L99PM62GXP Power management IC with LIN and high speed CAN Features ■ Two 5V voltage regulators for microcontroller and peripheral supply ■ No electrolytic capacitor required on regulator outputs ■ Ultra low quiescent current in standby modes ■ Programmable reset generator for power-on and undervoltage ■ Configurable window watchdog and fail safe output ■ LIN 2.1 compliant (SAEJ2602 compatible) transceiver ■ Advanced HS CAN transceiver (ISO 11898-2/5 and SAE J2284 compliant) with local failure and bus failure diagnosis ■ HS CAN transceiver supports partial networking ■ Complete 3-channel contact monitoring interface with programmable cyclic sense functionality ■ Programmable periodic system wake-up feature ■ ST SPI interface for mode control and diagnosis ■ 5 fully protected high-side drivers with internal 4-channel PWM generator ■ 2 low-side drivers with active Zener clamping ■ 4 internal PWM timers ■ 2 operational amplifiers with rail-to-rail outputs (VS) and low voltage inputs ■ Temperature warning and thermal shutdown PowerSSO-36 Description The L99PM62GXP is a power management system IC that provides electronic control units with enhanced system power supply functionality, including various standby modes, as well as LIN and HS CAN physical communication layers. The device’s two low-drop voltage regulators supply the system microcontroller and external peripheral loads such as sensors and provide enhanced system standby functionality with programmable local and remote wake-up capability. In addition, five high-side drivers, two low-side drivers and two operational amplifiers increase the system integration level. The ST standard SPI interface (3.0) allows control and diagnosis of the device and enables generic software development. Table 1. Applications ■ Order codes Package Automotive ECU's such as door zone and body control modules September 2013 Device summary Tube PowerSSO-36 Doc ID 17639 Rev 4 L99PM62GXP Tape and reel L99PM62GXPTR 1/102 www.st.com 1 Contents L99PM62GXP Contents 1 Block diagram and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 2.2 Voltage regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.1 Voltage regulator: V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2 Voltage regulator: V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.3 Increased output current capability for voltage regulator V2 . . . . . . . . . 13 2.1.4 Voltage regulator failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.5 Voltage regulator behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Flash mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 V1 standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.4 VBAT standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.5 Wake up from standby modes 2.2.6 Wake-up inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.7 Cyclic contact supply 2.2.8 Timer interrupt / wake-up of microcontroller by timer . . . . . . . . . . . . . . . 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Functional overview (truth table) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Configurable window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.1 2.5 Change watchdog timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Fail safe mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.1 Single failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.2 Multiple failures – entering forced VBAT standby mode . . . . . . . . . . . . . 27 2.6 Reset output (NRESET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.7 Operational amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.8 LIN bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.9 2/102 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.8.1 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.8.2 Wake up (from LIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.8.3 LIN pull-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 High speed CAN bus transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.9.1 CAN error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.9.2 Wake up (from CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Doc ID 17639 Rev 4 L99PM62GXP 2.10 3 Contents 2.9.3 CAN sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.9.4 CAN receive only mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.9.5 CAN looping mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Serial peripheral interface (ST SPI standard) . . . . . . . . . . . . . . . . . . . . . . 33 Protection and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1 Power supply fail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 VS overvoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.2 Vs undervoltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . 37 3.3 High-side driver outputs 3.4 Low-side driver outputs REL1, REL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.5 SPI diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4 Typical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.1 Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.2 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.4 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.4.1 5.5 PowerSSO-36 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.5.1 Supply and supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.5.2 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.5.3 Power-on reset (VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.5.4 Voltage regulator V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.5.5 Voltage regulator V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.5.6 Reset output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.5.7 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.5.8 High-side outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.5.9 Relay drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.5.10 Wake up inputs (WU1... WU3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.5.11 High speed CAN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.5.12 LIN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.5.13 Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Doc ID 17639 Rev 4 3/102 Contents 6 L99PM62GXP 6.2 8 4/102 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.5.15 Inputs TxD_C and TxD_L for Flash mode . . . . . . . . . . . . . . . . . . . . . . 65 ST SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.1 7 5.5.14 SPI communication flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.1.1 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.1.2 Operating code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.1.3 Global status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.1.4 Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.1.5 Address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.6 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.7 Format of data shifted out at SDO during write cycle . . . . . . . . . . . . . . 73 6.1.8 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.1.9 Format of data shifted out at SDO during read cycle . . . . . . . . . . . . . . . 75 6.1.10 Read and clear status operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.1.11 Read device information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 SPI registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.2.2 Control registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.2.3 Status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.2 PowerSSO-36 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Doc ID 17639 Rev 4 L99PM62GXP List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Wake up sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Functional overview (truth table). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Fail safe conditions and exit modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Persisting fail safe conditions and exit modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 PWM configuration for high-side outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Operating junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Thermal parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Supply and supply monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Power-on reset (Vs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Voltage regulator V1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Voltage regulator V2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Reset output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Output (OUT_HS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Outputs (OUT1...4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Relay drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Wake up inputs (WU1... WU3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 CAN communication operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 CAN transmit data input: pin TXDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 CAN receive data output: pin RXDC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 CAN bus common mode stabilization output termination: pin SPLIT . . . . . . . . . . . . . . . . . 56 CAN transmitter and receiver: pins CANH and CANL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 CAN transceiver timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 LIN transmit data input: pin TXD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 LIN receive data output: pin RXD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 LIN transmitter and receiver: pin LIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 LIN transceiver timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 LIN pull-up: pin LINPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Operational amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Input: CSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Input CLK, DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 DI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 DO output pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 DO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 CSN timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 RXDL/NINT timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Inputs TxD_C and TxD_L for Flash mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Operating code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Global status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Address mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Doc ID 17639 Rev 4 5/102 List of tables Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. 6/102 L99PM62GXP Write command format: command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Write command format: data byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Write command format: data byte 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Format of data shifted out at SDO during write cycle: global status register . . . . . . . . . . . 73 Format of data shifted out at SDO during write cycle: data byte 1 . . . . . . . . . . . . . . . . . . . 73 Format of data shifted out at SDO during write cycle: data byte 2 . . . . . . . . . . . . . . . . . . . 73 Read command format: command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Read command format: data byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Read command format: data byte 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Format of data shifted out at SDO during read cycle: global status register. . . . . . . . . . . . 75 Format of data shifted out at SDO during read cycle: data byte 1 . . . . . . . . . . . . . . . . . . . 75 Format of data shifted out at SDO during read cycle: data byte 2 . . . . . . . . . . . . . . . . . . . 75 Read and clear status command format: command byte . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Read and clear status command format: data byte 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Read and clear status command format: data byte 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Format of data shifted out at SDO during read and clear status: global status register . . . 76 Format of data shifted out at SDO during read and clear status: data byte 1. . . . . . . . . . . 76 Format of data shifted out at SDO during read and clear status: data byte 2. . . . . . . . . . . 77 Read device information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 ID-header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Family identifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Silicon version identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 SPI-frame-ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 SPI register: command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 SPI register: mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 SPI register: CTRL register selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 SPI register: STAT register selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Overview of control registers data bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Control register 1: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Control register 1, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Control register 1, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Control register 2: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Control register 2, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Control register 2, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Control register 3: command data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Control register 3, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Control register 3, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Control register 4: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Control register 4, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Control register 4, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Control register 5: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Control register 5, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Control register 5, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Control register 6: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Control register 6, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Control register 6, bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Overview of status register data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Global status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Status register 1: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Status register 1, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Status register 1, bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Status register 2: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Doc ID 17639 Rev 4 L99PM62GXP Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. List of tables Status register 2, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Status register 2, bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Status register 3: command and data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Status register 3, data bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Status register 3, bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 PowerSSO-36 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Doc ID 17639 Rev 4 7/102 List of figures L99PM62GXP List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. 8/102 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Voltage source with external PNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Voltage source with external PNP and current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Voltage source with external NPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Voltage source with external NPN and current limitation . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Voltage regulator behaviour and diagnosis during supply voltage ramp-up / ramp-down conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Watchdog in normal operating mode (no errors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Watchdog with error conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Watchdog in Flash mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Change watchdog timing within long open window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Change watchdog timing within window mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 General procedure to change watchdog timing out of fail safe mode. . . . . . . . . . . . . . . . . 25 Change watchdog timing out of fail safe mode (watchdog failure) . . . . . . . . . . . . . . . . . . . 25 Example: exit fail safe mode from watchdog failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 LIN master node configuration using LIN_PU (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . 30 CAN wake up capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Over voltage and under voltage protection and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . 36 Thermal shutdown protection and diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Phase shifted PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Thermal data of PowerSSO-36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 PowerSSO-36 PC board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 PowerSSO-36 Thermal Resistance junction to ambient vs PCB copper area (V1 ON) . . . 