STA540 4 x 13 W dual/quad power amplifier Datasheet − production data Features ■ High output power capability – 2x 38 W into 4 Ω at 18 V, 1 kHz, 10% THD – 2x 34 W into 8 Ω at 22 V, 1 kHz, 10% THD – 2x 24W into 4Ω at 14.4 V, 1 kHz, 10% THD – 2x 15 W into 8 Ω at 16 V, 1 kHz, 10% THD – 4x 13 W into 2 Ω at 15 V, 1 kHz, 10% THD – 4x 11 W into 4 Ω at 18 V, 1 kHz, 10% THD – 4x 7 W into 4 Ω at 14.4 V, 1 kHz, 10% THD ■ Minimum external components count: – no bootstrap capacitors – no Boucherot cells – internally fixed gain 20 dB ■ Standby function (CMOS compatible) ■ No audible pop during standby operations Description ■ Diagnostic facilities: – clip detector – output to GND short-circuit detector – output to VS short-circuit detector – soft short-circuit check at turn-on – thermal shutdown warning The STA540 is a 4-channel, class-AB audio amplifier designed for high quality sound applications. Multiwatt15 The amplifiers have single-ended outputs with integrated short-circuit protection, thermal protection and diagnostic functions. The chip is housed in the 15-pin Multiwatt ECOPACK® Pb-free package which is RoHS (2002/95/EC) compliant. Protection ■ Output AC/DC short circuit ■ Soft short-circuit check at turn-on ■ Thermal cutoff/limiter to prevent chip from overheating ■ High inductive loads ■ ESD Table 1. Device summary Order code STA540 Temperature range -40 to 150° C April 2012 This is information on a product in full production. Package Multiwatt15 Doc ID 13907 Rev 6 Packing Tube 1/25 www.st.com 1 Contents STA540 Contents 1 2 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Standard application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5.1 6 5.1.1 Rth_HS calculation for 4 single-ended channels . . . . . . . . . . . . . . . . . . . 15 5.1.2 Rth_HS calculation for 2 single-ended channels plus 1 BTL channel . . . 15 5.1.3 Calculations using music power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Practical information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.1 Highly flexible amplifier configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.2 Easy single-ended to bridge transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.3 Internally fixed gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.4 Silent turn on/off and muting/standby function . . . . . . . . . . . . . . . . . . . . . 17 6.5 Driving circuit for standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 6.6 Output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 6.7 2/25 Heatsink specification examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 6.6.1 Rail-to-rail output voltage swing without bootstrap capacitors . . . . . . . . 18 6.6.2 Absolute stability without external compensation . . . . . . . . . . . . . . . . . 18 Built–in protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.7.1 Diagnostic facilities (pin 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.7.2 Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6.7.3 Clipping detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6.7.4 Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Doc ID 13907 Rev 6 STA540 Contents 6.8 Handling the diagnostic information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6.9 PCB ground layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 6.10 Mute function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Doc ID 13907 Rev 6 3/25 List of tables STA540 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. 4/25 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Doc ID 13907 Rev 6 STA540 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Quadraphonic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Alternative single-ended speaker connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Dual bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Stereo plus bridge drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Quiescent drain current versus supply voltage (single-ended and bridge) . . . . . . . . . . . . . 12 Quiescent output voltage versus supply voltage (single-ended and bridge). . . . . . . . . . . . 