eight, before they are accepted for execution. z All instructions that modify data must be preceded by a Write Enable (WREN) instruction to set the Write Enable Latch (WEL) bit. This bit is returned to its reset state by the following events: – Power-up – Write Disable (WRDI) instruction completion or Write Status Register (WRSR) instruction completion or Page Program (PP), Quad Input Page Program (QPP) instruction completion or Sector Erase (SE) instruction completion or Half Block Erase (HBE) / Block Erase (BE) instruction completion or Chip Erase (CE) instruction completion z The Block Protect (BP3, BP2, BP1, BP0) bits allow part of the memory to be configured as readonly. This is the Software Protected Mode (SPM). z The Write Protect (WP#) signal allows the Block Protect (BP3, BP2, BP1, BP0) bits and Status Register Protect (SRP) bit to be protected. This is the Hardware Protected Mode (HPM). z In addition to the low power consumption feature, the Deep Power-down mode offers extra software protection from inadvertent Write, Program and Erase instructions, as all instructions are ignored except one particular instruction (the Release from Deep Power-down instruction). This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 9 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Table 3. Protected Area Sizes Sector Organization Status Register Content BP3 Bit 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 BP2 Bit 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 BP1 Bit 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 BP0 Bit 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Memory Content Protect Areas None Block 0 to 62 Block 0 to 61 Block 0 to 59 Block 0 to 55 Block 0 to 47 Block 0 to 31 All None Block 63 to 1 Block 63 to 2 Block 63 to 4 Block 63 to 8 Block 63 to 16 Block 63 to 32 All Addresses None 000000h-3EFFFFh 000000h-3DFFFFh 000000h-3BFFFFh 000000h-37FFFFh 000000h-2FFFFFh 000000h-1FFFFFh 000000h-3FFFFFh None 3FFFFFh-010000h 3FFFFFh-020000h 3FFFFFh-040000h 3FFFFFh-080000h 3FFFFFh-100000h 3FFFFFh-200000h 000000h-3FFFFFh Density(KB) None 4032KB 3968KB 3840KB 3584KB 3072KB 2048KB 4096KB None 4032KB 3968KB 3840KB 3584KB 3072KB 2048KB 4096KB Portion None Lower 63/64 Lower 62/64 Lower 60/64 Lower 56/64 Lower 48/64 Lower 32/64 All None Upper 63/64 Upper 62/64 Upper 60/64 Upper 56/64 Upper 48/64 Upper 32/64 All Enable Boot Lock The Enable Boot Lock feature enables user to lock the 64KB block/sector on the top/bottom of the device for protection. This feature is activated by issue Writing Status Register (05h) after entering OTP mode. The bits’ definitions are described in the following table. Table 4. The Enable Boot Lock feature Register Type S3 OTP S4 OTP S6 OTP Description Function 0 (default) Enable 64KB-block/Sector Boot lock 1 : Permanent lock selected 64KB-Block/Sector 0 : 64KB-Block (default) 64KB-Block/Sector switch 1 : Sector 0 : Top (default) Top/Bottom switch 1 : Bottom This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 10 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C INSTRUCTIONS All instructions, addresses and data are shifted in and out of the device, most significant bit first. Serial Data Input (DI) is sampled on the first rising edge of Serial Clock (CLK) after Chip Select (CS#) is driven Low. Then, the one-byte instruction code must be shifted in to the device, most significant bit first, on Serial Data Input (DI), each bit being latched on the rising edges of Serial Clock (CLK). The instruction set is listed in Table 5. Every instruction sequence starts with a one-byte instruction code. Depending on the instruction, this might be followed by address bytes, or by data bytes, or by both or none. Chip Select (CS#) must be driven High after the last bit of the instruction sequence has been shifted in. In the case of a Read Data Bytes (READ), Read Data Bytes at Higher Speed (Fast_Read), Dual Output Fast Read (3Bh), Dual I/O Fast Read (BBh), Quad Input/Output FAST_READ (EBh), Read Status Register (RDSR), Read Information Register (RDIFR) or Release from Deep Power-down, and Read Device ID (RDI) instruction, the shifted-in instruction sequence is followed by a data-out sequence. Chip Select (CS#) can be driven High after any bit of the data-out sequence is being shifted out. In the case of a Page Program (PP), Quad Input Page Program (QPP), Sector Erase (SE), Half Block Erase (HBE), Block Erase (BE), Chip Erase (CE), Write Status Register (WRSR), Write Enable (WREN), Write Disable (WRDI) or Deep Power-down (DP) instruction, Chip Select (CS#) must be driven High exactly at a byte boundary, otherwise the instruction is rejected, and is not executed. That is, Chip Select (CS#) must driven High when the number of clock pulses after Chip Select (CS#) being driven Low is an exact multiple of eight. For Page Program, if at any time the input byte is not a full byte, nothing will happen and WEL will not be reset. In the case of multi-byte commands of Page Program (PP), Quad Input Page Program (QPP) and Release from Deep Power Down (RES ) minimum number of bytes specified has to be given, without which, the command will be ignored. In the case of Page Program, if the number of byte after the command is less than 4 (at least 1 data byte), it will be ignored too. In the case of SE, HBE and BE, exact 24-bit address is a must, any less or more will cause the command to be ignored. All attempts to access the memory array during a Write Status Register cycle, Program cycle or Erase cycle are ignored, and the internal Write Status Register cycle, Program cycle or Erase cycle continues unaffected. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 11 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Table 5A. Instruction Set Instruction Name Byte 1 Code EQPI 38h Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 n-Bytes RSTQIO(1) Release Quad I/O or Fast Read Enhanced Mode FFh RSTEN 66h RST(2) 99h Write Enable Write Disable / Exit OTP mode Read Status Register Write Status Register Page Program 06h Quad Input Page Program 04h 05h (S7-S0)(3) 01h S7-S0 02h A23-A16 A15-A8 A7-A0 D7-D0 32h A23-A16 A15-A8 A7-A0 (D7-D0, …) (5) 20h A23-A16 A15-A8 A7-A0 continuous(4) Sector Erase 32KB Half Block Erase (HBE) 64KB Block Erase 52h A23-A16 A15-A8 A7-A0 D8h A23-A16 A15-A8 A7-A0 Chip Erase C7h/ 60h Deep Power-down Release from Deep Power-down, and read Device ID Release from Deep Power-down Manufacturer/ Device ID B9h Next byte continuous (one byte per 2 clocks, continuous) (6) dummy dummy dummy (ID7-ID0) 90h dummy dummy 00h 01h Read Identification 9Fh (M7-M0) (ID15-ID8) (ID7-ID0) (8) Enter OTP mode Read SFDP mode and Unique ID Number 3Ah A23-A16 A15-A8 A7-A0 dummy ABh 5Ah (M7-M0) (ID7-ID0) (ID7-ID0) (M7-M0) (D7-D0) (7) (Next Byte) continuous Notes: 1. Device accepts eight-clocks command in Standard SPI mode, or two-clocks command in Quad SPI mode 2. RST command only executed if RSTEN command is executed first. Any intervening command will disable Reset. 3. Data bytes are shifted with Most Significant Bit first. Byte fields with data in parenthesis “( )” indicate data being read from the device on the DO pin 4. The Status Register contents will repeat continuously until CS# terminate the instruction 5. Quad Data DQ0 = (D4, D0, …… ) DQ1 = (D5, D1, …… ) DQ2 = (D6, D2, …... ) DQ3 = (D7, D3, …... ) 6. The Device ID will repeat continuously until CS# terminates the instruction 7. The Manufacturer ID and Device ID bytes will repeat continuously until CS# terminates the instruction. 00h on Byte 4 starts with MID and alternate with DID, 01h on Byte 4 starts with DID and alternate with MID 8. (M7-M0) : Manufacturer, (ID15-ID8) : Memory Type, (ID7-ID0) : Memory Capacity This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 12 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Table 5B. Instruction Set (Read Instruction) Instruction Name Address bits OP Code Dummy bits / Clocks (Default) Data Out Read Data 03h 24 bits 0 (D7-D0, …) Fast Read 0Bh 24 bits 8 bits / 8 clocks (D7-D0, …) Dual Output Fast Read 3Bh 24 bits 8 bits / 8 clocks (D7-D0, …) Dual I/O Fast Read BBh 24 bits 8 bits / 4 clocks (D7-D0, …) Quad I/O Fast Read EBh 24 bits 24 bits / 6 clocks (D7-D0, …) Remark (Next Byte) continuous (Next Byte) continuous (one byte Per 4 clocks, continuous) (one byte Per 4 clocks, continuous) (one byte per 2 clocks, continuous) Table 5C. Instruction Set (Read Instruction support mode and dummy cycle setting) Instruction Name OP Code Start From SPI/QPI Dummy Cycle SPI QPI SPI QPI Read Data 03h Yes No N/A N/A Fast Read 0Bh Yes Yes 8 clocks 6 clocks Dual Output Fast Read 3Bh Yes No 8 clocks N/A Dual I/O Fast Read BBh Yes No 4 clocks N/A Quad I/O Fast Read EBh Yes Yes Quad Input/Output Fast Read Enhance Performance Mode EBh Yes Yes 6 clocks 6 clocks ( 2 clocks are performance enhance indicator) 6 clocks 6 clocks ( 2 clocks are performance enhance indicator) Note: 1. ‘Start From SPI/QPI' means if this command is initiated from SPI or QPI mode. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 13 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Table 6. Manufacturer and Device Identification OP Code (M7-M0) (ID15-ID0) ABh (ID7-ID0) 15h 90h 1Ch 9Fh 1Ch 15h 3016h Enable Quad Peripheral Interface mode (EQPI) (38h) The Enable Quad Peripheral Interface mode (EQPI) instruction will enable the flash device for Quad SPI bus operation. Upon completion of the instruction, all instructions thereafter will be 4-bit multiplexed input/output until a power cycle or “ Reset Quad I/O instruction “ instruction, as shown in Figure 6. The device did not support the Read Data Bytes (READ) (03h), Dual Output Fast Read (3Bh) and Dual Input/Output FAST_READ (BBh) and Quad Input Page Program (32h) modes while the Enable Quad Peripheral Interface mode (EQPI) (38h) turns on. Figure 6. Enable Quad Peripheral Interface mode Sequence Diagram Reset Quad I/O (RSTQIO) or Release Quad I/O Fast Read Enhancement Mode (FFh) The Reset Quad I/O instruction resets the device to 1-bit Standard SPI operation. To execute a Reset Quad I/O operation, the host drives CS# low, sends the Reset Quad I/O command cycle (FFh) then, drives CS# high. This command can’t be used in Standard SPI mode. User also can use the 0xFFh command to release the Quad I/O Fast Read Enhancement Mode. The detail description, please see the Quad I/O Fast Read Enhancement Mode section. Note: If the system is in the Quad I/O Fast Read Enhance Mode in QPI Mode, it is necessary to execute 0xFFh command by two times. The first 0xFFh command is to release Quad I/O Fast Read Enhance Mode, and the second 0xFFh command is to release QPI Mode. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 14 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Reset-Enable (RSTEN) (66h) and Reset (RST) (99h) The Reset operation is used as a system (software) reset that puts the device in normal operating Ready mode. This operation consists of two commands: Reset-Enable (RSTEN) and Reset (RST). To reset the EN25Q32C the host drives CS# low, sends the Reset-Enable command (66h), and drives CS# high. Next, the host drives CS# low again, sends the Reset command (99h), and drives CS# high. The Reset operation requires the Reset-Enable command followed by the Reset command. Any command other than the Reset command after the Reset-Enable command will disable the ResetEnable. A successful command execution will reset the Status register and the Information register to data = 00h, see Figure 7 for SPI Mode and Figure 7.1 for QPI Mode. A device reset during an active Program or Erase operation aborts the operation, which can cause the data of the targeted address range to be corrupted or lost. Depending on the prior operation, the reset timing may vary. Recovery from a Write operation requires more software latency time (tSR) than recovery from other operations. Please Figure 7.2. Figure 7. Reset-Enable and Reset Sequence Diagram Figure 7.1 Reset-Enable and Reset Sequence Diagram in QPI Mode Figure 7.2 Software Reset Recovery This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 15 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Software Reset Flow Initial Command = 66h ? No Yes Reset enable Command = 99h ? No Yes Reset start No WIP = 0 ? Embedded Reset Cycle Yes Reset done Note: 1. Reset-Enable (RSTEN) (66h) and Reset (RST) (99h) commands need to match standard SPI or QPI (Full Quad) mode. 2. Continue (Enhance) EB mode need to use quad Reset-Enable (RSTEN) (66h) and quad Reset (RST) (99h) commands. 3. If user is not sure it is in SPI or Quad mode, we suggest to execute sequence as follows: Quad Reset-Enable (RSTEN) (66h) -> Quad Reset (RST) (99h) -> SPI Reset-Enable (RSTEN) (66h) -> SPI Reset (RST) (99h) to reset. 4. The reset command could be executed during embedded program and erase process, QPI mode and Continue EB mode to back to SPI mode. 5. This flow cannot release the device from Deep power down mode. 6. The Status Register Bit and Information register Bit will reset to default value after reset done. 7. If user reset device during erase, the embedded reset cycle software reset latency will take about 28us in worst case. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 16 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Write Enable (WREN) (06h) The Write Enable (WREN) instruction (Figure 8) sets the Write Enable Latch (WEL) bit. The Write Enable Latch (WEL) bit must be set prior to every Page Program (PP), Sector Erase (SE), Half Block Erase (HBE), Block Erase (BE), Chip Erase (CE) and Write Status Register (WRSR) instruction. The Write Enable (WREN) instruction is entered by driving Chip Select (CS#) Low, sending the instruction code, and then driving Chip Select (CS#) High. The instruction sequence is shown in Figure 9.1 while using the Enable Quad Peripheral Interface mode (EQPI) (38h) command. Figure 8. Write Enable Instruction Sequence Diagram Write Disable (WRDI) (04h) The Write Disable instruction (Figure 9) resets the Write Enable Latch (WEL) bit in the Status Register to a 0 or exit from OTP mode to normal mode. The Write Disable instruction is entered by driving Chip Select (CS#) low, shifting the instruction code “04h” into the DI pin and then driving Chip Select (CS#) high. Note that the WEL bit is automatically reset after Power-up and upon completion of the Write Status Register, Page Program, Sector Erase, Half Block Erase (HBE), Block Erase (BE) and Chip Erase instructions. The instruction sequence is shown in Figure 9.1 while using the Enable Quad Peripheral Interface mode (EQPI) (38h) command. Figure 9. Write Disable Instruction Sequence Diagram This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 17 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 9.1 Write Enable/Disable Instruction Sequence in QPI Mode Read Status Register (RDSR) (05h) The Read Status Register (RDSR) instruction allows the Status Register to be read. The Status Register may be read at any time, even while a Program, Erase or Write Status Register cycle is in progress. When one of these cycles is in progress, it is recommended to check the Write In Progress (WIP) bit before sending a new instruction to the device. It is also possible to read the Status Register continuously, as shown in Figure 10. The instruction sequence is shown in Figure 10.1 while using the Enable Quad Peripheral Interface mode (EQPI) (38h) command. Figure 10. Read Status Register Instruction Sequence Diagram This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 18 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 10.1 Read Status Register Instruction Sequence in QPI Mode Table 7. Status Register Bit Locations S7 SRP bit S6 OTP_LOCK WPDIS bit bit S5 TB bit BP3 bit S4 4KB BL bit BP2 bit (4KB boot lock) S3 S2 S1 S0 BP0 bit WEL bit WIP bit EBL bit BP1 bit (Enable boot lock) Table 7. 1 Status Register Bit Locations (In Normal mode) S7 S6 S5 BP3 S4 BP2 S3 BP1 S2 BP0 SRP Status Register Protect (WP# disable) (Block Protected bits) (Block Protected bits) (Block Protected bits) (Block Protected bits) 1 = status register write disable 1 = WP# disable 0 = WP# enable (note 2) (note 2) (note 2) Non-volatile bit Non-volatile bit Non-volatile bit Non-volatile bit Non-volatile bit WPDIS S1 S0 WEL bit (Write Enable Latch) WIP bit (Write In Progress bit) (note 2) 1 = write enable 0 = not write enable 1 = write operation 0 = not in write operation Non-volatile bit Read only bit Read only bit This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 19 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Table 7.2 Status Register Bit Locations (In OTP mode) S7 S6 OTP_LOCK bit TB bit (Top / Bottom Protect) 1 = OTP sector is protected 1 = Bottom 0 = Top (default 0) OTP bit S5 none S4 S3 4KB BL bit (4KB boot lock) EBL bit (Enable boot lock) 1 = Sector 0 = 64KB Block (default 0) 1 = Permanent lock selected 64KBBlock/Sector S2 none S1 S0 WEL bit (Write Enable Latch) WIP bit (Write In Progress bit) 1 = write enable 0 = not write enable 1 = write operation 0 = not in write operation Read only bit Read only bit OTP bit OTP bit OTP bit Note 1. In OTP mode, S7 bit is served as OTP_LOCK bit; S6 bit is served as TB bit; S4 bit is served as 4KB BL bit; S3 bit is served as EBL bit; S1 bit is