STMICROELECTRONICS STA7360_11

STA7360
20 W bridge/stereo audio amplifier with clipping detector
Features
■
Very few external components
■
No boucherot cells
■
No bootstrap capacitors
■
High output power
■
No switch-on/off noise
■
Very low standby current
■
Fixed gain (20 db stereo)
■
Programmable turn-on delay
■
Clipping detector
■
Standby function
■
Protections
– Output AC-DC short-circuit to ground and
to supply voltage
– Highly inductive loads
– Loudspeaker protection
– Overrating chip temperature
– ESD protection
MULTIWATT11V
Description
The STA7360 is a class-AB audio power amplifier
in the Multiwatt® package.Thanks to the fully
complementary PNP/NPN output configuration,
the high-power performance of the STA7360 is
obtained without bootstrap capacitors.
A delayed turn-on mute circuit eliminates audible
on/off noise, and a short-circuit protection system
prevents spurious intervention with highly
inductive loads.
The device provides a circuit for the detection of
clipping in the output stages. The output, an open
collector, is able to drive systems with automatic
volume control.
Table 1.
Figure 1.
Device summary
Order code
Package
Packing
STA7360
Multiwatt11V
Tube
Application circuit
20K
+VS
100nF
C6
220µF
C5
C4
1µF
STAND-BY
22µF C3
9
11
SVR
7
8
OUT2
RL
0.22µF C2
IN2(+)
5
10
0.22µF C1
IN
IN1(+)
1
4
2
CLIP DET
December 2011
3
6
S-GND
P-GND
Doc ID 9814 Rev 4
OUT1
OUT BRIDGE
D00AU1213
1/28
www.st.com
1
Contents
STA7360
Contents
1
2
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1
Block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4
Test and application circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
Typical operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
Block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5
6
2/28
4.1
Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2
SVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3
Delayed turn-on (muting) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4
Stereo/bridge switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5
Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6
Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7
Output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.8
Amplifier block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Built-in protection systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1
Short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2
Polarity inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3
DC voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4
Thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.5
Loudspeaker protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1
Reducing turn-on/off pop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2
Turn-on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Doc ID 9814 Rev 4
STA7360
Contents
6.3
Turn-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4
Balanced input in bridge configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Doc ID 9814 Rev 4
3/28
List of tables
STA7360
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
4/28
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Recommended values of the external components (stereo test and application circuit) . . 10
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Doc ID 9814 Rev 4
STA7360
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Block diagram - stereo configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Block diagram - bridge configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin connections (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Stereo test and application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Board and layout of the stereo test and application circuit (1:1 scale) . . . . . . . . . . . . . . . . 10
Bridge test and application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Board and layout of the bridge test and application circuit (1:1 scale) . . . . . . . . . . . . . . . . 11
Output power vs. supply voltage (stereo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Output power vs. supply voltage (stereo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Output power vs. supply voltage (stereo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Output power vs. supply voltage (stereo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Drain current vs. supply voltage (stereo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Distortion vs. output power (stereo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Distortion vs. output power (stereo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Distortion vs. output power (stereo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Distortion vs. output power (bridge) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
SVR vs. frequency & C3 (stereo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
SVR vs. frequency & C3 (bridge) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Crosstalk vs. frequency (stereo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Power dissipation & efficiency vs. output power (stereo) . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Power dissipation & efficiency vs. output power (stereo) . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Power dissipation & efficiency vs. output power (stereo) . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Mute function diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Turn-on delay circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Dual-channel distortion detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
ICV - PNP gain vs. IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
ICV - PNP VCE (sat) vs. IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
ICV - PNP cutoff frequency vs. IC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
New output stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Classical output stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Amplifier block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Circuitry for short-circuit detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Maximum allowable power dissipation vs. ambient temperature . . . . . . . . . . . . . . . . . . . . 22
Restart circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Turn-on output waveforms compared to the values of Csvr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Balanced input in bridge configuration, example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Balanced input in bridge configuration, example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Multiwatt11V package mechanical data and dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . 26
Doc ID 9814 Rev 4
5/28
Device overview
STA7360
1
Device overview
1.1
Block diagrams
Figure 2.
Block diagram - stereo configuration
INPUT 1
20K
1µF
ST-BY
VCC
+
OUT1
-
SVR
L
CLIPPING
DETECTOR
CLIP
DETECT
OUT BRIDGE
-
OUT2
+
GND
PWGND
D00AU1215
INPUT 2
Figure 3.
