L99PM60J Power management IC with LIN transceiver Features ■ One 5 V low-drop voltage regulators (100 mA, continuous mode) ■ No electrolytic capacitor required on regulator output (only 220 nF ceramic typ.) ■ Ultra-low quiescent current in VBAT-standby (7 µA) and V1-standby (45 µA) ■ Window watchdog and advanced fail-safe functionality ■ Configurable fail-safe output ■ Programmable reset threshold (4.6 V; 3.5 V) ■ VS monitoring / temperature measurement ■ LIN 2.1 compliant (SAE J2602 compatible) transceiver ■ High-speed LIN Flash mode up to 100 Kbit/s ■ ST SPI interface for mode control and diagnostics ■ 2 high-side drivers, e.g. LED or HALL (RDSon,typ = 7 Ω) ■ 2 low-side drivers (RDSon,typ = 2 Ω) ■ Outputs are short-circuit protected ■ Direct drive feature for high sides ■ Temperature warning and thermal shutdown *$3*&)7 PowerSSO-16 Description The L99PM60J is a power management system IC that features one low-drop regulator, a direct drive for high-side drivers, and a LIN 2.1 compliant SAE J2602 transceiver. The integrated standard serial peripheral interface (SPI) controls all L99PM60J operation modes and provides driver diagnostic functions. Applications ■ Automotive ECUs requiring LIN and power management features such as door zone, and body control modules Table 1. Device summary Order codes Package PowerSSO-16 September 2013 Doc ID 18309 Rev 6 Tube Tape and reel L99PM60J L99PM60JTR 1/75 www.st.com 1 Contents L99PM60J Contents 1 Block diagram and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 2.2 2.1.1 Voltage regulator failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 Voltage regulator behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power control in operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2.1 Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Flash mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 V1-standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.4 VBAT-standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Wake up from standby modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Cyclic contact supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 Functional overview (truth table) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6 Window – watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.7 Fail Safe mode 2.7.1 Temporary failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.7.2 Nonrecoverable failures – entering forced VBAT-standby mode . . . . . . . . 19 2.7.3 Fail Safe Output (OUT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Reset output (NRESET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.9 LIN bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.9.1 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.9.2 Wake up (from LIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Serial Peripheral Interface (ST SPI Standard) . . . . . . . . . . . . . . . . . . . . . 23 Protection and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1 High side driver outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 4 OUT1 reprogramming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Low side driver outputs REL1, REL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 SPI diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Power supply fail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1 2/75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.8 2.10 3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 VS overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Doc ID 18309 Rev 6 L99PM60J Contents 4.2 VS undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . 28 5 Typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7 6.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.2 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.4.1 Supply and supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.4.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 6.4.3 Power-on reset (VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.4.4 Voltage regulator V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 6.4.5 Reset output (V1 supervision) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.4.6 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.4.7 High-side outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6.4.8 Low-side drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.4.9 Direct drive / voltage supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.4.10 LIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.4.11 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ST SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.1 SPI communication flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.1.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.1.2 Command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.1.3 Operating code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.1.4 Global status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.1.5 Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.1.6 Address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.1.7 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.1.8 Format of data shifted out at SDO during write cycle . . . . . . . . . . . . . . 52 7.1.9 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7.1.10 Format of data shifted out at SDO during read cycle . . . . . . . . . . . . . . . 53 7.1.11 Read and clear status operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.1.12 Format of data shifted out at SDO during ‘Read and Clear Status’ operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Doc ID 18309 Rev 6 3/75 Contents L99PM60J 7.1.13 7.2 SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.2.1 8 10 4/75 Status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 8.1 9 Read device information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 PowerSSO-16 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Package and Packaging Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 9.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 9.2 PowerSSO-16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 9.3 PowerSSO-16 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Doc ID 18309 Rev 6 L99PM60J List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin descriptions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Wake up sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Functional overview (truth table). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Fail safe conditions and exit modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Failures management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Operating junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Supply and supply monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Power-on reset (VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Voltage regulator V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Reset output (V1 supervision) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Relay drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Input: DRV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Output: VSOUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 LIN transmit data input: pin TXD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 LIN receive data output: pin RXD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 LIN transmitter and receiver: pin LIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 LIN transceiver timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 LIN Flash mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Input: CSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Input CSN for Flash mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Inputs: CLK, DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 DI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Output DO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 DO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 CSN timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 RXDL/NINT timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Operating code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Global status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Detailed global status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Addressing mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Write command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Format of data shifted out at SDO during write cycle: global status register . . . . . . . . . . . 52 Format of data shifted out at SDO during write cycle: data byte . . . . . . . . . . . . . . . . . . . . 52 Read command format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Format of data shifted out at SDO during read cycle: global status register. . . . . . . . . . . . 53 Format of data shifted out at SDO during read cycle: data byte . . . . . . . . . . . . . . . . . . . . . 53 Read and clear status’ command format‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Format of data shifted out at SDO during ‘Read and Clear Status’ operation: global status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Doc ID 18309 Rev 6 5/75 List of tables Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. 6/75 L99PM60J Format of data shifted out at SDO during read cycle: data byte . . . . . . . . . . . . . . . . . . . . . 55 Read device information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 ID-Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Family identifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Silicon version. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Silicon version code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 SPI-frame-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 SPI register: command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 SPI register: mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 SPI register: CTRL register selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 SPI register: STAT register selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Overview of control register data byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Control register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Control register 1, 1st data byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Control register 1, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Control register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Control register 2, 1st data byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Control register 2, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Overview of status register data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Global status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Status register 1, command and data byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Status register 1, data byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Status register 1, bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Status register 2, command and data byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Status register 2, data byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Status register 2, bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Status register 3, command and data byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Status register 3, data byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Status register 3, bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Status register 4, command and data byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Status register 4, data byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Status register 4, bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 PowerSSO-16 thermal parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 PowerSSO-16 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Doc ID 18309 Rev 6 L99PM60J List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin connection PowerSSO-16 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Supply voltage operation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Operating modes – main states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Watchdog in normal operating mode (no errors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Watchdog with error conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Watchdog in FLASH Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Recovery after forced VBAT due to multiple watchdog failure . . . . . . . . . . . . . . . . . . . . . . 