46 PowerSSO-36 Thermal Impedance junction to ambient vs PCB copper area (single pulse with V1 ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 PowerSSO-36 thermal fitting model (V1 ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Watchdog timing (long, early, late and safe window) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Watchdog early, late and safe windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 LIN transmit, receive timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 SPI – transfer timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 SPI - input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 SPI output timing (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 SPI output timing (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 SPI – CSN low to high transition and global status bit access . . . . . . . . . . . . . . . . . . . . . . 68 Read configuration register(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Write configuration register(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Format of data shifted out at SDO during write cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Format of data shifted out at SDO during read cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Format of data shifted out at SDO during read and clear status operation . . . . . . . . . . . . 77 PowerSSO-36 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Doc ID 17639 Rev 4 L99PM62GXP Block diagram and pin descriptions Figure 1. Block diagram 9V /RZ6LGH P$ 2XWSXW&ODPS 7HPS3UHZDUQLQJ 6KXWGRZQ /RZ6LGH P$ 2XWSXW&ODPS 8QGHUYROWDJH 2YHUYROWDJH 6KXWGRZQ 9 95(* 9P$ 1 Block diagram and pin descriptions 9 95(* 9P$ +LJK6LGH 15HVHW P$ FKDQQHO 3:0*HQHUDWRU /2*,& +LJK6LGH P$ +LJK6LGH 7LPHU P$ +LJK6LGH 7LPHU P$ +LJK6LGH &61 &/. ', '2 5(/ 5(/ 23 23 23BRXW 23 23 23BRXW 287B+6 287 287 287)62 P$ 287 :DNH8S,Q :8 :DNH8S,Q :8 :DNH8S,Q :8 :LQGRZ :DWFKGRJ 63, &$16XSSO\ /,1 /,138 /,1 6$(- 5['B/1,17 +6&$1 ,62 7['B& 5['B& 7['B/ /,1FHUWLILHG $*1' 3*1' Doc ID 17639 Rev 4 &$1B+ 63/,7 &$1B/ $*9 9/102 Block diagram and pin descriptions Table 2. L99PM62GXP Pin definition Pin Symbol 1 AGND Analog ground 2 RxDC CAN receive data output 3 TxDC CAN transmit data input 4 CANH CAN high level voltage I/O 5 CANL CAN low level voltage I/O 6 SPLIT CAN reference voltage output, CAN termination 7 CANSUP CAN supply input; to allow external CAN supply from V1 or V2 regulator. 8 NRESET NReset output to micro controller; Internal pull-up of typical 100 KΩ (reset state = LOW) 9 V1 Voltage regulator 1 output: 5 V supply e.g. micro controller, CAN transceiver 10 V2 Voltage regulator 2 output: 5 V supply for external loads (IR receiver, potentiometer, sensors) or CAN Transceiver. V2 is protected against reverse supply. 11 TxDL 12 RxDL/NINT 13 OP2+ Non inverting input of operational amplifier 2 14 OP2- Inverting input of operational amplifier 2 15 OP2_OUT 16 DI SPI: serial data input 17 DO SPI: serial data output 18 CLK SPI: serial clock input 19 CSN SPI: chip select not input 20…22 WU1…3 23 OP1_OUT 24 OP1- Inverting input of operational amplifier 1 25 OP1+ Non inverting input of operational amplifier 1 26 OUT4 High-side driver output (7 Ω, typ) 27 OUT3/FSO 28 OUT2 High-side driver output (7 Ω, typ) 29 OUT1 High-side driver output (7 Ω, typ) 30 OUT_HS 31 VS 32 LINPU 33 LIN 34 REL1 10/102 Function LIN Transmit data input RxDL -> LIN receive data output NINT -> indicates local/remote wake-up events or provides a programmable timer interrupt signal Output of operational amplifier 2 Wake-up Inputs 1to 3: Input pins for static or cyclic monitoring of external contacts Output of operational amplifier 1 Configurable as high-side driver output (7 Ω, typ) or fail safe output pin (default) High-side driver (1 Ω, typ) Power supply voltage High-side driver output to switch off LIN master pull up resistor LIN bus line Low-side driver output (2 Ω typ) Doc ID 17639 Rev 4 L99PM62GXP Table 2. Block diagram and pin descriptions Pin definition (continued) Pin Symbol 35 REL2 Low-side driver output (2 Ω typ) 36 PGND Power ground (REL1/2, LIN and CAN GND), to be externally connected to AGND Figure 2. Function Pin connection (top view) $*1' 3*1' 5['& 5(/ 7['& 5(/ &$1+ /,1 &$1/ /,138 63/,7 9V &$1683 287B+6 15(6(7 287 9 287 9 287)62 7['/ 287 5['/1,17 233 233 230 230 23287 23287 :8 ', 3RZHU662 :8 '2 :8 &/. &61 7$% $*1' Note: $*9 It is recommended to connect the PGND and AGND pins directly to the TAB. Doc ID 17639 Rev 4 11/102 Detailed description L99PM62GXP 2 Detailed description 2.1 Voltage regulators The L99PM62GXP contains two independent and fully protected low drop voltage regulators, which are designed for very fast transient response and don’t require electrolytic output capacitors for stability. The output voltage is stable with ceramic load capacitors > 220 nF. 2.1.1 Voltage regulator: V1 The V1 voltage regulator provides 5 V supply voltage and up to 250 mA continuous load current and is mainly intended for supply of the system microcontroller. The V1 regulator is embedded in the power management and fail-safe functionality of the device and operates according to the selected operating mode. It can be used to supply the internal HS CAN Transceiver via the CANSUP pin externally. In case of a short circuit condition on the CAN bus, the output current of the transmitter is limited to 100 mA and the transceiver is turned off in order to ensure continued supply of the microcontroller. In addition the regulator V1 drives the L99PM62GXP internal 5 V loads. The voltage regulator is protected against overload and overtemperature. An external reverse current protection has to be provided by the application circuitry to prevent the input capacitor from being discharged by negative transients or low input voltage. Current limitation of the regulator ensures fast charge of external bypass capacitors. The output voltage is stable for ceramic load capacitors > 220 nF. If the device temperature exceeds the TSD1 threshold, all outputs (OUTx, RELx, V2, LIN) is deactivated except V1. Hence the micro controller has the possibility for interaction or error logging. In case of exceeding TSD2 threshold (TSD2>TSD1), also V1 is deactivated (see state chart in Chapter 3: Protection and diagnosis). A timer is started and the voltage regulator is deactivated for tTSD = 1sec. During this time, all other wake up sources (CAN, LIN, WU1 to3 and wake up of µC by timer) are disabled. After 1 sec, the voltage regulator tries to restart automatically. If the restart fails 7 times, within one minute, without clearing and thermal shutdown condition still exists, the L99PM62GXP enters the forced VBAT standby Mode. In case of short to GND at “V1” after initial turn on (V1 < 2V for t > tV1short) the L99PM62GXP enters the forced VBAT standby Mode. Reactivation (wake-up) of the device can be achieved with signals from CAN, LIN, WU1..3 or periodic wake by timer (see Section 2.2.8: Timer interrupt / wake-up of microcontroller by timer). 12/102 Doc ID 17639 Rev 4 L99PM62GXP 2.1.2 Detailed description Voltage regulator: V2 The voltage regulator V2 can supply additional 5 V loads (e.g. logic components or the integrated HS CAN transceiver or external loads such as sensors or potentiometers). The maximum continuous load current is 100 mA. The regulator is protected against: Overload ● Overtemperature ● Short circuit (short to ground and battery supply voltage) ● Reverse biasing Increased output current capability for voltage regulator V2 For applications which require high output currents, the output current capability of the regulator can be increased my means of the integrated operational amplifiers and an external pass transistor. Figure 3. Voltage source with external PNP /30 9V 9 & 5 5 5E 23[B287 0-'& 9 &L 23[ 5 & 23[ &HP & 5 5 $*9 Figure 4. Voltage source with external PNP and current limitation /30 9V 9 5 & 5 %& 5 5E 23[B287 0-'& 2.1.3 ● 9 &L 23[ 5 & 23[ &HP 5 & 5 $*9 Figure 3 shows a possible configuration with a PNP pass element using voltage regulator 2 to provide the voltage reference for the regulated output voltage V3. Doc ID 17639 Rev 4 13/102 Detailed description L99PM62GXP The Vs operating range for this circuit is 5.5 V to 18 V. It is important the respect the input common mode range specified for the operational amplifiers. The output voltage V3 can be calculated using the following formula: v2 R1 + R2 v 3 = ------ ⋅ --------------------- [ V ] R2 2 The circuit in Figure 4 provides additional current limitation using an additional PNP transistor and R6 which allows setting the current limit. Figure 5. Voltage source with external NPN /30 9V 9 & 5 23[B287 0-'& &L 9 5 23[ & 23[ & 5 &HP 5 $*9 Figure 6. Voltage source with external NPN and current limitation /30 9V 9 & 5 23[B287 0-'& %& &L 5 23[ 9 5 23[ & &HP 5 & 5 $*9 Figure 5 shows a possible configuration with an NPN pass element using voltage regulator 2 to provide the voltage reference for the regulated output voltage V3. This circuit requires fewer components compared to the configuration in Figure 3 but has a limited VS operating range (6 V to 18 V). The output voltage V3 can be calculated using the following formula: v2 R1 + R2 v 3 = ------ ⋅ --------------------- [ V ] 2 R2 The circuit in Figure 6 provides additional current limitation using an additional NPN transistor and R5 which allows setting the current limit. 14/102 Doc ID 17639 Rev 4 L99PM62GXP Detailed description Alternatively, voltage regulator 1 can be used to provide the 5 V reference for this topology. However, the additional current consumption through R3 and R4 has to be considered in V1standby mode. 2.1.4 Voltage regulator failure The V1, and V2 regulator output voltages are monitored. In case of a drop below the V1, V2 – fail thresholds (V1,2 < 2 V, typ for t > 2 µs), the V1,2-fail bits are latched. The fail bits can be cleared by a dedicated SPI command. Short to ground detection If 4 ms after turn on of the regulator the V1,2 voltage is below the V1,2 fail thresholds, (independent for V1,2), the L99PM62GXP identifies a short circuit condition at the related regulator output and the regulator is switched off. In case of V1 short to GND failure the device enters VBAT standby mode automatically. Bits Forced VBAT STD2/SHTV1 and V1 fail were set. In case of a V2 short to GND failure the V2short and V2 fail bit is set. If the output voltage of the corresponding regulator once exceeded the V1,2 fail thresholds the short to ground detection is disabled. If a short to ground condition occurs the regulator outputs switches off due to thermal shutdown (V1 at TSD2; V2 at TSD1). Doc ID 17639 Rev 4 15/102 Detailed description L99PM62GXP 2.1.5 Voltage regulator behaviour Figure 7. Voltage regulator behaviour and diagnosis during supply voltage ramp-up / rampdown conditions 6SHFLILFDWLRQ3DUDPHWHUV WXY 9XQGHUYROWDJHILOWHUWLPH WYIDLO 9IDLOILOWHUWLPH W YVKRUW 9VKRUWILOWHUWLPH W55 5HVHWSXOVHUHDFWLRQWLPH WUG 5HVHWSXOVHGXUDWLRQ 9 V89 9VXQGHUYROWDJHWKUHVKROG 9 SRU 9VSRZHU RQUHVHWWKUHVKROG 9 UWK 9UHVHWWKUHVKROG 9 IDLO 9IDLOWKUHVKROG 9V >9@ 9 1 9 '3 9 689 +LJK=*URXQGHG 9 325 3RZHURQ 5HVHWWKUHVKROG 9 $%6PLQ &RQWURO5HJLVWHUVDUHVHWWRGHIDXOW YDOXHV &ROG6WDUWELWLVVHW 9 >9@ WWXY W!WXY W!WYIDLO 9 VXY ELWLVWVHW XV W!WXY 91 9 57+ 9 IDLO 1R5HVHWJHQHUDWHG 1UHVHW>9@ ,IW!WYVKRUW 9VKRUWGHWHFWHG Î 9EDWWVWDQGE\ 9 IDLO ELWLVVHW WUG WUG +LJK W55 W55 /RZ 5HDG&OHDU)62%LW 'LVDEOHG )DLO6DIH2XWSXW 'LVDEOHG ,QDFWLYH $FWLYH ,QDFWLYH &RQWURO5HJLVWHUVDUHVHWWRGHIDXOWYDOXHV 2.2 $*9 Operating modes The L99PM62GXP can be operated in 4 different operating modes: ● Active ● Flash ● V1 standby ● VBAT standby A cyclic monitoring of wake-up inputs and a periodic interrupt/wake-up by timer is available in standby modes. 2.2.1 Active mode All functions are available and the device is controlled by the ST SPI Interface. 16/102 Doc ID 17639 Rev 4 L99PM62GXP 2.2.2 Detailed description Flash mode To program the system microcontroller, the L99PM62 can be operated in Flash mode where the internal watchdog is disabled. This mode can also be used for software debugging. Except for the disabled watchdog, the Flash mode is identical to active mode and all device features are available. A transition from Flash mode to V1stby or Vbatstby is not possible. The mode can be entered if one of the following conditions is applied: ● VTxDL > VFlash ● VTxDC > VFlash At exit from Flash mode (VTxD < VFlash) no NReset pulse is generated and the watchdog starts with a long open window. Note: Setting both TxDL and TxDC to high voltage levels (> VFlash) is not allowed. Communication at the respective TxD pin is not possible. 2.2.3 V1 standby mode The transition from active mode to V1 standby mode is controlled by SPI. To supply the micro controller in a low power mode, the voltage regulator 1 (V1) remains active. In order to reduce the current consumption, the regulator goes in low current mode as soon as the supply current of the microcontroller goes below the Icmp current threshold. At this transition, the L99PM62 also deactivates the internal watchdog. Relay outputs, LIN and CAN transmitters is switched off in V1 standby mode. High-side outputs and the V2 regulator remain in the configuration programmed prior to the standby command. A cyclic supply of external contacts and a synchronized monitoring of the contact state can be activated and configured by SPI. In V1 standby mode various wake up sources can be individually programmed. Each wake up event puts the device into active mode and forces the RxDL/NINT pin to a low level indicating the wake-up condition to the microcontroller. After power ON reset (POR) all wake up sources are activated by default except the periodic interrupt/wake timer. With the interrupt timer the micro controller can be forced from ‘stop’ to ‘run’ after a programmable period. The RxDL/NINT pin is forced low after the timer is elapsed. The L99PM62GXP enters active mode and is awaiting a valid watchdog trigger. Both internal timers can be used for this feature. The interrupt timer (TINT) at pin RxDL/NINT is only available in V1 standby mode. Note: Inputs TxDL, TxDC and CSN must be at high level or at high impedance in order to achieve minimum standby current in V1 standby mode. Inputs DI and CLK must be at GND or at high impedance to achieve minimum standby current in V1 standby mode. Doc ID 17639 Rev 4 17/102 Detailed description L99PM62GXP Interrupt The interrupt signal (linked to RxDL/NINT internally) indicates a wake-up event from V1 standby mode. In case of a wake-up by Wake-up Inputs, activity on LIN or CAN, SPI access or timer-interrupt the NINT pin is pulled low for 56 µs. In case of V1 standby mode and (IV1 > Icmp), the device remains in standby mode, the V1 regulator switches to high current mode and the watchdog starts. No Interrupt signal is generated. 2.2.4 VBAT standby mode The transition from active mode to VBAT standby mode is initiated by an SPI command. In VBAT standby mode, the V1 voltage regulator, relay outputs, LIN and CAN transmitters are switched off. High-side outputs and the V2 regulator remain in the configuration programmed prior to the standby command. In VBAT standby mode the current consumption of the L99PM62GXP is reduced to a minimum level. Note: Inputs TXDL, TXDC and CSN must be terminated to GND in VBAT standby to achieve minimum standby current. This can be achieved with the internal ESD protection diodes of the microcontroller (microcontroller is not supplied in this mode; V1 is pulled to GND). 2.2.5 Wake up from standby modes A wake-up from standby mode switches the device to active mode. This can be initiated by one or more of the following events: Table 3. Wake up sources Wake up source Description LIN bus activity Can be disabled by SPI CAN bus activity Can be disabled by SPI Level change of WU1 - 3 Can be individually configured or disabled by SPI IV1 > Icmp Device remains in V1 standby mode but watchdog is enabled (If Icmp = 0) and the V1 regulator goes into high current mode (increased current consumption). No interrupt is generated. Timer interrupt / wake up of µC by TIMER Programmable by SPI – V1 standby mode: device wakes up and Interrupt signal is generated at RxDL/NINT when programmable time-out has elapsed – VBAT standby mode: device wakes up, V1 regulator is turned on and NReset signal is generated when programmable time-out has elapsed SPI access Always active (except in VBAT standby mode) Wake up event: CSN is low and first rising edge on CLK To prevent the system from a deadlock condition (no wake up possible) a configuration where the periodic timer interrupt and wake up by LIN and HS CAN are disabled, is not 18/102 Doc ID 17639 Rev 4 L99PM62GXP Detailed description allowed. The default configuration is entered for all wake-up sources in case of such an invalid setting. All wake-up events from V1 standby mode (except IV1 > Icmp) are indicated to the microcontroller by a low-pulse at RxDL/NINT (duration: 56 µs). Wake-up from V1 standby by SPI Access might be used to check the interrupt service handler. 