served as WEL bit and S0 bit is served as WIP bit. 2. See the table 3 “Protected Area Sizes Sector Organization”. The status and control bits of the Status Register are as follows: WIP bit. The Write In Progress (WIP) bit indicates whether the memory is busy with a Write Status Register, Program or Erase cycle. When set to 1, such a cycle is in progress, when reset to 0 no such cycle is in progress. WEL bit. The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch. When set to 1 the internal Write Enable Latch is set, when set to 0 the internal Write Enable Latch is reset and no Write Status Register, Program or Erase instruction is accepted. BP3, BP2, BP1, BP0 bits. The Block Protect (BP3, BP2, BP1, BP0) bits are non-volatile. They define the size of the area to be software protected against Program and Erase instructions. These bits are written with the Write Status Register (WRSR) instruction. When one or both of the Block Protect (BP3, BP2, BP1, BP0) bits is set to 1, the relevant memory area (as defined in Table 3.) becomes protected against Page Program (PP) Sector Erase (SE) and , Block Erase (BE), instructions. The Block Protect (BP3, BP2, BP1, BP0) bits can be written provided that the Hardware Protected mode has not been set. The Chip Erase (CE) instruction is executed if, and only if, all Block Protect (BP3, BP2, BP1, BP0) bits are 0. WPDIS bit. The Write Protect disable (WPDIS) bit, non-volatile bit, when it is reset to “0” (factory default) to enable WP# function or is set to “1” to disable WP# function. No matter WPDIS is “0" or “ 1 " , the system can executes Quad Input/Output FAST_READ (EBh) or EQPI (38h) command directly. User can use Flash Programmer to set WPDIS bit as “1" and then the host system can let WP# keep floating in SPI mode. SRP bit / The Status Register Protect (SRP) bit is operated in conjunction with the Write Protect (WP#) signal. The Status Register Write Protect (SRP) bit and Write Protect (WP#) signal allow the device to be put in the Hardware Protected mode (when the Status Register Protect (SRP) bit is set to 1, and Write Protect (WP#) is driven Low). In this mode, the non-volatile bits of the Status Register (SRP, BP3, BP2, BP1, BP0) become read-only bits and the Write Status Register (WRSR) instruction is no longer accepted for execution. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 20 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C In OTP mode, S7, S6, S4, S3, S1 and S0 are served as OTP_Lock Bit, TB bit, 4KB BL bit, EBL, WEL and WIP bit. Enable Boot Lock bit (S.3) When this bit is programmed to ‘1’ by WRSR command in OTP mode, the Top/Bottom switch bit and 64KB-Block/Sector switch bit and the selected sector/block will be permanent locked. The Enable Boot Lock bit can only be programmed once. 64KB-Block/Sector switch bit (S4) This bit is set by WRSR command in OTP mode. It is used to set the protection area size as block (64KB) or sector (4KB). Top/Bottom switch bit (S.6) This bit is set by WRSR command in OTP mode. It is used to set the protected 64KB-Block/Sector location to the top/bottom in the device. OTP_LOCK bit. (S.7) This bit is served as OTP_LOCK bit, user can read/program/erase OTP sector as normal sector while OTP_LOCK value is equal 0, after OTP_LOCK is programmed with 1 by WRSR command, the OTP sector is protected from program and erase operation. The OTP_LOCK bit can only be programmed once. Write Status Register (WRSR) (01h) The Write Status Register (WRSR) instruction allows new values to be written to the Status Register. Before it can be accepted, a Write Enable (WREN) instruction must previously have been executed. After the Write Enable (WREN) instruction has been decoded and executed, the device sets the Write Enable Latch (WEL). The Write Status Register (WRSR) instruction is entered by driving Chip Select (CS#) Low, followed by the instruction code and the data byte on Serial Data Input (DI). The instruction sequence is shown in Figure 11. The Write Status Register (WRSR) instruction has no effect on S1 and S0 of the Status Register. Chip Select (CS#) must be driven High after the eighth bit of the data byte has been latched in. If not, the Write Status Register (WRSR) instruction is not executed. As soon as Chip Select (CS#) is driven High, the self-timed Write Status Register cycle (whose duration is tW) is initiated. While the Write Status Register cycle is in progress, the Status Register may still be read to check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1 during the self-timed Write Status Register cycle, and is 0 when it is completed. When the cycle is completed, the Write Enable Latch (WEL) is reset. The Write Status Register (WRSR) instruction allows the user to change the values of the Block Protect (BP3, BP2, BP1, BP0) bits, to define the size of the area that is to be treated as read-only, as defined in Table 3. The Write Status Register (WRSR) instruction also allows the user to set or reset the Status Register Protect (SRP) bit in accordance with the Write Protect (WP#) signal. The Status Register Protect (SRP) bit and Write Protect (WP#) signal allow the device to be put in the Hardware Protected Mode (HPM). The Write Status Register (WRSR) instruction is not executed once the Hardware Protected Mode (HPM) is entered. The instruction sequence is shown in Figure 11.1 while using the Enable Quad Peripheral Interface mode (EQPI) (38h) command. NOTE : In the OTP mode, WRSR command is used to program OTP_LOCK bit, TB bit, 4KB BL bit and EBL bit to ‘1‘, but these bits only can be programmed once. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 21 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 11. Write Status Register Instruction Sequence Diagram Figure 11.1 Write Status Register Instruction Sequence in QPI Mode This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 22 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Read Data Bytes (READ) (03h) The device is first selected by driving Chip Select (CS#) Low. The instruction code for the Read Data Bytes (READ) instruction is followed by a 3-byte address (A23-A0), each bit being latched-in during the rising edge of Serial Clock (CLK). Then the memory contents, at that address, is shifted out on Serial Data Output (DO), each bit being shifted out, at a maximum frequency fR, during the falling edge of Serial Clock (CLK). The instruction sequence is shown in Figure 12. The first byte addresses can be at any location. The address is automatically incremented to the next higher address after each byte of data is shifted out. The whole memory can, therefore, be read with a single Read Data Bytes (READ) instruction. When the highest address is reached, the address counter rolls over to 000000h, allowing the read sequence to be continued indefinitely. The Read Data Bytes (READ) instruction is terminated by driving Chip Select (CS#) High. Chip Select (CS#) can be driven High at any time during data output. Any Read Data Bytes (READ) instruction, while an Erase, Program or Write cycle is in progress, is rejected without having any effects on the cycle that is in progress. Figure 12. Read Data Instruction Sequence Diagram This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 23 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Read Data Bytes at Higher Speed (FAST_READ) (0Bh) The device is first selected by driving Chip Select (CS#) Low. The instruction code for the Read Data Bytes at Higher Speed (FAST_READ) instruction is followed by a 3-byte address (A23-A0) and a dummy byte, each bit being latched-in during the rising edge of Serial Clock (CLK). Then the memory contents, at that address, is shifted out on Serial Data Output (DO), each bit being shifted out, at a maximum frequency FR, during the falling edge of Serial Clock (CLK). The instruction sequence is shown in Figure 13. The first byte addressed can be at any location. The address is automatically incremented to the next higher address after each byte of data is shifted out. The whole memory can, therefore, be read with a single Read Data Bytes at Higher Speed (FAST_READ) instruction. When the highest address is reached, the address counter rolls over to 000000h, allowing the read sequence to be continued indefinitely. The Read Data Bytes at Higher Speed (FAST_READ) instruction is terminated by driving Chip Select (CS#) High. Chip Select (CS#) can be driven High at any time during data output. Any Read Data Bytes at Higher Speed (FAST_READ) instruction, while an Erase, Program or Write cycle is in progress, is rejected without having any effects on the cycle that is