20 Recovery after forced VBAT due to multiple TSD2 failure . . . . . . . . . . . . . . . . . . . . . . . . . 20 Recovery after forced VBAT due to short at V1 failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Thermal shutdown protection and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Watchdog timing (missing watchdog trigger) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Watchdog early, late and safe windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 LIN transmit, receive timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 SPI – input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 SPI – output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 SPI transition parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 SPI global status register access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Read configuration register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Write configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Format of data shifted out at SDO during write cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Format of data shifted out at SDO during read cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Format of data shifted out at SDO during ‘Read and Clear Status’ operation . . . . . . . . . . 55 Thermal data of PowerSSO-16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . . . . . . . 68 V1 thermal impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Thermal fitting model of V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 PowerSSO-16 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 PowerSSO-16 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 PowerSSO-16 tape and reel shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Doc ID 18309 Rev 6 7/75 Block diagram and pin descriptions 1 L99PM60J Block diagram and pin descriptions Figure 1. block diagram 9V 9 15 HVHW 9V 8QGHUYROWDJH 2YHUYROWDJH 6KXWGRZQ 9 UHJ 9 P$ 7HPS 3UHZDUQLQJ 6KXWGRZQ 9 UHJ 0RQLWRU /RZ6LGH ȍ 2XWSXW&ODPS :LQGRZ :DWFKGRJ &61 &/. ', '2 '59 960 703 /RZ6LGH ȍ 2XWSXW&ODPS /2*,& 63, +LJK6LGH 'LUHFW 'ULYH 5(/ 5(/ 2 87 )62 ȍ 9V 0RQLWRULQJ +LJK6LGH 2 87 ȍ 7HPS 0RQLWRULQJ 5[' 1,17 /,1 7[' /,1 6$(- /,1 FRPSOLDQW *1' $*9 Table 2. Pin Symbol 1 GND 2 NRESET 3 DO SPI: serial data output 4 DI SPI: serial data input 5 V1 Voltage regulator 1 output: 5 V supply e.g. micro controller 6 CLK 7 RxD/NINT 8 9 8/75 Pin descriptions and functions Function Ground NReset output to micro controller; Internal pull-up of typ. 100 KΩ (reset state = LOW) SPI: serial clock input Receiver output of the LIN 2.1 transceiver or interrupt: DRV/VSM/TMP Direct drive for high-side drivers OUT1/2; VS and temperature monitoring CSN SPI: chip select not input Doc ID 18309 Rev 6 L99PM60J Block diagram and pin descriptions Table 2. Pin descriptions and functions (continued) Pin Symbol Function 10 OUT2 High side drivers (7 Ω, typ.): to supply e.g. LED's, HALL sensors, external contacts 11 OUT1/FSO High side driver (7 Ω, typ.): to supply e.g. LED's, HALL sensors, external contacts 12 TxD 13 VS 14 REL1 Low side driver (2 Ω typ.): e.g. relay 15 REL2 Low side driver (2 Ω typ.): e.g. relay 16 LIN Figure 2. Transmitter input of the LIN 2.1 transceiver Power supply voltage LIN bus line Pin connection PowerSSO-16 (top view) *1' /,1 15(6(7 5(/ '2 5(/ ', 9V 3RZHU662 9 7[' &/. 287 )62 5[' 1,17 287 '59 960 703 &61 7$% *1' $*9 Note: It is recommended to connect pin GND directly to the Heat Slug. Doc ID 18309 Rev 6 9/75 Detailed description L99PM60J 2 Detailed description 2.1 Voltage regulator The L99PM60J contains a fully protected low drop voltage regulator, which is designed for very fast transient response. The output voltage is stable with loads capacitors > 220 nF The V1 voltage regulator provides 5 V supply voltage and up to 100 mA continuous load current and is mainly intended for supply of the system microcontroller. The V1 regulator is embedded in the power management and failsafe functionality of the device and operates according to the selected operating mode. In addition the regulator V1 drives the L99PM60J internal 5 V loads. The voltage regulator is protected against overload and overtemperature. An external reverse current protection has to be provided by the application circuitry to prevent the input capacitor from being discharged by negative transients or low input voltage. Current limitation of the regulator ensures fast charge of external bypass capacitors. The output voltage is stable for ceramic load capacitors > 220 nF. If device temperature exceeds TSD1 threshold, all outputs (OUTx, RELx, LIN) are deactivated except V1. Hence the micro controller has the possibility for interaction or error logging. In case of exceeding TSD2 threshold (TSD2 > TSD1), also V1 is deactivated (see state chart Figure 11). A timer is started and the voltage regulator is deactivated for tTSD. During this time, all other walk-up sources (LIN) are disabled. After 1 sec., the voltage regulator tries to restart automatically. If the restart fails 7 times without clearing and thermal shutdown condition still exists, the L99PM60J enters the VBAT-standby mode. In case of short to GND at “V1” after initial turn on (V1 < V1fail for t > tv1short) the L99PM60J enters the VBAT-standby mode. Reactivation (wake-up) of the device can be achieved with signals from LIN. 2.1.1 Voltage regulator failure The V1, regulator output voltage is monitored. In case of a drop below the V1 – fail thresholds (V1 < V1fail for t > tV1fail), the V1 -fail bit is latched. The fail bits can be cleared by a dedicated SPI command. Short to ground detection At power-on, in case of short detection on V1, the regulator output switches off after tV1short and the L99PM60J turns to forced VBAT-standby mode. The forced VBAT TSD2/SHTV1 and V1fail lists are set. During Normal mode, once the regulator exceeded the V1fail threshold, in case of short detection on V1, the device turns to force VBAT-standby mode only after thermal shutdown TSD2 detection. In this case the forced VBAT TSD2/SHTV1 bit is set. V1 undervoltage warning For the L99PM60J 2 different V1 reset thresholds can be selected. The higher threshold VRT2 is set by default. If the lower threshold is selected the V1 undervoltage warning flag is set, if the voltage on V1 output drops below the higher threshold. This Bit is latched and can be read and optionally cleared. 10/75 Doc ID 18309 Rev 6 L99PM60J Detailed description V1 failure failsafe activation If the voltage on V1 output drops below the selected V1 reset threshold the RESET output is pulled to ground. If the V1 output voltage remains below the V1 reset threshold for longer than tFSO, fail safe mode is activated additionally. For more details about failsafe please refer to chapter Fail safe mode 2.1.2 Voltage regulator behaviour Figure 3. Supply voltage operation summary 9$%PLQ96PLQIRU9DFWLYHFRQWURO 966996VXSSO\XQGHUYROWDJH 93253RZHU2QUHVHWYROWDJH 919QRPLQDOYROWDJH 95675HVHWWKUHVKROGYROWDJH 9IDLO9IDLOWKUHVKROG 9V >9@ 9 1 9 '3 9 689 3RZHURQ 5HVHWWKUHVKROG 9 325 9 $%6PLQ &RQWURO5HJLVWHUVDUH VHWWRGHIDXOWYDOXHV &ROG6WDUWELWLVVHW 9 >9@ XV WW )7 W!W )7 XV 9 VXY ELWLVWVHW W)79XQGHUYROWDJHILOWHUWLPH W555HVHWUHDFWLRQWLPHU W:'5:DWFKGRJUHVHWSXOVHWLPH W)62)62VLJQDOILOWHUWLPH W!W )7 9 ,1 9 57+ 9 IDLO 1R5HVHWJHQHUDWHG 1UHVHW>9@ ,IW!WYVKRUW 9VKRUWGHWHFWHG Î 9EDWWVWDQGE\ 9 IDLO ELWLVVHW W :'5 W :'5 +LJK W55 W55 /RZ W)62 5HDG&OHDU)62%LW 'LVDEOHG )DLO6DIH2XWSXW +LJK=*URXQGHG 2.2 'LVDEOHG ,QDFWLYH $FWLYH ,QDFWLYH &RQWURO5HJLVWHUVDUHVHWWRGHIDXOWYDOXHV $*9 Power control in operating modes The L99PM60J can be operated in 4 different operating modes: 2.2.1 ● Active ● Flash ● V1-standby ● VBAT-standby Active mode All functions are available and the device is controlled by the ST SPI Interface. Doc ID 18309 Rev 6 11/75 Detailed description 2.2.2 L99PM60J Flash mode To program the system microcontroller, the L99PM60J can be operated in Flash Mode where the internal watchdog is disabled. In addition the SPI-Interface and low power modes are not available in Flash Mode. The mode can be entered if the following condition is applied VCSN > VFlash At exit from Flash Mode (VCSN < Vflash) no NReset pulse is generated and the watchdog starts with a Long Open Window. Note: “High” level for flash mode selection is VCSN > Vflash. For all other operation modes, standard 5V logic signals are required. 2.2.3 V1-standby mode The transition from Active Mode to V1-standby mode is controlled by SPI. To supply the micro controller in a low power mode, the voltage regulator 1 (V1) remains active. In order to reduce the current consumption, the regulator goes in low current mode as soon as the supply current of the microcontroller goes below the ICMP current threshold. At this transition, the L99PM60J also deactivates the internal watchdog. Relay outputs and LIN Transmitter are switched off in V1-standby Mode. High side Outputs remain in the configuration programmed prior to the standby command. A cyclic contact supply (for cyclic monitoring of external contacts) can be activated by SPI and using the Direct Drive Input (DRV). Each wake up event sets the device into the active mode and forces the RxD/NINT pin to the low level. Note: Input TxD must be at recessive (high) level and CSN must be at high level in order to achieve minimum standby current in V1-standby Mode. Interrupt The interrupt signal (linked to RxDL/NINT internally) indicates a wake-up event from V1-standby mode. In case of activity on LIN or SPI access the NINT pin is pulled low for tInterupt In case of V1-standby mode and (IV1 > ICMP), the device remains in standby mode, the V1 regulator switches to high current mode and the watchdog starts. No Interrupt signal is generated. 2.2.4 VBAT-standby mode The transition from Active Mode to VBAT-standby mode is initiated by an SPI command. In VBAT-standby Mode, the voltage regulator, relay outputs and LIN transmitter are switched off. High side outputs remain in the configuration programmed prior to the standby command. In VBAT-standby mode the current consumption of the L99PM60J is reduced to a minimum level. 12/75 Doc ID 18309 Rev 6 L99PM60J Note: Detailed description Inputs TXDL and CSN must be terminated to GND in VBAT-standby to achieve minimum standby current. This can be achieved with the internal ESD protection diodes of the microcontroller (microcontroller is not supplied in this mode; V1 is pulled to GND). 2.3 Wake up from standby modes A wake-up from standby mode switches the device to active mode. This can be initiated by one or more of the following sources: Table 3. Wake up sources Wake up source LIN bus activity IV1 > ICMP SPI Access Description Always active Device remains in V1-standby mode with watchdog enabled (If ICMP = 0) and V1 goes into High Current Mode (Increased Current Consumption). No interrupt is generated. Always active (except in VBAT-standby mode) Wake up event: CSN is low and first rising edge on CLK All wake-up events from V1-standby mode (except IV1 > ICMP) are indicated to the microcontroller by a low-pulse at RxDL/NINT (duration: tInterupt) Wake-up from V1-standby by SPI Access might be used to check the interrupt service handler. 