12 Output power versus supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Output power versus supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Output power versus supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Distortion versus output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Distortion versus output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Distortion versus output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Output power versus supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Output power versus supply voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Supply voltage rejection versus frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Crosstalk versus frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Standby attenuation versus threshold voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Total power dissipation and efficiency versus output power. . . . . . . . . . . . . . . . . . . . . . . . 14 Total power dissipation and efficiency versus output power. . . . . . . . . . . . . . . . . . . . . . . . 14 The new output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Shared capacitor in single-ended configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Clipping detection waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Output fault waveforms (see Figure 26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Fault waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Interface circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Optional mute function circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Mechanical data and package dimensions (Multiwatt15) . . . . . . . . . . . . . . . . . . . . . . . . . 23 Doc ID 13907 Rev 6 5/25 Block diagram and pin description STA540 1 Block diagram and pin description 1.1 Block diagram Figure 1. Block diagram VCC2 VCC2 VCC1 VCC1 13 3 A1 + 1 - IN1 OUT1 4 A2 INV + ST-BY ST-BY IN2 7 2 - OUT2 5 A3 + 15 - IN3 OUT3 12 A4 INV + 14 - IN4 10 11 6 SVR 6/25 8 9 P-GND S-GND Doc ID 13907 Rev 6 OUT4 DIAGNOSTIC DIAGNOSTICD OUTPUT D06AU1630 STA540 1.2 Block diagram and pin description Pin description Figure 2. Pin connection (top view) OUT3 OUT3 OUT4 OUT4 15 14 VCC2 VCC IN3 IN3 13 12 IN4 IN4 DIAGNOSTICD DIAGNOSTICD 11 10 9 S-GND S-GND 8 P-GND PW-GND 7 ST-BY STAND-BY 6 SVR SVR 5 IN2 IN2 4 IN1 IN1 3 VCC1 VCC 2 OUT2 OUT2 1 OUT1 OUT1 D06au1631 Table 2. Pin description N° Name Type Function 1 OUT1 OUT Channel 1 output 2 OUT2 OUT Channel 2 output 3 VCC1 PWR Power supply 4 IN1 IN Channel 1 input 5 IN2 IN Channel 2 input 6 SVR IN Supply voltage rejection 7 ST-BY IN Standby control pin 8 P-GND PWR Power ground 9 S-GND PWR Signal ground 10 DIAGNOSTICD OUT Diagnostics output 11 IN4 IN Channel 4 input 12 IN3 IN Channel 3 input 13 VCC2 PWR Power supply 14 OUT4 OUT Channel 4 output 15 OUT3 OUT Channel 3 output Doc ID 13907 Rev 6 7/25 Electrical specifications STA540 2 Electrical specifications 2.1 Absolute maximum ratings Table 3. Absolute maximum ratings Symbol Parameter Value Unit Supply voltage idle mode (no signal) 24 V Supply voltage operating 22 V Supply voltage AC-DC short safe 20 V Total power dissipation (Tcase = 85 °C) 36 W -40 to150 °C 0 to 70 °C Value Unit Rth j-case Thermal resistance junction to case (max) 1.8 °C/W Rth j-amb Thermal resistance junction to ambient (max) 35 °C/W Vs Ptot Tstg, Tj Top 2.2 Storage and junction temperature Operating temperature Thermal data Table 4. Thermal data Symbol 2.3 Parameter Electrical characteristics The test conditions are VS = 14.4 V, RL = 4 Ω, f = 1 kHz, Tamb = 25° C unless otherwise specified. Table 5. Symbol Electrical characteristics Parameter VS Supply voltage range Id Total quiescent drain current Vos Output offset voltage Test condition ISC 8/25 Typ 8 80 -150 Output power, SE THD=10%, RL=4 Ω THD=10%, RL=2 Ω THD=10%, RL=4 Ω, VS=22 V Output power, BTL THD=10%, RL=4 Ω THD=10%, RL=8 Ω, VS=17 V THD=10%, RL=8 Ω, VS=22 V Total harmonic distortion RL = 4 Ω, Po = 0.1 to 4 W Po THD Min Short-circuit output current Doc ID 13907 Rev 6 6.5 21 4.0 Max Unit 22 V 150 mA 150 mV 7 11.5 16 W 24 20 34 W 0.02 % A STA540 Electrical specifications Table 5. Symbol CT Electrical characteristics (continued) Parameter Test condition f = 1 kHz single-ended f = 10 kHz single-ended f = 1 kHz BTL f = 10 kHz BTL Crosstalk Min Typ 70 60 60 Input impedance Single-ended BTL 20 10 30 15 Gv Voltage gain Single-ended BTL 19 25 20 26 Gv Voltage gain match Rgen = 0, "A" weighted, S.E.: Non-inverting channels Inverting channels Input noise voltage BTL Rgen = 0, f = 22 Hz to 22 kHz SVR Supply voltage rejection Rgen = 0, f = 300 Hz, CSVR = 470 μF 50 ASB Standby attenuation Po = 1 W 80 ISB Current consumption in standby VST_BY = 0 to 1.5 V ST-BY OUT threshold voltage kΩ 21 27 dB 0.5 dB 2 5 μV μV 3.5 μV dB 90 ST-BY IN threshold voltage VSB Unit dB 55 Rin EN Max dB 100 μA 1.5 V 3.5 V Play mode, VST-BY = 5 V 50 μA Max driving current under fault 5 mA IST-BY Pin ST-BY current Icd_off Clipping detector output average current d = 1% (*) 90 μA Icd_on Clipping detector output average current d = 5% (*) 160 μA VDIAGNO Saturation voltage on pin DIAGNOSTICD STICD IDIAGNOSTICD = 1 mA sinking 0.7 V TW Thermal warning 140 °C TM Thermal muting 150 °C TS Thermal shutdown 160 °C Doc ID 13907 Rev 6 9/25 Standard application circuits 3 STA540 Standard application circuits Figure 3. Quadraphonic 10 kΩ ST_BY VS 100 nF 10 µF IN_1 4 7 13 3 1 220 nF OUT_1 2200 µF IN_2 5 STA540 220 nF IN_3 2 OUT_2 2200 µF 12 15 220 nF IN_4 11 6 8 OUT_3 2200 µF 220 nF 14 10 9 47 µF Figure 4. 1000 µF Suggested applications: 4x 13 W into 2 Ω, at 15 V 4x 11 W into 4 Ω, at 18 V 4x 9 W into 2 Ω, at 12 V 4x 8 W into 4 Ω, at 16 V 4x 5 W into 4 Ω, at 12 V OUT_4 2200 µF Alternative single-ended speaker connection * 1 18 15 2 19 14 470μF 470μF The best audio performance is obtained with the configuration where each speaker has its own DC blocking capacitor. However, if the application allows a little degradation of the spatial image it is possible to connect a couple of speakers with only one low-value DC blocking capacitor. Figure 5. Dual bridge 10 kΩ ST_BY VS 100 nF 10 µF IN_L 4 7 13 3 1 OUT_L 470 nF 5 IN_R 1000 µF 12 2 STA540 15 470 nF OUT_R 11 6 8 9 14 10 47 µF 10/25 Doc ID 13907 Rev 6 Suggested applications: 2x 38 W into 4 Ω, at 18 V, 1 kHz, 10% THD 2x 34 W into 8 Ω, at 22 V, 1 kHz, 10% THD 2x 24 W into 4 Ω, at 14.4 V, 1 kHz, 10% THD 2x 15 W into 8 Ω, at 16 V, 1 kHz, 10% THD STA540 Standard application circuits Figure 6. Stereo plus bridge drive 10 kΩ ST_BY VS 100 nF 10 µF IN_L 4 7 13 3 1 220 nF IN_R 2200 µF 5 STA540 220 nF IN_Bridge 1000 µF 2 2200 µF 12 OUT_L OUT_R 15 470 nF OUT_Bridge 11 6 8 9 14 10 47 µF Suggested applications: 2x 9 W into 2 Ω, +1x 18 W into 4 Ω, at 12 V 2x 12 W into 2 Ω, +1x 26 W into 4 Ω, at 14.4 V 2x 8 W into 4 Ω, +1x 16 W into 8 Ω, at 16 V Doc ID 13907 Rev 6 11/25 Electrical characteristics curves STA540 4 Electrical characteristics curves Figure 7. Quiescent drain current versus supply voltage (single-ended and bridge) Figure 9. Output power versus supply voltage Figure 10. Output power versus supply voltage 20 18 16 14 12 10 8 6 4 2 0 Po (W) THD= 10 % SINGLE ENDED RL= 2 Ω f= 1 KHz THD= 1 % 8 9 10 11 12 13 14 Vs (V) 15 16 17 18 Figure 8. 12 11 10 9 8 7 6 5 4 3 2 1 0 Quiescent output voltage versus supply voltage (single-ended and bridge) Po (W) SINGLE ENDED THD= 10 % RL= 4Ω f= 1 KHz THD= 1 % 8 9 10 11 12 13 14 Vs (V) 15 16 17 18 Figure 11. Output power versus supply voltage Figure 12. Distortion versus output power 12/25 Doc ID 13907 Rev 6 STA540 Electrical characteristics curves Figure 13. Distortion versus output power Figure 14. Distortion versus output power Figure 15. Output power versus supply voltage Figure 16. Output power versus supply voltage Po(W) 35 12 Po(W) 32.5 11 30 S.E. 10 9 Rl=8ohm 25 f=1KHz 8 22.5 7 20 T.H.D=10% 6 f=1KHz T.H.D=10% 17.5 15 5 12.5 4 T.H.D=1% T.H.D=1% 10 3 7.5 2 5 1 2.5 0 BTL 27.5 Rl=8ohm 0 +8 +10 +12 +14 +16 Vs(V) +18 +20 +22 +24 +8 +10 +12 +14 +16 +18 +20 +22 Vs(V) Figure 17. Supply voltage rejection versus frequency Figure 18. Crosstalk versus frequency Doc ID 13907 Rev 6 13/25 Electrical characteristics curves STA540 Figure 19. Standby attenuation versus threshold voltage Figure 20. Total power dissipation and efficiency versus output power Figure 21. Total power dissipation and efficiency versus output power 14/25 Doc ID 13907 Rev 6 STA540 5 Thermal information Thermal information In order to avoid the intervention of the thermal protection, placed at Tj =150° C for thermal muting and Tj=160° C for thermal shutdown, it is important to calculate the heatsink thermal resistance, Rth_HS, correctly. The parameters that influence the calculation are: ● maximum dissipated power for the device (Pdmax) ● maximum thermal resistance junction to case (Rth_j-case) ● maximum ambient temperature Tamb_max There is also an additional term that depends on the Iq (quiescent current). 