Block diagram - bridge configuration
INPUT 1
20K
1µF
ST-BY
VCC
+
OUT1
-
SVR
CLIPPING
DETECTOR
CLIP
DETECT
OUT BRIDGE
-
OUT2
+
GND
PWGND
INPUT 2
6/28
Doc ID 9814 Rev 4
D00AU1216
R
STA7360
1.2
Device overview
Pin connections
Figure 4.
Pin connections (top view)
11
STAND-BY
10
OUT1
TAB CONNECTED TO PIN 6
Doc ID 9814 Rev 4
9
+VS
8
OUT2
7
SVR
6
P-GND
5
IN2(+)
4
OUT BRIDGE
3
S-GND
2
CLIP DET
1
IN1(+)
D98AU938A
7/28
Electrical specifications
STA7360
2
Electrical specifications
2.1
Absolute maximum ratings
Table 2.
Absolute maximum ratings
Symbol
2.2
Value
Unit
VS
Operating supply voltage
22
V
IO
Output peak current (non rep. for t = 100 µs)
5
A
IO
Output peak current (rep. freq. > 10 Hz)
4
A
Ptot
Power dissipation at Tcase = 85 °C
36
W
Tstg, TJ
Storage and junction temperature
-40 to 150
°C
Value
Unit
1.8
°C/W
Thermal data
Table 3.
Symbol
Rth j-case
8/28
Parameter
Thermal data
Parameter
Thermal resistance junction-case (max)
Doc ID 9814 Rev 4
STA7360
2.3
Electrical specifications
Electrical characteristics
Refer to the test circuits, Tamb = 25 °C, VS = 14.4 V, f = 1 kHz, unless otherwise specified.
Table 4.
Electrical characteristics
Symbol
Parameter
VS
Supply voltage range
Id
Total quiescent drain current
ASB
Standby attenuation
ISB
Standby current
Vst_on
Standby on threshold
Vst_off
Standby off threshold
Test condition
Typ.
8
stereo configuration
65
60
Max.
Unit
18
V
120
mA
80
dB
100
µA
1
V
3.5
Clip detector prog. current
pin 2 pull-up to 5 V d = 1%
with 10 kΩ
d=5%
Output power (each channel)
THD = 10%
RL = 2 Ω
RL = 3.2 Ω
RL = 4 Ω, 12 V
RL = 4 Ω
Distortion
PO = 0.1 to 2.5 W; RL = 4 Ω
PO = 0.1 to 4 W; RL = 3.2 Ω
Supply voltage rejection
Rg = 10 kΩ
f = 100 Hz
CT
Crosstalk
f = 1 kHz
f = 10 kHz
RI
Input resistance
GV
Voltage gain
GV
Voltage gain match
ICO
Min.
V
70
130
µA
µA
11
8
4.5
6.5
W
W
W
W
Stereo
PO
d
SVR
7
C3 = 22 µF
C3 = 100 µF
0.5
0.5
45
19
Input noise voltage
Rg = 50 Ω
Rg = 10 kΩ
Rg = ∞
%
%
62
dB
dB
55
dB
dB
50
kΩ
45
22 Hz to 22 kHz
EIN
0.05
0.05
20
2.5
3
3.5
21
dB
1
dB
5
7
µV
µV
µV
250
mV
Bridge
VOS
Output offset voltage
PO
Output power THD = 10%
RL = 4 Ω, 12 V
RL = 4 Ω, 14.4 V
Distortion
PO = 0.1 to 7 W; RL = 4 Ω
Supply voltage rejection
Rg = 10 kΩ
f = 100 Hz
d
SVR
16
C3 = 22 µF
C3 = 100 µF
15
20
0.05
45
W
W
0.5
%
62
dB
dB
RI
Input resistance
50
kΩ
GV
Voltage gain
26
dB
EIN
Input noise voltage
3.5
4
µV
µV
22 Hz to 22 kHz
Rg = 50 Ω
Rg = 10 kΩ
Doc ID 9814 Rev 4
9/28
Electrical specifications
STA7360
2.4
Test and application circuits
Figure 5.
Stereo test and application circuit
20K
+VS
220µF
C5
C4
1µF
100nF
C6
STAND-BY
100µF C3
9
11
SVR
7
8
4
0.22µF C2
IN2(+)
5
IN1(+)
1000µF C7
RL
OUT
BRIDGE
1000µF C8
0.22µF C1
IN
OUT2
1
10
2
CLIP DET
3
6
S-GND
OUT1
RL
P-GND
D00AU1214
Figure 6.