2.4 Cyclic contact supply In V1-standby mode, any high side driver output (OUT1..2) can be used to supply external contacts. Direct drive feature for high side drivers must be enabled by SPI to control the high side driver outputs by DRV/VSM/TMP pin. Doc ID 18309 Rev 6 13/75 Detailed description L99PM60J 2.5 Functional overview (truth table) Table 4. Functional overview (truth table) Operating Modes Function Comments V1-standby static mode (cyclic sense) Active mode VBAT-standby static mode (cyclic sense) On On(1) Off On On Off On Off (on: I_V1 > ICMP-threshold Off and ICMP = 0) Direct drive On / Off(2) On / Off(2) Off Relay driver On Off Off Off(3) Off(3) Voltage-regulator, V1 VOUT = 5 V Reset-generator Window watchdog V1 monitor LIN LIN 2.1 On FSO (if configured by SPI), active by default Fail safe output OUT1/FSO OFF(4) OUT1/FSO OFF(4) OUT1/FSO OFF(4) Oscillator On (5) Off VS-monitor On (6) Off 1. Supply the processor in low current mode. 2. Selectable from SPI 3. The bus state is internally stored when going to standby mode. A change of bus state leads to a wake-up after exceeding of internal filter time 4. ON in Failsafe Condition: If Standby mode is entered with active Fail Safe mode, the output remains ON in Standby mode. 5. Activated when direct drive feature is enabled from SPI and DRV/VSM/TMP pin is high. 6. ON when OUT1/2 are activated during direct drive 14/75 Doc ID 18309 Rev 6 L99PM60J Figure 4. Detailed description Operating modes – main states 9V!9SRU 9EDWVWDUWXS $OOUHJLVWHUV 6HWWRGHIDXOW &ROGVWDUWELWVHWWRµ¶ 9&61!9IODVK )ODVK0RGH :DWFKGRJ2)) 9&619IODVK $FWLYH 0RGH 9&61!9IODVK 63,FRPPDQG 25 [7KHUPDO6KXWGRZQ76' 25 9IDLO99IRUPVDIWHUVZLWFK21 25 [:')DLOXUH :DNHXS (YHQW 921 5HVHW*HQHUDWRUDFWLYH :DWFKGRJDFWLYH :DNHXS (YHQW 63,FRPPDQG 9&61!9IODVK 96WDQGE\ 0RGH 9EDW6WDQGE\ 0RGH 92)) 5HVHW*HQHUDWRU2))1UHVHW ORZ :DWFKGRJ2)) +6'/6'2)) [7KHUPDO6KXWGRZQ76' 25 [:'IDLO 921 5HVHW*HQHUDWRUDFWLYH :DWFKGRJ 2))LI,Y,FPSRU,&03 $*9 2.6 Window – watchdog During normal operation, the watchdog monitors the micro controller within a tSW trigger cycle In VBAT-standby and Flash program modes, the watchdog circuit is automatically disabled. After wake-up, the watchdog starts with a long open window. After serving the watchdog, the microcontroller may send the device back to V1-standby mode After power-on or standby mode, the watchdog is started with a long open window tLW. The long open window allows the micro controller to run its own setup and then to trigger the Doc ID 18309 Rev 6 15/75 Detailed description L99PM60J watchdog via the SPI. The trigger is finally accepted when the CSN input becomes HIGH after the transmission of the SPI word. Writing ‘1’ to the watchdog trigger bit terminates the long open window and start the window watchdog Subsequently, the micro controller has to serve the watchdog by alternating the watchdog trigger bit within the safe trigger area (refer to watchdog chapter). A correct watchdog trigger signal immediately starts the next cycle. After 8 watchdog failures in sequence, the V1 regulator is switched off for tV1Off If subsequently, 7 additional watchdog failures occur, the V1 regulator is completely turned off and the device goes into VBAT-standby mode until a walk-up occurs. In case of a Watchdog failure, the outputs (RELx, OUTx) are switched off and the device enters fail safe mode (i. e. all control registers are set to default values, except OUT1 when not used as FSO.) The following diagrams illustrate the Watchdog behavior of the L99PM60J. The diagrams are split into 3 parts. First diagram shows the functional behavior of the watchdog without any error. The second diagram covers the behavior covering all the error conditions, which can affect the watchdog behavior. Third diagram shows the transition in and out of FLASH mode. All three diagrams can be overlapped to get all the possible state transitions under all circumstances. For a better readability, those transitions have been split in normal operating, operating with errors and flash mode. Figure 5. Watchdog in normal operating mode (no errors) $FWLYHPRGH ORQJ RSHQ ZLQGRZ 96WE\$1',9!,&03 :DNHXS$1'9!9UVWWKU 9!9UVWWKU 96WE\$1',9,&03 75,* à :' 2)) 9%$76WDQGE\ 96WDQGE\ JR6WDQGE\ SURSSHUWULJJHULQ :LQGRZ 0RGH JR6WDQGE\ :LQGRZPRGH $FWLYHPRGH $*9 16/75 Doc ID 18309 Rev 6 L99PM60J Detailed description Figure 6. Watchdog with error conditions :'IDLO 76' ORQJ RSHQ ZLQGRZ $FWLYHPRGH 9!9UWK :'IDLO 76' 75,* à SURSSHUWULJJHULQ IRUFHG9%$7 99UWK :' 2)) 9%$76WDQGE\ 96WDQGE\,9,&03 99UWK :LQGRZ 0RGH :DWFKGRJIDLOFRXQWHULQFUHPHQWHG E\HDFK:'IDLOHYHQW5HVHWWR]HUR E\HDFKSURSHUWULJJHU IRUFHG9%$7[:'IDLO [76' 6KRUW9 :LQGRZPRGH $FWLYHPRGH $*9 Figure 7. Watchdog in FLASH Mode $FWLYHPRGH ORQJ RSHQ ZLQGRZ ([LW)/$6+PRGH )/$6+PRGH $FWLYHPRGH :LQGRZ 0RGH :' 2)) )/$6+PRGH )/$6+PRGH $*9 Doc ID 18309 Rev 6 17/75 Detailed description L99PM60J 2.7 Fail Safe mode 2.7.1 Temporary failures L99PM60J enters Fail Safe mode in case of: ● ● Watchdog failure V1 turn on failure – ● V1 short (V1 < V1fail for t > tv1short) V1 undervoltage (V1 < Vrth for t > tUV1) – Fail Safe Mode only entered if VS > VSUV ● Thermal Shutdown TSD2 ● SPI failure – DI stuck to GND or VCC (SPI frame = ’00 00’ or ‘FF FF’) The Fail Safe functionality is also available in V1-standby Mode. During V1-standby Mode the Fails Safe Mode is entered in the following cases: ● V1 undervoltage (V1 < VRTH for t > tV1FS) – Fail Safe Mode only entered if VS > VSUV ● Watchdog failure (if watchdog still running due to IV1 > ICMP) ● Thermal Shutdown TSD2 In Fail Safe Mode the L99PM60J returns to a default state with all outputs turned off. The Fail Safe condition is indicated to the remaining system. The conditions during Fails Safe Mode are: ● All outputs are turned off ● All Control Registers are set to default values (except OUT1/FSO configuration). Write operations to Control Registers are blocked until the Fail Safe condition is cleared ● LIN Transmitter and SPI remains on ● Corresponding Failure Bits in Status Registers are set. ● FSO Bit (Bit 0 Global Status Register) is set ● OUT1/FSO is activated if configured as Fail Safe Output OUT1 is configured as Fail Safe Output unless it is disabled by SPI. If the Fail Safe Mode was entered it keeps active until the Fail safe condition is removed and the Fail Safe was read by SPI. Depending on the root cause of the Fail Safe, the actions to quit Fail safe Mode can be different. 18/75 Doc ID 18309 Rev 6 L99PM60J Detailed description Table 5. Fail safe conditions and exit modes Failure source µC (oscillator) Failure condition Diagnosis Exit from Fail Safe Mode Watchdog, early write failure or expired window Failsafe = 1; WDfail = n + 1 Propper trigger in Window mode and read fail safe bit Short at turn-on Failsafe = 1; forced sleep TSD2/SHTV1 = 1 Read&Clear SR3 after wake V1 V1 < Vrth for t > tFSO Failsafe = 1; V1fail = 1(1) (Failsafe mode only entered when VS > VSUV) Temperature Tj > TSD2 Failsafe = 1; TW = 1; TSD1 = 1; TSD2 = 1 Tj < TSD2 Read&Clear SR4 SPI DI short to GND or VCC Failsafe = 1 Valid SPI command V1 > Vrth Read Failsafe bit 1. if V1 < V1fail (for t >tv1fail) The failsafe bit is located in the Global Status Register (Bit 0) 2.7.2 Nonrecoverable failures – entering forced VBAT-standby mode If the failsafe condition persists and all attempts to return to normal system operation fail, the L99PM60J enters the Forced Vbatstby Mode in order to prevent damage to the system. The Forced Vbatstby Mode can be terminated by any regular wake-up event. The root cause of the Forced Vbatstby is indicated in the SPI Status Registers The Forced Vbatstby Mode is entered in case of: Table 6. ● Multiple Watchdog Failures: Forced Sleep WD = 1 (15x watchdog failure) ● Multiple Thermal Shutdown 2: Forced Sleep TSD2/SHTV1 = 1 (7x TSD2) ● V1 short at turn-on: Forced Sleep TSD2/SHTV1 = 1 (V1 < V1fail for t > tv1short) Failures management Failure Source Failure Condition Diagnosis Exit from Failsafe Mode µC (Oscillator) 15 consecutive Watchdog Failures Failsafe=1 ForcedSleepWD =1 Wake-up TRIG=1 during LOWi Read & Clear SR3 V1 short at turn-on Failsafe=1 ForcedSleepTSD2/SHTV1=1 Read&Clear SR3 after wake-up 7 times TSD2 Failsafe=1 TW=1 TSD1=1 TSD2=1 ForcedSleepTSD2/SHTV1=1 Read&Clear SR4 after wake-up Read&Clear SR3 after wake-up Temperature Doc ID 18309 Rev 6 19/75 Detailed description Figure 8. L99PM60J Recovery after forced VBAT due to multiple watchdog failure :DNHXSHYHQW 9 W 15HVHW PV W )622XWSXW W BBBB 75,* 5HDG&OHDU 65 75,* )62 )62 )62 75,* 75,* 63,&6 )62 [>PV@ PV 3RZHU0RGH )RUFHG 9EDWVWE\ 5XQ $FWLYH )DLOVDIH0RGH :DWFKGRJ0RGH 2II LQDFWLYH /2:L :LQGRZ :LQGRZ :LQGRZ )RUFHG6OHHS:'ELWLVODWFKHGDQGPXVWEHFOHDUHGWRWHUPLQDWH)DLOVDIH0RGHDQGSHUPLW:ULWHWRFRQWUROUHJLVWHUV *$3*&)7 Figure 9. Recovery after forced VBAT due to multiple TSD2 failure :DNH XSHYHQW 9 W 15HVHW PV W )622XWSXW W 5HDG&OHDU 65 5HDG&OHDU 65 63,&6 )62 3RZHU0RGH )DLO VDIH0RGH )RUFHG 9EDWVWE\ )62 )62 5XQ $FWLYH LQDFWLYH )RUFHG6OHHS76'6+79 ELWLVODWFKHGDQGPXVWEHFOHDUHGWRWHUPLQDWH)DLOVDIH0RGHDQGSHUPLW:ULWHWRFRQWUROUHJLVWHUV *$3*&)7 20/75 Doc ID 18309 Rev 6 L99PM60J Detailed description Figure 10. Recovery after forced VBAT due to short at V1 failure :DNH XSHYHQW 9 W 15HVHW PV W )622XWSXW W 5HDG&OHDU 65 63,&6 )62 3RZHU0RGH )RUFHG 9EDWVWE\ )62 5XQ $FWLYH )DLO VDIH0RGH LQDFWLYH )RUFHG6OHHS76' 6+79 ELWLVODWFKHGDQGPXVWEHFOHDUHGWRWHUPLQDWH)DLOVDIH0RGHDQGSHUPLW:ULWHWRFRQWUROUHJLVWHUV *$3*&)7 2.7.3 Fail Safe Output (OUT1) The device provides a high side output (OUT1) which can be used as Failsafe output. The default configuration after power on for OUT1 is Failsafe output. The Failsafe output is protected against ● Overvoltage and undervoltage (undervoltage can be masked by SPI for OUT1). See Control Register 2. ● Overcurrent In case of overcurrent condition, FSO switches off. The according status bit is latched and can be read and optionally cleared by SPI. The drivers remain off until the status is cleared. In case overvoltage or undervoltage condition, FSO is switched off. The according status bit is latched and can be read and optionally cleared by SPI. The drivers remain off until the status is cleared. With the OUT UV shutdown enable bit (Control Register 2) the FSO can be excluded from a switch off in case of Vs Undervoltage. If the bit is set to ‘1’ the driver switches off, otherwise the drivers remain on. In case of open-load condition, the according status register is latched. The status can be read and optionally cleared by SPI. The FSO is not switch off. Note: The maximum voltage and current applied to the High Side Outputs is specified in chapter 4 ‘Absolute Maximum Ratings’. Appropriate external protection may be required in order to respect these limits under application conditions. Doc ID 18309 Rev 6 21/75 Detailed description 2.8 L99PM60J Reset output (NRESET) If V1 is turned on and the voltage exceeds the V1 reset threshold, the reset output “NRESET” is pulled up by internal pull up resistor to V1 voltage after a reset delay time tReset. This is necessary for a defined start of the micro controller when the application is switched on. Since the NRESET output is realized as an open drain output it is also possible to connect an external NRESET open drain NRESET source to the output. It must be considered that as soon the NRESET is released from the L99PM60J the watchdog timing starts. A reset pulse tReset is generated in case of: 2.9 ● V1 drops below Vrth (configurable by SPI) for more than V1UFT ● Watchdog failure LIN bus interface General features: ● Speed communication up to 20kbit/s. ● LIN 2.1 compliant (SAE J2602 compatible) transceiver. ● Function range from +40V to -18V DC at LIN Pin. ● GND disconnection fail safe at module level. ● Off mode: does not disturb network. ● GND shift operation at system level. ● Micro controller Interface with CMOS compatible I/O pins. ● ESD and transient immunity according to ISO7637 and EN / IEC61000-4-2 ● Matched output slopes and propagation delay In order to further reduce the current consumption in standby mode, the integrated LIN bus interface offers an ultra low current consumption. 