2.2.6 Wake-up inputs The de-bounced digital inputs WU1 to WU3 can be used to wake up the L99PM62GXP from standby modes. These inputs are sensitive to any level transition (positive and negative edge) For static contact monitoring, a filter time of 64 µs is implemented at WU1-3. The filter is started when the input voltage passes the specified threshold. In addition to the continuous sensing (static contact monitoring) at the wake up inputs, a cyclic sense functionality is implemented. This feature allows periodical activation of the wake-up inputs to read the status of the external contacts. The periodical activation can be linked to Timer1 or Timer2 (see Section 2.2.7: Cyclic contact supply ). The input signal is filtered with a filter time of 16 µs after a programmable delay (80 µs or 800 µs) according to the configured timer on-time. A wake-up is processed if the status has changed versus the previous cycle. The outputs OUT_HS and OUT1-4 can be used to supply the external contacts with the timer setting according to the cyclic monitoring of the wake-up inputs. If the wake-up inputs are configured for cyclic sense mode the input filter timing and input filter delay (WUx_filt in control register 2) must correspond to the setting of the high-side output which supplies the external contact switches (OUTx in control register 0). In standby mode, the inputs WU1-3 are SPI configurable for pull-up or pull-down current source configuration according to the setup of the external. In active mode the inputs have a pull down resistor. In active mode, the input status can be read by SPI (Status Register 2). Static sense should be configured (Control Register 2) before the read operation is started (In cyclic sense configuration, the input status is updated according to the cyclic sense timing; Therefore, reading the input status in this mode may not reflect the actual status). 2.2.7 Cyclic contact supply In V1 standby and VBAT standby modes, any high-side driver output (OUT1..4, OUTHS) can be used to periodically supply external contacts. The timing is selectable by SPI Timer 1: period is X s. The on-time is 10 ms resp. 20 ms: With X ∈ {1, 2, 3, 4 s} Timer 2: period is X ms. The on-time is 100 µs resp. 1ms: With X ∈ {10, 20, 50, 200 ms} 2.2.8 Timer interrupt / wake-up of microcontroller by timer During standby modes the cyclic wake up feature, configured via SPI, allows waking up the µC after a programmable timeout according to timer1 or timer2. Doc ID 17639 Rev 4 19/102 Detailed description L99PM62GXP From V1 standby mode, the L99PM62GXP wakes up (after the selected timer has elapsed) and sends an interrupt signal (via RxDL/NINT pin) to the µC. The device enters active mode and the watchdog is started with a long open window. The microcontroller can send the device back into V1 standby after finishing its tasks. From VBAT standby mode, the L99PM62GXP wakes up (after the selected timer has elapsed), turns on the V1 regulator and provides an NReset signal to the µC. The device enters active mode and the watchdog is started with a long open window. The microcontroller can send the device back into VBAT standby after finishing its tasks. 2.3 Functional overview (truth table) Table 4. Functional overview (truth table) Operating modes Function Comments V1-standby static mode VBAT-standby static mode (cyclic sense) (cyclic sense) Active mode On On(1) On/ Off (2) On(2) On On On Off (On: I_V1 > IcmpOff threshold and Icmp = 0) Off Active(3) Active(3) On / Off On(2) / Off On(2) / Off Relay driver On Off Off Operational amplifiers On Off Off On Off(4) Off(4) On Off(4) Off(4) OUT3/FSO Off(5) OUT3/FSO Off(5) OUT3/FSO Off(5) Oscillator On (6) (6) Vs-monitor On (7) (7) Voltage-regulator, V1 Voltage-regulator, V2 VOUT = 5 V VOUT = 5 V Reset-generator Window watchdog V1 monitor Wake up HS-cyclic supply LIN Oscillator time base LIN 2.1 HS_CAN FSO (if configured by SPI), active by default Fail safe output Off / Off On(2) / Off Off 1. Supply the processor in low current mode. 2. Only active when selected via SPI. 3. Unless disabled by SPI. 4. The bus state is internally stored when going to standby mode. A change of bus state leads a wake-up after exceeding of internal filter time (if wake-up by LIN or CAN is not disabled by SPI). 5. ON in fail-safe condition: If Standby mode is entered with active Fail Safe mode, the output remains ON in Standby mode. 6. Activation = ON if cyclic sense is selected. 7. cyclic activation = pulsed ON during cyclic sense. 20/102 Doc ID 17639 Rev 4 L99PM62GXP Figure 8. Detailed description Operating modes 9V!9SRU 9EDWVWDUWXS $OOUHJLVWHUV 6HWWRGHIDXOW &KLS5HVHWELW*65ELW DFWLYH 97;'/!9IODVK 25 97;'&!9IODVK )ODVK0RGH :DWFKGRJ2)) 97;'/9IODVK $1' 97;'&9IODVK $FWLYH 0RGH 97;'/!9IODVK 25 97;'&!9IODVK 63,FRPPDQG 25 [7KHUPDO6KXWGRZQ 25 9VKRUWWR*1' 99IRUPVDIWHUVZLWFK21 25 [:')DLOXUH 921 5HVHW*HQHUDWRUDFWLYH :DWFKGRJDFWLYH :DNHXS (YHQW 97;'/!9IODVK 25 97;'&!9IODVK 96WDQGE\ 0RGH 9EDW6WDQGE\ 0RGH 92)) 5HVHW*HQHUDWRU2))1UHVHW ORZ :DWFKGRJ2)) 63,FRPPDQG :DNHXS (YHQW [7KHUPDO6KXWGRZQ76' 25 [:'IDLO 921 5HVHW*HQHUDWRUDFWLYH :DWFKGRJ 2))LI,Y,FPSRU,&03 $*9 2.4 Configurable window watchdog During normal operation, the watchdog monitors the micro controller within a programmable trigger cycle: (10 ms, 50 ms, 100 ms, 200 ms) In VBAT standby and Flash program modes, the watchdog circuit is automatically disabled. In V1 standby mode a wake up by timer is programmable in order to wake up the µC (see Section 2.2.8: Timer interrupt / wake-up of microcontroller by timer). After wake-up, the watchdog starts with a long open window. After serving the watchdog, the µC may send the device back to V1 standby mode. Doc ID 17639 Rev 4 21/102 Detailed description L99PM62GXP After power-on or standby mode, the watchdog is started with a long open window (65 ms nominal). The long open window allows the micro controller to run its own setup and then to trigger the watchdog via the SPI. The trigger is processed when the CSN input becomes HIGH after the transmission of the SPI word. Writing ‘1’ to the watchdog trigger bit terminates the long open window and start the window watchdog (the timing is programmable by SPI). Subsequently, the micro controller has to serve the watchdog by alternating the watchdog trigger bit within the safe trigger area (refer to Figure 29). A correct watchdog trigger signal immediately starts the next cycle. After 8 watchdog failures in sequence, the V1 regulator is switched off for 200ms. If subsequently, 7 additional watchdog failures occur, the V1 regulator is completely turned off and the device goes into VBAT standby mode until a wakeup occurs. In case of a watchdog failure, the outputs (RELx, OUTx, V2) are switched off and the device enters fail-safe mode (i.e. all control registers are set to default values except the ‘OUT3 control bit’). The following diagrams illustrate the watchdog behavior of the L99PM62. The diagrams are split into 3 parts. First diagram shows the functional behavior of the watchdog without any error. The second diagram covers the behavior covering all the error conditions, which can affect the watchdog behavior. Third diagram shows the transition in and out of Flash mode. All 3 diagrams can be overlapped to get all the possible state transitions under all circumstances. For a better readability, they were split in normal operating, operating with errors and Flash mode. Figure 9. Watchdog in normal operating mode (no errors) $FWLYHPRGH ORQJ RSHQ ZLQGRZ 9!9UVWWKU JR6WDQGE\ :' 2)) 75,* Ã SURSSHUWULJJHULQ :LQGRZ 0RGH 9%$76WDQGE\ 96WDQGE\,9,&03 JR6WDQGE\ :LQGRZPRGH $FWLYHPRGH $*9 22/102 Doc ID 17639 Rev 4 L99PM62GXP Detailed description Figure 10. Watchdog with error conditions :'IDLO 76' ORQJ RSHQ ZLQGRZ $FWLYHPRGH 9!9UWK 75,* Ã SURSSHUWULJJHULQ IRUFHG9%$7 99UWK :'IDLO 76' :' 2)) 9%$76WDQGE\ 96WDQGE\,9,&03 99UWK :LQGRZ 0RGH :LQGRZPRGH IRUFHG9%$7[:'IDLO [76' 6KRUW9 $FWLYHPRGH $*9 Figure 11. Watchdog in Flash mode $FWLYHPRGH ORQJ RSHQ ZLQGRZ ([LW)/$6+PRGH )/$6+PRGH $FWLYHPRGH :LQGRZ 0RGH :' 2)) )/$6+PRGH )/$6+PRGH $*9 2.4.1 Change watchdog timing There are 4 programmable watchdog timings available, which represent the nominal trigger time in window mode. To change the watchdog timing, a new timing has to be written by SPI. The new timing gets active with the next valid watchdog trigger. The following figures illustrate the sequence, which is recommended to use, changing the timing within long open window and within window mode. Doc ID 17639 Rev 4 23/102 Detailed description L99PM62GXP Figure 12. Change watchdog timing within long open window :DWFKGRJ 0RGH ZLQGRZPRGH >WLPLQJDVSURJUDPPHGLQSUHYLRXV63,FRPPDQGHJPV@ ORQJRSHQZLQGRZ :'WLPLQJ>HJPV@ &61 63, &RPPDQG ZULWHRSHUDWLRQ &WUO5HJ :'7LPH >HJPV@ ZULWHRSHUDWLRQ &WUO5HJ7ULJ UHDGRSHUDWLRQ &WUO5HJ 63, )HHGEDFN )HHGEDFN )62 ZULWHRSHUDWLRQDFFHSWHG )HHGEDFN FKHFN)62 FKDQJHWLPLQJIRU:' )HHGEDFN FKHFN)62 FKHFN:'WLPH ZULWHRSHUDWLRQ &WUO5HJ7ULJ $*9 Figure 13. Change watchdog timing within window mode :DWFKGRJ 0RGH ZLQGRZPRGH>PV@ ZLQGRZPRGH>PV@ :'WLPH>PV@ &61 63, &RPPDQG 63, )HHGEDFN :'WLPH>PV@ ZULWHRSHUDWLRQ &WUO5HJSURSHUWULJJHU ZULWHRSHUDWLRQ &WUO5HJ :'7LPH >HJPV@ ZULWHRSHUDWLRQ &WUO5HJSURSHUWULJJHU UHDGRSHUDWLRQ &WUO5HJ )HHGEDFN )62 ZULWHRSHUDWLRQDFFHSWHG )HHGEDFN FKHFN)62 FKDQJHWLPLQJIRU:' )HHGEDFN FKHFN)62 FKHFN:'WLPH ZULWHRSHUDWLRQ &WUO5HJSURSSHUWULJJHU $*9 If the device is in fail-safe mode, the control registers are locked for writing. To change the watchdog timing out of fail-safe mode, first the fail-safe condition must be solved, respective confirmed from the microcontroller. Afterwards the new watchdog timing can be programmed using the sequence from Figure 14. Since the actions to remove, a fail-safe condition can differ from the root cause of the fail safe the following diagram shows the general procedure how to change the watchdog timing out of fail-safe mode. Figure 15 shows the procedure to change watchdog timing with a previous watchdog failure, since this is a special fail-safe scenario. 24/102 Doc ID 17639 Rev 4 L99PM62GXP Detailed description Figure 14. General procedure to change watchdog timing out of fail safe mode )DLO6DIH0RGHDFWLYH :DWFKGRJ 0RGH )DLO6DIH0RGHLQDFWLYH ZLQGRZPRGH >WLPLQJDVSURJUDPPHGLQSUHYLRXV63,FRPPDQGHJPV@ ORQJRSHQZLQGRZ :'WLPH>HJPV@ &61 63, &RPPDQG ZULWHRSHUDWLRQ &WUO5HJ :'7LPH >HJPV@ ZULWHRSHUDWLRQ &WUO5HJ7ULJ UHDGRSHUDWLRQ &WUO5HJ 63, )HHGEDFN )HHGEDFN )62 ZULWHRSHUDWLRQDFFHSWHG )HHGEDFN FKHFN)62 FKDQJHWLPLQJIRU:' )HHGEDFN FKHFN)62 FKHFN:'WLPH $FWLRQVWRH[LW )DLOVDIH0RGH ZULWHRSHUDWLRQ &WUO5HJ7ULJ 3URFHGXUHWR:ULWHQHZ:DWFKGRJWLPLQJ $*9 Figure 15. Change watchdog timing out of fail safe mode (watchdog failure) )DLO6DIH0RGHDFWLYH :DWFKGRJ 0RGH )DLO6DIH0RGHLQDFWLYH ORQJRSHQZLQGRZ ZLQGRZPRGH >WLPLQJDVSURJUDPPHGLQSUHYLRXV63,FRPPDQGHJPV@ ZLQGRZPRGH>PV@ :'WLPH>PV@ :'WLPH>HJPV@ &61 63, &RPPDQG ZULWHRSHUDWLRQ &WUO5HJ :'7LPH >HJPV@ ZULWHRSHUDWLRQ &WUO5HJ7ULJ UHDGRSHUDWLRQ DQ\YDOLGDGGUHVV ZULWHRSHUDWLRQ &WUO5HJ :'7LPH >HJPV@ ZULWHRSHUDWLRQ &WUO5HJ7ULJ UHDGRSHUDWLRQ &WUO5HJ 63, )HHGEDFN )HHGEDFN )62 ZULWHRSHUDWLRQEORFNHG )HHGEDFN )62 SURYLGHSURSSHUWULJJHU )HHGEDFN FKHFN)62 TXLWIDLOVDIHPRGH )HHGEDFN )62 ZULWHRSHUDWLRQDFFHSWHG )HHGEDFN FKHFN)62 FKDQJHWLPLQJIRU:' )HHGEDFN FKHFN)62 FKHFN:'WLPH $FWLRQVWRH[LW )DLOVDIH0RGH ZULWHRSHUDWLRQ &WUO5HJSURSHUWULJHU 3URFHGXUHWR:ULWHQHZ:DWFKGRJWLPLQJ $*9 2.5 Fail safe mode 2.5.1 Single failures L99PM62GXP enters fail safe mode in case of: ● Watchdog failure ● V1 turn on failure – V1 short (V1 < V1fail for t > tV1short) ● V1 undervoltage (V1 < Vrth for t > tUV1) ● Thermal shutdown TSD2 ● SPI failure – DI stuck to GND or VCC (SPI frame = ’00 00 00’ or ‘FF FF FF’) Doc ID 17639 Rev 4 25/102 Detailed description L99PM62GXP The fail safe functionality is also available in V1 standby mode. During V1 standby mode the fails safe mode is entered in the following cases: ● V1 undervoltage (V1 < Vrth for t > tUV1) ● Watchdog failure (if watchdog still running due to IV1 > Icmp) ● Thermal shutdown TSD2 In fail safe mode the L99PM62 returns to a default. The fail safe condition is indicated to the remaining system in the global status register. The conditions during fails safe mode are: ● All outputs are turned off ● All control registers are set to default values (except OUT3/FSO configuration) ● Write operations to control registers are blocked until the fail safe condition is cleared (see Table 5) ● LIN and HS CAN transmitter, OpAmps and SPI remain on ● Corresponding failure bits in status registers are set. ● FSO Bit (Bit 0 global status register) is set ● OUT3/FSO is activated if configured as fail safe output If OUT3 is configured as FSO, the internal fail safe mode can be monitored at OUT3 (highside driver is turned on in fail-safe mode). Self protection features for OUT3 when configured as FSO are active (see Section 3.3: High-side driver outputs ). OUT3 is configured as fail safe output by default. It can be configured to normal high-side driver operation by SPI. It this case, the configuration remains until Vs power on. If the fail safe mode was entered it keeps active until the fail safe condition is removed and the fail safe was read by spi. depending on the root cause of the fail safe operation, the actions to exit fail safe mode are as shown in the following table. Table 5. Fail safe conditions and exit modes Failure source Failure condition Diagnosis Exit from fail-safe mode Watchdog early write failure or expired window Fail-safe = 1 WDfail = n+1 TRIG = 1 during LOWi and read fail-safe bit Short at turn-on Fail-safe = 1 Forced Sleep TSD2/SHTV1 = 1 Read&Clear SR3 after wake Undervoltage Fail-safe = 1 V1fail = 1(1) V1 > Vrth Read Fail-safe bit Temperature Tj > TSD2 Fail-safe = 1 TW = 1 TSD1 = 1 TSD2 = 1 Tj < TSD2 Read&Clear SR3 SPI DI short to GND or VCC Fail-safe = 1 Valid SPI command µC (oscillator) V1 1. if V1 < V1fail (for t > tV1fail) The fail-safe bit is located in the global status register (Bit 0). 26/102 Doc ID 17639 Rev 4 L99PM62GXP 2.5.2 Detailed description Multiple failures – entering forced VBAT standby mode If the fail-safe condition persists and all attempts to return to normal system operation fail, the L99PM62 enters the forced VBAT standby mode in order to prevent damage to the system. The forced VBAT standby mode can be terminated by any regular wake-up event. The root cause of the forced VBAT standby is indicated in the SPI status registers The forced VBAT standby mode is entered in case of: Table 6. ● Multiple watchdog failures: forced sleep WD = 1 (15x watchdog failure) ● Multiple thermal shutdown 2: forced sleep TSD2/SHTV1 = 1 (7 x TSD2) ● V1 short at turn-on: forced sleep TSD2/SHTV1 = 1 (V1 < V1fail for t > tV1fail) Persisting fail safe conditions and exit modes Failure source Failure condition Diagnosis Exit from fail-safe mode µC (oscillator) 15 consecutive watchdog failures Fail-safe = 1 ForcedSleepWD = 1 Wake-up TRIG = 1 during LOWi read & clear SR3 V1 short at turn-on Fail-safe = 1 ForcedSleepTSD2/SHTV1 = 1 Read&clear SR3 after wake-up 7 times TSD2 Fail-safe = 1 TW = 1 TSD1 = 1 TSD2 = 1 ForcedSleepTSD2/SHTV1 = 1 Read&clear SR3 after wake-up Temperature Figure 16. Example: exit fail safe mode from watchdog failure )DLO6DIH0RGHDFWLYH :DWFKGRJ 0RGH ORQJRSHQZLQGRZ )DLO6DIH0RGHLQDFWLYH ZLQGRZPRGH &61 63, &RPPDQG ZULWHRSHUDWLRQ &WUO5HJ :'7LPH >HJPV@ ZULWHRSHUDWLRQ &WUO5HJ7ULJ UHDGRSHUDWLRQ DQ\YDOLGDGGUHVV 63, )HHGEDFN )HHGEDFN )62 ZULWHRSHUDWLRQEORFNHG )HHGEDFN )62 SURYLGHSURSSHUWULJJHU )HHGEDFN FKHFN)62 TXLWIDLOVDIHPRGH $*9 Doc ID 17639 Rev 4 27/102 Detailed description 2.6 L99PM62GXP Reset output (NRESET) If V1 is turned on and the voltage exceeds the V1 reset threshold, the reset output “NRESET” is pulled up by internal pull up resistor to V1 voltage after a reset delay time (trd). This is necessary for a defined start of the micro controller when the application is switched on. Since the NRESET output is realized as an open drain output it is also possible to connect an external NRESET open drain NRESET source to the output. It must be considered that as soon the NRESET is released from the L99PM62 the Watchdog timing starts. A reset pulse is generated in case of: ● V1 drops below Vrth (configurable by SPI) for t > tUV1 ● Watchdog failure Note: An external pull-up resistor (1kΩ) to V1 is recommended in order to ensure ILOAD1 > Icmp during reset condition 2.7 Operational amplifiers The operational amplifiers are especially designed to be used for sensing and amplifying the voltage drop across ground connected shunt resistors. Therefore the input common mode range includes -0.2 V to 3 V. The operational amplifiers are designed for -0.2 V to +3 V input voltage swing and rail-to-rail output voltage range. All pins (positive, negative and outputs) are available to be able to operate in non-inverting and inverting mode. Both operational amplifiers are on-chip compensated for stability over the whole operating range within the defined load impedance. The operational amplifiers may also be used to setup an additional high current voltage source with an external pass element. Refer to Section 2.1.3 for a detailed description. 2.8 LIN bus interface Features 28/102 ● Speed communication up to 20 kbit/s. ● LIN 2.1 compliant (SAEJ2602 compatible) transceiver. ● Function range from +40 V to -18 V DC at LIN pin. ● GND disconnection fail safe at module level. ● Off mode: does not disturb network. ● GND shift operation at system level. ● Micro controller Interface with CMOS compatible I/O pins. ● Internal pull up resistor. ● Internal high-side switch to disconnect master pull-up resistor in case of short circuit of bus signal. ● ESD and transient immunity according to ISO7637 and EN / IEC61000-4-2. ● Matched output slopes and propagation delay. Doc ID 17639 Rev 4 L99PM62GXP Detailed description In order to further reduce the current consumption in standby mode, the integrated LIN bus interface offers an ultra low current consumption. Note: Use of master pull-up switch is optional. 