5.1 Heatsink specification examples 5.1.1 Rth_HS calculation for 4 single-ended channels Given VS = 14.4 V, RL = 4 Ω x 4 channels, Rth_j-case = 1.8° C/W, Tamb_max = 50° C and Pout = 4 x 7 W then the maximum power dissipated in the device is: P 2 V CC - = 4 ⋅ 2.62 = 10.5W = NChannel ⋅ ------------------dmax 2 2Π R L and the required thermal resistance of the heatsink is: 150 – T amb_max – 50- – 1.8 = 7.7°C/W R th_HS = --------------------------------------------- – R th_j-case = 150 --------------------P dmax 10.5 5.1.2 Rth_HS calculation for 2 single-ended channels plus 1 BTL channel Given VS = 14.4 V, RL = 2x 2 Ω (SE) + 1x 4 Ω (BTL), Pout = 2 x 12 W + 1 x 26 W then the maximum power dissipated in the device is: 2 2 V 2V CC CC P = 2 ⋅ -------------------- + -------------------- = 2 ⋅ 5.25 + 10.5 = 21W dmax 2 2 2Π R Π R L L and the required thermal resistance of the heatsink is: R 150 – T amb_max- – R – 50- – 1.8 = 3°C/W = --------------------------------------------= 150 --------------------th_HS th_j-case P 21 dmax Doc ID 13907 Rev 6 15/25 Thermal information 5.1.3 STA540 Calculations using music power The thermal resistance value calculated in each of the two above examples specifies a heatsink capable of sustaining the maximum dissipated power. Realistically, however, and as explained in the Application Note (AN1965), the heatsink can be smaller when the application is musical content. When music power is considered the resulting dissipation is about 40% less than the calculated maximum. Thus, smaller or cheaper heatsinks can be employed. The heatsink thermal resistance values are modified as follows: for example 5.1.1: 10.5 W - 40% = 6.3 W, thus giving Rth_c-amb = 14° C/W, for example 5.1.2: 21 W - 40% = 12.6 W, thus giving Rth_c-amb = 6° C/W. 16/25 Doc ID 13907 Rev 6 STA540 Practical information 6 Practical information 6.1 Highly flexible amplifier configuration The availability of four independent channels makes it possible to accomplish several kinds of applications ranging from four speakers stereo (F/R) to two-speaker bridge solutions. When working with single-ended configurations, the polarity of the speakers driven by the inverting amplifier must be reversed with respect to those driven by non-inverting channels. This is to avoid phase irregularities causing sound alterations especially during the reproduction of low frequencies. 6.2 Easy single-ended to bridge transition The change from single-ended to bridge configuration is made simple by connecting the two inputs together and also the speaker directly between the two outputs (no need for additional external components, in fact the output DC blocking capacitors are eliminated). However, take care to use an inverting/non-inverting amplifier pair. 6.3 Internally fixed gain The advantages in internally fixing the gain (to 20 dB in single-ended configuration and to 26 dB in bridge configuration) are: 6.4 ● components and space saving, ● output noise, supply voltage rejection and distortion optimization. Silent turn on/off and muting/standby function The standby mode can be easily activated by means of a CMOS logic level applied to pin ST-BY through a RC filter. Under standby conditions, the device is turned off completely (supply current = 1 mA typical, output attenuation = 80 dB minimum). All on/off operations are virtually pop-free. Furthermore, at turn-on the device stays in mute condition for a time determined by the value of the SVR capacitor. This prevents transients, coming from previous stages, from producing unpleasant acoustic effects at the speakers. 6.5 Driving circuit for standby mode Some precautions need to be taken when designing the driving circuit for pin 7, ST-BY. For instance, the pin cannot be directly driven by a voltage source having a current capability higher than 5 mA. In practical cases a series resistance must be inserted, giving it the double purpose of limiting the current at pin 7 and to smooth down the standby on/off transitions. And, when done in combination with a capacitor, prevents output pop. A capacitor of at least 100 nF from pin 7 to S-GND, with no resistance in between, is necessary to ensure correct turn-on. Doc ID 13907 Rev 6 17/25 Practical information 6.6 STA540 Output stage The fully complementary output stage is possible with the power ICV PNP component. This novel design is based on the connection shown in Figure 22 and allows the full exploitation of its capabilities. The clear advantages this new approach has over classical output stages are described in the following sections. 