Board and layout of the stereo test and application circuit (1:1 scale)
Table 5.
Recommended values of the external components (stereo test and application
circuit)
Comp.
Recommended
value
C1
0.22 µF
C2
Larger than the recommended
value
Smaller than the
recommended value
Input decoupling
(CH1)
-
-
0.22 µF
Input decoupling
(CH2)
-
-
C3
100 µF
Supply voltage
rejection filtering
capacitor
C4
1 µF
10/28
Purpose
Longer turn-on delay
Standby ON/OFF Delayed turn-off with standby
delay
switch
Doc ID 9814 Rev 4
-Worse supply voltage rejection
-Shorter turn-on delay
-Danger of noise (pop)
Danger of noise (pop)
STA7360
Table 5.
Electrical specifications
Recommended values of the external components (stereo test and application
circuit)
Comp.
Recommended
value
C5
220 µF (min)
Supply bypass
Danger of oscillation
C6
100 nF (min)
Supply bypass
Danger of oscillation
C7
2200 µF
-Decrease of low-frequency cutoff -Increase of low-frequency cutoff
Output
decoupling (CH2) -Longer turn-on delay
-Shorter turn-on delay
C8
2200 µF
-Decrease of low-frequency cutoff -Increase of low-frequency cutoff
Output
decoupling (CH1) -Longer turn-on delay
-Shorter turn-on delay
Figure 7.
Larger than the recommended
value
Purpose
Smaller than the
recommended value
Bridge test and application circuit
20K
+VS
100nF
C6
220µF
C5
C4
1µF
STAND-BY
22µF C3
9
11
SVR
7
8
OUT2
0.22µF C2
IN2(+)
RL
5
10
0.22µF C1
IN
IN1(+)
1
4
2
3
CLIP DET
Figure 8.
6
S-GND
OUT1
OUT BRIDGE
P-GND
D00AU1213
Board and layout of the bridge test and application circuit (1:1 scale)
Doc ID 9814 Rev 4
11/28
Typical operating characteristics
STA7360
3
Typical operating characteristics
Figure 9.
Output power vs. supply voltage
(stereo)
Figure 10. Output power vs. supply voltage
(stereo)
Figure 11. Output power vs. supply voltage
(stereo)
Figure 12. Output power vs. supply voltage
(stereo)
12/28
Doc ID 9814 Rev 4
STA7360
Typical operating characteristics
Figure 13. Drain current vs. supply voltage
(stereo)
Figure 14. Distortion vs. output power
(stereo)
Figure 15. Distortion vs. output power
(stereo)
Figure 16. Distortion vs. output power
(stereo)
Doc ID 9814 Rev 4
13/28
Typical operating characteristics
STA7360
Figure 17. Distortion vs. output power
(bridge)
Figure 18. SVR vs. frequency & C3
(stereo)
Figure 19. SVR vs. frequency & C3
(bridge)
Figure 20. Crosstalk vs. frequency
(stereo)
14/28
Doc ID 9814 Rev 4
STA7360
Typical operating characteristics
Figure 21. Power dissipation & efficiency vs.
output power (stereo)
Figure 22. Power dissipation & efficiency vs.
output power (stereo)
Figure 23. Power dissipation & efficiency vs.
output power (stereo)
Doc ID 9814 Rev 4
15/28
Block description
4
Block description
4.1
Polarization
STA7360
The device is organized with the gain resistors directly connected to the signal ground pin
i.e. without gain capacitors (Figure 2).
The non-inverting inputs of the amplifiers are connected to the SVR pin by means of resistor
dividers, equal to the feedback networks. This allows the outputs to track the SVR pin which
is sufficiently slow to avoid audible turn-on and turn-off transients.
4.2
SVR
The voltage ripple on the outputs is equal to the one on the SVR pin: with appropriate
selection of CSVR, more than 60 dB of ripple rejection can be obtained.
4.3
Delayed turn-on (muting)
The CSVR sets a signal turn-on delay too. A circuit is included which mutes the device until
the voltage on the SVR pin reaches ~2.5 V typ. (Figure 25). The mute function is obtained
by duplicating the input differential pair (Figure 24); it can be switched to the signal source or
to an internal mute input. This feature is necessary to prevent transients at the inputs
reaching the loudspeaker(s) immediately after power-on).
Figure 25 represents the detailed turn-on transient with reference to the stereo
configuration. At power-on the output decoupling capacitors are charged through an internal
path but the device itself remains switched off (phase 1 of the represented diagram).