2.8.1 Error handling The L99PM62GXP provides the following 3 error handling features which are not described in the LIN Spec. V2.1, but are realized in different stand alone LIN transceivers / micro controllers to switch the application back to normal operation mode. At VS > Vpor (i.e. Vs power-on reset threshold), the LIN transceiver is enabled. The LIN transmitter is disabled in case of the following errors: ● Dominant TxDL time out ● LIN permanent recessive ● Thermal shutdown 1 ● VS over/undervoltage ● The LIN receiver is not disabled in case of any failure condition. Dominant TxDL time out If TXDL is in dominant state (low) for more than 12 ms (typ) the transmitter is disabled, the status bit is latched and can be read and optionally cleared by SPI. The transmitter remains disabled until the status register is cleared. This feature can be disabled via SPI. Permanent recessive If TXDL changes to dominant (low) state but RXDL signal does not follow within 40 µs the transmitter is disabled, the status bit is latched and can be read and optionally cleared by SPI. The transmitter remains disabled until the status register is cleared. Permanent dominant If the bus state is dominant (low) for more than 12 ms a permanent dominant status is detected. The status bit is latched and can be read and optionally cleared by SPI. The transmitter is not disabled. 2.8.2 Wake up (from LIN) In standby mode the L99PM62GXP can receive a wake up from LIN bus. For the wake up feature the L99PM62GXP logic differentiates two different conditions. Normal wake up Normal wake up can occur when the LIN transceiver was set in standby mode while LIN was in recessive (high) state. A dominant level at LIN for tlinbus, switches the L99PM62GXP to active mode. Wake up from short to GND condition If the LIN transceiver was set in standby mode while LIN was in dominant (low) state, recessive level at LIN for tlinbus, switches the L99PM62GXP to active mode. Note: A wake up caused by a message on the bus starts the voltage regulator and the microcontroller to switch the application back to normal operation mode. Doc ID 17639 Rev 4 29/102 Detailed description 2.8.3 L99PM62GXP LIN pull-up The master node pull-up resistor (1 kΩ) can be connected to VS using the internal LIN_PU high-side switch. This high-side switch can be controlled by SPI in order to allow disconnection of the pull-up resistor in case of LIN bus short to GND conditions. Figure 17. LIN master node configuration using LIN_PU (optional) 9V /,1 FRQWURO 7 6: FRQWURO /,138 N N /,1 0DVWHUQRGH SXOOXS *QG $*9 LIN_PU high-side driver characteristics: 2.9 ● Activated by default and can be turned off by SPI command (CR4). ● Remains active in standby modes. ● Switch off only in case of over temperature (TSD2 = thermal shutdown #2). ● No over current protection. ● Typical RDSon, 10 Ω. High speed CAN bus transceiver General requirements 30/102 ● Communication speed up to 1 Mbit/s. ● ISO 11898-2 and ISO 11898-5 compliant ● SAE J2284 compliant ● Function range from -27 V to +40 V DC at CAN pins. ● GND disconnection fail safe at module level. ● GND shift operation at system level. ● Micro controller Interface with CMOS compatible I/O pins. ● ESD and transient immunity according to ISO7637 and EN / IEC61000-4-2 ● Matched output slopes and propagation delay ● Split output pin for stabilizing the recessive bus level ● Receive-only mode available Doc ID 17639 Rev 4 L99PM62GXP Detailed description In order to further reduce the current consumption in standby mode, the integrated CAN bus interface offers an ultra low current consumption. 2.9.1 CAN error handling The L99PM62GXP provides the following 4 error handling features which are not described in the ISO 11898-2/ISO 11898-5, but are realized in different stand alone CAN transceivers/micro controllers to switch the application back to normal operation mode. At VS > Vpor (i.e. VS power-on reset threshold), the CAN transceiver is enabled. It remains enabled also in case of VS overvoltage and undervoltage conditions. The CAN transmitter is disabled only in case of the following errors: ● Dominant TxDC time out ● CAN permanent recessive ● RxDC permanent recessive ● Thermal shutdown 1 The CAN receiver is not disabled in case of any failure condition. Dominant TxDC time out If TXDC is in dominant state (low) for t > tdom(TxD) the transmitter is disabled, status bit is latched and can be read and optionally cleared by SPI. The transmitter remains disabled until the status register is cleared. CAN permanent recessive If TXDC changes to dominant (low) state but CAN bus does not follow for 4 times, the transmitter is disabled, status bit is latched and can be read and optionally cleared by SPI. The transmitter remains disabled until the status register is cleared. CAN permanent dominant If the bus state is dominant (low) for t > tCAN a permanent dominant status is detected. The status bit is latched and can be read and optionally cleared by SPI. The transmitter is not disabled. RXDC permanent recessive If RXDC pin is clamped to recessive (high) state, the controller is not able to recognize a bus dominant state and could start messages at any time, which results in disturbing the overall bus communication. Therefore, if RXDC does not follow TXDC for 4 times the transmitter is disabled. The status bit is latched and can be read and optionally cleared by SPI. The transmitter remains disabled until the status register is cleared. 2.9.2 Wake up (from CAN) When the L99PM62GXP is in standby mode with CAN wake up option enabled, the CAN bus traffic is detected. For the wake up feature the L99PM62GXP logic differentiates different conditions. During V1 Standby mode RXDC output is kept at recessive level. Independent from the wakeup pattern selected and independent from the previous Standby mode, the RXDC reflect immediately the bus state after the wakeup. This feature allows implementation of a ‘partial networking’ functionality controlled by the system microcontroller. Doc ID 17639 Rev 4 31/102 Detailed description L99PM62GXP Normal pattern wake up Normal pattern wake up can occur when CAN pattern wake up option is enabled and the CAN transceiver was set in standby mode while CAN bus was in recessive (high) state or dominant (low) state. In order to wake up the L99PM62GXP, the following criteria must be fulfilled: ● The CAN interface wake-up receiver must receive a series of two consecutive valid dominant pulses, each of which must be longer than 2 µs ● The distance between 2 pulses must be longer than 2 µs. ● The two pulses must occur within a time frame of 1.0 ms Wake up from short to GND condition Even if CAN pattern wake up option is enabled, but the CAN transceiver was set in standby mode after a qualified permanent dominant state, recessive level at CAN, switches the L99PM62GXP to active mode. No pattern wake up If the CAN pattern wake up option is disabled, any transition either dominant (low) state to recessive (high) state or recessive (high) state to dominant (low) state switches the L99PM62GXP to active mode (after a filtering time of 2 µs). Note: A wake up caused by a message on the bus starts the voltage regulator and the microcontroller to switch the application back to normal operation mode. Figure 18. CAN wake up capabilities 3DWWHUQ:DNHXS 1RSDWWHUQ:DNHXS PV !XV !XV !XV !XV &$15; 67$7( &$15; $&7,9( 67$1'%< $&7,9( 67$7( $&7,9( 67$1'%< $&7,9( 6WDQGDUGZDNHXS 6WDQGDUGFDQSDWWHUQZDNHXS PV !XV !XV !XV !XV &$15; 67$7( &$15; $&7,9( 67$1'%< $&7,9( 67$7( $&7,9( &$1SDWWHUQZDNHXSZLWKGRPLQDQWEHIRUH6WDQGE\ !SHUPDQQHQWGRPLQDQWILOWHUWLPH $&7,9( &$1ZDNHXSZLWKGRPLQDQWEHIRUH6WDQGE\ !SHUPDQQHQW GRPLQDQWILOWHUWLPH !XV &$15; 67$7( 67$1'%< !XV &$15; $&7,9( 67$1'%< $&7,9( 67$7( &$1SDWWHUQZDNHXSZLWKSHUPDQHQWGRPLQDQW $&7,9( 67$1'%< $&7,9( &$1ZDNHXSZLWKSHUPDQHQWGRPLQDQW $*9 Note: 32/102 Pictures above illustrate the wake up behaviour from V1 standby mode. For wake up from VBAT standby mode an NReset pulse is generated instead of the RXDL (Interrupt) signal. Doc ID 17639 Rev 4 L99PM62GXP 2.9.3 Detailed description CAN sleep mode During active mode it is possible to deactivate the CAN transceiver with a dedicated SPI command (CR4, CAN_act = 0). The CAN transceiver remains deactivated until it is activated again. With a deactivated CAN the receiver input termination network is disconnected from the bus and the CANH, CANL bus lines is driven to GND. The SPLIT output is also deactivated in this case. 2.9.4 CAN receive only mode With the CAN_rec_only bit in control register 4 it is possible to disable the CAN transmitter in active mode. In this mode it is possible to listen to the bus but not sending to it. The receiver termination network is still activated in this mode. 2.9.5 CAN looping mode If the CAN_Loop_en bit in control register 4 is set the TXDC input is mapped directly to the RXDC pin. This mode can be used in combination with the CAN receive only mode, to run diagnosis for the CAN protocol handler of the micro controller. 2.10 Serial peripheral interface (ST SPI standard) A 24 bit SPI is used for bi-directional communication with the micro controller. During active mode, the SPI ● Triggers the watchdog ● Controls the modes and status of all L99PM62GXP modules (incl. input and output drivers) ● Provides driver output diagnostic ● Provide L99PM62GXP diagnostic (incl. overtemperature warning, L99PM62GXP operation status) The SPI can be driven by a micro controller with its SPI peripheral running in following mode: CPOL = 0 and CPHA = 0. For this mode input data is sampled by the low to high transition of the clock CLK, and output data is changed from the high to low transition of CLK. This device is not limited to micro controller with a built-in SPI. Only three CMOS-compatible output pins and one input pin is needed to communicate with the device. A fault condition can be detected by setting CSN to low. If CSN = 0, the DO-pin reflects the global error flag (fault condition) of the device. Chip select not (CSN) The input pin is used to select the serial interface of this device. When CSN is high, the output pin (DO) is in high impedance state. A low signal activates the output driver and a serial communication can be started. The state during CSN = 0 is called a communication frame. If CSN = low for t > tCSNfail the DO output is switched to high impedance in order to not block the signal line for other SPI nodes. Doc ID 17639 Rev 4 33/102 Detailed description L99PM62GXP Serial data in (DI) The input pin is used to transfer data serial into the device. The data applied to the DI is sampled at the rising edge of the CLK signal and shifted into an internal 24 bit shift register. At the rising edge of the CSN signal the contents of the shift register is transferred to Data Input Register. The writing to the selected data input register is only enabled if exactly 24 bits are transmitted within one communication frame (i.e. CSN low). If more or less clock pulses are counted within one frame the complete frame is ignored. This safety function is implemented to avoid an activation of the output stages by a wrong communication frame. Note: Due to this safety functionality a daisy chaining of SPI is not possible. Instead, a parallel operation of the SPI bus by controlling the CSN signal of the connected IC's is recommended. Serial data out (DO) The data output driver is activated by a logical low level at the CSN input and goes from high impedance to a low or high level depending on the global error flag (fault condition). The first rising edge of the CLK input after a high to low transition of the CSN pin transfers the content of the selected status register into the data out shift register. Each subsequent falling edge of the CLK shifts the next bit out. Serial clock (CLK) The CLK input is used to synchronize the input and output serial bit streams. The data input (DI) is sampled at the rising edge of the CLK and the data output (DO) changes with the falling edge of the CLK signal. The SPI can be driven with a CLK Frequency up to 1MHz. 34/102 Doc ID 17639 Rev 4 L99PM62GXP Protection and diagnosis 3 Protection and diagnosis 3.1 Power supply fail Over and under-voltage detection on Vs 3.1.1 VS overvoltage If the supply voltage Vs reaches the over voltage threshold (VSOV): ● 3.1.2 Outputs OUTx, RELx and LIN are switched to high impedance state (load protection). CAN is not disabled. Recovery of outputs when the overvoltage condition disappears is depending on the setting of VLOCKOUT_EN bit in Control Register 4. – VLOCKOUT_EN = 1: Outputs are off until read and clear SR3. – VLOCKOUT_EN = 0: Outputs switch automatically on when overvoltage condition disappears. ● The over voltage bit is set and can be cleared with a ‘Read and Clear’ command. The overvoltage bit is removed automatically if VLOCKOUT_EN = 0 and the overvoltage condition disappears. ● Outputs REL1,2 can be excluded from a shutdown in case of overvoltage by SPI (LSOVUV_ Shutdown_en in CR4) Vs undervoltage If the supply voltage Vs drops below the under voltage threshold voltage (VSUV) ● Outputs OUTx, RELx and LIN are switched to high impedance state (load protection). CAN is not disabled. Recovery of outputs when the undervoltage condition disappears is depending on the setting of VLOCKOUT_EN bit. VLOCKOUT_EN = 1: Outputs are off until read and clear SR3. VLOCKOUT_EN = 0: Outputs switch on automatically when undervoltage condition disappears. ● The undervoltage bit is set and can be cleared with a ‘Read and Clear’ command. The undervoltage bit is removed automatically if VLOCKOUT_EN = 0 and the undervoltage condition disappears ● Outputs REL1,2 can be excluded from a shutdown in case of undervoltage by SPI (LSOVUV_shutdown_en in CR4) Doc ID 17639 Rev 4 35/102 Protection and diagnosis L99PM62GXP Figure 19. Over voltage and under voltage protection and diagnosis $FWLYH 0RGH 6WDQGE\0RGHV GXULQJF\FOLFVHQVH 9V8QGHUYROWDJH 9V9VXY 9V2YHUYROWDJH 9V!9VRY 9V9VRY$1'Ã5HDGDQG&OHDU¶ 25 9V9VRY$1'9ORFNRXW 9V!9VXY$1'Ã5HDGDQG&OHDU¶ 25 9V!9VXY$1'9ORFNRXW 9V2YHUYROWDJH 6KXWGRZQ 9V8YHUYROWDJH 6KXWGRZQ $OORXWSXWVKLJK,PSHGDQFH H[FHSW5(/RXWSXWVLI /6BRYXY $OORXWSXWVKLJK,PSHGDQFH H[FHSW5(/RXWSXWVLI /6BRYXY 'LDJQRVLV29 'LDJQRVLV89 $*9 36/102 Doc ID 17639 Rev 4 L99PM62GXP 3.2 Protection and diagnosis Temperature warning and thermal shutdown Figure 20. Thermal shutdown protection and diagnosis 7M!76' 76' 76' $OORXWSXWVRII 9RIIIRUVHF 7!VHF 'LDJQRVLV76' $OORXWSXWVH[FHSW9RII 'LDJQRVLV76' [76' :DNHXSHYHQW 7M!76' Ã5HDGDQG&OHDU¶ 25 3RZHURQUHVHW 9EDWVWE\ 3RZHURQUHVHW $OORXWSXWVLQFO9RII 7HPSHUDWXUH :DUQLQJ 'LDJQRVLV7: Ã5HDGDQG&OHDU¶ 25 3RZHURQUHVHW 7M!7Z $FWLYH 0RGH 6WDQGE\0RGHV GXULQJF\FOLFVHQVH 9V!9SRU 3RZHU2Q5HVHW $OORXWSXWVLQFO9RII $*9 Note: The thermal state machine recovers the same state were it was before entering standby mode. In case of a TSD2 it enters TSD1 state. Doc ID 17639 Rev 4 37/102 Protection and diagnosis 3.3 L99PM62GXP High-side driver outputs The component provides a total of 4 high-side outputs Out1 to 4, (7 Ω typical at 25°C) to drive e.g. LED's or hall sensors and 1 high-side output OUT_HS with 1 Ω typical at 25 °C). The high-side outputs switch off in case of: ● VS over and undervoltage ● Overcurrent ● Overtemperature (TSD1) with pre warning(a) In case of overload or over temperature (TSD1) condition, the drivers switches off. The according status bit is latched and can be read and optionally cleared by SPI. The drivers remain off until the status is cleared. In case over/under voltage condition, the drivers is switched off. The according status bit is latched and can be read and optionally cleared by SPI. If the Vlockout bit (Control Register 4) is set to ‘1’ the drivers remain off until the status is cleared. If the Vlockout bit is set to ‘0’ the drivers switches on automatically if the error condition disappears. In case of open-load condition, the according status register is latched. The status can be read and optionally cleared by SPI. The high-sides are not switched off. For OUT_HS the auto recovery feature (OUTHSREC bit Control Register 4) can be enabled. If this bit is set to ‘1’ the driver is automatically restart from a overload condition. This overload recovery feature is intended for loads which have an initial current higher than the over current limit of the output (e.g. Inrush current of cold light bulbs). During auto recovery mode the over current status bit can not be read from SPI. The device itself can not distinguish between a real overload and a non linear load like a light bulb. A real overload condition can only be qualified by time. As an example, the micro controller can switch on light bulbs by setting the over current recovery bit for the first 50ms. After clearing the recovery bit, the output is automatically disabled if the overload condition still exists. In case of a fail safe condition, the high-side drivers are switched off. The control bits are set to default values. (except OUT3/FSO if it is used as a high-side driver output) Note: The maximum voltage and current applied to the high-side outputs is specified in Section 5.1: Absolute maximum rating. Appropriate external protection may be required in order to respect these limits under application conditions. Each high-side driver can be driven whether with a PWM signal or with a internal Timer. See Table 7. For more Details please refer to Section 6.2: SPI registers. Table 7. PWM configuration for high-side outputs High-side output PWM channel Internal timer OUT1 PWM 1 Timer 1 OUT2 PWM 2 Timer 2 OUT3 PWM 3 - a. Except OUT3 when configured as FSO. 38/102 Doc ID 17639 Rev 4 L99PM62GXP Protection and diagnosis Table 7. PWM configuration for high-side outputs (continued) High-side output PWM channel Internal timer OUT4 PWM 4 Timer 2 OUTHS PWM 3 / PWM 4 Timer 1 / Timer 2 The PWM 1 / 3 channels start a PWM period with the ON phase, while the PWM 2 / 4 channels start with the OFF phase. In this way it is possible to use the 4 PWM channels in a phase shifted way. The Figure 21 shows this feature with a duty cycle of 25% for both PWM channels. Figure 21. Phase shifted PWM 287 3:0[) 3:03HULRG 287 3:0[) $*9 3.4 Low-side driver outputs REL1, REL2 The outputs REL1, REL2 (RDSon = 2 Ω typical at 25 °C) are specially designed to drive relay loads. The outputs provide an active output zener clamping (45 V typical) feature for the demagnetization of the relay coil, even though a load dump condition exists. For fail-safe reasons the relay drivers are linked with the fail safe operation: in case of entering the fail safe mode, the relay drivers switches off and the SPI control bits are set to default (i.e. driver is off). The low-side drivers switch off in case of: ● VS over and undervoltage ● Overcurrent ● Overtemperature with pre warning In case of overload or overtemperature (TSD1) condition, the drivers switches off. The according status bit is latched and can be read and optionally cleared by SPI. The drivers remain off until the status is cleared. Doc ID 17639 Rev 4 39/102 Protection and diagnosis L99PM62GXP In case VS over/undervoltage condition, the drivers is switched off. The according status bit is latched and can be read and optionally cleared by SPI. If the Vlockout bit (Control Register 4) is set to ‘1’ the drivers remain off until the status is cleared. If the Vlockout bit is set to ‘0’ the drivers is switched on automatically if the error condition disappears. With the LSOVUV_shutdown_en bit (Control Register 4) the drivers can be excluded from a switch off in case of VS over/undervoltage. If the bit is set to ‘1’ the driver switches off, otherwise the drivers remain on. 3.5 SPI diagnosis Digital diagnosis features are provided by SPI (for details please refer to Section 6.2: SPI registers. 