6.6.1 Rail-to-rail output voltage swing without bootstrap capacitors The output swing is limited only by the VCEsat of the output transistors, which are in the range of 0.3 Ω (Rsat) each. Classical solutions adopting composite PNP-NPN for the upper output stage have higher saturation loss on the top side of the waveform. This unbalanced saturation causes a significant power reduction. The only way to recover power includes of the addition of expensive bootstrap capacitors. 6.6.2 Absolute stability without external compensation With reference to the circuit shown in Figure 22, the low frequency gain Vout/Vin is greater than unity, that is, approximately 1 + R2/R1. The DC output level (VCC / 2) is fixed by an auxiliary amplifier common to all the channels. By controlling the amount of this local feedback it is possible to force the loop gain (A*β) to less than unity at frequency where the phase shift is 180°. This means that the output buffer is intrinsically stable and not prone to oscillation. The above feature has been achieved even though there is very low closed-loop gain of the amplifier. This contrasts with the classical PNP-NPN stage which makes use of external RC networks, namely the Boucherot cells, for reducing the gain at high frequencies. Figure 22. The new output stage 18/25 Doc ID 13907 Rev 6 STA540 Practical information 6.7 Built–in protection 6.7.1 Diagnostic facilities (pin 10) The STA540 is equipped with diagnostic circuitry that is able to detect the following events: ● clipping of the output signal, ● thermal shutdown, ● output fault: – short circuit to GND, – short circuit to VS, – soft short circuit at turn-on. The event is signalled when the open collector output of pin 10 begins to sink current. 6.7.2 Short-circuit protection Reliable and safe operation in the presence of all kinds of output short circuit is assured by the built-in protection. As well as the AC/DC short circuit to GND and to VS, and across the speaker, there is a soft short-circuit condition, which is signalled on pin 10 (DIAGNOSTICD) during the turn-on phase, to verify output circuit integrity in order to ensure correct amplifier operation. This particular kind of protection acts in such a way as to prevent the device being turned on (via pin ST-BY) when a resistive path (that is a DC path) less than 16 Ω exists between the output and GND. This would avoid loud speaker damage should, for example, the output coupling capacitor develop an internal short circuit. As mentioned previously, it is important to limit the external current driving pin ST-BY to 5 mA. The reason is that the associated circuitry is normally disabled with currents greater than 5 mA. The soft short-circuit protection is particularly attractive when, in the single-ended configuration, one capacitor is shared between two outputs (see Figure 23). Figure 23. Shared capacitor in single-ended configuration Doc ID 13907 Rev 6 19/25 Practical information 6.7.3 STA540 Clipping detection Figure 24. Clipping detection waveforms Current sinking at pin 10 occurs when a certain distortion level is reached at each output. This function initiates a gain-compression facility whenever the amplifier is overdriven. 6.7.4 Thermal shutdown With the thermal shutdown feature, the diagnostics output (pin 10) signals the closeness of the junction temperature to the shutdown threshold. Typically, current sinking at pin 10 starts approximately 10° C before the shutdown temperature is reached. Figure 25. Output fault waveforms (see Figure 26) Figure 26. Fault waveforms ST-BY PIN VOLTAGE 2V t OUT TO Vs SHORT OUTPUT WAVEFORM SOFT SHORT t OUT TO GND SHORT Vpin 10 CORRECT TURN-ON FAULT DETECTION t CHECK AT TURN-ON (TEST PHASE) 20/25 D05AU1603mod Doc ID 13907 Rev 6 SHORT TO GND OR TO Vs STA540 6.8 Practical information Handling the diagnostic information As different