2.9.1 Error handling The L99PM60J provides the following 3 error handling features which are not described in the LIN Spec. Revision 2.1, but are realized in different stand alone LIN transceivers / micro controllers to switch the application back to normal operation mode. At Vs > Vpor (i.e. Vs power-on reset threshold), the LIN transceiver is enabled. The LIN transmitter is disabled in case of the following errors: ● Dominant TxDL time out ● LIN permanent recessive ● Thermal shutdown 1 ● VS overvoltage / VS undervoltage The LIN receiver is not disabled in case of any failure condition. Dominant TxD time out If TXD is in dominant state (low) for more than tdom(TXDL)(typ) the transmitter is disabled. The status bit is latched and can be read and optionally cleared by SPI. The transmitter remains disabled until the status register is cleared. This feature can be disabled via SPI. 22/75 Doc ID 18309 Rev 6 L99PM60J Detailed description Permanent recessive If TXD changes to dominant (low) state but RXD signal does not follow within tLIN, the transmitter is disabled. The Status bit is latched and can be read and optionally cleared by SPI. The transmitter remains disabled until the status register is cleared. Permanent dominant If the bus state is dominant (low) for more than tdom(TXDL) (typ.) a permanent dominant status is detected. The Status bit is latched and can be read and optionally cleared by SPI. The transmitter is not switched off 2.9.2 Wake up (from LIN) In standby mode the L99PM60J can receive a wake up from LIN bus. For the wake up feature the L99PM60J logic differentiates two different conditions. Normal wake up Normal wake up can occur when the LIN transceiver was set in standby mode while LIN was in recessive (high) state. A dominant level at LIN for t > tlinbus, switches the L99PM60J to active mode. A interrupt is generated at the RXD/NINT pin. Wake up from short to GND condition If the LIN transceiver was set in standby mode while LIN was in dominant (low) state, recessive level at LIN for tlinbus, switches the L99PM60J to active mode. An interrupt is generated at the RXD/NINT pin. Note: A wake up caused by a message on the bus starts the voltage regulator and the microcontroller to switch the application back to normal operation mode. 2.10 Serial Peripheral Interface (ST SPI Standard) A 16 bit SPI is used for bi-directional communication with the micro controller. During active mode, the SPI ● triggers the watchdog ● controls the modes and status of all L99PM60J modules (incl. input and output drivers) ● provides driver output diagnostic ● provide L99PM60J diagnostic (incl. overtemperature warning, L99PM60J operation status) The SPI can be driven by a micro controller with its SPI peripheral running in following mode: CPOL = 0 and CPHA = 0. For this mode input data is sampled by the low to high transition of the clock CLK, and output data is changed from the high to low transition of CLK. This device is not limited to micro controller with a built-in SPI. Only three CMOS-compatible output pins and one input pin are needed to communicate with the device. A fault condition can be detected by setting CSN to low. If CSN = 0, the DO-pin reflects the global error flag (fault condition) of the device. Doc ID 18309 Rev 6 23/75 Detailed description L99PM60J Chip Select Not (CSN) The input pin is used to select the serial interface of this device. When CSN is high, the output pin (DO) is in high impedance state. A low signal activates the output driver and a serial communication can be started. The state during CSN = 0 is called a communication frame. Serial Data In (DI) The input pin is used to transfer data serial into the device. The data applied to the DI is sampled at the rising edge of the CLK signal and shifted into an internal 16 bit shift register. At the rising edge of the CSN signal the contents of the shift register is transferred to Data Input Register. The writing to the selected Data Input Register is only enabled if exactly 16 bits are transmitted within one communication frame (i.e. CSN low). If more or less clock pulses are counted within one frame the complete frame is ignored. This safety function is implemented to avoid an activation of the output stages by a wrong communication frame. Note: Due to this safety functionality a daisy chaining of SPI is not possible. Instead, a parallel operation of the SPI bus by controlling the CSN signal of the connected IC's is recommended. Serial Data Out (DO) The data output driver is activated by a logical low level at the CSN input and goes from high impedance to a low or high level depending on the global error flag (fault condition). The first rising edge of the CLK input after a high to low transition of the CSN pin transfers the content of the selected status register into the data out shift register. Each subsequent falling edge of the CLK shifts the next bit out. Serial Clock (CLK) The CLK input is used to synchronize the input and output serial bit streams. The data input (DI) is sampled at the rising edge of the CLK and the data output (DO) changes with the falling edge of the CLK signal. The SPI can be driven with a CLK Frequency up to fCLK. 24/75 Doc ID 18309 Rev 6 L99PM60J Protection and diagnosis 3 Protection and diagnosis 3.1 High side driver outputs The device provides a total of 2 high side outputs Out1,2, (7 Ω typ. at @ 25C) to drive e.g. LED's or hall sensors The high side outputs are protected against ● Overvoltage and undervoltage (undervoltage can be masked by SPI for OUT1). See Section : Control Register 2 ● Overcurrent ● Overtemperature(a) In case of overcurrent or overtemperature (TSD1) condition, the drivers switches off. The according status bit is latched and can be read and optionally cleared by SPI. The drivers remain off until the status is cleared. In case overvoltage/undervoltage condition, the drivers is switched off. The according status bit is latched and can be read and optionally cleared by SPI. The drivers remain off until the status is cleared. The driver can be excluded from undervoltage shutdown. With the OUT UV shutdown enable bit (Control Register 2) the drivers can be excluded from a switch off in case of Vs undervoltage. If the bit is set to ‘1’ the driver switches off, otherwise the drivers remain on. In case of open-load condition, the according status register is latched. The status can be read and optionally cleared by SPI. The High sides is not switch off. In case of a fail safe condition, the high side drivers are switched off. The control bits are set to default values. (Except OUT1/FSO if it is used as a High-side Output) Note: The maximum voltage and current applied to the High Side Outputs is specified in chapter 4 ‘Absolute Maximum Ratings’. Appropriate external protection may be required in order to respect these limits under application conditions. 3.1.1 OUT1 reprogramming To change the setting for OUT1 from FSO (default) to normal output configuration (ON/OFF or Direct Drive) a SPI safety sequence is required. First write command with a specific pattern to CONF Register needs to be provided in order to enable the write access for configuration bits of OUT1. With an SPI write command to Control Register 1 the bits for OUT1 can be modified. The write command to Control Register 1 must follow the write command to the CONF Register (no other SPI command in between these 2 commands) Safety Sequence: 1. Write to Conf Register (0x0011 1111; 1010 101x) x: don’t care for unlocking sequence but according to description of watchdog timing 2. Write to Ctrl Register 1 (0x0000 0001; xxxx xxxx) x: values according to description of Ctrl Reg1 a. Except OUT1 when configured as FSO Doc ID 18309 Rev 6 25/75 Protection and diagnosis 3.2 L99PM60J Low side driver outputs REL1, REL2 The outputs REL1, REL2 (RDSon = 2 Ω typ. at 25 °C) are specially designed to drive relay loads. Typical relays used have the following characteristics: Relay type 1: ON-state: R = 160 Ω typical +10%, L = 300 mH: Off-state: 240 mH Relay type 2: ON-state: R = 220 Ω typical +10 %, L = 420 mH: Off-state: 330 mH The outputs provide an active output Zener clamping (44 V typ) feature for the demagnetisation of the relay coil, even though a load dump condition exists. The low side drivers switch off in case of: ● VS overvoltage and undervoltage (can be masked by SPI) Control Register 2, Bit0 ● Overcurrent ● Overtemperature In case of overload or overtemperature (TSD1) condition, the drivers switches off. The according status bit is latched and can be read and optionally cleared by SPI. The drivers remain off until the status is cleared. In case VS overvoltage and undervoltage condition, the drivers is switched off. The according status bit is latched and can be read and optionally cleared by SPI. The drivers remain off until the status is cleared. With the LS OVUV shutdown enable bit (Control Register 2) the drivers can be excluded from a switch off in case of overvoltage and undervoltage. If the bit is set to ‘1’ the driver switches off, otherwise the drivers remain on. 3.3 SPI diagnosis Digital diagnosis features are provided by SPI (for details please refer to Section 7.2: SPI registers) 26/75 ● V1 reset threshold programmable ● Overtemperature including pre warning ● Open-load separately for each OUT1,2 ● Overload status separately for each output stage ● VS-supply overvoltage/undervoltage ● V1-fail bit ● V1 undervoltage ● Chip Reset bit (start from power-on reset) ● Number of unsuccessful V1 restarts after thermal shutdown ● Number of sequential watchdog failures ● LIN diagnosis (permanent recessive/dominant, dominant TxD) ● Device state (wake-up from V1stby or Vbatstby) ● Forced Vbatstby after WD-fail, forced Vbatstby after overtemperature ● Watchdog timer state (diagnosis of watchdog) ● Failsafe status ● SPI communication error Doc ID 18309 Rev 6 L99PM60J 4 Power supply fail Power supply fail Overvoltage and undervoltage detection on VS 4.1 VS overvoltage If the supply voltage Vs reaches the overvoltage threshold (VSOV) 4.2 ● The outputs OUT1,2, REL1,2 and LIN are switched to high impedance state (load protection). ● The overvoltage bit is set and can be cleared with a ‘Read and Clear’ command. ● Outputs REL1,2 can be excluded from a shutdown in case of overvoltage by SPI VS undervoltage If the supply voltage Vs drops below the undervoltage threshold voltage (VSUV) ● The outputs OUT1,2, REL1,2, LIN are switched to high impedance state. ● The undervoltage bit is set and can be cleared with the ‘Read and Clear’ command. ● Outputs REL1,2 can be excluded from a shutdown in case of undervoltage by SPI ● Output OUT1,2 can be excluded from a shutdown in case of undervoltage by SPI Doc ID 18309 Rev 6 27/75 Power supply fail 4.3 L99PM60J Temperature warning and thermal shutdown Figure 11. Thermal shutdown protection and diagnosis 7M!76' 76' 76' $OORXWSXWVRII 9RIIIRUVHF 7!VHF 'LDJQRVLV76' $OORXWSXWVH[FHSW9RII 'LDJQRVLV76' [76' 7M!76' Ã5HDGDQG&OHDU¶ 25 3RZHURQUHVHW 9EDWVWE\ 3RZHURQUHVHW $OORXWSXWVLQFO9RII 7HPSHUDWXUH :DUQLQJ 'LDJQRVLV7: 63,FRPPDQGÃ5HDGDQG&OHDU¶ 25 3RZHURQUHVHW :DNHXSHYHQW $FWLYH 0RGH 6WDQGE\0RGHV GXULQJF\FOLFVHQVH 9V!9 3RZHU2Q5HVHW $OORXWSXWVLQFO9RII $*9 Note: 28/75 With the first transition into the TSD2 state failsafe mode is entered. The Thermal State machine recovers the same state were it was before entering Standby Mode. In case of a TSD2 it enters TSD1 state. Doc ID 18309 Rev 6 L99PM60J 5 Typical application Typical application Figure 12. Typical application diagram 9 %$7 9 V Q) 9P$ &XUUHQWWREH OLPLWHGEHORZ DSSU P$ 96 8QGHUYROWDJH 2YHUYROWDJH 6KXWGRZQ 95(* WR&,2 15(6 7HPS3UHZDUQLQJ 6KXWGRZQ 95(* 0RQLWRU 0 :LQGRZ :DWFKGRJ 63, ', .5$0 '2 $'& 5(/ /RZ6LGH 5(/ 2KP 2XWSXW&ODPS &61 &/. N)/$6+ /RZ6LGH '59 960 703 /2*,& 2KP 2XWSXW&ODPS +LJK6LGH 'LUHFW 'ULYH +DOO &RQWDFW6XSSO\ 2XW)62 53XO O 8S 670 $) 2KP 53XO O 8S 9 ,2 &\FOLF&RQWDFW 0RQLWRULQJ N RKP 7HPS 0RQLWRULQJ WR&,2 2XW NRKP 2KP NRKP +LJK6LGH NRKP 96 0RQLWRULQJ WR&,2 ([SUHVV8S 8S 'RZQ $-$5F\FOLFUHDGRXW 5['1,17 /,1 7[' /,1 &XUUHQWWREH OLPLWHGEHORZ DSSU P$ *1' $*9 Doc ID 18309 Rev 6 29/75 Electrical specifications L99PM60J 6 Electrical specifications 6.1 Absolute maximum ratings Table 7. Absolute maximum rating Symbol Parameter / test condition Value [DC voltage] Unit DC supply voltage / “jump start” -0.3 to +28 V Load dump -0.3 to +40 V -0.3 to +5.25 V Logic input / output voltage range -0.3 to V1 + 0.3 V VCSN Multi Level Input -0.3 to Vs + 0.3 V VREL1 VREL2, Low-side output voltage range -0.3 to +40 V VOUT1..2, High-side output voltage range -0.3 to VS + 0.3 V Current injection into VS related input pins 10 mA Current injection into VS related outputs 10 mA -20 to +40 V VS V1 Stabilized supply voltage, logic supply VDI VCLK VTXD VDO VRXD VNRESET VDRV IIn_put Iout_inj LIN bus I/O voltage range VLIN Note: All maximum ratings are absolute ratings. Leaving the limitation of any of these values may cause an irreversible damage of the integrated circuit! Loss of ground or ground shift with externally grounded loads: ESD structures are configured for nominal currents only. If external loads are connected to different grounds, the current load must be limited to this nominal current. 