40/102 ● V1 reset threshold programmable ● Overtemperature including. pre warning ● Open-load separately for each output stage except REL1/REL2 ● Overload status separately for each output stage ● Vs-supply over/under voltage ● V1 and V2 fail bit ● V2 output short to GND ● Status of the WU1 to 3 ● Wake-up sources (CAN, LIN, SPI, Timer, WU1…3) ● chip reset bit (start from power-on reset) ● Number of unsuccessful V1 restarts after thermal shutdown ● Number of sequential watchdog failures ● LIN diagnosis (permanent recessive/dominant, dominant TxD) ● CAN diagnosis (permanent recessive/dominant, dominant TxD, recessive RXD) ● Device State (wake-up from V1 standby or VBAT standby) ● Forced VBAT standby after WD-fail, forced VBAT standby after overtemperature ● Watchdog timer state (diagnosis of watchdog) ● Fail-safe status ● SPI communication error Doc ID 17639 Rev 4 L99PM62GXP 4 Typical application Typical application Figure 22. Typical application diagram 9EDW 9V 9V 9EDW 9V 9 ([WHUQDOORDGV 7HPS3UHZDUQLQJ 6KXWGRZQ 9ROWDJH 5HJXODWRU Q) 8QGHUYROWDJH 2YHUYROWDJH 6KXWGRZQ 0 /RZ6LGH 9V 9 5(/ 2XWSXW&ODPS 9ROWDJH 5HJXODWRU /RZ6LGH 5(/ 2XWSXW&ODPS Q) 9ROWDJH 0RQLWRU Nȍ 23 23 23B287 15(6(7 0LFUR FRQWUROOHU &$'& :LQGRZ :DWFKGRJ ', '2 &/. &61 63, +LJK6LGH 7['/ +LJK6LGH /,1 /,138 /,1 +LJK6LGH /,1 +LJK6LGH 9 23 23B287 /2*,& +LJK6LGH 5['/1,17 23 287B+6 287 287 287)62 5['& &$1+ +6&$1 HJ/(' +DOO6HQVRU 287 &$1683 7['& HJ%XOE /('+DOO 6HQVRU :DNH8S ,1 :8 :DNH8S ,1 :8 :DNH8S ,1 :8 &\FOLF&RQWDFW 0RQLWRULQJ ([WHUQDO )DLO6DIH /RJLF &$1 &$1/ /,1FRPSOLDQW 6$(-FRPSDWLEOH 3*1' $*1' ,62[ DQG6$(-FRPSOLDQW $*9 Doc ID 17639 Rev 4 41/102 Electrical specifications L99PM62GXP 5 Electrical specifications 5.1 Absolute maximum rating Table 8. Absolute maximum rating Symbol VS Parameter/test condition Value [DC voltage] Unit DC supply voltage / “jump start” -0.3 to +28 V Single pulse / tmax < 400 ms “transient load dump” -0.3 to +40 V -0.3 to (V1 + 0.3) V V1 < V S V -0.3 to +28 V -0.3 to V1+0.3 V -0.3 to VS+0.3 V V1 Stabilized supply voltage, logic supply V2 Stabilized supply voltage VDI VCLK VDO VRXDL VNRESET VRXDC Logic input / output voltage range VTXDC, VTXDL, VCSN Multi level inputs VREL1, VREL2, Low-side output voltage range -0.3 to +40 V VOUT1..4, VOUT_HS High-side output voltage range -0.3 to VS+0.3 V VWU1...3 Wake up input voltage range -0.3 to VS+0.3 V VOP1P,VOP1M, VOP2P, VOP2M, Opamp1 input voltage range Opamp2 input voltage range -0.3 to V1+0.3 V VOPOUT1, VOPOUT2 Analog Output voltage range -0.3 to VS+0.3 V -20 to +40 V Current injection into VS related input pins 20 mA Current injection into VS related outputs 20 mA -0.3 to +5.25 V -27 to +40 V VLIN, VLINPU IInput Iout_inj VCANSUP VCANH, VCANL, VSPLIT Note: LIN bus I/O voltage range CAN supply CAN bus I/O voltage range All maximum ratings are absolute ratings. Leaving the limitation of any of these values may cause an irreversible damage of the integrated circuit! Loss of ground or ground shift with externally grounded loads: ESD structures are configured for nominal currents only. If external loads are connected to different grounds, the current load must be limited to this nominal current. 42/102 Doc ID 17639 Rev 4 L99PM62GXP 5.2 Electrical specifications ESD protection Table 9. ESD protection Parameter Value Unit +/-2 kV +/-4 kV LIN +/-8(2) +/-10(3) +/-6(4) kV CAN_H, CAN_L +/-8(2) +/-6(4) kV All pins(5) +/-500 V +/-750 V +/-200 V (1) All pins All output Corner All pins(2) pins(5) pins(6) 1. HBM (human body model, 100 pF, 1.5 kΩ) according to MIL 883C, method 3015.7 or EIA/JESD22A114-A. 2. HBM with all none zapped pins grounded. 3. Indirect ESD test according to IEC 61000-4-2 (150 pF, 330 Ω) and 'Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotive Applications' (version 1.1, 2009-12-02). 4. Direct ESD test according to IEC 61000-4-2 (150 pF, 330 Ω) and 'Hardware Requirements for LIN, CAN and Flexray Interfaces in Automotive Applications' (version 1.1, 2009-12-02); Cbus,LIN = 220 pF. 5. Charged device model. 6. Machine model: C = 200 pF; R = 0 Ω. 5.3 Thermal data Table 10. Operating junction temperature Symbol Tj RthjA Table 11. Parameter TSD1 OFF Thermal resistance junction / ambient -40 to 150 °C See Figure 25 °K/W Temperature warning and thermal shutdown Parameter Min. Typ. Max. Unit Thermal over temperature warning threshold Tj(1) 120 130 140 °C Thermal shutdown junction temperature 1 Tj(1) 130 140 150 °C Tj(1) 150 160 170 °C TSD2 OFF TSD2 ON Unit Operating junction temperature Symbol TW ON Value Thermal shutdown junction temperature 2 Hysteresis 5 °C TSD12hys 1. Non-overlapping Doc ID 17639 Rev 4 43/102 Electrical specifications L99PM62GXP Figure 23. Thermal data of PowerSSO-36 P a d s o ld e re d 35 30 P ow erS S O -3 6 o n 2 s 2 p P ow erS S O -3 6 o n 2 s 2 p th. e n h. ZTH (ºC/W) 25 20 15 10 5 0 0 .0 0 0 1 0 .0 0 1 0 .0 1 0 .1 T im e (s ) 44/102 Doc ID 17639 Rev 4 1 10 100 1000 AG00022V1 L99PM62GXP Electrical specifications 5.4 Package and PCB thermal data 5.4.1 PowerSSO-36 thermal data Figure 24. PowerSSO-36 PC board $*9 Note: Layout condition of Rth and Zth measurements (board finish thickness 1.6 mm +/- 10% board double layer, board dimension 129x60, board Material FR4, Cu thickness 0.070 mm (front and back side), thermal vias separation 1.2 mm, thermal via diameter 0.3 mm +/- 0.08 mm, Cu thickness on vias 0.025 mm). Doc ID 17639 Rev 4 45/102 Electrical specifications L99PM62GXP Figure 25. PowerSSO-36 Thermal Resistance junction to ambient vs PCB copper area (V1 ON) 57+MDPE 57+MBDPE &: 57+MDPE 3&%&XKHDWVLQNDUHDFPA $*9 Figure 26. PowerSSO-36 Thermal Impedance junction to ambient vs PCB copper area (single pulse with V1 ON) ZTH (°C/W) 100 Cu=8 cm2 Cu=2 cm2 Cu=foot print 10 1 0.01 0.1 1 Time (s) 10 100 1000 AG00025V1 46/102 Doc ID 17639 Rev 4 L99PM62GXP Electrical specifications Figure 27. PowerSSO-36 thermal fitting model (V1 ON) $*9 Equation 1: pulse calculation formula Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ ) where δ = tp ⁄ T Table 12. Thermal parameter Area/island (cm2) Footprint 2 8 R1 (°C/W) 2 R2 (°C/W) 8 4 4 R3 (°C/W) 20 15.5 10 R4 (°C/W) 36 29 18 C1 (W.s/°C) 0.01 C2 (W.s/°C) 0.1 0.2 0.2 C3 (W.s/°C) 0.8 1 1.5 C4 (W.s/°C) 2 3 6 Doc ID 17639 Rev 4 47/102 Electrical specifications L99PM62GXP 5.5 Electrical characteristics 5.5.1 Supply and supply monitoring The voltages are referred to ground and currents are assumed positive, when the current flows into the pin Tj = -40 °C to 130 °C, unless otherwise specified. Table 13. Symbol VSUV Supply and supply monitoring Parameter VS undervoltage threshold Test condition Min. VS increasing / decreasing 5.11 Vhyst_UV VS undervoltage hysteresis VSOV VS overvoltage threshold Vhyst_OV VS overvoltage hysteresis tovuv_filt 0.0 VS increasing / decreasing 18.5 Hysteresis 0.5 VS over/undervoltage filter time Typ. Max. Unit 5.81 V 0.15 V 22 V 1.5 V 6 12 mA 0.1 1 64*Tosc Current consumption in active mode Vs = 12V TxD CAN = high TxD LIN = high V1 = on, V2 = on HS/LS driver off Current consumption in VBAT standby mode VS = 12V Both voltage regulators deactivated, no wake-up request(1) HS/LS driver off 8 12 28 µA VS = 12V Current consumption in VBAT Both voltage regulators deactivated, IV(BAT)CS standby mode with cyclic sense T = 50 ms, ton = 100 µs no wake-up enabled request(1) 70 110 130 µA VS = 12V Both voltage regulators deactivated During standby phase no wake-up request(1) 70 110 130 µA VS = 12V Voltage Regulator V1 active, (Iv1 < Icmp) no wake-up request(1) HS/LS driver off 16 51 76 µA IV(act) IV(BAT) Current consumption in VBAT IV(BAT)CW standby mode with cyclic wake enabled I(V1) Current consumption in V1-standby mode 1. Conditions for no wake-up request are (all conditions must be met): 2 V < LIN < (VS-2 V) 0.4 V < (CAN_H – CAN_L) < 1,2 V 1 V < VWUth < (VS-2 V) The current consumption in standby modes with cyclic sense can be calculated using the following formulas: IV(BAT)CS = IV(BAT) + 55 µA + (2 mA * (tON + 100 µs) / T) I(V1)CS = IV1 + 55 µA + (2 mA * (tON + 100 µs) / T) 48/102 Doc ID 17639 Rev 4 L99PM62GXP 5.5.2 Electrical specifications Oscillator The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 4.5 V < VS < 28 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. Table 14. Oscillator Symbol Test condition Oscillation frequency FCLK 5.5.3 Parameter Min. Typ. Max. Unit 0.80 1.0 1.35 MHz Typ. Max. Unit 3.45 4.5 V 3.5 V Power-on reset (VS) All outputs open; Tj = -40°C to 130°C, unless otherwise specified. Table 15. Power-on reset (Vs) Symbol VPOR VPOR Parameter VPOR threshold VPOR threshold Test condition Min. Vs increasing Vs decreasing(1) 2.65 1. This threshold is valid if Vs had already reached 7V previously 5.5.4 Voltage regulator V1 The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 4.5 V < VS < 28 V; Tj = -40 °C to 130 °C, unless otherwise specified. Table 16. Symbol Voltage regulator V1 Parameter V1 Output voltage V1 Output voltage tolerance Active mode Vhc1 Output voltage tolerance active mode, high current VSTB1 VDP1 ICC1 ICCmax1 Output voltage tolerance V1-standby mode Drop-out voltage Test condition Min. Typ. Max. 5.0 Unit V ILOAD1 = 4 mA to 100 mA; VS = 13.5 V -2 +2 % ILOAD1 = 100 mA to 250 mA; VS = 13.5 V -3 +3 % ILOAD1 = 250 mA; VS = 13.5 V -5 +5 % ILOAD1 = 0 µA to 4 mA; VS = 13.5 V -2 +4 % ILOAD1 = 50 mA; VS = 5 V 0.2 0.4 V ILOAD1 = 100 mA; VS = 4.5 V 0.2 0.5 V ILOAD1 = 100 mA; VS = 5 V 0.3 0.5 V ILOAD1 = 150 mA; VS = 4.5 V 0.45 0.6 V ILOAD1 = 150 mA; VS = 5.0 V 0.45 0.6 V 250 mA 900 mA Output current in active mode Max. continuous load current Short circuit output current Current limitation Doc ID 17639 Rev 4 340 600 49/102 Electrical specifications Table 16. Symbol Cload1 tTSD L99PM62GXP Voltage regulator V1 (continued) Parameter Load capacitor1 Test condition Ceramic (+/- 20%) Min. Typ. Max. Unit (1) 0.22 V1 deactivation time after thermal shutdown µF 1 sec Icmp_ris Current comp. rising thresh. Rising current 1.0 2.5 4 mA Icmp_fal Current comp. falling threshold Falling current 0.8 1.95 3.1 mA Icmp_hys Current comp. hysteresis 0.5 mA 2 V V1fail V1 fail threshold tV1fail V1 fail filter time 2 µs V1 short filter time 4 ms tV1short V1 forced 1. Nominal capacitor value required for stability of the regulator. Tested with 220 nF ceramic (+/- 20 %). Capacitor must be located close to the regulator output pin. 5.5.5 Voltage regulator V2 The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 4.5 V < VS < 28 V; Tj = -40 °C to 130 °C, unless otherwise specified. Table 17. Symbol Voltage regulator V2 Parameter Test condition Min. Typ. Max. Unit V2 Output voltage V2 Output voltage tolerance active mode ILOAD2 = 1 mA to 50 mA; VS = 13.5 V +/- 3 % Vhc1 Output voltage tolerance active mode ILOAD2 = 50 mA to 80 mA; VS = 13,5 V +/- 4 % V2 Output voltage tolerance active mode, high current ILOAD2 = 100 mA; VS = 13.5 V +/- 6 % VSTB2 Output voltage tolerance V1 standby mode ILOAD2 = 1 mA; VS = 13.5 V +/-6.5 % VDP2 Drop-out voltage ICC2 Output current in active mode ICCmax2 Short circuit output current 5,0 V ILOAD2 = 25 mA; VS = 5.25 V 0.3 0.4 V ILOAD2 = 50 mA; VS = 5.25 V 0.4 0.7 V 100 mA 450 mA Max. continuous load current Current limitation 150 280 0.22(1) Cload Load capacitor Ceramic (+/- 20 %) V2fail V2 fail threshold V2 forced tV2fail V2 fail filter time 2 µs V2 short filter time 4 ms tV2short µF 2 1. Nominal capacitor value required for stability of the regulator. Tested with 220 nF ceramic (+/- 20 %). Capacitor must be located close to the regulator output pin. 50/102 Doc ID 17639 Rev 4 V L99PM62GXP 5.5.6 Electrical specifications Reset output The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 4.0 V < VS = 28 V; Tj = -40 °C to 130 °C, unless otherwise specified. Table 18. Reset output Symbol 5.5.7 Parameter Test condition Min. Typ. Max. Unit VRT1 Reset threshold voltage1 V1 decreasing 3.7 3.9 4.1 V VRT2 Reset threshold voltage2 V1 decreasing 4.2 4.3 4.45 V VRT3 Reset threshold voltage3 V1 decreasing 4.25 4.4 4.55 V VRT4 Reset threshold voltage4 V1 decreasing 4.5 4.60 4.75 V VRT4 Reset threshold voltage4 V1 increasing 4.7 4.8 4.9 V 0,2 0,4 V 110 150 kΩ 40 µs VRESET Reset pin low output voltage V1 > 1 V; IRESET = 5 mA RRESET Reset pull up int. resistor tRR Reset reaction time tUV1 V1 under-voltage filter time Trd Reset pulse duration 80 ILOAD1 = 1 mA 6 16 1.46 2 µs 2.5 ms Watchdog 4.5 V < VS < 28 V; 4.8 V < V1 < 5.2 V; Tj = -40 °C to 130 °C, unless otherwise specified, see Figure 28 and Figure 29. Table 19. Symbol tLW Watchdog Parameter Test condition Long open window Min. Typ. Max. Unit 48,75 65 81,25 ms 4.5 ms TEFW1 Early failure window 1 TLFW1 Late failure window 1 20 TSW1 Safe window 1 7.5 TEFW2 Early failure window 2 TLFW2 Late failure window 2 100 TSW2 Safe window 2 37.5 TEFW3 Early failure window 3 TLFW3 Late failure window 3 200 TSW3 Safe window 3 75 TEFW4 Early failure window 4 TLFW4 Late failure window 4 400 TSW4 Safe window 4 150 Doc ID 17639 Rev 4 ms 12 ms 22.3 ms ms 60 ms 45 ms ms 120 ms 90 ms ms 240 ms 51/102 Electrical specifications L99PM62GXP Figure 28. Watchdog timing (long, early, late and safe window) 1RUPDOVWDUWXSRSHUDWLRQDQGWLPHRXWIDLOXUHV 7/: ORQJZLQGRZ 7&: FORVHGZLQGRZ FRUUHFWWULJJHUWLPLQJ 72: RSHQZLQGRZ HDUO\WULJJHUWLPLQJ 7:'5 ZDWFKGRJUHVHW PLVVLQJWULJJHU 7&: 72: 7&: 72: 7&: 7/: :' WULJJHU WULJJHUVLJQDO 7/: 7/: 15(6 2XW 7:'5 QRUPDORSHUDWLRQ WLPHPV 7:'5 PLVVLQJ WULJJHU HDUO\ ZULWH WLPHPV 0LVVLQJX&WULJJHUVLJQDO :' WULJJHU 7/: 7/: 7/: WLPHPV 15(6 2XW 7:'5 7:'5 7:'5 WLPHPV $*9 52/102 Doc ID 17639 Rev 4 L99PM62GXP Electrical specifications Figure 29. Watchdog early, late and safe windows 76:Q 6DIHZLQGRZ 7():Q (DUO\)DLOXUHZLQGRZ 7/):Q /DWHIDLOXUHZLQGRZ 7/):QBPLQ 76:QBPD[ 76:QBPLQ 7():QBPD[ (DUO\ :DWFKGRJ IDLOXUH XQGHILQHG VDIHWULJJHUDUHD XQGHILQHG /DWH ZDWFKGRJ IDLOXUH WLPH $*9 5.5.8 High-side outputs The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < V1 < 5.2 V; Tj = -40 °C to 130 °C, unless otherwise specified. Table 20. Symbol Output (OUT_HS) Parameter Test condition Min. Typ. Max. Unit Static drain source on-resistance (IOUT_HS = 150 mA) Tj = 25 °C 1 2 RDSON Ω Tj = 125 °C 1.6 3 Ω tdON Switch on delay time 0.2 VS 5 35 60 µs tdOFF Switch off delay time 0.8 VS 40 95 150 µs tSCF Short circuit filter time Tested by scan chain 64*TOSC tdARHS Auto recovery filter time Tested by scan chain 400*TOSC dVOUT/dt Slew rate 0,18 0,5 0,8 V/µs IOUT Short circuit shutdown current 480 900 1320 mA IOLD Open-load detection current 40 80 120 mA tOLDT Open-load detection time IFW (1) Loss of GND current (ESD structure) Tested by scan chain 64*TOSC 100 mA 1. Parameter guaranteed by design Doc ID 17639 Rev 4 53/102 Electrical specifications L99PM62GXP The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < V1 < 5.2 V; Tj = -40 °C to 130 °C, unless otherwise specified. Table 21. Symbol Parameter RDSON Static drain source on-resistance (IOUT_HS = 150mA) 5.5.9 Test Condition Min. ILOAD = 60 mA @ Tj = +25 °C Typ. Max. Unit 7 13 Ω IOUT Short circuit shutdown current 8 V < Vs < 16 V 140 235 350 mA IOLD Open-load detection current 1 0.9 2 4.5 mA Slew rate 0.2 0.5 0.8 V/µs dVOUT/dt 1. Outputs (OUT1...4) tdON Switch ON delay time 0.2 Vs 5 35 60 µs tdOFF Switch OFF delay time 0.8 Vs 30 95 150 µs tSCF Short circuit filter time Tested by scan chain IFW(1) Loss of GND current (ESD structure) tOLDT Open-load detection time 64*TOSC 100 Tested by scan chain mA 64*TOSC Parameter guaranteed by design Relay drivers The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < V1 < 5.2 V; Tj = -40 °C to 130 °C, unless otherwise specified. Table 22. Relay drivers Symbol RDSON IOUT VZ Parameter Test condition DC output resistance ILOAD = 100 mA @ Tj = +25 °C Short circuit shutdown current 8 V < Vs < 16 V 250 Output