diagnostic information (clipping detection, output fault, approaching thermal shutdown) becomes available at pin 10 so the behavior of the signal at this pin changes. In order to discriminate the event, signal DIAGNOSTICD, pin 10, must be interpreted correctly. Figure 27 shows a combination of events on the output waveform and the corresponding output on pin 10. This events could be diagnosed based on the timing of the output signal on pin 10. For example, the clip-detector signalling under fault conditions could produce a low level for a short time. On the other hand, an output short circuit would probably produce a low level for a much longer time. With these assumptions, an interface circuit based on the one shown in Figure 28 could differentiate the information and flag the appropriate circuits. Figure 27. Waveforms ST-BY PIN VOLTAGE t Vs OUTPUT WAVEFORM t Vpin 10 WAVEFORM t CLIPPING D05AU1604mod SHORT TO GND OR TO Vs THERMAL PROXIMITY Figure 28. Interface circuit diagram Doc ID 13907 Rev 6 21/25 Practical information 6.9 STA540 PCB ground layout The device has two distinct ground pins, P-GND (power ground) and S-GND (signal ground) which are disconnected from each other at chip level. For superior performance the pins P-GND and S-GND must be connected together on the PCB by low-resistance tracks. For the PCB-ground configuration, a star-like arrangement, where the center is represented by the supply-filtering electrolytic capacitor ground, is recommended. In an arrangement such as this, at least two separate paths must be provided, one for P-GND and one for S-GND. The correct ground assignments are as follows: ● ● on S-GND: – standby capacitor (pin 7, or any other standby driving networks), – SVR capacitor (pin 6), to be placed as close as possible to the device, – input signal ground (from active/passive signal processor stages) on P-GND: – 6.10 power supply filtering capacitors for pins 3 and 13. The negative terminal of the electrolytic capacitor(s) must be directly tied to the battery negative line and this should represent the starting point for all the ground paths. Mute function If the mute function is desired, it can be implemented on pin 6, SVR, as shown in Figure 29. Figure 29. Optional mute function circuit 10K VS ST-BY 10μF IN L IN R IN BRIDGE 0.22μF 0.47μF 470μF R2 10K 13 7 4 3 1000μF 1 OUT L 2200μF 5 2 2200μF 12 6 8 OUT R 15 OUT BRIDGE 11 R1 3.3K MUTE 5V 0 PLAY 0.22μF 100nF 9 10 14 DIAGNOSTICS D06AU1632 VS = 10 to 16 V, mute off: VSVR ≥ 0.6 to 0.8 V, mute on: VSVR ≥ 0.2 V Using a different value for R1 than the suggested 3.3 kΩ, results in two different situations: ● ● 22/25 R1 > 3.3 kΩ: – pop noise improvement, – lower mute attenuation; R1 < 3.3 kΩ: – pop noise degradation, – higher mute attenuation. Doc ID 13907 Rev 6 STA540 7 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 30. Mechanical data and package dimensions (Multiwatt15) DIM. mm MIN. TYP. inch MAX. MIN. TYP. MAX. A 5 0.197 B 2.65 0.104 C 1.6 D OUTLINE AND MECHANICAL DATA 0.063 1 0.039 E 0.49 0.55 0.019 F 0.66 0.75 0.026 0.022 G 1.02 1.27 1.52 0.040 0.050 0.060 G1 17.53 17.78 18.03 0.690 0.700 0.710 H1 19.6 0.030 0.772 H2 20.2 0.795 L 21.9 22.2 22.5 0.862 0.874 0.886 L1 21.7 22.1 22.5 0.854 0.87 0.886 L2 17.65 18.1 0.695 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 0.713 L7 2.65 2.9 0.104 M 4.25 4.55 4.85 0.167 0.179 0.191 0.114 M1 4.73 5.08 5.43 0.186 0.200 0.214 S 1.9 2.6 0.075 0.102 S1 1.9 2.6 0.075 0.102 Dia1 3.65 3.85 0.144 0.152 Multiwatt15 (Vertical) 0016036 J Doc ID 13907 Rev 6 23/25 Revision history 8 STA540 Revision history Table 6. 24/25 Document revision history Date Revision Changes May-2006 1 Initial release Sep-2006 2 Minor non-technical edits Oct-2007 3 Updated description on page 1 Updated pin naming, numbering in all relevant figures Minor non-technical edits 21-Jan-2008 4 Updated power specifications on pages 1, 6 and 8 Updated short-circuit output current in Table 5 02-Apr-2012 5 Modified VST-BY to VSB and updated parameters in Table 5: Electrical characteristics Updated ECOPACK® text in Section 7: Package information 24-Apr-2012 6 Updated dimension A in Figure 30: Mechanical data and package dimensions (Multiwatt15) Doc ID 13907 Rev 6 STA540 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 13907 Rev 6 25/25