6.2 ESD protection Table 8. ESD protection Parameter Value Unit +/-2 kV +/-4 kV LIN +/-8(2) +/-10(3) +/-7(4) kV All pins(5) +/-500 V All pins (1) All output pins 30/75 (2) Doc ID 18309 Rev 6 L99PM60J Electrical specifications Table 8. ESD protection (continued) Parameter Value Unit Corner pins +/-750 V pins(6) +/-200 V (5) All 1. HBM (human body model, 100pF, 1.5 kΩ) according to MIL 883C, Method 3015.7 or EIA/JESD22A114-A 2. HBM with all none zapped pins grounded. 3. Indirect ESD Test according to IEC 61000-4-2 (150 pF, 330 Ω) and ‘Hardware Requirements for LIN and Flexray Interfaces in Automotive Applications’ (version 1.1, 2009-12-02) 4. Direct ESD Test according to IEC 61000-4-2 (150 pF, 330 Ω) and ‘Hardware Requirements for LIN and Flexray Interfaces in Automotive Applications’ (version 1.1, 2009-12-02); Cbus,LIN = 220 pF 5. Charged device model 6. Machine model: C = 200 pF; R = 0 Ω 6.3 Thermal data Table 9. Operating junction temperature Symbol Tj RthjA Table 10. Parameter TSD1 OFF Thermal resistance junction / ambient -40 to 150 °C See Figure 26 °K/W Temperature warning and thermal shutdown Parameter Min. Typ. Max. Unit Thermal overtemperature warning threshold Tj(1) 120 130 140 °C Thermal shutdown junction temperature 1 Tj(1) 130 140 150 °C Tj(1) 150 160 170 °C TSD2OFF TSD2 ON Unit Operating junction temperature Symbol TW ON Value Thermal shutdown junction temperature 2 Hysteresis 5 °C TSD12hys 1. Non-overlapping Doc ID 18309 Rev 6 31/75 Electrical specifications L99PM60J 6.4 Electrical characteristics 6.4.1 Supply and supply monitoring The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18V; 4.8 V < V1 < 5.2 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. Table 11. Supply and supply monitoring Symbol Parameter Test condition VS absolute minimum value VSAbsmin(1) for controlling V1 and NReset VS increasing / decreasing outputs VS Supply voltage range Min. Typ. Max. Unit — 2.5 — V 6 13.5 18 V 5.81 V 0.15 V 22 V 1 1.5 V 6 12 mA 1 7 16 µA 10 48 70 µA 50 55 60 µA VSUV VS UV-threshold voltage Vhyst_UV Undervoltage hysteresis VSOV VS OV-threshold voltage VS increasing / decreasing 18 Vhyst_OV Overvoltage hysteresis Hysteresis 0.5 IV(act) Current consumption in active mode VS = 12 V; TxD LIN high; V1 = 5 V; HS/LS drivers OFF; VLIN > (VS - 1.5 V) IV(BAT) Current consumption in VBAT- VS = 12 V; V1 = OFF; VLIN > (VS - 1.5 V) standby mode IV(V1) Current consumption in V1-standby mode IV(V1)CS Current consumption in V1-standby during direct drive VS increasing / decreasing 5.11 0.04 VS = 12 V; V1 = 5 V; HS/LS drivers OFF; VLIN > (VS - 1.5 V); Iv1 < ICMP_Fail 0.1 VS = 12 V; V1 = 5 V; LS drivers OFF; VLIN > (VS - 1.5 V); Iv1 < ICMP_Fail t on 45μA + ------------------- ⋅ 1750μA t period at ton = 200 µs; tperiod = 50 ms 1. For VS > VSabsmin the V1 and NRESET output are actively driven. VS < VSabsmin the V1 output is connected to ground by passive pull down resistor of 1MΩ. 6.4.2 Oscillator The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 4.5 V < VS < 28 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. 32/75 Doc ID 18309 Rev 6 L99PM60J Electrical specifications Table 12. Symbol FCLK 6.4.3 Oscillator Parameter Test condition Oscillation frequency Min. Typ. Max. Unit 0.808 1.0 1.35 MHz Typ. Max. Unit 3.45 4.5 V 2.6 3.5 V Power-on reset (VS) All outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. Table 13. Symbol VPOR VPOR Power-on reset (VS) Parameter Test condition VPOR threshold Min. (VS increasing) VPOR threshold (VS decreasing)(1) 2.2 1. This threshold is valid if Vs had already reached 7V previously 6.4.4 Voltage regulator V1 The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 28 V; Tj = -40 °C to 130 °C, unless otherwise specified. Table 14. Symbol Voltage regulator V1 Parameter Test condition V1 Output voltage V1 Output voltage tolerance Active mode ILOAD = 6 mA... 50 mA, VS = 13.5 V Vhc1 Output voltage tolerance active mode, high current ILOAD = 50 mA... 100 mA, VS = 13.5 V VSTB1 Output voltage tolerance V1-standby mode ILOAD = 0uA...5mA VS = 13.5V VDP1 ICC1 tTSD Typ. Max. 5.0 -2 Unit V +/-2 % +/-2.5 % +4.5 % ILOAD = 50 mA; VS = 4.5 V 0.2 0.4 V ILOAD = 100 mA; V = 4.5 V 0.3 0.5 V 100 mA 950 mA Drop-out voltage Output current in active mode ICCmax1 Short circuit output current Cload1 Min. Load capacitor1 Max. continuous load current Current limitation 400 Ceramic 0.22 V1 deactivation time after thermal shutdown 600 µF 1 s ICMP_rise Current comp. rising threshold Rising current 2.1 4.6 6.8 mA ICMP_fail Current comp. falling threshold Falling current 1.5 3.6 6.0 mA Doc ID 18309 Rev 6 33/75 Electrical specifications Table 14. Voltage regulator V1 (continued) Symbol ICMP_hys L99PM60J Parameter V1 fail threshold tV1fail V1 fail Filter time tV1FS Min. Typ. Current comp. hysteresis V1fail tV1short Test condition Unit 0.5 mA 2 V 2 us 4 ms 2 ms V1 forced V1 short to ground detection filter time Max. V1 short to ground V1 Fail safe filter time Note: Nominal capacitor value required for stability of the regulator. Tested with 220nF ceramic (+/- 20%). Capacitor must be located close to the regulator output pin. 6.4.5 Reset output (V1 supervision) The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 4.0 V < VS = 28 V; Tj = -40 to 130 °C, unless otherwise specified. Table 15. Reset output (V1 supervision) Symbol Test condition Min. Typ. Max. Unit VRT1 Reset threshold voltage1 VV1 decreasing 3.35 3.5 3.65 V VRT1 Reset threshold voltage1 VV1 increasing 4.4 4.6 4.85 V VRT2 Reset threshold voltage2 (default) VV1 increasing / decreasing 4.4 4.6 4.85 V VRESET Reset pin low output voltage V1 > 1 V; IRESET = 1 mA 0,2 0,4 V RRESET Reset pull up int. resistor 110 204 kΩ 40 µs tRR V1UVFT tReset 6.4.6 Parameter Reset reaction time 60 @ILOAD = 1 mA 6 V1 undervoltage filter time 16 µs Reset delay time 2 ms Watchdog 4.5 V < VS < 28 V; 4.8 V < V1 < 5.2 V; Tj = -40 to 130 °C, unless otherwise specified, see Figure 13 and Figure 14) Table 16. Symbol tLW Parameter Test condition Long open window Min. Typ. Max. Unit 48.75 65 81.25 ms 4.5 ms TEFW1 Early failure window 1 TLFW1 Late failure window 1 20 Safe window 1 7.5 TSW 34/75 Watchdog Doc ID 18309 Rev 6 ms 10 12 ms L99PM60J Electrical specifications Table 16. Watchdog (continued) Symbol Parameter Test condition Min. Typ. Max. Unit tWDR Watchdog reset pulse time 1.5 2 2.5 ms tV1Off V1 deactivation duration after 8 consecutive WD failures 150 200 250 ms Figure 13. Watchdog timing (missing watchdog trigger) 9 W9RII W 15(6(7 W/: W/: W/: W/: W/: W/: W/: W/: W/: W/: W/: W/: W/: W/: W/: W $*9 Figure 14. Watchdog early, late and safe windows 76:Q 6DIHZLQGRZ 7():Q (DUO\)DLOXUHZLQGRZ 7/):Q /DWHIDLOXUHZLQGRZ 7/):QBPLQ 76:QBPD[ 76:QBPLQ 7():QBPD[ HDUO\ZDWFKGRJIDLOXUH XQGHILQHG VDIHWULJJHUDUHD XQGHILQHG ODWHZDWFKGRJIDLOXUH WLPH $*9 6.4.7 High-side outputs Outputs (OUT1…2); The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < V1 < 5.2 V; Tj = -40 °C to 130 °C, unless otherwise specified. Doc ID 18309 Rev 6 35/75 Electrical specifications Table 17. L99PM60J Output Symbol Parameter RDSON DC output resistance IOUT Min. Typ. Max. Unit ILOAD = 60 mA at Tj = 25 °C 0 7 12 Ω Short circuit shutdown current 8 V < VS < 16 V 140 235 330 mA tSCF Short circuit filter time Tested by scan chain IOLD Open-load detection current 1 4.2 mA tOLDT Open-load filter time SR Test condition 64 * TOSC 0.5 Tested by scan chain Slew rate 2 64 * TOSC 0.2 0.5 0.8 V/µs tdONHS Switch ON delay time 0.2 VS 5 35 60 µs tdOFFHS Switch OFF delay time 0.8 VS 20 95 150 µs tSCF Short circuit filter time Tested by scan chain IFW(1) Loss of GND current (ESD structure) 64 * TOSC 100 mA 1. Parameter guaranteed by design 6.4.8 Low-side drivers Outputs (REL1…2); The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 18 V; 4.8 V ≤ V1 ≤ 5.2 V; Tj = -40 to 130 °C, unless otherwise specified. Table 18. Relay drivers Symbol RDSON IOUT VZ Parameter Test condition Min. Typ. Max. Unit 0 2 3 Ω DC output resistance ILOAD = 100 mA @ Tj = 25 °C Short circuit shut down current 8 V < VS < 16 V 250 375 500 mA ILOAD = 100 mA 40 44 48 V Output clamp voltage(1) tONHL Turn on delay time to 10% VOUT 2.5 50 100 µs tOFFLH Turn off delay time to 90% VOUT 5 50 100 µs 4 V/µs tSCF Short circuit filter time SR Slew rate 64 * TOSC Tested by scan chain 0.2 2 1. The output is capable to switch off relay coils with the impedance of RL = 160 Ω; L = 300 mH (RL = 220 Ω; L = 420 mH); at VS = 40 V (Load dump condition). 6.4.9 Direct drive / voltage supply monitoring Input: DRV The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 36/75 Doc ID 18309 Rev 6 L99PM60J Electrical specifications 6 V ≤ VS ≤ 18 V; 4.8 V ≤ V1 ≤ 5.2 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. Table 19. Input: DRV Symbol Parameter Test condition Min. Typ. Max. Unit VDRVLOW Input voltage low level Normal mode, V1 = 5 V 1.0 2.3 2.9 V VDRVHIGH Input voltage high level Normal mode, V1 = 5 V 1.5 2.8 3.8 V Normal mode, V1 = 5 V 0.4 0.75 1.5 V 5 30 60 µA 25 35 pF VDRVHYS IDRVPD Cin(1) 1. VCSNHIGH – VCSNLOW Pull down current at input Normal mode, Vin = 1.5 V Input capacitance 0 V < V1 < 5.2 V Value of input capacity is not measured in production test. Parameter guaranteed by design. Output: VSOUT The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 18 V; 4.8 V ≤ V1 ≤ 5.2 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. Table 20. Symbol Output: VSOUT Parameter Test condition Typ. Max. Unit 0.195 VS 0.2 VS 0.205 VS V Output voltage VS = 6 V; VS = 10 V; VS = 18 V VSOUTUV VS output voltage in case of undervoltage VS = 4.5 V; VSM selected 0.0 V VSOUTOV VS output voltage in case of overvoltage VS = 24 V; VSM selected 5.0 V VTROOM TSENSE output voltage at 25 °C VS = 12 V; T = 25 °C 1.38 V T = 25 °C; T= 130 °C; T = -40 °C 3.5 mV/K 2 mA VSOUT VTSENSE TSENSE output voltage IVSOUT 6.4.10 Min. Pull-up pull-down current ability LIN LIN 2.1 compliant for Baud rates up to 20 kBit/s (SAE J2602 compatible) baud rate of the LIN bus can be upgraded up to 100 kBits by SPI bit configuration (LIN Flash bit 3 CR2). The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < V1 < 5.2 V; Tjunction = -40 °C to 130 °C unless otherwise specified. Doc ID 18309 Rev 6 37/75 Electrical specifications Table 21. Symbol L99PM60J LIN transmit data input: pin TXD Parameter Test condition Min. Typ. 0.8 1.9 Max. Unit VTXDOW Input voltage dominant level Normal mode; V1 = 5 V VTXDHIGH Input voltage recessive level Normal mode; V1 = 5 V VTXDHYS VTXDHIGH – VTXDOW Normal mode; V1 = 5 V ITXDPU TXD pull up resistor Normal mode; V1 = 5 V 20 kΩ ITXDPD TXD pull-down current Test mode; VIN = 10 V 480 µA Table 22. Symbol VRXDOW VRXDHIGH Table 23. 