clamp voltage(1) ILOAD = 100 mA 40 Typ. Max. Unit 2 3 Ω 375 500 mA 48 V tONHL Turn on delay time to 10% VOUT 5 50 100 µs tOFFLH Turn off delay time to 90% VOUT 5 50 100 µs 4 V/µs tSCF Short circuit filter time Tested by scan chain dVOUT/dt Slew Rate 1. Min. 64*TOSC 0.2 2 The output is capable to switch off relay coils with the impedance of RL = 160Ω; L = 300mH (RL = 220Ω; L = 420mH); at VS = 40V (load dump condition) 54/102 Doc ID 17639 Rev 4 L99PM62GXP 5.5.10 Electrical specifications Wake up inputs (WU1... WU3) The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; Tj = -40 °C to 130 °C, unless otherwise specified. Table 23. Wake up inputs (WU1... WU3) Symbol Parameter Test condition Min. Typ. Max. Unit VWUthp Wake-up negative edge threshold voltage 0.4*Vs 0.45*Vs 0.5*Vs V VWUthn Wake-up positive edge threshold voltage 0.5*Vs 0.55*Vs 0.6*Vs V VHYST Hysteresis 0.05*Vs 0.1*Vs 0.15*Vs V tWU_stat Static wake filter time 64*TOSC IWU_stdby Input current in standby mode RWU_act Input resistor to Gnd in active mode and in standby mode during wake-up request tWU_cyc Cyclic wake filter time 1 V > Vin > (Vs - 2 V) µs 9 15 28 µA 80 160 300 kΩ 16(1) µs 1. Blanking time 80 µs or 800 µs. 5.5.11 High speed CAN transceiver(b) The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < Vcansup. < 5.2 V; Tjunction = -40 °C to 130 °C, unless otherwise specified. Table 24. CAN communication operating range Symbol VSCOM Parameter Test condition Min. Typ. Max. Unit Supply voltage operating Active mode, V1 = VCANSUP range for CAN communication Table 25. Symbol 5.5 - 18 V CAN transmit data input: pin TXDC Parameter Test condition Min. Typ. 1.35 1.8 VTXDCLOW Input voltage dominant Active mode, V1 = 5 V level VTXDCHIGH Input voltage recessive level VTXDCHYS VTXDCHIGH-VTXDCLOW Active mode, V1 = 5 V 0.7 1 RTXDCPU TXDC pull up resistor 10 20 Active mode, V1 = 5 V Active mode, V1 = 5 V 2.7 Max. Unit V 2.9 V V 35 kΩ b. ISO 11898-2 and ISO 11898-5 compliant; SAE J2284 compliant. Doc ID 17639 Rev 4 55/102 Electrical specifications Table 26. L99PM62GXP CAN receive data output: pin RXDC Symbol Parameter Test condition Min. VRXDCLOW Output voltage dominant level Active mode, V1 = 5 V, 2 mA VRXDCHIGH Output voltage recessive level Active mode, V1 = 5 V, 2 mA Table 27. Max. Unit 0.2 0.5 V 4.5 V CAN bus common mode stabilization output termination: pin SPLIT Symbol Parameter Test Condition VSPLIT,l Split output voltage, loaded condition (normal mode) Active mode; VTXDC = VTXDCHIGH; |Isplit| = 500 µA VSPLIT,u Split output voltage, unloaded condition (normal mode) Active mode; VTXDC = VTXDCHIGH; No Load Split leakage current (low power mode) V1-standby mode; -12 V < VSPLIT < 12 V ISPLIT Typ. Table 28. Symbol VCANHdom VCANLdom Typ. Max. Unit 0.3* VCANSUP 0.5* VCANSUP 0.7* VCANSUP V 0.5* VCANSUP 0.55* VCANSUP V 5 µA CAN transmitter and receiver: pins CANH and CANL Parameter Test Condition Min. CANH voltage level in dominant Active mode; state VTXDC = VTXDCLOW; RL = 60 Ω; RL = 50 Ω CANL voltage level in dominant state Differential output voltage in VDIFF,domOUT dominant state: VCANHdom - VCANLdom VCM Min. Driver symmetry: VCANHdom + 0VCANLdom Max. Unit 2.75 4.5 V Active mode; VTXDC = VTXDCLOW; RL = 60 Ω; RL = 50 Ω 0.5 2.25 V Active mode; VTXDC = VTXDCLOW; RL = 60 Ω; RL = 50 Ω 1.5 3 V Active mode; VTXDC = VTXDCLOW; RL = 60 Ω; CSPLIT = 4.7 pF Typ. 1.1* 0.9* V VCANSUP CANSUP VCANSUP V VCANHrec CANH voltage level in recessive Active mode; state (normal mode) VTXDC = VTXDCHIGH; no load 2 2.5 3 V VCANLrec CANL voltage level in recessive Active mode; state (normal mode) VTXDC = VTXDCHiGH; no load 2 2.5 3 V VCANHrecLP CANH voltage level in recessive V1 standby mode; state (low power mode) VTXDC = VTXDCHIGH; no load -0.1 0 0.1 V VCANLrecLP CANL voltage level in recessive V1 standby mode; state (low power mode) VTXDC = VTXDCHiGH; no load -0.1 0 0.1 V 56/102 Doc ID 17639 Rev 4 L99PM62GXP Table 28. CAN transmitter and receiver: pins CANH and CANL (continued) Symbol VDIFF,recOUT VDIFF,recOUTL P Electrical specifications Parameter Test Condition Min. Differential output voltage in recessive state (normal mode): VCANHrec - VCANLrec Active mode; VTXDC = VTXDCHIGH; no load Differential output voltage in recessive state (low power mode): VCANHrec - VCANLrec Common mode Bus voltage VCANHL,CM Typ. Max. Unit -50 50 mV V1 standby mode; VTXDC = VTXDCHIGH; no load -50 50 mV Measured with respect to the ground of each CAN node -12 12 V IOCANH,dom CANH output current in dominant state Active mode; VTXDC = VTXDCLOW; VCANH = 0 V -160 -75 -45 mA IOCANL,dom CANL output current in dominant state Active mode; VTXDC = VTXDCLOW; VCANL = 5 V 45 75 160 mA Input leakage current Unpowered device; VBUS = 5 V 0 250 µA Internal resistance Active mode & V1 standby mode; VTXDC = VTXDCHIGH; no load 20 38 kΩ 3 % 75 kΩ ILeakage Rin Internal resistor matching CANH, CANL Active mode & V1 standby mode; VTXDC = VTXDCHIGH; no load Rin(CANH) - Rin(CANL) Rin,matching Differential internal resistance Active mode & V1 standby mode; VTXDC = VTXDCHIGH; no load Rin,diff Cin 27.5 50 60 Internal capacitance Guaranteed by design 20 pF Differential internal capacitance Guaranteed by design 10 pF Differential receiver threshold voltage recessive to dominant state (normal mode) Active mode VTHdom Differential receiver threshold voltage recessive to dominant state (low power mode) V1 standby mode VTHdomLP Differential receiver threshold voltage dominant to recessive state (normal mode) Active mode VTHrec Differential receiver threshold voltage dominant to recessive state (low power mode) V1 standby mode VTHrecLP Cin,diff Doc ID 17639 Rev 4 0.9 V 1.15 V 0.5 V 0.4 V 57/102 Electrical specifications Table 29. Symbol L99PM62GXP CAN transceiver timing Parameter Test condition Min. Typ. Max. Unit tTXpd,hl Propagation delay TXDC to RXDC (high to low) Active mode; 50 % VTXDC to 50 % VRXDC; CRXDC = 100 pF; RL = 60 Ω 0 255 ns tTXpd,lh Propagation delay TXDC to RXDC (low to high) Active mode; 50 % VTXDC to 50 % VRXDC; CRXDC = 100 pF; RL = 60 Ω 0 255 ns 0.5 5 µs twake Wake up filter time tdom(TXDC) TXDC dominant time-out 700 µs tCAN CAN permanent dominant time-out 700 µs 5.5.12 LIN transceiver(c) The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.8 V < V1 < 5.2 V; Tjunction = -40 °C to 130 °C unless otherwise specified. Table 30. LIN transmit data input: pin TXD Symbol Parameter Test condition Min. Typ. VTXDLOW Input voltage dominant level Active mode; V1 = 5 V 1,35 1.8 VTXDHIGH Input voltage recessive level Active mode; V1 = 5 V VTXDHYS VTXDHIGH-VTXDLOW Active mode; V1 = 5 V 0.7 1 RTXDPU TXD pull up resistor Active mode; V1 = 5 V 10 20 Min. Typ. Max. Unit Table 31. Table 32. Symbol c. Unit V 2.7 2.9 V V 35 kΩ LIN receive data output: pin RXD Symbol Parameter VRXDLOW Output voltage dominant level Active mode; V1 = 5 V, ILOAD1 = 2 mA VRXDHIGH Output voltage recessive level Active mode; V1 = 5 V, ILOAD1 = 2 mA Test condition 0.2 0.5 4.5 V V LIN transmitter and receiver: pin LIN Parameter VTHdom Receiver threshold voltage recessive to dominant state VBusdom Receiver dominant state Test condition LIN 2.1 compliant for Baud rates up to 20 kBit/s SAE J2602 compatible 58/102 Max. Doc ID 17639 Rev 4 Min. Typ. Max. Unit 0.4*VS 0.45*VS 0.5*VS V 0.4*VS V L99PM62GXP Table 32. Electrical specifications LIN transmitter and receiver: pin LIN (continued) Symbol Parameter Test condition Min. Typ. Max. Unit 0.55*VS 0.6*VS V VTHrec Receiver threshold voltage dominant to recessive state 0.5*VS VBusrec Receiver recessive state 0.6*VS VTHhys Receiver threshold hysteresis: VTHrec -VTHdom 0.07*VS 0.1*VS 0.175*VS V VTHcnt Receiver tolerance center value: (VTHrec +VTHdom)/2 0.475*VS 0.5*VS 0.525*VS V V VTHwkup Receiver wakeup threshold voltage 1.0 1.5 2 V VTHwkdwn Receiver wakeup threshold voltage VS-3.5 VS-2.5 VS-1.5 V tlinbus ILINDomSC Ibus_PAS_dom Dominant time for wakeup via bus Sleep mode; edge: rec-dom Transmitter input current limit in VTXD = VTXDLOW; dominant state VLIN = VBATMAX = 18 V Input leakage current at the receiver incl. pull-up resistor Transmitter input current in Ibus_PAS_rec recessive state VTXD = VTXDHIGH; VLIN = 0 V; VBAT = 12 V(1) µs 64*TOSC 40 100 180 -1 mA mA VTXD = VTXDHIGH; 8 V < VLIN; VBAT < 18 V; VLIN >= VBAT in standby modes 20 µA 1 mA Ibus_NO_GND Input current if loss of GND at device GND = VS; 0 V < VLIN < 18 V; VBAT = 12 V Ibus Input current if loss of VBAT at device GND = VS; 0 V < VLIN < 18 V 100 µA VLINdom LIN voltage level in dominant state Active mode; VTXD = VTXDLOW; ILIN = 40 mA 1.2 V VLINrec LIN voltage level in recessive state Active mode; VTXD = VTXDHIGH; ILIN = 10 µA 1 V RLINup LIN output pull up resistor VLIN = 0 V 60 kΩ -1 0.8*VS 20 40 1. Slave mode. Doc ID 17639 Rev 4 59/102 Electrical specifications Table 33. Symbol tRXpd LIN transceiver timing Parameter Receiver propagation delay time Symmetry of receiver tRXpd_sym propagation delay time (rising vs. falling edge) D1 D2 D3 D4 L99PM62GXP Test condition Min. Typ. tRXpd = max (tRXpdr, tRXpdf); tRXpdf = t(0.5 VRXD) - t(0.45 VLIN); tRXpdr = t(0.5 VRXD) - t(0.55 VLIN); VS = 12 V; CRXD = 20 pF; Rbus, = 1 kΩ, Cbus = 1 nF; Rbus = 660 Ω, Cbus = 6.8 nF; Rbus = 500 Ω, Cbus = 10 nF tRXpd_sym = tRXpdr - tRXpdf; VS = 12 V; Rbus = 1 kΩ, Cbus = 1 nF Duty cycle 1 THRec(max) = 0.744*VS; THDom(max) = 0.581*VS; VS = 7 V to 18 V, tbit = 50 µs; D1 = tbus_rec(min)/(2xtbit); Rbus = 1 kΩ, Cbus = 1 nF; Rbus = 660 Ω, Cbus = 6.8 nF; Rbus = 500 Ω, Cbus = 10 nF Duty cycle 2 THRec(min) = 0.284*VS; THDom(min) = 0.422*VS; VS = 7.6 to 18 V, tbit = 50 µs; D2 = tbus_rec(max)/(2xtbit); Rbus = 1 kΩ, Cbus = 1 nF; Rbus = 660 Ω, Cbus = 6.8 nF; Rbus = 500 Ω, Cbus = 10 nF Duty cycle 3 THRec(max) = 0.778*VS; THDom(max) = 0.616*VS; VS = 7 V to 18 V, tbit = 96 µs; D3 = tbus_rec(min)/(2xtbit); Rbus = 1 kΩ, Cbus = 1 nF; Rbus = 660 Ω, Cbus = 6.8 nF; Rbus = 500 Ω, Cbus = 10 nF Duty cycle 4 THRec(min) = 0.251*VS; THDom(min) = 0.389*VS; VS = 7.6 V to 18 V, tbit = 96 µs; D4 = tbus_rec(max)/(2xtbit); Rbus = 1 kΩ, Cbus = 1 nF; Rbus = 660 Ω, Cbus = 6.8 nF; Rbus = 500 Ω, Cbus = 10 nF -2 Max. Unit 6 µs 2 µs 0.396 0.581 0.417 0.590 tdom(TXDL) TXDL dominant time-out 12 ms LIN permanent recessive time-out 40 µs LIN bus permanent dominant time-out 12 ms tLIN tdom(BUS) 60/102 Doc ID 17639 Rev 4 L99PM62GXP Electrical specifications Table 34. Symbol LIN pull-up: pin LINPU Parameter Test condition Min. RDSON ON resistance Ileak Typ. Max. Unit 10.5 16 Ω 1 µA Leakage current Figure 30. LIN transmit, receive timing W 7;SGI W 7;SGU 9 7[' WLPH 9 /,1UHF 9 /,1 9 7+UHF 9 7+GRP 9 /,1GRP WLPH 9 5[' WLPH W 5;SGI W 5;SGU $*9 5.5.13 Operational amplifier The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; Tj = -40 °C to 130 °C, unless otherwise specified. Table 35. Symbol GBW Operational amplifier Parameter Test condition GBW product AVOLDC DC open loop gain PSRR Power supply rejection DC, Vin = 150 mV Voff Input offset voltage VICR Common mode input range VOH Output voltage range high ILOAD = 1 mA to Gnd VOL Output voltage range low ILim+ Ilim- Min. Typ. Max. Unit 1 3.5 7.0 MHz 80 dB 80 dB -5 +5 mV 3 V VS-0.2 VS V ILOAD = 1 mA to VS 0 0.2 V Output current limitation + DC 10 15 30 mA Output current limitation - DC -10 15 -30 mA -0.2 Doc ID 17639 Rev 4 0 61/102 Electrical specifications Table 35. L99PM62GXP Operational amplifier (continued) Symbol Parameter Test condition Min. Typ. Max. Unit SR+ Slew rate positive 1 4 10 V/µs SR- Slew rate negative -1 -4 -10 V/µs Note: The operational amplifier is on-chip stabilized for external capacitive loads CL < 25 pF (all operating conditions) 5.5.14 SPI Input: CSN The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.5 V < V1 < 5.3 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. Input: CSN Table 36. Symbol Input: CSN Parameter Test condition VCSNLOW Input voltage low level Normal mode, V1 = 5 V VCSNHIGH Input voltage high level Normal mode, V1 = 5 V VCSNHYS VCSNHIGH - VCSNLOW Normal mode, V1 = 5 V Normal mode, V1 = 5 V ICSNPU CSN pull up resistor Min. Typ. 1.35 1.8 Max. Unit V 2.7 2.9 V 0.6 1.0 1.5 V 10 20 35 kΩ CLK, DI The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.5 V < V1 < 5.3 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. Table 37. Symbol tset Parameter Test condition Min. Switching from standby to delay time from standby active mode. Time until to active mode output drivers are enabled after CSN going to high. Typ. Max. Unit 160 300 µs Vin L input low level V1 = 5 V 1.0 2.05 2.5 V Vin H input high level V1 = 5 V 1.5 2.8 3.5 V Vin Hyst input hysteresis V1 = 5 V 0.4 0.75 1.5 V pull down current at input Vin = 1.5 V 5 30 60 µA I in 62/102 Input CLK, DI Doc ID 17639 Rev 4 L99PM62GXP Electrical specifications Table 37. Input CLK, DI (continued) Symbol Parameter Test condition Cin(1) input capacitance at input CSN, CLK, DI and 0 V < V1 < 5.3 V PWM1,2 fCLK SPI input frequency at CLK 1. Min. Typ. Max. Unit 10 15 pF 1 MHz Value of input capacity is not measured in production test. Parameter guaranteed by design. DI timing The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.5 V < V1 < 5.3 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. Table 38. DI timing(1) Symbol Parameter Test condition Min. Typ. Max. Unit tCLK Clock period V1 = 5 V 1000 - ns tCLKH Clock high time V1 = 5 V 400 - ns tCLKL Clock low time V1 = 5 V 400 - ns tset CSN CSN setup time, CSN low V1 = 5 V before rising edge of CLK 400 - ns tset CLK CLK setup time, CLK high V =5V before rising edge of CSN 1 400 - ns tset DI DI setup time V1 = 5 V 200 - ns thold DI DI hold time V1 = 5 V 200 - ns tr in Rise time of input signal DI, CLK, CSN V1 = 5 V - 100 ns tf in Fall time of input signal DI, CLK, CSN V1 = 5 V - 100 ns 1. See Figure 32. DO The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.5 V < V1 < 5.3 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. Table 39. Symbol DO output pin Parameter Test condition VDOL Output low level V1 = 5 V, ID = -4 mA VDOH output high level V = 5 V, ID = 4 mA Doc ID 17639 Rev 4 Min. 4.5 Typ. Max. Unit 0.5 V V 63/102 Electrical specifications Table 39. L99PM62GXP DO output pin (continued) Symbol Parameter Test condition IDOLK 3-state leakage current VCSN = V1, 0 V < VDO < V1 CDO 2 3-state input capacitance VCSN = V1, 0 V < V1 < 5.3 V Min. Typ. -10 10 Max. Unit 10 µA 15 pF DO timing The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.5 V < V1 < 5.3 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. DO timing(1) Table 40. Symbol Parameter Test condition Min. Typ. Max. Unit tr DO DO rise time CL = 100 pF, ILOAD = -1 mA - 50 100 ns tf DO DO fall time CL = 100 pF, ILOAD = 1 mA - 50 100 ns ten DO tri L DO enable time from 3-state to low level CL = 100 pF, ILOAD = 1 mA pull-up load to V1 - 50 250 ns tdis DO L tri DO disable time from low level to 3-state CL = 100 pF, ILOAD = 4 mA pull-up load to V1 - 50 250 ns ten DO tri H DO enable time from 3-state to high level CL = 100 pF, ILOAD = -1 mA pull-down load to GND - 50 250 ns tdis DO H tri DO disable time from high level to 3-state CL = 100 pF, ILOAD = -4 mA pull-down load to GND - 50 250 ns DO delay time VDO < 0.3 V1, VDO > 0.7 V1, CL = 100 pF - 50 250 ns td DO 1. See Figure 33 and Figure 34. CSN timing The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < VS < 18 V; 4.5 V < V1 < 5.3 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. Table 41. CSN timing(1) Symbol Parameter Test Condition tCSN_HI,min Minimum CSN HI time, active mode Transfer of SPI-command to Input register 6 tCSNfail CSN low timeout Tested by scan chain 20 1. See Figure 35. 64/102 Min. Typ. Max. Unit Doc ID 17639 Rev 4 µs 35 50 ms L99PM62GXP Electrical specifications RXDL/NINT timing The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6V < VS < 18 V; 4.5 V < V1 < 5.3 V; all outputs open; Tj = -40 °C to 130 °C, unless otherwise specified. Table 42. 5.5.15 RXDL/NINT timing Symbol Parameter Test condition tInterupt Interrupt pulse duration Min. Typ. Max. Unit Walk-up from V1-standby — 56 — µs Inputs TxD_C and TxD_L for Flash mode 6 V ≤ Vs ≤ 18 V; 4.5 V ≤ V1 ≤ 5.3 V; Tj = -40 °C to 130 °C, voltages are referred to PGND, all outputs open Table 43. Inputs TxD_C and TxD_L for Flash mode Symbol Parameter Test condition Min. Typ. Max. Unit VFlashL Input low level (VTXDC/L for transition into Flash mode) V1 = 5 V 6.1 7.25 8.4 V VFlashH Input high level (VTXDC/L for exit from Flash mode) V1 = 5 V 7.4 8.4 9.4 V Input Voltage Hysteresis V1 = 5 V 0.6 0.8 1.0 V VFlashHYS Figure 31. SPI – transfer timing diagram &61KLJKWRORZ'2HQDEOHG &61 WLPH &/. ; ; WLPH ',GDWDZLOOEHDFFHSWHGRQWKHULVLQJHGJHRI&/.VLJQDO ', ; ; &RPPDQG%\WH 'DWD '2GDWDZLOOFKDQJHRQWKHIDOOLQJHGJHRI&/.VLJQDO '2 ,QSXW 'DWD 5HJLVWHU ; ; WLPH *OREDO6WDWXV%\WH &61ORZWRKLJKDFWXDOGDWDLV WUDQVIHUHGWRRXWSXWSRZHUVZLWFKHV *OREDO(UURU ROGGDWD WLPH QHZGDWD WLPH $*9 Doc ID 17639 Rev 4 65/102 Electrical specifications L99PM62GXP The SPI can be driven by a micro controller with its SPI peripheral running in following mode: CPOL = 0 and CPHA = 0. For this mode input data is sampled by the low to high transition of the clock CLK, and output data is changed from the high to low transition of CLK. Figure 32. SPI - input timing 9&& &61 9&& WVHW &61 W&/.+ WVHW &/. 9&& &/. 9&& WVHW ', WKROG ', W&/./ 9&& ', 9DOLG 9DOLG 9&& $*9 66/102 Doc ID 17639 Rev 4 L99PM62GXP Electrical specifications Figure 33. SPI output timing (part 1) 7I&/. 7U&/. 9FF &/. 