in progress. The instruction sequence is shown in Figure 13.1 while using the Enable Quad Peripheral Interface mode (EQPI) (38h) command. Figure 13. Fast Read Instruction Sequence Diagram This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 24 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 13.1 Fast Read Instruction Sequence in QPI Mode Dual Output Fast Read (3Bh) The Dual Output Fast Read (3Bh) is similar to the standard Fast Read (0Bh) instruction except that data is output on two pins, DQ0 and DQ1, instead of just DQ0. This allows data to be transferred from the EN25Q32C at twice the rate of standard SPI devices. The Dual Output Fast Read instruction is ideal for quickly downloading code from to RAM upon power-up or for applications that cache codesegments to RAM for execution. Similar to the Fast Read instruction, the Dual Output Fast Read instruction can operation at the highest possible frequency of FR (see AC Electrical Characteristics). This is accomplished by adding eight “dummy clocks after the 24-bit address as shown in Figure 14. The dummy clocks allow the device’s internal circuits additional time for setting up the initial address. The input data during the dummy clock is “don’t care”. However, the DI pin should be high-impedance prior to the falling edge of the first data out clock. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 25 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 14. Dual Output Fast Read Instruction Sequence Diagram Dual Input / Output FAST_READ (BBh) The Dual I/O Fast Read (BBh) instruction allows for improved random access while maintaining two IO pins, DQ0 and DQ1. It is similar to the Dual Output Fast Read (3Bh) instruction but with the capability to input the Address bits (A23-A0) two bits per clock. This reduced instruction overhead may allow for code execution (XIP) directly from the Dual SPI in some applications. The Dual I/O Fast Read instruction enable double throughput of Serial Flash in read mode. The address is latched on rising edge of CLK, and data of every two bits (interleave 2 I/O pins) shift out on the falling edge of CLK at a maximum frequency. The first address can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single Dual I/O Fast Read instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing Dual I/O Fast Read instruction, the following address/dummy/data out will perform as 2-bit instead of previous 1-bit, as shown in Figure 15. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 26 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 15. Dual Input / Output Fast Read Instruction Sequence Diagram This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 27 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Quad Input / Output FAST_READ (EBh) The Quad Input/Output FAST_READ (EBh) instruction is similar to the Dual I/O Fast Read (BBh) instruction except that address and data bits are input and output through four pins, DQ0, DQ1, DQ2 and DQ3 and six dummy clocks are required prior to the data output. The Quad I/O dramatically reduces instruction overhead allowing faster random access for code execution (XIP) directly from the Quad SPI. The Quad Input/Output FAST_READ (EBh) instruction enable quad throughput of Serial Flash in read mode. The address is latching on rising edge of CLK, and data of every four bits (interleave on 4 I/O pins) shift our on the falling edge of CLK at a maximum frequency FR. The first address can be any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single Quad Input/Output FAST_READ instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing Quad Input/Output FAST_READ instruction, the following address/dummy/data out will perform as 4-bit instead of previous 1-bit. The sequence of issuing Quad Input/Output FAST_READ (EBh) instruction is: CS# goes low -> sending Quad Input/Output FAST_READ (EBh) instruction -> 24-bit address interleave on DQ3, DQ2, DQ1 and DQ0 -> 6 dummy cycles -> data out interleave on DQ3, DQ2, DQ1 and DQ0 -> to end Quad Input/Output FAST_READ (EBh) operation can use CS# to high at any time during data out, as shown in Figure 16. The instruction sequence is shown in Figure 16.1 while using the Enable Quad Peripheral Interface mode (EQPI) (38h) command. Figure 16. Quad Input / Output Fast Read Instruction Sequence Diagram This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 28 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 16.1. Quad Input / Output Fast Read Instruction Sequence in QPI Mode Another sequence of issuing Quad Input/Output FAST_READ (EBh) instruction especially useful in random access is : CS# goes low -> sending Quad Input/Output FAST_READ (EBh) instruction -> 24bit address interleave on DQ3, DQ2, DQ1 and DQ0 -> performance enhance toggling bit P[7:0] -> 4 dummy cycles -> data out interleave on DQ3, DQ2, DQ1 and DQ0 till CS# goes high -> CS# goes low (reduce Quad Input/Output FAST_READ (EBh) instruction) -> 24-bit access address, as shown in Figure 17. In the performance – enhancing mode, P[7:4] must be toggling with P[3:0] ; likewise P[7:0] = A5h, 5Ah, F0h or 0Fh can make this mode continue and reduce the next Quad Input/Output FAST_READ (EBh) instruction. Once P[7:4] is no longer toggling with P[3:0] ; likewise P[7:0] = FFh, 00h, AAh or 55h. And afterwards CS# is raised, the system then will escape from performance enhance mode and return to normal operation. While Program/ Erase/ Write Status Register is in progress, Quad Input/Output FAST_READ (EBh) instruction is rejected without impact on the Program/ Erase/ Write Status Register current cycle. The instruction sequence is shown in Figure 17.1 while using the Enable Quad Peripheral Interface mode (EQPI) (38h) command. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 29 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 17. Quad Input/Output Fast Read Enhance Performance Mode Sequence Diagram This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 30 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 17.1 Quad Input/Output Fast Read Enhance Performance Mode Sequence in QPI Mode This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 31 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Page Program (PP) (02h) The Page Program (PP) instruction allows bytes to be programmed in the memory. Before it can be accepted, a Write Enable (WREN) instruction must previously have been executed. After the Write Enable (WREN) instruction has been decoded, the device sets the Write Enable Latch (WEL). The Page Program (PP) instruction is entered by driving Chip Select (CS#) Low, followed by the instruction code, three address bytes and at least one data byte on Serial Data Input (DI). If the 8 least significant address bits (A7-A0) are not all zero, all transmitted data that goes beyond the end of the current page are programmed from the start address of the same page (from the address whose 8 least significant bits (A7-A0) are all zero). Chip Select (CS#) must be driven Low for the entire duration of the sequence. The instruction sequence is shown in Figure 18. If more than 256 bytes are sent to the device, previously latched data are discarded and the last 256 data bytes are guaranteed to be programmed correctly within the same page. If less than 256 Data bytes are sent to device, they are correctly programmed at the requested addresses without having any effects on the other bytes of the same page. Chip Select (CS#) must be driven High after the eighth bit of the last data byte has been latched in, otherwise the Page Program (PP) instruction is not executed. As soon as Chip Select (CS#) is driven High, the self-timed Page Program cycle (whose duration is tPP) is initiated. While the Page Program cycle is in progress, the Status Register may be read to check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1 during the self-timed Page Program cycle, and is 0 when it is completed. At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset. A Page Program (PP) instruction applied to a page which is protected by the Block Protect (BP3, BP2, BP1, BP0) bits (see Table 3) is not executed. The instruction sequence is shown in Figure 18.1 while using the Enable Quad Peripheral Interface mode (EQPI) (38h) command. Figure 18. Page Program Instruction Sequence Diagram This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 32 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 18.1 Program Instruction Sequence in QPI Mode Sector Erase (SE) (20h) The Sector Erase (SE) instruction sets to 1 (FFh) all bits inside the chosen sector. Before it can be accepted, a Write Enable (WREN) instruction must previously have been executed. After the Write Enable (WREN) instruction has been decoded, the device sets the Write Enable Latch (WEL). The Sector Erase (SE) instruction is entered by driving Chip Select (CS#) Low, followed by the instruction code, and three address bytes on Serial Data Input (DI). Any address inside the Sector (see Table 2) is a valid address for the Sector Erase (SE) instruction. Chip Select (CS#) must be driven Low for the entire duration of the sequence. The instruction sequence is shown in Figure 19. Chip Select (CS#) must be driven High after the eighth bit of the last address byte has been latched in, otherwise the Sector Erase (SE) instruction is not executed. As soon as Chip Select (CS#) is driven High, the self-timed Sector Erase cycle (whose duration is tSE) is initiated. While the Sector Erase cycle is in progress, the Status Register may be read to check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1 during the self-timed Sector Erase cycle, and is 0 when it is completed. At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset. A Sector Erase (SE) instruction applied to a sector which is protected by the Block Protect (BP3, BP2, BP1, BP0) bits (see Table 3) is not executed. The instruction sequence is shown in Figure 21.1 while using the Enable Quad Peripheral Interface mode (EQPI) (38h) command. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 33 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 19. Sector Erase Instruction Sequence Diagram 32KB Half Block Erase (HBE) (52h) The Half Block Erase (HBE) instruction sets to 1 (FFh) all bits inside the chosen block. Before it can be accepted, a Write Enable (WREN) instruction must previously have been executed. After the Write Enable (WREN) instruction has been decoded, the device sets the Write Enable Latch (WEL). The Half Block Erase (HBE) instruction is entered by driving Chip Select (CS#) Low, followed by the instruction code, and three address bytes on Serial Data Input (DI). Any address inside the Block (see Table 2) is a valid address for the Half Block Erase (HBE) instruction. Chip Select (CS#) must be driven Low for the entire duration of the sequence. The instruction sequence is shown in Figure 20. Chip Select (CS#) must be driven High after the eighth bit of the last address byte has been latched in, otherwise the Half Block Erase (HBE) instruction is not executed. As soon as Chip Select (CS#) is driven High, the self-timed Half Block Erase cycle (whose duration is tHBE) is initiated. While the Block Erase cycle is in progress, the Status Register may be read to check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1 during the self-timed Half Block Erase cycle, and is 0 when it is completed. At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset. A Half Block Erase (HBE) instruction applied to a block which is protected by the Block Protect (BP3, BP2, BP1, BP0) bits (see Table 3) is not executed. The instruction sequence is shown in Figure 21.1 while using the Enable Quad Peripheral Interface mode (EQPI) (38h) command. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 34 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 20. 32KB Half Block Erase Instruction Sequence Diagram 64KB Block Erase (BE) (D8h) The Block Erase (BE) instruction sets to 1 (FFh) all bits inside the chosen block. Before it can be accepted, a Write Enable (WREN) instruction must previously have been executed. After the Write Enable (WREN) instruction has been decoded, the device sets the Write Enable Latch (WEL). The Block Erase (BE) instruction is entered by driving Chip Select (CS#) Low, followed by the instruction code, and three address bytes on Serial Data Input (DI). Any address inside the Block (see Table 2) is a valid address for the Block Erase (BE) instruction. Chip Select (CS#) must be driven Low for the entire duration of the sequence. The instruction sequence is shown in Figure 21. Chip Select (CS#) must be driven High after the eighth bit of the last address byte has been latched in, otherwise the Block Erase (BE) instruction is not executed. As soon as Chip Select (CS#) is driven High, the self-timed Block Erase cycle (whose duration is tBE) is initiated. While the Block Erase cycle is in progress, the Status Register may be read to check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1 during the selftimed Block Erase cycle, and is 0 when it is completed. At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset. A Block Erase (BE) instruction applied to a block which is protected by the Block Protect (BP3, BP2, BP1, BP0) bits (see Table 3) is not executed. The instruction sequence is shown in Figure 21.1 while using the Enable Quad Peripheral Interface mode (EQPI) (38h) command. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 35 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 21. 64KB Block Erase Instruction Sequence Diagram Figure 21.1 Half Block/Block/Sector Erase Instruction Sequence in QPI Mode This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 36 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Chip Erase (CE) (C7h/60h) The Chip Erase (CE) instruction sets all bits to 1 (FFh). Before it can be accepted, a Write Enable (WREN) instruction must previously have been executed. After the Write Enable (WREN) instruction has been decoded, the device sets the Write Enable Latch (WEL). The Chip Erase (CE) instruction is entered by driving Chip Select (CS#) Low, followed by the instruction code on Serial Data Input (DI). Chip Select (CS#) must be driven Low for the entire duration of the sequence. The instruction sequence is shown in Figure 22. Chip Select (CS#) must be driven High after the eighth bit of the instruction code has been latched in, otherwise the Chip Erase instruction is not executed. As soon as Chip Select (CS#) is driven High, the self-timed Chip Erase cycle (whose duration is tCE) is initiated. While the Chip Erase cycle is in progress, the Status Register may be read to check the value of the Write In Progress (WIP) bit. The Write In Progress (WIP) bit is 1 during the self-timed Chip Erase cycle, and is 0 when it is completed. At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset. The Chip Erase (CE) instruction is executed only if all Block Protect (BP3, BP2, BP1, BP0) bits are 0. The Chip Erase (CE) instruction is ignored if one, or more blocks are protected. The instruction sequence is shown in Figure 22.1 while using the Enable Quad Peripheral Interface mode (EQPI) (38h) command. Figure 22. Chip Erase Instruction Sequence Diagram This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 37 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 22.1 Chip Erase Sequence in QPI Mode Deep Power-down (DP) (B9h) Executing the Deep Power-down (DP) instruction is the only way to put the device in the lowest consumption mode (the Deep Power-down mode). It can also be used as an extra software protection mechanism, while the device is not in active use, since in this mode, the device ignores all Write, Program and Erase instructions. Driving Chip Select (CS#) High deselects the device, and puts the device in the Standby mode (if there is no internal cycle currently in progress). But this mode is not the Deep Power-down mode. The Deep Power-down mode can only be entered by executing the Deep Power-down (DP) instruction, to reduce the standby current (from ICC1 to ICC2, as specified in Table 13.) Once the device has entered the Deep Power-down mode, all instructions are ignored except the Release from Deep Power-down and Read Device ID (RDI) instruction. This releases the device from this mode. The Release from Deep Power-down and Read Device ID (RDI) instruction also allows the Device ID of the device to be output on Serial Data Output (DO). The Deep Power-down mode automatically stops at Power-down, and the device always Powers-up in the Standby mode. The Deep Power-down (DP) instruction is entered by driving Chip Select (CS#) Low, followed by the instruction code on Serial Data Input (DI). Chip Select (CS#) must be driven Low for the entire duration of the sequence. The instruction sequence is shown in Figure 23. Chip Select (CS#) must be driven High after the eighth bit of the instruction code has been latched in, otherwise the Deep Power-down (DP) instruction is not executed. As soon as Chip Select (CS#) is driven High, it requires a delay of tDP before the supply current is reduced to ICC2 and the Deep Power-down mode is entered. Any Deep Power-down (DP) instruction, while an Erase, Program or Write cycle is in progress, is rejected without having any effects on the cycle that is in progress. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 38 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 23. Deep Power-down Instruction Sequence Diagram Release from Deep Power-down and Read Device ID (RDI) Once the device has entered the Deep Power-down mode, all instructions are ignored except the Release from Deep Power-down and Read Device ID (RDI) instruction. Executing this instruction takes the device out of the Deep Power-down mode. Please note that this is not the same as, or even a subset of, the JEDEC 16-bit Electronic Signature that is read by the Read Identifier (RDID) instruction. The old-style Electronic Signature is supported for reasons of backward compatibility, only, and should not be used for new designs. New designs should, instead, make use of the JEDEC 16-bit Electronic Signature, and the Read Identifier (RDID) instruction. When used only to release the device from the power-down state, the instruction is issued by driving the CS# pin low, shifting the instruction code “ABh” and driving CS# high as shown in Figure 24. After the time duration of tRES1 (See AC Characteristics) the device will resume normal operation and other instructions will be accepted. The CS# pin must remain high during the tRES1 time duration. When used only to obtain the Device ID while not in the power-down state, the instruction is initiated by driving the CS# pin low and shifting the instruction code “ABh” followed by 3-dummy bytes. The Device ID bits are then shifted out on the falling edge of CLK with most significant bit (MSB) first as shown in Figure 25. The Device ID value for the EN25Q32C are listed in Table 6. The Device ID can be read continuously. The instruction is completed by driving CS# high. When Chip Select (CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the Deep Power-down mode, the transition to the Stand-by Power mode is immediate. If the device was previously in the Deep Power-down mode, though, the transition to the Standby Power mode is delayed by tRES2, and Chip Select (CS#) must remain High for at least tRES2 (max), as specified in Table 15. Once in the Stand-by Power mode, the device waits to be selected, so that it can receive, decode and execute instructions. Except while an Erase, Program or Write Status Register cycle is in progress, the Release from Deep Power-down and Read Device ID (RDI) instruction always provides access to the 8bit Device ID of the device, and can be applied even if the Deep Power-down mode has not been entered. Any Release from Deep Power-down and Read Device ID (RDI) instruction while an Erase, Program or Write Status Register cycle is in progress, is not decoded, and has no effect on the cycle that is in progress. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 39 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 24. Release Power-down Instruction Sequence Diagram Figure 25. Release Power-down / Device ID Instruction Sequence Diagram Read Manufacturer / Device ID (90h) The Read Manufacturer/Device ID instruction is an alternative to the Release from Power-down / Device ID instruction that provides both the JEDEC assigned manufacturer ID and the specific device ID. The Read Manufacturer/Device ID instruction is very similar to the Release from Power-down / Device ID instruction. The instruction is initiated by driving the CS# pin low and shifting the instruction code “90h” followed by a 24-bit address of 000000h. After which, the Manufacturer ID for Eon (1Ch) and the Device ID are shifted out on the falling edge of CLK with most significant bit (MSB) first as shown in Figure 26. The Device ID values for the EN25Q32C are listed in Table 6. If the 24-bit address is initially set to 000001h the Device ID will be read first The instruction sequence is shown in Figure 26.1 while using the Enable Quad Peripheral Interface mode (EQPI) (38h) command. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 40 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 26. Read Manufacturer / Device ID Diagram Figure 26.1. Read Manufacturer / Device ID Diagram in QPI Mode This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 41 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Read Identification (RDID) (9Fh) The Read Identification (RDID) instruction allows the 8-bit manufacturer identification to be read, followed by two bytes of device identification. The device identification indicates the memory type in the first byte , and the memory capacity of the device in the second byte . Any Read Identification (RDID) instruction while an Erase or Program cycle is in progress, is not decoded, and has no effect on the cycle that is in progress. The Read Identification (RDID) instruction should not be issued while the device is in Deep Power down mode. The device is first selected by driving Chip Select Low. Then, the 8-bit instruction code for the instruction is shifted in. This is followed by the 24-bit device identification, stored in the memory, being shifted out on Serial Data Output, each bit being shifted out during the falling edge of Serial Clock. The instruction sequence is shown in Figure 27. The Read Identification (RDID) instruction is terminated by driving Chip Select High at any time during data output. When Chip Select is driven High, the device is put in the Standby Power mode. Once in the Standby Power mode, the device waits to be selected, so that it can receive, decode and execute instructions. The instruction sequence is shown in Figure 27.1 while using the Enable Quad Peripheral Interface mode (EQPI) (38h) command. Figure 27. Read Identification (RDID) This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 42 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 27.1. Read Identification (RDID) in QPI Mode Enter OTP Mode (3Ah) This Flash support OTP mode to enhance the data protection, user can use the Enter OTP mode (3Ah) command for entering this mode. In OTP mode, the Status Register S7 bit is served as OTP_LOCK bit; S6 bit is served as TB bit; S4 bit is served as 4KB BL bit, S3 bit is served as EBL bit, S1 bit is served as WEL bit and S0 bit is served as WIP bit. They can be read by RDSR command. This Flash has an extra 512 bytes OTP sector, user must issue ENTER OTP MODE command to read, program or erase OTP sector. After entering OTP mode, the OTP sector is mapping to sector 1023, SRP bit becomes OTP_LOCK bit. The Chip Erase, Block Erase and Half Block Erase commands are also disabled. In OTP mode, user can read other sectors, but program/erase other sectors only allowed when OTP_LOCK bit equal to ‘0’. The OTP sector can only be erased by Sector Erase (20h) command. Table 8. OTP Sector Address Sector Sector Size Address Range 1023 512 byte 3FF000h – 3FF1FFh Note: The OTP sector is mapping to sector 1023. The Enable Boot Lock feature is configured in OTP mode. It enables user to lock the 64KBBlock/Sector on the top/bottom of the device for protection. This feature is activated by programming the EBL bit to ‘1‘. WRSR command is used to program OTP_LOCK bit, TB bit, 4KB BL bit and EBL bit to ‘1‘, but these bits only can be programmed once. User can use WRDI (04h) command to exit OTP mode. The instruction sequence is shown in Figure 29.1 while using the Enable Quad Peripheral Interface mode (EQPI) (38h) command. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 43 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 28. Enter OTP Mode Sequence Figure 28.1 Enter OTP Mode Sequence in QPI Mode This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 44 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Read SFDP Mode and Unique ID Number (5Ah) Read SFDP Mode EN25Q32C features Serial Flash Discoverable Parameters (SFDP) mode. Host system can retrieve the operating characteristics, structure and vendor specified information such as identifying information, memory size, operating voltage and timing information of this device by SFDP mode. The device is first selected by driving Chip Select (CS#) Low. The instruction code for the Read SFDP Mode is followed by a 3-byte address (A23-A0) and a dummy byte, each bit being latched-in during the rising edge of Serial Clock (CLK). Then the memory contents, at that address, is shifted out on Serial Data Output (DO), each bit being shifted out, at a maximum frequency FR, during the falling edge of Serial Clock (CLK). The instruction sequence is shown in Figure 29. The first byte addressed can be at any location. The address is automatically incremented to the next higher address after each byte of data is shifted out. The whole memory can, therefore, be read with a single Serial Flash Discoverable Parameters (SFDP) instruction. When the highest address is reached, the address counter rolls over to 0x00h, allowing the read sequence to be continued indefinitely. The Serial Flash Discoverable Parameters (SFDP) instruction is terminated by driving Chip Select (CS#) High. Chip Select (CS#) can be driven High at any time during data output. Any Read Data Bytes at Serial Flash Discoverable Parameters (SFDP) instruction, while an Erase, Program or Write cycle is in progress, is rejected without having any effects on the cycle that is in progress. Figure 29. Read SFDP Mode and Unique ID Number Instruction Sequence Diagram This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 45 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Table 9. Serial Flash Discoverable Parameters (SFDP) Signature and Parameter Identification Data Value (Advanced Information) Description SFDP Signature SFDP Minor Revision Number SFDP Major Revision Number Number of Parameter Headers (NPH) Unused ID Number Parameter Table Minor Revision Number Parameter Table Major Revision Number Parameter Table Length (in DW) Parameter Table Pointer (PTP) Unused Address (h) Address (Bit) (Byte Mode) Data Comment 00h 01h 02h 03h 04h 05h 06h 07h 08h 07 : 00 15 : 08 23 : 16 31 : 24 07 : 00 15 : 08 23 : 16 31 : 24 07 : 00 53h 46h 44h 50h 00h 01h 00h FFh 00h Star from 0x00 Star from 0x01 1 parameter header Reserved JEDEC ID 09h 15 : 08 00h Star from 0x00 0Ah 23 : 16 01h Star from 0x01 0Bh 0Ch 0Dh 0Eh 0Fh 31 : 24 07 : 00 15 : 08 23 : 16 31 : 24 09h 30h 00h 00h FFh 9 DWORDs This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 46 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 Signature [31:0]: Hex: 50444653 000030h Reserved www.eonssi.com EN25Q32C Table 10. Parameter ID (0) (Advanced Information) 1/9 Description Address (h) (Byte Mode) Address (Bit) Block / Sector Erase sizes Identifies the erase granularity for all Flash Components 00 Write Granularity Write Enable Instruction Required for Writing to Volatile Status Register Write Enable Opcode Select for Writing to Volatile Status Register 02 30h 01b 1b 0 = No, 1 = Yes 00b 00 = N/A 01 = use 50h opcode 11 = use 06h opcode 03 04 31h Supports (1-1-2) Fast Read Device supports single input opcode & address and dual output data Fast Read 05 06 07 08 09 10 11 12 13 14 15 111b 4 KB Erase Support (FFh = not supported) 1b 0 = not supported 1 = supported 00b 00 = 3-Byte 01 = 3- or 4-Byte (e.g. defaults to 3-Byte mode; enters 4-Byte mode on command) 10 = 4-Byte 11 = reserved 19 0b 0 = not supported 1 = supported 20 1b 0 = not supported 1 = supported 21 1b 0 = not supported 1 = supported 22 0b 0 = not supported 1 = supported 23 24 1b Reserved FFh Reserved 17 Supports Double Transfer Rate (DTR) Clocking Indicates the device supports some type of double transfer rate clocking. Supports (1-2-2) Fast Read Device supports single input opcode, dual input address, and dual output data Fast Read Supports (1-4-4) Fast Read Device supports single input opcode, quad input address, and quad output data Fast Read Supports (1-1-4) Fast Read Device supports single input opcode & address and quad output data Fast Read Unused 18 32h Reserved 20h 16 Address Byte Number of bytes used in addressing for flash arra write and erase. Comment 00 = reserved 01 = 4KB erase 10 = reserved 11 = 64KB erase 01 Unused 4 Kilo-Byte Erase Opcode Data 25 26 Unused 33h 27 28 29 30 31 This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 47 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Table 10. Parameter ID (0) (Advanced Information) 2/9 Description Flash Memory Density Address (h) (Byte Mode) 37h : 34h Address (Bit) 31 : 00 Data Comment 01FFFFFFh 32 Mbits Data Comment 00100b 4 dummy clocks 010b 8 mode bits Table 10. Parameter ID (0) (Advanced Information) 3/9 Description (1-4-4) Fast Read Number of Wait states (dummy clocks) needed before valid output Address (h) (Byte Mode) 38h Quad Input Address Quad Output (1-44) Fast Read Number of Mode Bits (1-4-4) Fast Read Opcode Opcode for single input opcode, quad input address, and quad output data Fast Read. (1-1-4) Fast Read Number of Wait states (dummy clocks) needed before valid output 39h 3Ah (1-1-4) Fast Read Number of Mode Bits (1-1-4) Fast Read Opcode Opcode for single input opcode & address and quad output data Fast Read. 3Bh Address (Bit) 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 31 : 24 EBh 00000b Not Supported 000b Not Supported FFh Not Supported This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 48 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Table 10. Parameter ID (0) (Advanced Information) 4/9 Description (1-1-2) Fast Read Number of Wait states (dummy clocks) needed before valid output Address (h) (Byte Mode) 3Ch (1-1-2) Fast Read Number of Mode Bits (1-1-2) Fast Read Opcode Opcode for single input opcode & address and dual output data Fast Read. (1-2-2) Fast Read Number of Wait states (dummy clocks) needed before valid output 3Dh 15 : 08 3Eh 16 17 18 19 20 21 22 23 (1-2-2) Fast Read Number of Mode Bits (1-2-2) Fast Read Opcode Opcode for single input opcode, dual input address, and dual output data Fast Read. Address (Bit) 00 01 02 03 04 05 06 07 3Fh Data Comment 01000b 8 dummy clocks 000b Not Supported 3Bh 00100b 4 dummy clocks 000b Not Supported 31 : 24 BBh Address (Bit) Data Supports (2-2-2) Fast Read Device supports dual input opcode & address and dual output data Fast Read. 00 0b Reserved. These bits default to all 1’s 01 02 03 111b 04 1b Table 10. Parameter ID (0) (Advanced Information) 5/9 Description Supports (4-4-4) Fast Read Device supports Quad input opcode & address and quad output data Fast Read. Address (h) (Byte Mode) 40h Reserved. These bits default to all 1’s Reserved. These bits default to all 1’s 43h : 41h 05 06 07 31 : 08 Comment 0 = not supported 1 = supported Reserved 0 = not supported 1 = supported (QPI Mode) 111b Reserved FFh Reserved This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 49 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Table 10. Parameter ID (0) (Advanced Information) 6/9 Description Reserved. These bits default to all 1’s (2-2-2) Fast Read Number of Wait states (dummy clocks) needed before valid output Address (h) (Byte Mode) 45h : 44h 46h (2-2-2) Fast Read Number of Mode Bits (2-2-2) Fast Read Opcode Opcode for dual input opcode & address and dual output data Fast Read. 47h Address (Bit) 15 : 00 16 17 18 19 20 21 22 23 31 : 24 Data Comment FFh Reserved 00000b Not Supported 000b Not Supported FFh Not Supported Data Comment Table 10. Parameter ID (0) (Advanced Information) 7/9 Description Reserved. These bits default to all 1’s (4-4-4) Fast Read Number of Wait states (dummy clocks) needed before valid output Address (h) (Byte Mode) 49h : 48h 4Ah (4-4-4) Fast Read Number of Mode Bits (4-4-4) Fast Read Opcode Opcode for quad input opcode/address, quad output data Fast Read. 4Bh Address (Bit) 15 : 00 16 17 18 19 20 21 22 23 FFh Reserved 00100b 4 dummy clocks 010b 8 mode bits 31 : 24 EBh Must Enter QPI Mode Firstly Data Comment 0Ch 20h 0Fh 52h 4 KB Table 10. Parameter ID (0) (Advanced Information) 8/9 Description Sector Type 1 Size Sector Type 1 Opcode Sector Type 2 Size Sector Type 2 Opcode Address (h) (Byte Mode) 4Ch 4Dh 4Eh 4Fh Address (Bit) 07 : 00 15 : 08 23 : 16 31 : 24 32 KB Table 10. Parameter ID (0) (Advanced Information) 9/9 Description Sector Type 3 Size Sector Type 3 Opcode Sector Type 4 Size Sector Type 4 Opcode Address (h) (Byte Mode) 50h 51h 52h 53h Address (Bit) 07 : 00 15 : 08 23 : 16 31 : 24 Data Comment 10h D8h 00h FFh 64 KB This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 50 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 Not Supported Not Supported www.eonssi.com EN25Q32C Read Unique ID Number The Read Unique ID Number instruction accesses a factory-set read-only 96-bit number that is unique to each EN25Q32C device. The ID number can be used in conjunction with user software methods to help prevent copying or cloning of a system. The Read Unique ID instruction is initiated by driving the CS# pin low and shifting the instruction code “5Ah” followed by a three bytes of addresses, 0x80h, and one byte of dummy clocks. After which, the 96-bit ID is shifted out on the falling edge of CLK as shown in Figure 29. Table 11. Unique ID Number Description Address (h) (Byte Mode) Address (Bit) Data Unique ID Number 80h : 8Bh 95 : 00 By die Comment Power-up Timing Figure 30. Power-up Timing Table 12. Power-Up Timing and Write Inhibit Threshold Symbol Parameter