0.5 Parameter Test condition Min. Output voltage dominant level Normal mode; V1 = 5 V; 2 mA Output voltage recessive level VThdom Receiver threshold voltage recessive to dominant state VBusdom Receiver dominant state Normal mode; V1 = 5 V; 2 mA 1.0 1.5 V Typ. Max. Unit 0.5 4.5 Test condition V V Min. Typ. Max. Unit 0.4 VS 0.45 VS 0.5 VS V 0.4 VS V 0.6 VS V Receiver threshold voltage dominant to recessive state 0.5 VS VBusrec Receiver recessive state 0.6 VS VThhys Receiver threshold hysteresis VThrec – VThdom VTHcnt Receiver tolerance center value (VThrec + VThdom) / 2 VThwkup Receiver walk-up threshold voltage VTHwkdwn Receiver walk-up threshold voltage Transmitter input current limit in dominant state 0.175 VS V 0.475 VS 0.5 VS 0.525 VS V 1.0 1.5 2 V VS - 3.5 VS - 2.5 VS - 1.5 V 64 * TOSC µs 40 VTxD = VTxDhigh; VLIN = 0 V; VBAT = 12 V(1) -1 Doc ID 18309 Rev 6 V 0.1 VS VTxD = VTxDlow; VLIN = Vbatmax = 18 V Transmitter input current in VTxD = VTxDhigh; 8 V < VLIN < 18 V; 8 V < VBAT < 18 V; VLIN > VBAT recessive state 0.55 VS 0.07 VS Dominant time for walk-up Sleep mode edge: recessivevia bus dominant Input leakage current at Ibus_PAS_dom the receiver incl. pull-up resistor 38/75 V 0.2 VThrec Ibus_PAS_rec 3.5 LIN transmitter and receiver: pin LIN Parameter ILINDomSC 2.9 LIN receive data output: pin RXD Symbol tlinbus V 100 180 mA mA 20 µA L99PM60J Table 23. Symbol Electrical specifications LIN transmitter and receiver: pin LIN (continued) Max. Unit 1 mA Input current if loss of Vbat GND = VS; 0 V < VLIN < 18 V at device 100 µA VLINdom LIN voltage level in dominant state VTxD = VTxDlow; ILIN = 40 mA 1.2 V VLINrec LIN voltage level in recessive state VTxD = VTxDhigh; ILIN = 10 µA RLINup LIN output pull up resistor VLIN = 0 V Ibus_NO_GND Ibus Parameter Input current if loss of GND at device Test condition GND = VS; 0 V < VLIN < 18 V; VBAT = 12 V Min. Typ. -1 0.8 Vs V 20 40 60 kΩ Min. Typ. Max. Unit 6 µs 2 µs 1. Slave Mode Table 24. Symbol tRXpd tRXpd_sym D1 D2 D3 LIN transceiver timing Parameter Test condition Receiver propagation delay time tRXpd = max(tRXpdr, tRXpdf); tRXpdf = t(0.5 RXD) - t(0.45 VLIN); tRXpdr = t(0.5 RXD) - t(0.55 VLIN); CRXD = 20 pF; VS = 12 V; Rbus = 1 kΩ, Cbus = 1 nF; Rbus = 660 kΩ, Cbus = 6.8 nF; Rbus = 500 kΩ, Cbus = 10 nF Symmetry of receiver propagation delay time (rising vs. falling edge) tRXpd_sym = tRXpdr – tRXpdf Duty cycle 1 THRec(max) = 0.744 * VS; THDom(max) = 0.581 * VS; VS = 7…18 V; tbit = 50 µs; D1 = tbus_rec(min)/(2 x tbit) Rbus = 1 kΩ, Cbus = 1 nF; Rbus = 660 kΩ, Cbus = 6.8 nF; Rbus = 500 kΩ, Cbus = 10 nF Duty Cycle 2 THRec(min) = 0.422 * VS; THDom(min) = 0.284 * VS; VS = 7.6 …18 V; tbit = 50 µs; D1 = tbus_rec(max)/(2 x tbit) Rbus = 1 kΩ, Cbus = 1 nF; Rbus = 660 kΩ, Cbus = 6.8 nF; Rbus = 500 kΩ, Cbus = 10 nF Duty Cycle 3 THRec(max) = 0.778 * VS; THDom(max) = 0.616 * VS; VS = 7…18 V; tbit = 96 µs; D3 = tbus_rec(min)/(2 x tbit) Rbus = 1 kΩ, Cbus = 1 nF; Rbus = 660 kΩ, Cbus = 6.8 nF; Rbus = 500 kΩ, Cbus = 10 nF Doc ID 18309 Rev 6 -2 0.396 0.581 0.417 39/75 Electrical specifications Table 24. L99PM60J LIN transceiver timing (continued) Symbol Parameter D4 Test condition Min. Typ. Max. THRec(min) = 0.389 * VS; THDom(min) = 0.251 * VS; VS = 7.6…18 V; tbit = 96 µs; D1 = tbus_rec(max)/(2 x tbit) Rbus = 1 kΩ, Cbus = 1 nF; Rbus = 660 kΩ, Cbus = 6.8 nF; Rbus = 500 kΩ, Cbus = 10 nF Duty Cycle 4 Unit 0.590 tdom(TXDL) TXDL dominant time-out 12 ms tLIN LIN permanent recessive time-out 40 µs RDSon Table 25. ON resistance 16 Ω LIN Flash mode Symbol SRf 10.5 Parameter LIN slew rate falling edge Test condition Min. Typ. Max. Unit From 20% to 80% of VLIN; VS = 12 V; Rbus = 150 Ω; Cbus = 1 nF — 13 — V/µs Figure 15. LIN transmit, receive timing W 7;SGI W 7;SGU 97[' WLPH 9 /,1UHF 9/,1 9 7+UHF 9 7+GRP 9 /,1GRP WLPH 9 5[' WLPH W 5;SGI W 5;SGU $*9 6.4.11 SPI Input: CSN The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V ≤ VS ≤ 18 V; 4.8 V ≤ V1 ≤ 5.2 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. 40/75 Doc ID 18309 Rev 6 L99PM60J Electrical specifications Table 26. Input: CSN Symbol Min. Typ. Max. Unit Normal mode; V1 = 5 V 0.8 1.9 2.5 V Normal mode; V1 = 5 V 1.5 2.9 3.5 V VCSNHIGH – VCSNLOW Normal mode; V1 = 5 V 0.5 1.0 1.5 V ICSNPU CSN pull up resistor Normal mode; V1 = 5 V 10 20 35 kΩ ICSNPD CSN pull-down current Test mode, VIN = 10 V VCSNLOW Parameter Input voltage low level VCSNHIGH Input voltage high level VCSNHYS Test condition 480 µA Input CSN for Flash mode 6 V ≤ VS ≤ 18 V, 4.5 V ≤ V1 ≤ 5.3 V; Tj = -40 °C to 130 °C; voltages are referred to GND, all outputs open Table 27. Input CSN for Flash mode Symbol Parameter Test condition Min. Typ. Max. Unit VflashL Input level VCSN exit Flash mode) V1 = 5 V 6.1 7.25 8.4 V VflashH Input level VCSN entering Flash mode V1 = 5 V 7.4 8.4 9.4 V VflashHYS Input voltage hysteresis V1 = 5 V 0.6 0.8 1.0 V Inputs: CLK, DI The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < V1 < 5.2 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. Table 28. Symbol Parameter Test condition Min. Typ. Max. Unit 160 300 us tset Switching from standby to Delay time from standby to active mode. Time until output active mode drivers are enabled after CSN going to high. Vin L Input low level V1 = 5 V 1.0 2.3 2.9 V Vin H Input high level V1 = 5 V 1.5 2.8 3.8 V Vin Hyst Input hysteresis V1 = 5 V 0.4 0.75 1.5 V Pull down current at input VIN = 1.5 V 5 30 60 µA 10 15 pF 1 MHz I in 1. Inputs: CLK, DI Cin(1) Input capacitance at input 0 V < V1 < 5.2 V CSN, CLK, DI and PWM1,2 fCLK SPI input frequency at CLK Value of input capacity is not measured in production test. Parameter guaranteed by design. Doc ID 18309 Rev 6 41/75 Electrical specifications L99PM60J DI timing(b) The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < V1 < 5.2 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. Table 29. DI timing Symbol Parameter Test condition Min. Typ. Max. Unit tCLK Clock period V1 = 5 V 1000 — ns tCLKH Clock high time V1 = 5 V 400 — ns tCLKL Clock low time V1 = 5 V 400 — ns tset CSN CSN setup time, CSN low before rising edge of CLK V1 = 5 V 400 — ns tset CLK CLK setup time, CLK high before rising edge of CSN V1 = 5 V 400 — ns tset DI DI setup time V1 = 5 V 200 — ns thold DI DI hold time V1 = 5 V 200 — ns tr in Rise time of input signal DI, CLK, CSN V1 = 5 V — 100 ns tf in Fall time of input signal DI, CLK, CSN V1 = 5 V — 100 ns Output DO The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < V1 < 5.2 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. Table 30. Symbol Output DO Parameter Test condition Min. VDOL Output low level V1 = 5 V; ID = -4 mA VDOH Output high level V = 5 V; ID = 4 mA 4.5 IDOLK 3-state leakage current VCSN = V1; 0 V < VDO < V1 -10 CDO(1) 3-state input capacitance VCSN = V1, 0 V < V1 < 5.3 V Typ. 42/75 Doc ID 18309 Rev 6 Unit 0.5 V V 10 1. Value of input capacity is not measured in production test. Parameter guaranteed by design. b. See Figure 16: SPI – input timing. Max. 10 µA 15 pF L99PM60J Electrical specifications DO timing(c) The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < V1 < 5.2 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. Table 31. DO timing Symbol Parameter Test condition Min. Typ. Max. Unit tr DO DO rise time CL = 100 pF; ILOAD = -1 mA — 50 100 ns tf DO DO fall time CL = 100 pF; ILOAD = 1 mA — 50 100 ns ten DO tri L DO enable time from 3-state to low level CL = 100 pF; ILOAD = 1 mA; pull-up load to V1 — 50 250 ns tdis DO L tri DO disable time from low level to 3-state CL = 100 pF; ILOAD = 4 mA; pull-up load to V1 — 50 250 ns ten DO tri H DO enable time from 3-state to high level CL = 100 pF; ILOAD = -1 mA; pull-down load to GND — 50 250 ns tdis DO H tri DO disable time from high level to 3-state CL = 100 pF; ILOAD = -4 mA; pull-down load to GND — 50 250 ns DO delay time VDO < 0.3 V1; VDO > 0.7 V1; CL = 100 pF — 50 250 ns td DO CSN timing(d) The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < V1 < 5.2 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. Table 32. Symbol tCSN_HI(min) CSN timing Parameter Test condition Minimum CSN HI time, active mode Transfer of SPI-command to Input register Min. Typ. 6 — Max. Unit — µs RXDL/NINT timing The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < V1 < 5.2 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. c. See Figure 17: SPI – output timing d. See Figure 18: SPI transition parameters Doc ID 18309 Rev 6 43/75 Electrical specifications Table 33. Symbol tInterupt L99PM60J RXDL/NINT timing Parameter Test condition Interrupt pulse duration Walk-up from V1stby by LIN Min. Typ. — 56 Figure 16. SPI – input timing 9&& &61 9&& WVHW &61 W&/.+ WVHW &/. 9&& &/. 9&& WVHW ', WKROG ', W&/./ 9&& ', 9DOLG 9DOLG 9&& $*9 44/75 Doc ID 18309 Rev 6 Max. Unit — µs L99PM60J Electrical specifications Figure 17. SPI – output timing 7I&/. 7U&/. 9FF &/. 9FF 9FF 7U'2 9FF '2 ORZWRKLJK 9FF 7G'2 7I '2 9FF '2 KLJKWRORZ 9FF 7I&61 7U&61 9FF &61 9FF 9FF 7HQ'2BWULB/ 7GLV'2B/BWUL 7HQ'2BWULB+ 7GLV'2B+BWUL $*9 Doc ID 18309 Rev 6 45/75 Electrical specifications L99PM60J Figure 18. SPI transition parameters &61 ORZ WR KLJK GDWD IURP VKLIW UHJLVWHU LV WUDQVIHUUHG WR RXWSXW SRZHU VZLWFKHV WU LQ WI LQ W &61B+,PLQ &61 WG2)) RXWSXW FXUUHQW RI D GULYHU 21 VWDWH 2)) VWDWH W2)) WG21 W21 RXWSXW FXUUHQW RI D GULYHU 2)) VWDWH 21 VWDWH $*9 Figure 19. SPI global status register access &61 KLJK WR ORZ DQG &/. VWD\V ORZ VWDWXV LQIRUPDWLRQ RI GDWD ELW IDXOW FRQGLWLRQ LV WUDQVIHUHG WR '2 &61 WLPH &/. WLPH ', WLPH ', GDWD LV QRW DFFHSWHG '2 WLPH '2 VWDWXV LQIRUPDWLRQ RI GDWD ELW IDXOW FRQGLWLRQ ZLOO VWD\ DV ORQJ DV &61 LV ORZ $*9 46/75 Doc ID 18309 Rev 6 L99PM60J ST SPI 7 ST SPI 7.1 SPI communication flow 7.1.1 General description The proposed SPI communication is based on a standard SPI interface structure using CSN (Chip Select Not), SDI (Serial Data In), SDO (Serial Data Out/Error) and SCK (Serial Clock) signal lines. At device start-up the master reads the <SPI-frame-ID> register (ROM address 3EH) of the slave device. This 8-bit register indicates the SPI frame length (16bit) and the availability of additional features. Each communication frame consists of an instruction byte which is followed by 1 data byte. The data returned on SDO within the same frame always starts with the <Global Status> register. It provides general status information about the device. It is followed by 1 data byte (i.e. ‘In-frame-response’). For write cycles the <Global Status> register is followed by the previous content of the addressed register. For read cycles the <Global Status> register is followed by the content of the addressed register. 7.1.2 Command byte Each communication frame starts with a command byte. It consists of an operating code which specifies the type of operation (<Write>, <Read>, <Read and Clear>, <Read Device Information>) and a 6 bit address. If less than 6 address bits are required, the remaining bits are unused but are reserved. Table 34. Command byte MSB LSB Op code OC1 Address OC0 A5 A4 A3 A2 A1 A0 OCx: operating code Ax: address 7.1.3 Operating code definition Table 35. Operating code definition OC1 OC0 Meaning 0 0 <Write mode> 0 1 <Read mode> Doc ID 18309 Rev 6 47/75 ST SPI L99PM60J Table 35. Operating code definition (continued) OC1 OC0 Meaning 1 0 <Read and clear status> 1 1 <Read device information> The <Write Mode> <Read Mode> and <Read and Clear Status> operations allow access to the RAM of the device, i.e. to write to control registers or read status information. A <Read and Clear Status> operation addressed to a device specific status register reads back and subsequently clear this status register. A <Read and Clear Status> operation with address 3FH clears all status registers (including the Global Status Register). Configuration Register is read by this operation. <Read Device Information> allows access to the ROM area which contains device related information such as the product family, product name, silicon version, register width and availability of a watchdog. More detailed descriptions of the device information are available in ‘Read Device Information’. 7.1.4 Global status register(e) Table 36. Global status register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Global error flag (GEF) Communication error Not (chip reset or comm error) TSD2 or TSD1 TW V1 fail VS fail (OV/UV) Fail safe Fail safe VS fail (OV / UV) V1 fail TW TSD1 or TSD2 Detailed global status register NOT(chip reset or comm error) Comm error Global error Table 37. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Hex. 0 0 1 0 0 0 0 0 20 Default value in Normal mode - after correct WD trigger or after Read & Clear on Error Flags 1 0 0 0 0 0 0 0 80 Power ON - strong battery 1 0 0 0 0 0 1 0 82 Power ON - weak battery 1 1 0 0 0 0 0 0 C0 Communication error e. See Section 7.2: SPI registers for details 48/75 L99PM60J Doc ID 18309 Rev 6 L99PM60J ST SPI Fail safe VS fail (OV / UV) V1 fail TW TSD1 or TSD2 Detailed global status register (continued) NOT(chip reset or comm error) Global error Comm error Table 37. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Hex. L99PM60J 1 0 1 0 0 0 1 0 A2 VS overvoltage or VS undervoltage 1 0 1 0 0 0 0 1 A1 WD failure 1 0 1 0 0 0 0 1 A1 SPI error (DI stuck) 1 0 1 1 1 0 0 1 B9 TSD2 1 0 1 0 0 1 0 0 A4 V1 fail 1 0 1 0 0 0 0 0 A0 Other device failure(1) 1. The Global Error Flag is raised due to a failure condition which is not reported in the Global Status Register. The Failure is reported in the Status Registers 1 – 4. 7.1.5 Configuration register The <Configuration> register is accessible at RAM address 3FH. The Configuration Register is implemented for compliance purpose to ST SPI Standard. Table 38. Configuration register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 WD trigger <WD Trigger>: this Bit is reserved to serve the watchdog. Doc ID 18309 Rev 6 49/75 ST SPI L99PM60J Figure 20. Read configuration register &61 6', $ $ $ $ $ $ &RPPDQG 127 &KLS 6'2 *() 76' RU &RPP 76' &RP 5HV (UURU 25 9 IDLO 7: 9V )DLO IDLO 6DIH ' ' ' ' ' ' ' ' (UU *OREDO6WDWXV 'DWDELW $*9 Figure 21. Write configuration register &61 6', $ $ $ $ $ $ ' ' ' ' ' ' ' ' &RPPDQG 127 &KLS 6'2 *() &RP 5HV (UURU 25 76' RU 'DWDELW 7: &RPP 76' (UU 9 IDLO 9V )DLO IDLO 6DIH ' ' ' ' ' ' ' ' *OREDO6WDWXV 50/75 Doc ID 18309 Rev 6 'DWD SUHYLRXVFRQWHQW RIWKHUHJLVWHU $*9 L99PM60J ST SPI 7.1.6 Address mapping Table 39. Addressing mapping RAM Address Description Access ROM Address 3FH Reserved 3EH <SPI frame ID> Includes frame width and availability of watchdog 3FH <Configuration> R/W 14H Status register 4 R 13H Status register 3 R 12H Status register 2 R 11H Status register 1 R 02H Control register 2 R/W 01H Control register 1 R/W 00H Reserved … Description Access N/A R Unused N/A 03H <product code 2> Unique product identifier N/A 02H <product code 1> Unique product identifier R 01H <silicon version> Indicates Design Version R 00H <ID Header> Device family, max address of device information R R/W The RAM memory area consists of 8 bit registers. For the device information (ROM memory area) the eight bits of the memory cell are used. All unused RAM and ROM addresses are read as ‘0’. Note: 7.1.7 1 The register definition for RAM address 00H is unused. A register value of all 0 must cause the device to enter a failsafe state (interpreted as ‘SDI stuck to GND’ failure). 2 ROM address 3FH is unused. An attempt to access this address must be recognized as a communication error (‘SDI stuck to VCC’ failure) and must cause the device to enter a failsafe state. Write operation The write operation starts with a Command Byte followed by 1 data byte. Table 40. Write command format MSB LSB Command byte Op Code 0 Address 0 A5 A4 A3 A2 A1 A0 D6 D5 D4 D3 D2 D1 D0 Data byte D7 Doc ID 18309 Rev 6 51/75 ST SPI L99PM60J OC0, OC1: operating code (00 for ‘write’ mode) A0 to A5: address bits An attempt to write 00H at RAM address 00H is recognized as a failure (SDI stuck to GND). The device enters a failsafe state. 7.1.8 Format of data shifted out at SDO during write cycle Table 41. Format of data shifted out at SDO during write cycle: global status register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Global error flag (GEF) Comm error Not (chip reset or comm error) TSD2 or TSD1 TW V1 fail VS fail (OV/UV) Fail safe Table 42. Format of data shifted out at SDO during write cycle: data byte MSB Previous content of addressed register D7 D6 D5 D4 D3 D2 LSB D1 D0 Failures are indicated by activating the corresponding bit of the <Global Status> register. The returned data byte represents the previous content of the accessed register. Figure 22. Format of data shifted out at SDO during write cycle &61 6', $ $ $ $ $ $ ' ' ' ' ' ' ' ' &RPPDQG 6'2 &RP *() (UURU 127 &KLS 76' 5HV RU 25 &RPP 76' (UU 'DWDELW 7: 9 IDLO 9V )DLO IDLO 6DIH ' ' ' ' ' ' ' ' *OREDO6WDWXV 52/75 Doc ID 18309 Rev 6 'DWD SUHYLRXVFRQWHQW RIWKHUHJLVWHU $*9 L99PM60J 7.1.9 ST SPI Read operation The Read operation starts with a Command Byte followed by 1 data byte. The content of the data byte is ‘don’t care’. The content of the addressed register is shifted out at SDO within the same frame (‘in-frame response’). Table 43. Read command format MSB LSB Command byte Op code 0 Address 1 A5 A4 A3 A2 A1 A0 0 0 0 0 0 0 0 Data byte 0 OC0, OC1: operating code (01 for ‘read’ mode) A0 to A5: address bits 7.1.10 Format of data shifted out at SDO during read cycle Table 44. Format of data shifted out at SDO during read cycle: global status register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Global error flag (GEF) Comm error Not (chip reset or comm error) TSD2 or TSD1 TW V1 fail VS fail (OV/UV) Fail safe Table 45. Format of data shifted out at SDO during read cycle: data byte MSB D7 Previous content of addressed register D6 D5 D4 D3 D2 LSB D1 D0 Failures are indicated by activating the corresponding bit of the <Global Status> register. The returned data byte represents the content of the register to be read. Doc ID 18309 Rev 6 53/75 ST SPI L99PM60J Figure 23. Format of data shifted out at SDO during read cycle &61 6', $ $ $ $ $ $ &RPPDQG &RP 6'2 *() (UURU 127 &KLS 76' 5HV RU 25 &RPP 76' (UU 7: 9 IDLO 9V )DLO IDLO 6DIH ' ' ' ' ' ' ' ' *OREDO6WDWXV 'DWDELW $*9 7.1.11 Read and clear status operation The ‘Read and Clear Status’ operation starts with a command byte followed by 1 data byte. The content of the data byte is ‘don’t care’. The content of the addressed Status Register is transferred to SDO within the same frame (‘in-frame response’) and is subsequently cleared. A ‘Read and Clear Status’ operation with address 3FH clears all Status registers (incl. the <Global Status> register). The Configuration Register is read by this operation. Table 46. Read and clear status’ command format‘ MSB LSB Command byte Op code 1 Address 0 A5 A4 A3 A2 A1 A0 0 0 0 0 0 0 0 Data byte 0 OC0, OC1: operating code (10 for ‘read and clear status’ mode) A0 to A5: address bits 54/75 Doc ID 18309 Rev 6 L99PM60J 7.1.12 ST SPI Format of data shifted out at SDO during ‘Read and Clear Status’ operation Table 47. Format of data shifted out at SDO during ‘Read and Clear Status’ operation: global status register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Global error flag (GEF) Comm error Not (chip reset or comm error) TSD2 or TSD1 TW V1 fail VS fail (OV/UV) Fail safe Table 48. Format of data shifted out at SDO during read cycle: data byte MSB Previous content of addressed register D7 D6 D5 D4 D3 LSB D2 D1 D0 Failures are indicated by activating the corresponding bit of the <Global Status> register. The returned data byte represents the content of the register to be read. Figure 24. Format of data shifted out at SDO during ‘Read and Clear Status’ operation &61 6', $ $ $ $ $ $ &RPPDQG 6'2 *() &RP (UURU 127 &KLS 76' 5HV RU 25 &RPP 76' (UU 7: *OREDO6WDWXV 9 IDLO 9V )DLO IDLO 6DIH ' ' ' ' ' ' ' ' &RQWHQWRIDGGUHVVHGVWDWXVUHJLVWHU RUµ&RQILJXUDWLRQ¶5HJLVWHUELW $*9 Doc ID 18309 Rev 6 55/75 ST SPI 7.1.13 L99PM60J Read device information The device information is stored at the ROM addresses defined below and is read using the respective operating code. Table 49. Read device information Op code Address Device information OC1 OC0 1 1 3FH Reserved 1 1 3EH <SPI frame ID> Includes frame width and availability of watchdog = 41H 1 1 04H to 3DH 1 1 03H <product code 2> Unique product identifier; content = 4BH 1 1 02H <product code 1> Unique product identifier; content = 0CH 1 1 01H <silicon version> Indicates design version 1 1 00H <ID Header> Device family, max address of device information. Content: 43H Unused The <ID-Header> (00H) indicates the product family and specifies the highest address which contains product information (the standard value, i.e. no additional product information registers are present, is 03H content of ID-Header is: XX00 0011) Table 50. ID-Header Bit 7 Bit 6 Family identifier Table 51. Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Highest address containing device information Family identifier Bit 7 Bit 6 Meaning 0 0 VIPower 0 1 BCD 1 0 VIPower hybrid 1 1 Tbd The <Product Code 1> (02H) and <Product Code 2> (03H) represents a unique code to identify the product name. The code is specified in the device datasheet. The <Silicon Version> (01H) provides information about the silicon version according to the table below: 56/75 Doc ID 18309 Rev 6 L99PM60J ST SPI Table 52. Bit 7 Silicon version Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Reserved Bit 1 Bit 0 Silicon version Definition of the silicon version code: Table 53. Silicon version code Bit3 Bit 2 Bit 1 Bit 0 Silicon version 0 0 0 0 First Silicon 0 0 0 1 V2 0 0 1 0 V3 0 0 1 1 V4 0 1 0 0 V5 0 1 0 1 V6 0 1 1 0 V7 0 1 1 1 V8 1 … … … … The <SPI-frame-ID> (ROM address 3EH) provides information about the register width (1, 2, 3 bytes) and the availability of ‘Burst Mode Read’ and watchdog. Table 54. SPI-frame-ID Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 BR WD X X X 32-bit 24-bit 16-bit x x BR: Burst-Mode Read (1 = Burst-Mode Read is supported) WD: Watchdog (1 = available, 0 = not available) 32-bit, 24-bit, 16-bit: width of SPI frame (see table below) 7.2 SPI registers Overview command byte Table 55. SPI register: command byte Read/write x Address x x x Doc ID 18309 Rev 6 x x 57/75 ST SPI L99PM60J Table 56. SPI register: mode selection Read/write Table 57. Mode selection 0 0 Write 0 1 Read 1 0 Read and clear 1 1 Read device info SPI register: CTRL register selection CTRL register 1, 2 CTRL register selection 0 0 0 0 0 1 CTRL register1 0 0 0 0 1 0 CTRL register2 Table 58. SPI register: STAT register selection STAT register. 1…4 STAT register selection 0 1 0 0 0 1 STAT register1 0 1 0 0 1 0 STAT register2 0 1 0 0 1 1 STAT register3 0 1 0 1 0 0 STAT register4 Overview of control register data bytes Table 59. Overview of control register data byte 1st data byte Control register 1 Defaults 1 1 1 1 0 0 0 0 Funct. OUT2_2 OUT2_1 OUT1_2 OUT1_1 ICMP Sandby select Go standby TRIG Group HS control Mode control Control register 2 Defaults 0 0 0 1 0 Funct. REL2 REL1 VSM EN Reset level LIN Flash Group 58/75 LS control 1 1 LIN TXD OUT UV LS OVUV timeout shutdown shutdown enable enable enable Other control Doc ID 18309 Rev 6 1 L99PM60J ST SPI Control Register 1 Table 60. Control register 1 1st data byte Command byte Read/ write x Table 61. Address x 0 0 Bit 0 0 1 Data, 8bit Control register 1, 1st data byte Group Table 62. 