9FF 9FF 7U'2 9FF '2 ORZWRKLJK 9FF 7G'2 7I '2 9FF '2 KLJKWRORZ 9FF 7I&61 7U&61 9FF &61 9FF 9FF 7HQ'2BWULB/ 7GLV'2B/BWUL 7HQ'2BWULB+ 7GLV'2B+BWUL $*9 Doc ID 17639 Rev 4 67/102 Electrical specifications L99PM62GXP Figure 34. SPI output timing (part 2) & 61 ORZ WR KLJK GDWD IURP VKLIW UHJLVWHU LV WUDQVIHUUHG WR RXWSXW SRZHU V ZLWFKHV W U LQ W I LQ W &61B+,PLQ & 61 WG 2)) RXWSXW FXUUHQW RI D GULYHU 2 1 VWDWH 2) ) VWDWH W 2)) WG 21 W 21 RXWSXW FXUUHQW RI D GULYHU 2 )) VWDWH 2 1 VWDWH $*9 Figure 35. SPI – CSN low to high transition and global status bit access & 6 1 KLJ K WR OR Z D Q G &/ . V WD\V OR Z VWDWXV LQIRU PDWLR Q RI G DWD ELW ID XOW F R Q GLWLR Q LV WUD QV IHUH G WR ' 2 &61 WLP H &/. WLP H ', WLP H ', G DWD LV Q RW DFF H SWH G '2 WLP H ' 2 VWDWXV LQIRU P DWLRQ RI GDWD ELW IDXOW F R QGLWLR Q ZLOO VWD\ DV OR QJ DV & 6 1 LV OR Z $*9 68/102 Doc ID 17639 Rev 4 L99PM62GXP ST SPI 6 ST SPI 6.1 SPI communication flow 6.1.1 General description The proposed SPI communication is based on a standard SPI interface structure using CSN (Chip Select Not), SDI (Serial Data In), SDO (Serial Data Out/Error) and SCK (Serial Clock) signal lines. At device start-up the master reads the <SPI-frame-ID> register (ROM address 3EH) of the slave device. This 8-bit register indicates the SPI frame length (24bit) and the availability of additional features. Each communication frame consists of an instruction byte which is followed by 2 data bytes. The data returned on SDO within the same frame always starts with the <Global Status> register. It provides general status information about the device. It is followed by 2 data bytes (i. e. ‘In-frame-response’). For write cycles the <Global Status> register is followed by the previous content of the addressed register. For read cycles the <Global Status> register is followed by the content of the addressed register. A write command is only accepted as a valid command by the device if the counted number of clocks is exact 24, otherwise the command is rejected. Command byte Each communication frame starts with a command byte. It consists of an operating code which specifies the type of operation (<Write>, <Read>, <Read and Clear>, <Read Device Information>) and a 6 bit address. If less than 6 address bits are required, the remaining bits are unused but are reserved. Table 44. Command byte MSB LSB Op code OC1 Address OC0 A5 A4 A3 A2 A1 A0 OCx: operating code Ax: address 6.1.2 Operating code definition Table 45. Operating code definition OC1 OC0 Meaning 0 0 <Write Mode> 0 1 <Read Mode> Doc ID 17639 Rev 4 69/102 ST SPI L99PM62GXP Table 45. Operating code definition (continued) OC1 OC0 Meaning 1 0 <Read and Clear Status> 1 1 <Read Device Information> The <Write Mode> <Read Mode> and <Read and Clear Status> operations allow access to the RAM of the device, i. e. to write to control registers or read status information. A <Read and Clear Status> operation addressed to a device specific status register reads back and subsequently clear this status register. A <Read and Clear Status> operation with address 3FH clears all status registers (including the Global Status Register). Configuration register is read by this operation. <Read Device Information> allows access to the ROM area which contains device related information such as the product family, product name, silicon version, register width and availability of a watchdog. More detailed descriptions of the device information are available in ‘Read Device Information’. 6.1.3 Global status register(d) Table 46. 6.1.4 Global status register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Global error flag (GEF) Comm error Not (chip reset OR comm error) TSD2 TSD1 V1 Fail VS Fail (OV/UV) Fail safe Configuration register The <Configuration> register is accessible at RAM address 3FH. For the config register, the 8 bits are located in the low byte (LSB). The configuration register is implemented for compliance purpose to ST SPI standard. Table 47. Configuration register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 WD trigger <WD trigger>: this bit is reserved to serve the watchdog. d. See Section 6.2 for details. 70/102 Doc ID 17639 Rev 4 L99PM62GXP ST SPI Figure 36. Read configuration register(1) &61 6', 75,* &RPPDQG 6'2 &RP *() (UURU 127 &KLS 5HV 76' 25 &RPP (UU 76' 9 9V )DLO )DLO )DLO 6DIH *OREDO6WDWXV $*9 1. The configuration register is implemented for compliance with ST standard SPI 3.0 and contains only the watchdog trigger bit at D0 Figure 37. Write configuration register(1) &61 6', 75,* Q 75,* Q &RPPDQG 6'2 &RP *() (UURU 127 &KLS 5HV 76' 25 &RPP (UU 76' 9 9V )DLO )DLO )DLO 6DIH *OREDO6WDWXV $*9 1. The configuration register is implemented for compliance with ST standard SPI 3.0 and contains only the watchdog trigger bit at D0 Doc ID 17639 Rev 4 71/102 ST SPI L99PM62GXP 6.1.5 Address mapping Table 48. Address mapping RAM adress Description Access ROM adress Description Access 3FH <Configuration> R/W 3FH Reserved N/A 13H Status register 3 R 3EH <SPI frame ID> R 12H Status register 2 R 11H Status register 1 R … Unused N/A 06H Control register 6 R/W 03H <product code 2> N/A 05H Control register 5 R/W 04H Control register 4 R/W 02H <product code 1> R 03H Control register 3 R/W 02H Control register 2 R/W 01H <silicon version> R 01H Control register 1 R/W 00H Reserved R/W 00H <ID Header> R The RAM memory area consists of 16 bit registers. For the device information (ROM memory area) the eight most significant bits of the memory cell are used. The remaining 8 are zero. All unused RAM and ROM addresses is read as ‘0’. Note: 6.1.6 1 The register definition for RAM address 00H is unused. A register value of all 0 must cause the device to enter a fail-safe state (interpreted as ‘SDI stuck to GND’ failure). 2 ROM address 3FH is unused. An attempt to access this address must be recognized as a communication error (‘SDI stuck to VCC’ failure) and must cause the device to enter a failsafe state. Write operation The write operation starts with a command byte followed by 2, data bytes. The number of data bytes is specified in the <SPI-frame-ID>. Write command format Table 49. Write command format: command byte MSB LSB Op Code 0 72/102 Address 0 A5 A4 Doc ID 17639 Rev 4 A3 A2 A1 A0 L99PM62GXP ST SPI Table 50. Write command format: data byte 1 MSB D15 Table 51. LSB D14 D13 D12 D11 D10 D9 D8 Write command format: data byte 2 MSB D7 LSB D6 D5 D4 D3 D2 D1 D0 OC0, OC1:operating code (00 for ‘write’ mode) A0 to A5:address bits An attempt to write 00H at RAM address 00H is recognized as a failure (SDI stuck to GND). The device enters a fail-safe state. 6.1.7 Format of data shifted out at SDO during write cycle Table 52. Format of data shifted out at SDO during write cycle: global status register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Global error flag (GEF) Comm error Not (chip reset or comm error) TSD2 TSD1 V1 Fail VS Fail (OV/UV) Fail safe Table 53. Format of data shifted out at SDO during write cycle: data byte 1 MSB D15 Table 54. Previous content of addressed register D14 D12 D11 D10 D9 D8 Format of data shifted out at SDO during write cycle: data byte 2 MSB D7 D13 LSB Previous content of addressed register D6 D5 D4 D3 D2 LSB D1 D0 Failures are indicated by activating the corresponding bit of the <Global Status> register. The returned data byte(s) represent(s) the previous content of the accessed register. Doc ID 17639 Rev 4 73/102 ST SPI L99PM62GXP Figure 38. Format of data shifted out at SDO during write cycle &61 6', $ $ $ $ $ $ ' ' ' ' ' ' &RPPDQG 6'2 &RP *() (UURU 127 &KLS 5HV 76' 25 &RPP (UU ' ' ' ' ' ' ' ' ' ' VW 'DWDE\WH QG 'DWDE\WH 76' 9 9V )DLO ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' )DLO )DLO 6DIH VW 'DWDE\WH *OREDO6WDWXV QG 'DWDE\WH SUHYLRXVFRQWHQWRIUHJLVWHU SUHYLRXVFRQWHQWRIUHJLVWHU $*9 6.1.8 Read operation The read operation starts with a command byte followed by 2 data bytes. The number of data bytes is specified in the <SPI-frame-ID>. The content of the data bytes is ‘don’t care’. The content of the addressed register is shifted out at SDO within the same frame (‘in-frame response’). Read command format Table 55. Read command format: command byte MSB LSB Op Code 0 Table 56. Address 1 A5 A4 A3 A2 A1 Read command format: data byte 1 MSB 0 Table 57. LSB 0 0 0 0 0 0 LSB 0 0 0 OC0, OC1:operating code (01 for ‘read’ mode) 74/102 0 Read command format: data byte 2 MSB 0 A0 Doc ID 17639 Rev 4 0 0 0 0 L99PM62GXP ST SPI A0 to A5:address bits 6.1.9 Format of data shifted out at SDO during read cycle Table 58. Format of data shifted out at SDO during read cycle: global status register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Global error flag (GEF) Comm error Not (chip reset or comm error) TSD2 TSD1 V1 Fail VS Fail (OV/UV) Fail safe Table 59. Format of data shifted out at SDO during read cycle: data byte 1 MSB Previous content of addressed register D15 D14 Table 60. D13 D12 D11 LSB D10 D9 D8 Format of data shifted out at SDO during read cycle: data byte 2 MSB Previous content of addressed register D7 D6 D5 D4 D3 LSB D2 D1 D0 Failures are indicated by activating the corresponding bit of the <Global Status> register. The returned data byte(s) represent(s) the content of the register to be read. Figure 39. Format of data shifted out at SDO during read cycle &61 6', $ $ $ $ $ $ &RPPDQG 6'2 &RP *() (UURU 127 &KLS 5HV 76' 25 &RPP (UU 76' 9 9V )DLO ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' )DLO )DLO 6DIH *OREDO6WDWXV VW 'DWDE\WH QG 'DWDE\WH $*9 Doc ID 17639 Rev 4 75/102 ST SPI 6.1.10 L99PM62GXP Read and clear status operation The ‘Read and Clear Status’ operation starts with a command byte followed 2 data bytes. The number of data bytes is specified in the <SPI-frame-ID>. The content of the data bytes is ‘don’t care’. The content of the addressed status register is transferred to SDO within the same frame (‘in-frame response’) and is subsequently cleared. A ‘Read and Clear Status’ operation with address 3FH clears all status registers (incl. the <Global Status> register). The configuration register is read by this operation. Read and clear status command format Table 61. Read and clear status command format: command byte MSB LSB Op Code 1 Table 62. Address 01 A5 A4 A3 A2 A1 A0 Read and clear status command format: data byte 1 MSB 0 Table 63. LSB 0 0 0 0 0 0 0 Read and clear status command format: data byte 2 MSB 0 LSB 0 0 0 0 0 0 0 OC0, OC1:operating code (10 for ‘read and clear status’ mode) A0 to A5:address bits Format of data shifted out at SDO during read and clear status operation Table 64. Format of data shifted out at SDO during read and clear status: global status register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Global error flag (GEF) Comm error Not (chip reset or comm error) TSD2 TSD1 V1 Fail VS Fail (OV/UV) Fail safe Table 65. Format of data shifted out at SDO during read and clear status: data byte 1 MSB D15 76/102 Previous content of addressed register D14 D13 D12 Doc ID 17639 Rev 4 D11 D10 LSB D9 D8 L99PM62GXP ST SPI Table 66. Format of data shifted out at SDO during read and clear status: data byte 2 MSB Previous content of addressed register D7 D6 D5 D4 D3 LSB D2 D1 D0 Failures are indicated by activating the corresponding bit of the <Global Status> register. The returned data byte(s) represent(s) the content of the register to be read. Figure 40. Format of data shifted out at SDO during read and clear status operation &61 6', $ $ $ $ $ $ &RPPDQG 127 &KLS 6'2 *() &RP 5HV (UURU 25 76' 76' 9 9V )DLO ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' )DLO )DLO 6DIH &RPP (UU *OREDO6WDWXV VW 'DWDE\WH QG 'DWDE\WH &RQWHQWRIDGGUHVVHG6WDWXV5HJLVWHU &RQWHQWRIDGGUHVVHG6WDWXV5HJLVWHU $*9 6.1.11 Read device information The device information is stored at the ROM addresses defined below and is read using the respective operating code. Read device information Table 67. Op code ROM Device information OC1 OC0 address 1 1 3FH Reserved 1 1 3EH <SPI frame ID> includes frame width and availability of watchdog 1 1 04H to 3DH 1 1 03H unused <product code 2> unique product identifier Doc ID 17639 Rev 4 Value 00 42 Hex 00 4B Hex 77/102 ST SPI L99PM62GXP Read device information (continued) Table 67. Op code ROM Device information Value OC1 OC0 address 1 1 02H <product code 1> unique product identifier 13 Hex 1 1 01H <silicon version> indicates Design Version According to silicon version 1 1 00H <ID Header> device family max adress of device information 43 Hex The <ID-Header> (ROM address 00H) indicates the product family and specifies the highest address which contains product information Table 68. ID-header Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 1 0 0 0 0 1 1 Family Identifier Highest address containing device information <Family Identifier>:01 Hex (BCD) <Highest address>:03 Hex Table 69. Family identifier Bit 7 Bit 6 Meaning 0 0 VIPower 0 1 BCD 1 0 VIPower hybrid 1 1 Tbd The <Product Code 1> (ROM address 02H) and <Product Code 2> (ROM address 03H) represents a unique code to identify the product name. <Product Code 1> 13 Hex <Product Code 2> 4B Hex The <Silicon Version> (ROM address 01H) provides information about the silicon version according to the table below: Table 70. Bit 7 Silicon version identifier Bit 6 Bit 5 Bit 4 Reserved 78/102 Bit 3 Bit 2 Bit 1 Silicon version Doc ID 17639 Rev 4 Bit 0 L99PM62GXP ST SPI The <SPI-frame-ID> (ROM address 3EH) provides information about the register width (1, 2, 3 bytes) and the availability of ‘Burst Mode Read’ and watchdog. Table 71. SPI-frame-ID Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 1 0 0 0 0 1 0 BR WD X X X 32-bit 24-bit 16-bit BR:burst-mode read (1 = burst-mode read is supported) WD:watchdog (1 = available, 0 = not available) 32-bit, 24-bit, 16-bit: width of SPI frame (see table below) <Burst Mode>:not supported <Watchdog>:available <Frame Width>:24 bit 6.2 SPI registers 6.2.1 Overview Overview command byte Table 72. SPI register: command byte Read/write x Address x Table 73. x x x x x SPI register: mode selection Read/write Table 74. x Mode selection 0 0 Write 0 1 Read 1 0 Read and clear 1 1 Read device info SPI register: CTRL register selection CTRL register 1…6 CTRL register selection 0 0 0 0 0 1 CTRL register1 0 0 0 0 1 0 CTRL register2 0 0 0 0 1 1 CTRL register3 0 0 0 1 0 0 CTRL register4 Doc ID 17639 Rev 4 79/102 ST SPI L99PM62GXP Table 74. SPI register: CTRL register selection (continued) CTRL register 1…6 CTRL register selection 0 0 0 1 0 1 CTRL register5 0 0 0 1 1 0 CTRL register6 Table 75. SPI register: STAT register selection STAT register. 1…3 STAT register selection 0 1 0 0 0 1 STAT register1 0 1 0 0 1 0 STAT register2 0 1 0 0 1 1 STAT register3 Overview of control register data bytes 80/102 Doc ID 17639 Rev 4 L99PM62GXP ST SPI 6.2.2 Control registers Table 76. Overview of control registers data bytes 1st data byte <15:8> 2nd data byte <7:0> Control register 1, data Defaults 0 0 0 0 0 0 0 0 0 0 0 0 Function OUT HS OUT HS OUT 4 OUT 4 OUT HS_EXT OUT 3 OUT 2 OUT 1 REL 2 REL 1 V2 V2 Group HS control Res 0 0 0 Stby sel Go Stby Trig LS Output, V2 and mode control Control register 2, data Defaults Function Res Res 0 0 0 0 0 0 Inp. Filt 3 Inp. Filt 3 Inp. Filt 2 Inp. Filt 2 Inp. Filt 1 Inp. Filt1 Group 0 0 0 0 Input Input Input Res Pu/Pd 3 Pu/Pd 2 Pu/Pd 1 Wake-up control Res 1 1 1 WU EN 3 WU EN 2 WU EN 1 Wake-up control Control register 3, data Defaults Function Res 0 0 0 T1 On T1 Per T1 Per Group Res 0 0 0 T2 On T2 Per T2 Per Res Res Timer Settings 0 0 1 1 0 0 WD time WD time LIN WU En CAN WU En Wake timer En Wake Timer Select Watchdog and cyclic wake up settings Control register 4, data Defaults Function Res 0 ICMP 0 1 OutHS Vlock Rec Out En En Group 1 Res 0 LS V1 OV/UV Reset shut Level down_en 0 V1 Reset Level 1 LIN Pu En 1 1 Res Lin TxD Tout En Control (other) 1 CAN ACT 0 1 1 0 CAN Loop En CAN Patt. wake En CAN split On CAN Rec Only 0 0 0 Transceiver settings Control register 5, data Defaults Function Res 1 1 1 PWM2 PWM2 PWM2 OffOffOffDC DC DC Group 1 1 PWM2 OffDC PWM2 OffDC 1 1 0 0 0 0 0 PWM2 PWM2 PWM PWM1 PWM1 PWM1 PWM1 PWM1 PWM1 PWM1 OffOffFreq ON-DC ON-DC ON-DC ON-DC ON-DC ON-DC ON-DC DC DC PWM2 setting PWM1 setting Control register 6, data Defaults Function Res Group 1 1 1 PWM4 PWM4 PWM4 Off-DC Off-DC Off-DC 1 1 PWM4 OffDC PWM4 OffDC 1 1 PWM4 PWM4 Off-DC Off-DC Res 0 0 PWM3 ONDC PWM3 ONDC PWM4 setting 0 0 0 0 0 PWM3 PWM3 PWM3 PWM3 PWM3 ONONONONONDC DC DC DC DC PWM3 setting Doc ID 17639 Rev 4 81/102 ST SPI L99PM62GXP Control register 1 Table 77. Control register 1: command and data bytes Command byte Read/write x Table 78. 