Min. Max. Unit tVSL(1) VCC(min) to CS# low 10 tPUW(1) Time delay to Write instruction 1 10 ms Write Inhibit Voltage 1 2.2 V VWI(1) µs Note: 1.The parameters are characterized only. 2. VCC (max.) is 3.6V and VCC (min.) is 2.7V INITIAL DELIVERY STATE The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status Register contains 00h (all Status Register bits are 0). This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 51 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Table 13. DC Characteristics (Ta = - 40°C to 85°C; VCC = 2.7-3.6V) Symbol Parameter Test Conditions Min. Typ. Max. Unit ILI Input Leakage Current - 1 ±2 µA ILO Output Leakage Current - 1 ±2 µA ICC1 ICC2 ICC3 Standby Current CS# = VCC, VIN = VSS or VCC - 1 20 µA Deep Power-down Current CS# = VCC, VIN = VSS or VCC - 1 20 µA CLK = 0.1 VCC / 0.9 VCC at 104MHz, DQ = open - 10 15 mA 5 8 mA 12 18 mA 6 10 mA CLK = 0.1 VCC / 0.9 VCC at 33MHz, DQ = open Operating Current (READ) CLK = 0.1 VCC / 0.9 VCC at 104MHz in Quad mode, DQ = open - CLK = 0.1 VCC / 0.9 VCC at 33MHz, Quad Output Read, DQ = open ICC4 CS# = VCC - 10 20 mA CS# = VCC - 5 12 mA CS# = VCC CS# = VCC - 5 10 mA - 10 25 mA ICC6 Operating Current (PP) Operating Current (WRSR) Operating Current (SE) ICC7 Operating Current (BE) VIL Input Low Voltage – 0.5 0.2 VCC V VIH Input High Voltage 0.7VCC VCC+0.4 V VOL Output Low Voltage IOL = 1.6 mA - 0.4 V VOH Output High Voltage IOH = –100 µA VCC-0.2 - V ICC5 Table 14. AC Measurement Conditions Symbol CL Parameter Min. Max. Load Capacitance 30 Input Rise and Fall Times Unit pF 5 ns Input Pulse Voltages 0.2VCC to 0.8VCC V Input Timing Reference Voltages 0.3VCC to 0.7VCC V VCC / 2 V Output Timing Reference Voltages Figure 31. AC Measurement I/O Waveform This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 52 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Table 15. AC Characteristics (Ta = - 40°C to 85°C; VCC = 2.7-3.6V) Symbol FR Alt fC Parameter Serial Clock Frequency for: FAST_READ, QPP, PP, SE, HBE, BE, DP, RES, WREN, WRDI, WRSR, RDSR Serial Clock Frequency for: RDID, Dual Output Fast Read and Quad I/O Fast Read Min Typ Max Unit D.C. - 104 MHz D.C. - 104 MHz D.C. - 50 MHz fR Serial Clock Frequency for READ tCH 1 Serial Clock High Time 4 - - ns tCL1 Serial Clock Low Time 4 - - ns Serial Clock Rise Time (Slew Rate) 0.1 - - V / ns Serial Clock Fall Time (Slew Rate) 0.1 - - V / ns tCLCH 2 tCHCL 2 tSLCH tCSS CS# Active Setup Time (Relative to CLK) 5 - - ns tCHSH CS# Active Hold Time (Relative to CLK) 5 - - ns tSHCH CS# Not Active Setup Time (Relative to CLK) 5 - - ns tCHSL CS# Not Active Hold Time (Relative to CLK) 5 - - ns CS# High Time for read CS# High Time for program/erase 7 30 - - ns ns tSHSL tSHQZ 2 tCSH tDIS Output Disable Time - - 6 ns tCLQX tHO Output Hold Time 0 - - ns tDVCH tDSU Data In Setup Time 2 - - ns tCHDX tDH Data In Hold Time 5 - - ns tCLQV tV Output Valid from CLK for 30 pF Output Valid from CLK for 15 pF - - 8 6 ns - - ns tWHSL3 Write Protect Setup Time before CS# Low 20 tSHWL3 Write Protect Hold Time after CS# High 100 - - ns tDP 2 - - 3 µs - - 3 µs - - 1.8 µs tW CS# High to Deep Power-down Mode CS# High to Standby Mode without Electronic Signature read CS# High to Standby Mode with Electronic Signature read Write Status Register Cycle Time - 2 15 ms tPP Page Programming Time - 0.6 3 ms tSE Sector Erase Time - 0.03 0.3 s tBE 32KB Block Erase Time - 0.1 0.8 s tRES1 2 tRES2 2 tBE 64KB Block Erase Time - 0.2 1 s tCE Chip Erase Time - 12 50 s tSR Software Reset Latency WIP = write operation - - 28 µs WIP = not in write operation - - 0 µs Note: 1. tCH + tCL must be greater than or equal to 1/ fC 2. Value guaranteed by characterization, not 100% tested in production. 3. Only applicable as a constraint for a Write status Register instruction when Status Register Protect Bit is set at 1. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 53 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 32. Serial Output Timing Figure 33. Input Timing This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 54 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C ABSOLUTE MAXIMUM RATINGS Stresses above the values so mentioned above may cause permanent damage to the device. These values are for a stress rating only and do not imply that the device should be operated at conditions up to or above these values. Exposure of the device to the maximum rating values for extended periods of time may adversely affect the device reliability. Parameter Value Unit Storage Temperature -65 to +150 C Plastic Packages -65 to +125 C Output Short Circuit Current1 200 mA Input and Output Voltage (with respect to ground) 2 -0.5 to +4.0 V Vcc -0.5 to +4.0 V Notes: 1. No more than one output shorted at a time. Duration of the short circuit should not be greater than one second. 2. Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions, inputs may undershoot Vss to –1.0V for periods of up to 50ns and to –2.0 V for periods of up to 20ns. See figure below. Maximum DC voltage on output and I/O pins is Vcc + 0.5 V. During voltage transitions, outputs may overshoot to Vcc + 1.5 V for periods up to 20ns. See figure below. RECOMMENDED OPERATING RANGES 1 Parameter Value Ambient Operating Temperature Industrial Devices -40 to 85 Operating Supply Voltage Vcc Full: 2.7 to 3.6 Unit C V Notes: 1. Recommended Operating Ranges define those limits between which the functionality of the device is guaranteed. Vcc +1.5V Maximum Negative Overshoot Waveform Maximum Positive Overshoot Waveform This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 55 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Table 16. DATA RETENTION and ENDURANCE Parameter Description Test Conditions Min Unit Data Retention Time 85°C 20 Years Erase/Program Endurance -40 to 85 °C 100k cycles Table 17. CAPACITANCE ( VCC = 2.7-3.6V) Parameter Symbol Parameter Description Test Setup Max Unit CIN Input Capacitance VIN = 0 6 pF COUT Output Capacitance VOUT = 0 8 pF Note : Sampled only, not 100% tested, at TA = 25°C and a frequency of 20MHz. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 56 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C PACKAGE MECHANICAL Figure 34. SOP 200 mil ( official name = 208 mil ) SYMBOL MIN. 1.75 0.05 1.70 5.15 7.70 5.15 --0.35 0.5 DIMENSION IN MM NOR 1.975 0.15 1.825 5.275 7.90 5.275 1.27 0.425 0.65 MAX 2.20 0.25 1.95 5.40 8.10 5.40 --0.50 0.80 A A1 A2 D E E1 e b L 0 0 0 θ 0 4 8 Note : 1. Coplanarity: 0.1 mm 2. Max. allowable mold flash is 0.15 mm at the pkg ends, 0.25 mm between leads. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 57 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 35. 16 LEAD SOP 300 mil SYMBOL DIMENSION IN MM NOR MAX --2.65 0.20 0.30 --2.40 0.25 0.30 10.30 10.50 --10.65 7.50 7.60 1.27 ----0.51 --1.27 MIN. A --A1 0.10 A2 2.25 C 0.20 D 10.10 E 10.00 E1 7.40 e --b 0.31 L 0.4 θ 00 50 Note : 1. Coplanarity: 0.1 mm 80 This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 58 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 36. VDFN 8 ( 5x6 mm ) Controlling dimensions are in millimeters (mm). DIMENSION IN MM MIN. NOR MAX A 0.70 0.75 0.80 A1 0.00 0.02 0.04 A2 --0.20 --D 5.90 6.00 6.10 E 4.90 5.00 5.10 D2 3.30 3.40 3.50 E2 3.90 4.00 4.10 e --1.27 --b 0.35 0.40 0.45 L 0.55 0.60 0.65 Note : 1. Coplanarity: 0.1 mm SYMBOL This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 59 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Figure 37. PDIP8 SYMBOL A A1 A2 D E E1 L eB Θ0 DIMENSION IN INCH MIN. NOR MAX ----0.210 0.015 ----0.125 0.130 0.135 0.355 0.365 0.400 0.300 0.310 0.320 0.245 0.250 0.255 0.115 0.130 0.150 0.310 0.350 0.375 0 7 15 This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 60 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C ORDERING INFORMATION EN25Q32C - 104 H I P PACKAGING CONTENT P = RoHS, Halogen-Free and REACH compliant TEMPERATURE RANGE I = Industrial (-40°C to +85°C) PACKAGE H = 8-pin 200mil SOP F = 16-pin 300mil SOP W = 8-pin VDFN (5x6mm) Q = 8-pin PDIP SPEED 104 = 104 MHz BASE PART NUMBER EN = Eon Silicon Solution Inc. 25Q = 3V Serial Flash with 4KB Uniform-Sector, Dual and Quad I/O 32 = 32 Megabit (4096K x 8) C = version identifier This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 61 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com EN25Q32C Revisions List Revision No Description Date Preliminary 0.0 A 2013/10/09 2014/01/10 Initial Release Release to A version. This Data Sheet may be revised by subsequent versions ©2014 Eon Silicon Solution, Inc., 62 or modifications due to changes in technical specifications. Rev. A, Issue Date: 2014/01/10 www.eonssi.com