0 HS control Mode control Defaults 1 1 1 1 0 0 0 0 Funct. OUT2_2 OUT2_1 OUT1_2 OUT1_1 ICMP Standby select Go standby TRIG Control register 1, bits Name 7 Comment Select mode of OUT2 OUT2_2 OUT2_1 Active mode V1-standby VBAT-standby 0 0 Off 0 1 On VSM enable 1 0 OUT2 6 0 Direct drive 1 Off Direct drive Off Direct drive Off VSM enable 1 Note: 1 0 Direct drive 1 Off Note: In Direct Drive, Pin DRV/VSOUT, can be used as an input to directly switch on/off OUT2 Doc ID 18309 Rev 6 59/75 ST SPI Table 62. Bit L99PM60J Control register 1, bits (continued) Name 5 Comment Select mode of OUT1 OUT2_2 OUT2_1 Active mode V1-standby VBAT-standby 0 0 Off 0 1 On VSM enable 1 1 Direct drive 1 Off FSO Direct drive Off FSO FSO Note: ICMP V1 load current supervision – 0: enabled; watchdog is disabled in V1-standby when the V1loadcurrent < ICMPthreshold – 1: disabled; Watchdog is automatically disabled when V1-standby is entered 2 Stby Select 1 Go Stby 0 TRIG 60/75 1 0 OUT1 4 3 0 In Direct Drive, Pin DRV/VSOUT, can be used as an input to directly switch on/off OUT1 To change the setting for OUT1 from FSO (default) to normal output configuration (ON/OFF or Direct Drive) a SPI safety sequence Needs to be followed. First write command with a specific pattern to CONF Register needs to be provided in order to enable the write access For configuration bits of OUT1. With an SPI write command to Control Register 1 the bits for OUT1 can be modified. The Write command to Control Register 1 must follow the write command to the CONF Register (no other SPI command in between these 2 commands) Safety Sequence: – Write to Conf Register (0x0011 1111; 1010 101x) x: don’t care for unlocking sequence but according to description of watchdog timing – Write to Ctrl Register 1 (0x0000 0001; xxxx xxxx) x: values according to description of Ctrl Reg1 Select standby mode – 0: VBAT-standby mode – 1: V1-standby mode Execute standby mode – 0: no action – 1: execute standby mode Trigger bit for watchdog Doc ID 18309 Rev 6 L99PM60J ST SPI Control Register 2 Table 63. Control register 2 1st data byte Command byte Read/ write x Table 64. Group Table 65. Bit Address x 0 0 0 0 1 0 Data, 8bit Control register 2, 1st data byte LS control Other control Defaults 0 0 0 1 0 1 Function REL2 REL1 VSM enable Reset level LIN Flash 1 1 LIN TXD OUT UV LS OVUV timeout shutdown shutdown enable enable enable Control register 2, bits Name Comment Select mode of REL2 REL2 7 Active mode V1 standby VBAT standby REL2 0 1 REL2 off REL2 on REL2 off Select mode of REL1 REL2 6 REL1 Active mode V1 standby 0 1 VBAT standby REL1 off REL1 on REL1 off Select Pin DRV/VSOUT as input/output VSM enable Active mode DRV/VSOUT pin used as input (direct drive)(1) 0 OUT2_2 OUT2_1 5 VSM enable 1 VBAT V1 standby standby DRV/VSOUT used as 0 0 Output (VS/5 voltage) 0 1 Output (VS/5 voltage) 1 0 1 1 Output (TSENSE voltage) DRV/VSOUT pin used as input (direct drive)(1) Output (VS/5 voltage) 1. Usage of Direct Drive feature is not only related to the configuration of DRV/VSOUT as an input. Refer to truth table of OUT1/2 for the direct drive feature. Doc ID 18309 Rev 6 61/75 ST SPI Table 65. Bit L99PM60J Control register 2, bits Name Comment Select V1 reset level – 0: 3.5 V – 1: 4.6 V 4 Reset level 3 LIN Flash Select maximum LIN communication speed – 0: 20 kbit/s – 1: 100 kbit/s 2 LIN TXD timeout enable Enable / disable monitoring of TxD – 0: no TxD monitoring – 1: TxD monitoring; LIN transmitter is switched off if TXDL is dominant for t > 12 ms 1 OUT UV shutdown enable Select undervoltage shutdown for HS driver – 0: no undervoltage shutdown – 1: undervoltage shutdown 0 LS OVUV shutdown enable Shutdown of LS drivers in case of overvoltage / undervoltage 0: no shutdown of low sides in case of overvoltage / undervoltage 1: shutdown low sides in case of overvoltage / undervoltage 62/75 Doc ID 18309 Rev 6 L99PM60J ST SPI 7.2.1 Status register Table 66. Overview of status register data bytes 1st data byte Status register 1 Funct. OV UV OL OUT2 OL OUT1 Group OC OUT2 OC OUT1 OC REL2 OC REL1 LIN Wake Device State Device State Forced sleep TSD/ShtV1 WD timer state1 WD timer state0 TSD2 TSD1 TW Diagnosis 1 Status register 2 Funct. Res LIN perm dom LIN TXD dom LIN perm rec Group Res Diagnosis 2 Status register 3 Funct. WD Fail WD Fail WD Fail Forced sleep WD WD Fail Group Diagnosis 3 Status register 4 Funct. V1 UV warn V1 restart V1 restart V1 restart Group Table 67. V1 fail Diagnosis 4 Global status register Bit 7 Bit 6 Bit 5 Global error flag Communicatio n error(1) Bit 4 NOT (chip reset or comm. error i.e. cold TSD2 or TSD1(3) start(2) Bit 3 Bit 2 Bit 1 Bit 0 TW V1 fail Vs Fail (OV/UV) Fail safe(4) 1. Invalid CLOCK COUNT 2. Cleared with CLR command on SR3 3. Cleared with “READ and CLEAR” on SR4 4. Cleared with a valid WD trigger (WD fail) or by clearing the corresponding status register related to failure Status Register 1 Table 68. Status register 1, command and data byte 1st data byte Command byte Read/write x x Address 0 1 0 0 Doc ID 18309 Rev 6 0 1 Data, 8bit 63/75 ST SPI L99PM60J Table 69. Status register 1, data byte 1st data byte Function OV UV OL OUT2 OL OUT1 OC OUT2 OC OUT1 OC REL2 OC REL1 Group Diagnosis 1 Table 70. Status register 1, bits Bit Name 7 OV Overvoltage event occurred since last read out Bit is latched until a “Read and clear” access 6 UV Undervoltage event occurred since last read out Bit is latched until a “Read and clear” access 5 Comment 4 OL OUT2 Open-load event occurred since last read out OL OUT1 Bit is latched until a “read and clear” access 3 OC OUT2 2 1 OC OUT1 Overcurrent event occurred since last read out OC REL2 Bit is latched until a “read and clear” access 0 OC REL1 Status Register 2 Table 71. Status register 2, command and data byte 1st data byte Command byte Read/write x x Table 72. Address 0 1 0 0 1 0 Data, 8bit Status register 2, data byte 1st data byte Function Res LIN perm dom LIN TXD dom Group Res LIN wake Device state Device state Diagnosis 2 Table 73. 64/75 LIN perm rec Status register 2, bits Bit Name Comment 7 Res 6 LIN perm dom LIN bus is dominant for t > 12 ms Bit is latched until a “Read and clear” access 5 LIN TXD dom TxDL pin is dominant for t > 12 ms; Transmitter is disabled; Bit is latched until a “Read and clear” access Reserved Doc ID 18309 Rev 6 L99PM60J ST SPI Table 73. Status register 2, bits (continued) Bit Name 4 LIN perm rec 3 Res 2 LIN wake 1 Device state 0 Comment LIN bus does not follow TxDL within 40 µs; Transmitter is disabled; Bit is latched until a “Read and clear” access Reserved Wake up from LIN; Bit is latched until a “Read and clear” access State from which the device woke up Device state Device state 0 0 Active 0 1 V1-standby 1 0 VBAT-standby Device State State from which the device woke up Bit is latched until a “read and clear access”. After a “read and clear access”, the device state is updated. After a wake up, device state is – 01: V1-standby – 10: VBAT-standby Status Register 3 Table 74. Status register 3, command and data byte 1st data byte Command byte Read/write x Table 75. x Address 0 1 0 0 1 1 Data, 8bit Status register 3, data byte 1st data byte Function WD fail_3 WD fail_2 WD fail_1 Group Table 76. WD fail_0 Forced sleep WD Forced WD timer WD timer sleep State_1 State_0 TSD/ShtV1 Diagnosis 3 Status register 3, bits Bit Name 7 WD fail_3 6 WD fail_2 5 WD fail_1 4 WD fail_0 Comment Number of missing watchdog triggers (15 missing Watchdog trigger forces the device into VBAT-standby). Bits are not clearable; are cleared with a proper Watchdog trigger Doc ID 18309 Rev 6 65/75 ST SPI L99PM60J Table 76. Status register 3, bits (continued) Bit Name 3 Forced sleep WD 2 Comment Device was forced to VBAT mode because of multiple watchdog errors Bits are latched until a read and clear access Device was forced to VBAT or multiple thermal shutdown events or a short on Forced V1 during start-up. sleep TSD/ShtV1 Bits are latched until a read and clear access WD timer state_1 1 Status of watchdog counter of selected watchdog timing WD_timer_state_1 WD_timer_state_0 0 0 0% - 33% 0 1 33% - 66% 1 1 66% - 100% WD timer state_0 0 Counter Bits are not clearable Status Register 4 Table 77. Status register 4, command and data byte 1st data byte Command byte Read/write x x Table 78. Address 0 1 0 1 0 0 Data, 8bit Status register 4, data byte 1st data byte Function V1 UV warn V1 V1 V1 restart_2 restart_1 restart_0 Group Name 7 V1 UV warn 6 V1 restart_2 3 66/75 TSD1 TW Status register 4, bits Bit 4 TSD2 Diagnosis 4 Table 79. 5 V1 fail Comment V1 undervoltage pre-warning (V1 < 4.5 V) Bit is latched until a read and clear access Number of TSD2 events which caused a restart of V1 regulator (7 TSD2 V1 restart_1 events forces the device into VBAT-standby) Bits are latched until a read and clear access V1 restart_0 V1 fail V1 fail (V1 < 2 V for t > 2 µs) event occurred since last read out Bit is latched until a “read and clear access” Doc ID 18309 Rev 6 L99PM60J ST SPI Table 79. Status register 4, bits (continued) Bit Name 2 TSD2 1 TSD1 0 TW Comment Thermal warning / shutdown1 / shutdown2 occurred since last readout Bits are latched until a “read and clear access” Doc ID 18309 Rev 6 67/75 Package and PCB thermal data L99PM60J 8 Package and PCB thermal data 8.1 PowerSSO-16 thermal data Figure 25. Thermal data of PowerSSO-16 $*9 Note: Board finish thickness 1.6 mm +/- 10%; Board double layer; Board dimension 77 x 86; Board Material FR4; Cu thickness 0.070 mm (front and back side); Thermal vias separation 1.2 mm; Thermal via diameter 0.3 mm +/- 0.08 mm; Cu thickness on vias 0.025 mm; Footprint dimension 2.5 mm x 4.2 mm Figure 26. Rthj-amb vs PCB copper area in open box free air condition 57+MBDPEYV&XKHDWVLQNDUHD 57+MDPE 57+MBDPE&: 3&%&XKHDWVLQNDUHDFPA $*9 68/75 Doc ID 18309 Rev 6 L99PM60J Package and PCB thermal data Figure 27. V1 thermal impedance ZTH (°C/W) 100 Cu=8 cm2 Cu=2 cm2 Cu=foot print 10 1 0.0001 0.001 0.01 0.1 Time (s) 1 10 100 1000 AG00064V1 Figure 28. Thermal fitting model of V1 $*9 Equation 1: pulse calculation formula Z THδ = R TH ⋅ δ + Z THp ( 1 – δ ) where δ = tp ⁄ T Doc ID 18309 Rev 6 69/75 Package and PCB thermal data Table 80. 70/75 L99PM60J PowerSSO-16 thermal parameter Area/island (cm2) FP R1 (°C/W) 1.5 R2 (°C/W) 3 R3 (°C/W) 5 R4 (°C/W) 2 8 20 6 6 R5 (°C/W) 28 21 10 R6 (°C/W) 32 25 21 C1 (W·s/°C) 0.0008 C2 (W·s/°C) 0.01 C3 (W·s/°C) 0.05 C4 (W·s/°C) 0.2 0.3 0.3 C5 (W·s/°C) 0.5 1 1.5 C6 (W·s/°C) 4 6 8 Doc ID 18309 Rev 6 L99PM60J Package and Packaging Information 9 Package and Packaging Information 9.1 ECOPACK® In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.ECOPACK® is an ST trademark. 9.2 PowerSSO-16 package information Figure 29. PowerSSO-16 package dimensions AG00110V1 Doc ID 18309 Rev 6 71/75 Package and Packaging Information Table 81. L99PM60J PowerSSO-16 mechanical data Millimeters Symbol Min. Max. A 1.25 1.72 A1 0.00 0.10 A2 1.10 1.62 B 0.18 0.36 C 0.19 0.25 D 4.80 5.00 E 3.80 4.00 e 0.50 H 5.80 6.20 h 0.25 0.50 L 0.40 1.27 k 0° 8° X 1.90 2.50 Y 3.60 4.20 ddd 72/75 Typ. 0.10 Doc ID 18309 Rev 6 L99PM60J 9.3 Package and Packaging Information PowerSSO-16 packing information Figure 30. PowerSSO-16 tube shipment (no suffix) Base Q.ty Bulk Q.ty Tube length (± 0.5) A B C (± 0.1) B C A 100 2000 532 1.85 6.75 0.6 All dimensions are in mm. AG00111V1 Figure 31. PowerSSO-16 tape and reel shipment (no suffix) REEL DIMENSION Base Q.ty Bulk Q.ty A (max) B (min) C (± 0.2) F G (+ 2 / -0) N (min) T (max) 2500 2500 330 1.5 13 20.2 12.4 60 18.4 TAPE DIMENSIONS According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb. 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 (± 0.1) P D (± 0.05) D1 (min) F (± 0.1) K (max) P1 (± 0.1) 12 4 8 1.5 1.5 5.5 4.5 2 All dimensions are in mm. End Start Top cover tape No components Components No components 500mm min Empty components pockets saled with cover tape. 500mm min User direction of feed AG00112V1 Doc ID 18309 Rev 6 73/75 Revision history 10 L99PM60J Revision history Table 82. Document revision history Date Revision 26-Jan-2011 1 Initial release. 2 Updated Section 3.2: Low side driver outputs REL1, REL2 Updated Figure 8: Recovery after forced VBAT due to multiple watchdog failure Table 11: Supply and supply monitoring: – IV(BAT) (V1-standby): updated test condition and minimum, typical and maximum values – IV(V1): updated typical value Table 13: Power-on reset (VS) – VPOR (VS decreasing): updated minimun and typical values Table 14: Voltage regulator V1 – VSTB1: updated minimum and maximum values – ICMP_rise, ICMP_fail: updated minimum, typical and maximum values Table 15: Reset output (V1 supervision) – VRT2 (increasing/ decreasing): updated minimux, typical and maximum values Table 17: Output – IOLD: updated minimux, typical and maximum values Table 18: Relay drivers – VZ: added typical value Table 20: Output: VSOUT: – VSOUT: added minimum and maximum values Table 26: Input: CSN: – ICSNPU: added minimum aln maximum values Table 39: Addressing mapping – Updated RAM address: inserted Control Register 1 25-Mar-2011 3 Updated following tables: – Table 13: Power-on reset (VS): VPOR decreasing: updated minimum value – Table 14: Voltage regulator V1: ICMP_rise: updated minimum value ICMP_fail: updated minimum and maximum values – Table 15: Reset output (V1 supervision): VRT1: added row VRT2: updated test condition and maximum value 28-Apr-2011 4 Changed document state from preliminary data to final datasheet 03-Nov-2011 5 Updated Figure 8: Recovery after forced VBAT due to multiple watchdog failure Table 11: Supply and supply monitoring: – IV(act), IV(BAT), IV(V1): updated test conditions – IV(V1)CS: added row 19-Sep-2013 6 Updated disclaimer. 09-Mar-2011 74/75 Changes Doc ID 18309 Rev 6 L99PM60J Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 18309 Rev 6 75/75