1st data byte 2nd data byte Data, 8bit Data, 8 bit Address x 0 0 0 0 0 1 Control register 1, data bytes 1st data byte <15:8> 2nd data byte <7:0> Defaults 0 0 0 0 0 0 0 0 0 0 0 0 Function OUT HS_2 OUT HS_1 OUT 4_2 OUT 4_1 OUT HS_EXT OUT 3 OUT 2 OUT 1 REL 2 REL 1 V2_2 V2_1 Group HS control Table 79. Name 15 OUTHS 14 12 11 82/102 0 0 Stby sel Go Stby Trig LS Output, V2 and mode control Control register 1, bits Bit 13 Res 0 OUT4 Comment Select mode of OUTHS OUTHS_EXT OUTHS_2 OUTHS_1 Mode 0 0 0 HS off 0 0 1 HS cyclic on with timer 1 0 1 0 HS controlled by PWM4 0 1 1 HS cyclic on with Timer 2 1 1 0 PWM3 1 x 1 HS on Select mode of OUT4 OUT4_2 OUT4_1 Mode 0 0 HS off 0 1 HS on 1 0 HS controlled Active and standby mode by PWM4 1 1 HS cyclic on with Timer 2 OUTHS_EXT Extended function of OUTHS; see table OUTHS Doc ID 17639 Rev 4 Active and standby mode L99PM62GXP Table 79. ST SPI Control register 1, bits (continued) Bit Name 10 OUT3 Comment Select mode of OUT3 OUT3 9 OUT2 Mode 0 Select FSO 1 Select PWM3 Select mode of OUT2 OUT2 0 1 8 OUT1 Mode Select PWM2 Active and Select timer2 standby mode Select mode of OUT1 OUT1 0 1 7 REL2 Mode Select PWM1 Active and Select timer1 standby mode Select mode of REL2 REL2 6 REL1 Active and standby mode Mode 0 REL2 off Active and standby mode 1 REL2 on Active mode Select mode of REL1 REL1 Mode 0 REL1 off Active and standby mode 1 REL1 on Active mode Doc ID 17639 Rev 4 83/102 ST SPI L99PM62GXP Table 79. Control register 1, bits (continued) Bit Name 5 V2 Comment 4 3 RES 2 STBY_SEL 1 V2_1 0 0 V2 OFF in all modes 0 1 V2 ON in active mode; OFF in V1/VBAT standby mode 1 0 V2 ON in Active/V1 standby mode; OFF in VBAT standby mode 1 1 V2 ON in all modes Reserved Select standby mode GO_STBY 0 V2_2 0 VBAT standby mode 1 V1standby mode Execute standby mode TRIG 0 No action 1 Execute standby mode Trigger Bit for Watchdog Control register 2 Table 80. Control register 2: command and data bytes Command byte Read/write x Table 81. x 1st data byte 2nd data byte Data, 8bit Data, 8 bit Address 0 0 0 0 1 0 Control register 2, data bytes 1st data byte <15:8> Defaults Function Res Res Group 84/102 0 Wu3 Filt_MSB 0 0 0 2nd data byte <7:0> 0 0 Wu3 WU2 WU2 WU1 WU1 Res Filt_LSB Filt_MSB Filt_LSB Filt_MSB Filt_LSB Wakeup control 0 0 WU3 Pu/Pd WU2 Pu/Pd 0 Wakeup control Doc ID 17639 Rev 4 1 1 1 WU1 WU3 WU2 WU1 Res Pu/Pd EN EN EN L99PM62GXP Table 82. ST SPI Control register 2, bits Bit Name Comment 15 Res Reserved 14 Res Reserved 13, 12 WU3_Filt 11, 10 WU2_Filt MSB LSB 9, 8 WU1_Filt 0 0 Static, 64 µs 0 1 Enabled with timer 2; 80 µs blank 1 0 Enabled with timer 2; 800 µs blank 1 1 Enabled with timer 1; 800 µs blank Wakeup filter configuration 7 Res Reserved 6 WU3_Pu/Pd 5 WU2_Pu/Pd 0 Pull down 4 WU1_Pu/Pd 1 Pull up 3 Res 2 WU3_EN 1 WU2_EN 0 Disable 0 WU1_EN 1 Enable Pull up or pull down configuration Reserved Enable Wake up source Control register 3 Table 83. Control register 3: command data bytes Command byte Read/write x Table 84. 1st data byte 2nd data byte Data, 8bit Data, 8 bit Address x 0 0 0 0 1 1 Control register 3, data bytes 1st data byte <15:8> Defaults Function Group Res 2nd data byte <7:0> 0 0 0 0 0 0 0 T1 On T1 Per MSB T1 Per LSB Res T2 On T2 Per MSB T2 Per LSB Res Timer Settings Res 0 0 1 1 0 0 WD time MSB WD time LSB LIN WU En CAN WU En Wake timer En Wake timer select Watchdog and cyclic wake up settings Doc ID 17639 Rev 4 85/102 ST SPI Table 85. L99PM62GXP Control register 3, bits Bit Name 15 RES 14 T1_On 13 T1_Per_MSB 12 T1_Per_LSB Comment Reserved Timer 1 “ON” time selections 0 10 ms 1 20 ms Timer 1 period selection MSB LSB 0 0 1s 0 1 2s 1 0 3s 1 1 4s Timer 1 is restarted with a valid write command to control register 3 11 Res 10 T2_On 9 T2_Per_MSB 8 T2_Per_LSB Timer 2 “ON” time selection 0 0.1 ms 1 1 ms Timer 2 period selection MSB LSB 0 0 10 ms 0 1 20 ms 1 0 50 ms 1 1 200 ms Timer 2 is restarted with a valid write command to control register 3 7 Res Reserved 6 Res Reserved 86/102 Doc ID 17639 Rev 4 L99PM62GXP Table 85. ST SPI Control register 3, bits (continued) Bit Name 5 WD_time_MSB 4 WD_time_LSB 3 2 1 0 LIN_WU_En CAN_WU_En Wake_timer_En Comment Trigger window selection MSB LSB 0 0 10 ms 0 1 50 ms 1 0 100 ms 1 1 200 ms Enable LIN as wake up source 0 Disabled 1 Enabled Enable CAN as wake up source 0 Disabled 1 Enabled Enable wake up by timer from V1 standby mode (Interrupt) or VBAT standby Mode (Nreset) 0 Disabled 1 Enabled Wake_timer_select Timer selection for timer interrupt / wake-up of µC by timer 0 Timer 2 1 Timer 1 Control register 4 Table 86. Control register 4: command and data bytes Command byte Read/Write x x 1st data byte 2nd data byte Data, 8bit Data, 8 bit Address 0 0 0 1 0 0 Doc ID 17639 Rev 4 87/102 ST SPI L99PM62GXP Table 87. Control register 4, data bytes 1st data byte <15:8> Defaults Function 0 RES ICMP 0 OutHS Rec En Group Table 88. 1 Vlock Out_en 2nd data byte <7:0> 0 1 RES LS OV/UV shut down_en 0 V1 Reset Lev_2 1 Res Lin TxD Tout En 1 CAN ACT 0 1 1 0 CAN Loop En CAN Patt. wake En CAN split On CAN Rec only Control register 4, bits 15 Res Reserved; must be set to zero 14 Icmp V1 load current supervision OUTHS_rec_en Vlock_out_en 11 Res 10 LS_OV/UV shut_down_en 88/102 LIN Pu En 1 Transceiver settings Name 12 V1 Reset Lev_1 1 Control (other) Bit 13 0 Comment 0 Enabled; Watchdog is disabled in V1 Standby when the V1loadcurrent < Icmpthreshold 1 Disabled; Watchdog is automatically disabled when V1 standby is entered Overcurrent Auto recovery mode for OUTHS 0 Disabled 1 Enabled Voltage lock out: OV/UV status 0 Over/under voltage status recovers automatically when condition disappears 1 Over/under voltage status is latched until a read and clear command is performed Reserved Shutdown of low-side drivers in case of over-/under voltage 0 No shutdown of low-sides in case of over/under voltage 1 Shutdown low-sides in case of over/under voltage Doc ID 17639 Rev 4 L99PM62GXP Table 88. ST SPI Control register 4, bits (continued) Bit Name 9 V1Reset_level_1 8 V1Reset_level_2 7 LIN_PU_EN 6 Res 5 Lin_TxD_Tout_En 4 CAN_ACT Comment Select reset level V1RSTlev_2 V1RSTlev_1 V1 reset level 0 0 4.6 V 0 1 4.35 V 1 0 4.1 V 1 1 3.8 V Enable internal Lin pull up 0 No LIN master pull-up 1 LIN master pull-up Must be written to ‘1’ Enable / disable monitoring via TxD 0 No TxD monitoring 1 TxD monitoring; LIN transmitter is switched off if TXDL is dominant for t > 12 ms Activate CAN transceiver 0 CAN transceiver deactivated 1 CAN transceiver activated Active mode 3 2 1 CAN_Loop_En Enable looping of CANTX to CANRXD 0 No looping 1 TXDC is looped to RXDC CAN_Patt_wake_En Enable pattern wake up for CAN CAN_split_On 0 No pattern wake up 1 Pattern wake up Enable SPLIT termination for CAN 0 Split termination disabled 1 Split termination enabled Active mode Doc ID 17639 Rev 4 89/102 ST SPI L99PM62GXP Table 88. Control register 4, bits (continued) Bit Name Comment 0 CAN_Rec_only Enable CAN receive only mode 0 CAN in transceiver mode 1 CAN in receive only mode Active mode Control register 5 Table 89. Control register 5: command and data bytes Command byte Read/write x Table 90. 1st data byte 2nd data byte Data, 8bit Data, 8 bit Address x 0 0 0 1 0 1 Control register 5, data bytes 1st data byte <15:8> Defaults 1 Function Res 1 1 1 2nd data byte <7:0> 1 1 1 0 0 0 0 0 PWM2 setting PWM1 setting Control register 5, bits Bit Name 15 RES 14 PWM2_ Off_DC_6 13 PWM2_ Off_DC_5 PWM2 OFF_ DC_6 PWM2 OFF_ DC_5 PWM2 OFF_ DC_4 PWM2 OFF_ DC_3 PWM2 OFF_ DC_2 PWM2 OFF_ DC_1 PWM2 OFF_ DC_0 12 PWM2_ Off_DC_4 1 1 1 1 1 1 1 0%, HS OFF 11 PWM2_ Off_DC_3 10 PWM2_ Off_DC_2 0 0 0 0 0 1 0 98.5% 9 PWM2_ Off_DC_1 0 0 0 0 0 0 1 99.25% 8 PWM2_ Off_DC_0 0 0 0 0 0 0 0 100% HS ON 90/102 0 0 PWM2 PWM2 PWM2 PWM2 PWM2 PWM2 PWM2 PWM PWM1 PWM1 PWM1 PWM1 PWM1 PWM1 PWM1 OffOffOffOffOffOffOffFreq ON-DC ON-DC ON-DC ON-DC ON-DC ON-DC ON-DC DC DC DC DC DC DC DC Group Table 91. 0 Comment Reserved; must be set to zero PWM duty cycle ... Doc ID 17639 Rev 4 L99PM62GXP Table 91. ST SPI Control register 5, bits (continued) Bit Name 7 PWM_ FREQ Comment Select PWM frequency 0 128 Hz 1 256 Hz 6 PWM1_ ON_DC_6 5 PWM1_ ON_DC_5 PWM1 ON_ DC_6 PWM1 ON_ DC_5 PWM1 ON_ DC_4 PWM1 ON_ DC_3 PWM1 ON_ DC_2 PWM1 ON_ DC_1 PWM1 ON_ DC_0 4 PWM1_ ON_DC_4 1 1 1 1 1 1 1 100%, HS ON 3 PWM1_ ON_DC_3 2 PWM1_ ON_DC_2 0 0 0 0 0 1 0 1.5% 1 PWM1_ ON_DC_1 0 0 0 0 0 0 1 0.75% 0 PWM1_ ON_DC_0 0 0 0 0 0 0 0 0% HS OFF PWM duty cycle ... Control register 6 Table 92. Control register 6: command and data bytes Command byte Read/Write x Table 93. 1st data byte 2nd data byte Data, 8bit Data, 8 bit Address x 0 0 0 1 1 0 Control register 6, data bytes 1st data byte <15:8> Defaults 1 1 1 1 1 2nd data byte <7:0> 1 1 0 0 0 0 0 0 0 PWM4 PWM4 PWM4 PWM4 PWM4 PWM4 PWM4 PWM3 PWM3 PWM3 PWM3 PWM3 PWM3 PWM3 Off_ Off_ Res ON_ ON_ ON_ Function Res Off_ Off_ Off_ Off_ Off_ ON_ ON_ ON_ ON-DC_3 DC_6 DC_5 DC_4 DC_3 DC_2 DC_1 DC_0 DC_6 DC_5 DC_4 DC_2 DC_1 DC_0 Group PWM4 setting PWM3 setting Doc ID 17639 Rev 4 91/102 ST SPI Table 94. L99PM62GXP Control register 6, bits Bit Name 15 RES 14 PWM4_ Off_DC_6 13 PWM4_ Off_DC_5 PWM4 OFF_ DC_6 PWM4 OFF_ DC_5 PWM4 OFF_ DC_4 PWM4 OFF_ DC_3 PWM4 OFF_ DC_2 PWM4 OFF_ DC_1 PWM4 OFF_ DC_0 12 PWM4_ Off_DC_4 1 1 1 1 1 1 1 0%, HS OFF 11 PWM4_ Off_DC_3 10 PWM4_ Off_DC_2 0 0 0 0 0 1 0 98.5% 9 PWM4_ Off_DC_1 0 0 0 0 0 0 1 99.25% 8 PWM4_ Off_DC_0 0 0 0 0 0 0 0 100% HS ON 7 RES 6 PWM3_ ON_DC_6 5 PWM3_ ON_DC_5 PWM3 ON_ DC_6 PWM3 ON_ DC_5 PWM3 ON_ DC_4 PWM3 ON_ DC_3 PWM3 ON_ DC_2 PWM3 ON_ DC_1 PWM3 ON_ DC_0 4 PWM3_ ON_DC_4 1 1 1 1 1 1 1 100%, HS ON 3 PWM3_ ON_DC_3 2 PWM3_ ON_DC_2 0 0 0 0 0 1 0 1.5% 1 PWM3_ ON_DC_1 0 0 0 0 0 0 1 0.75% 0 PWM3_ ON_DC_0 0 0 0 0 0 0 0 0% HS OFF 92/102 Comment Reserved; must be set to zero PWM4 duty cycle ... Reserved; must be set to zero PWM3 duty cycle ... Doc ID 17639 Rev 4 L99PM62GXP ST SPI 6.2.3 Status registers Table 95. Overview of status register data bytes 1st data byte <15:8> 2nd data byte <7:0> Status register 1, data <15:0> Function OL HS OL OL OUT4 OUT3 OL OL OUT2 OUT1 Group UV V2 fail V2 short OV OC HS OC Out4 OC Out3 Diagnosis 1 OC OUT2 OC Out1 OC Rel2 OC Rel1 CAN perm. rec. CAN CAN perm. TxD dom. perm dom Diagnosis 2 Status register 2, data <15:0> Function WU3 state WU2 state WU3 wake WU1 state Group WU2 wake WU1 Wake Wake CAN Wake LIN LIN LIN CAN Wake TxD perm. RxD Timer perm. LIN dom. perm dom. rec. perm rec. int Diagnosis 3 Diagnosis 4 Status register 3, data <15:0> Function TSD1 TW Device Device state state Group V1 V1 V1 restart restart restart WD fail WD fail WD fail WD fail Diagnosis 5 Forced sleep WD Forced WD sleep timer TSD2 state SHTV1 WD timer state Diagnosis 6 Global status register Bit 0 Fail safe(6) Bit 1 Vs fail(5) (OV/UV) Bit 2 V1 Fail Bit 3 TSD1 Bit 4 TSD2(4) Bit 5 NOT (chip reset or comm. error) i.e. cold start (3) Bit 6 Communication error(2) Bit 7 Global error flag(1) Table 96. V1 fail Active high/low High High Low High High High High High Default value in normal mode after correct WD trigger or after read & clear on error flags 0 0 1 0 0 0 0 0 20 Power ON 1 0 0 0 0 0 0 0 80 Power ON weak battery(7) 1 0 0 0 0 0 1 0 82 Communication error 1 1 0 0 0 0 0 0 C0 Vs over or under-voltage 1 0 1 0 0 0 1 0 A2 WD failure 1 0 1 0 0 0 0 1 A1 Doc ID 17639 Rev 4 Hex value 93/102 ST SPI L99PM62GXP Global status register (continued) Bit 0 Fail safe(6) Bit 1 Vs fail(5) (OV/UV) Bit 2 V1 Fail Bit 3 TSD1 Bit 4 TSD2(4) Bit 5 NOT (chip reset or comm. error) i.e. cold start (3) Bit 6 Communication error(2) Bit 7 Global error flag(1) Table 96. Hex value SPI error (DI stuck) 1 0 1 0 0 0 0 1 A1 TSD1 1 0 1 0 1 0 0 0 A8 TSD2 1 0 1 1 1 0 0 1 B9 V1 fail 1 0 1 0 0 1 0 0 A4 Other device failure(8) 1 0 1 0 0 0 0 0 A0 1. The following status bits are reported in the global error flag: Global status register: Bits 0 - 6 Status register 1: Bits 0 – 10 Status register 3: Bits 2, 3, 15 2. Invalid CLOCK COUNT. 3. Cleared with CLR command on SR3. 4. Cleared with “READ and CLEAR” on SR3 (-> TSD1). 5. Diagnosis bit only, Vs Fail is not a fail-safe event; cleared by read&clear. Bit is automatically cleared at (Vs > VsUV) and. (Vs < VsOV) if Vlock_out_en = 0. 6. Cleared with a valid WD trigger (WD fail) or by clearing the corresponding status register related to failure. 7. Slow Vs ramp-up (Vs undervoltage is filtered with 64 µs after Power-on reset). 8. The global error flag is raised due to a failure condition which is not reported in the global status register. The Failure is reported in the status registers 1 – 3. Status register 1 Table 97. Status register 1: command and data bytes Command byte Read/write x Table 98. 1st data byte 2nd data byte Bit <15:8> Bit<7:0> Data, 8bit Data, 8 bit Address x 0 1 0 0 0 1 Status register 1, data bytes 1st data byte <15:8> Function Group 94/102 OL HS OL OUT4 OL OUT3 OL OUT2 OL OUT1 2nd data byte <7:0> UV V2 fail V2 short OV Diagnosis 1 OC HS OC Out4 OC Out3 OC OUT2 Diagnosis 2 Doc ID 17639 Rev 4 OC Out1 OC Rel2 OC Rel1 L99PM62GXP Table 99. ST SPI Status register 1, bits Bit Name 15 OL_HS 14 OL_OUT4 13 OL_OUT3 12 OL_OUT2 11 OL_OUT1 10 UV Comment Information storage Open-load event occurred since last read out Bit is latched until a “read and clear” access VLOCKOUTEN (CR4) Under voltage event on VS occurred since last read out 9 V2_fail 8 V2_short 7 OV V2 fail (V2 < 2 V for t> 2 µs) event occurred since last readout 0 automatically reset when UV condition disappears 1 Bit is latched until a “read and clear” access Bit is latched until a “Read and clear” access V2 short (V2 < 2 V for t > 4ms during start up) event Bit is latched until a “Read and clear” access occurred since last readout VLOCKOUTEN (CR4) Over voltage event on VS occurred since last read out 6 OC_HS 5 OC_OUT4 4 OC_OUT3 3 OC_OUT2 2 OC_OUT1 1 OC_REL2 0 OC_REL1 Information storage Over current event occurred since last read out Information storage 0 automatically reset when OV condition disappears 1 Bit is latched until a “read and clear” access Bit is latched until a “read and clear” access Doc ID 17639 Rev 4 95/102 ST SPI L99PM62GXP Status register 2 Table 100. Status register 2: command and data bytes Command byte Read/write x 1st data byte 2nd data byte Bit <15:8> Bit<7:0> Data, 8bit Data, 8 bit Address x 0 1 0 0 1 0 Table 101. Status register 2, data bytes 1st data byte <15:8> Function WU3 WU2 WU1 WU3 WU2 state state state wake wake Group 2nd data byte <7:0> WU1 Wake Wake Wake Timer LIN wake CAN int LIN perm. dom. LIN TxD perm dom. Diagnosis 3 LIN perm. rec. CAN RxD perm rec. CAN perm. rec. CAN perm. dom. CAN TxD perm dom Diagnosis 4 Table 102. Status register 2, bits Bit Name Comment 15 WU3_state 14 WU2_state 13 WU1_state 12 WU3_wake 11 WU2_wake 10 WU1_wake 9 WAKE_CAN 8 WAKE_LIN 7 Wake_TIMER_int 6 LIN_perm_DOM 5 LIN_TxD_perm_DOM TxDL pin is dominant for t > 12 ms; Transmitter is disabled 4 LIN_perm_REC LIN bus does not follow TxDL within 40 µs; Transmitter is disabled 3 CAN_RxD_perm_rec RxDC has not followed TxDC for 4 times; Transmitter is disabled 2 CAN_perm_REC CAN has not followed TxDC for 4 times; Transmitter is disabled 1 CAN_perm_DOM CAN bus is dominant for t > 700 µs 0 CAN_TxD_perm_DOM TxDC pin is dominant for t > 700 µs; Transmitter is disabled State of WUx input; Information storage “Live bits” not clearable Shows wake up source (‘1’ = wake-up) 96/102 LIN bus is dominant for t > 12 ms Doc ID 17639 Rev 4 Bits are latched until a “Read and clear” access L99PM62GXP ST SPI Status register 3 Table 103. Status register 3: command and data bytes Command byte Read/write x Address x 0 1 0 0 1 1 1st data byte 2nd data byte Bit <15:8> Bit<7:0> Data, 8bit Data, 8 bit Table 104. Status register 3, data bytes 1st data byte <15:8> Function TSD1 TW 2nd data byte <7:0> Device Device V1 V1 V1 V1 WD WD WD WD state_2 state_1 fail restart_2 restart_1 restart_0 fail_3 fail_2 fail_1 fail_0 Group Diagnosis 5 Forced sleep WD Forced WD WD sleep timer timer TSD2 state_1 state_0 SHTV1 Diagnosis 6 Table 105. Status register 3, bits Bit Name 15 TSD1 14 TW Comment Information storage Thermal warning / shutdown1 occurred since last readout 13 Bit is latched until a “read and clear access” State from which the device woke up 12 Device_state 11 V1_fail 10 V1_restart_2 9 V1_restart_1 8 V1_restart_0 7 WD_fail_3 6 WD_fail_2 5 WD_fail_1 4 WD_fail_0 State from which the device woke up Device state_2 Device state_1 0 0 Active 0 1 V1 standby 1 0 VBAT standby 1 1 Flash Bit is latched until a “read and clear access” after a “read and clear access”, the device state is updated after a wake up, device state is 01: V1 standby or 10: VBAT standby V1 fail (V1 < 2 V for t > 2 µs) event occurred since last read out Bit is latched until a “read and clear access” Number of TSD2 events which caused a restart of V1 regulator (7 TSD2 events forces the device into VBAT standby) Bits are not clearable; is cleared automatically if no additional TSD2 event occurs within 1 min. Number of missing watchdog triggers (15 missing watchdog trigger forces the device into VBAT standby) Bits are not clearable; is cleared with a proper Watchdog trigger Doc ID 17639 Rev 4 97/102 ST SPI L99PM62GXP Table 105. Status register 3, bits (continued) Bit Name Comment 3 Forced_sleep_WD Device was forced to VBAT standby mode because of multiple watchdog errors 2 Device was forced to VBAT standby or multiple thermal Forced_sleep_TSD shutdown events 2_SHTV1 or a short on V1 during startup. 1 WD_timer_state_1 Status of watchdog counter of selected watchdog timing 0 WD_timer_state_0 WD_timer_state_1 WD_timer_state_0 98/102 Information storage Counter 0 0 0 – 33% 0 1 33 – 66% 1 1 66 – 100% Doc ID 17639 Rev 4 Bits are latched until a read and clear access Bits are not clearable L99PM62GXP Package and packing information 7 Package and packing information 7.1 ECOPACK® In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 7.2 PowerSSO-36 package information Figure 41. PowerSSO-36 package dimensions AG00066V1 Doc ID 17639 Rev 4 99/102 Package and packing information L99PM62GXP Table 106. PowerSSO-36 mechanical data Millimeters Symbol 100/102 Min. Typ. Max. A - - 2.45 A2 2.15 - 2.35 a1 0 - 0.1 b 0.18 - 0.36 c 0.23 - 0.32 D 10.10 - 10.50 E 7.4 - 7.6 e - 0.5 - e3 - 8.5 - F - 2.3 - G - - 0.1 G1 - - 0.06 H 10.1 - 10.5 h - - 0.4 k 0° - 8° L 0.55 - 0.85 M - 4.3 - N - - 10 deg O - 1.2 - Q - 0.8 - S - 2.9 - T - 3.65 - U - 1.0 - X 4.1 - 4.7 Y 6.5 - 7.1 Doc ID 17639 Rev 4 L99PM62GXP 8 Revision history Revision history Table 107. Document revision history Date Revision Change 24-Jan-2011 1 Initial release. 23-Feb-2011 2 Table 11: Temperature warning and thermal shutdown: – TSD2 OFF: updated minimum and typical values 01-Jun-2011 3 Updated following figures: – Figure 3: Voltage source with external PNP – Figure 5: Voltage source with external NPN 19-Sep-2013 4 Updated disclaimer. Doc ID 17639 Rev 4 101/102 L99PM62GXP Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 102/102 Doc ID 17639 Rev 4