When the outputs reach the voltage level of about 1 V (this means that there are no shortcircuits) the device switches on, the SVR capacitor starts charging itself and the output
tracks exactly the SVR pin. During this phase the device is muted until the SVR reaches the
"Play" threshold (~2.5 V typ.), after which the music signal starts being played.
4.4
Stereo/bridge switching
There is also no need for external components for changing from stereo to bridge
configuration (Figure 2, 3). A simple short-circuit between two pins allows phase reversal at
one output, yet maintaining the quiescent output voltage.
4.5
Standby
The device is also equipped with a standby function, so that a low current, and hence a low
cost switch, can be used for turn-on/off.
16/28
Doc ID 9814 Rev 4
STA7360
4.6
Block description
Stability
The device is provided with an internal compensation which allows reaching low values of
closed loop gain. In this way better performances of the S/N ratio and SVR can be obtained.
Figure 24. Mute function diagram
Doc ID 9814 Rev 4
17/28
Block description
STA7360
Figure 25. Turn-on delay circuit
Figure 26. Dual-channel distortion detector
IN1
OUT1
CLIP DET
DISTORTION
DETECTOR
IN2
OUT2
D98AU959
18/28
Doc ID 9814 Rev 4
STA7360
4.7
Block description
Output stage
Poor current capability and low cutoff frequency are well-known limits of the standard lateral
PNP. Composite PNP-NPN power output stages have been widely used, regardless of their
high saturation drop. This drop can be overcome only at the expense of external
components, namely, the bootstrap capacitors. The availability of 4 A isolated collector PNP
(ICV PNP) adds versatility to the design. The performance of this component, in terms of
gain, VCEsat and cutoff frequency, is shown in Figure 27, 28, and 29 respectively. It is
realized in a new bipolar technology, characterized by top-bottom isolation techniques,
allowing the implementation of low leakage diodes, too. It guarantees BVCEO > 20 V and
BVCBO > 50 V both for NPN and PNP transistors. Basically, the connection shown in
Figure 30 has been chosen. First of all because its voltage swing is rail-to-rail, limited only
by the VCEsat of the output transistors, which are in the range of 0.3 W each. Then, the gain
VOUT/VIN is greater than unity, approximately 1+R2/R1. (VCC/2 is fixed by an auxiliary
amplifier common to both channel). It is possible, controlling the amount of this local
feedback, to force the loop gain (A * b) to less than unity at frequencies for which the phase
shift is 180°. This means that the output buffer is intrinsically stable and not prone to
oscillation.
Figure 27. ICV - PNP gain vs. IC
Figure 28. ICV - PNP VCE (sat) vs. IC
Figure 29. ICV - PNP cutoff frequency vs. IC
Doc ID 9814 Rev 4
19/28
Block description
STA7360
Figure 30. New output stage
In contrast, with the circuit of Figure 31, the solution adopted to reduce the gain at high
frequencies is the use of an external RC network.
4.8
Amplifier block diagram
The block diagram of each voltage amplifier is shown in Figure 32. Regardless of production
spread, the current in each final stage is kept low, with enough margin on the minimum,
below which crossover distortion would appear.
Figure 31. Classical output stage
Figure 32. Amplifier block diagram
20/28
Doc ID 9814 Rev 4
STA7360
Built-in protection systems
5
Built-in protection systems
5.1
Short-circuit protection
The maximum current the device can deliver can be calculated by considering the voltage
that may be present at the terminals of a car radio amplifier and the minimum load
impedance.
Apart from consideration concerning the area of the power transistors, it is not difficult to
achieve peak currents of this magnitude (5 A peak).However, it becomes more complicated
if AC and DC short-circuit protection is also required. In particular, with a protection circuit
which limits the output current following the SOA curve of the output transistors, it is possible
that in some conditions (highly reactive loads, for example) the protection circuit may
intervene during normal operation. For this reason each amplifier has been equipped with a
protection circuit that intervenes when the output current exceeds 4 A.
Figure 33 shows the protection circuit for an NPN power transistor (a symmetrical circuit
applies to PNP). The VBE of the power is monitored and gives out a signal, available
through a cascode.
This cascode is used to avoid the intervention of the short-circuit protection when the
saturation is below a given limit.
The signal sets a flip-flop which forces the amplifier outputs into a high impedance state.
In case of DC short-circuit when the short-circuit is removed, the flip-flop is reset and
restarts the circuit (Figure 35). In case of AC short-circuit or load shorted in bridge
configuration, the device is continuously switched in ON/OFF conditions and the current is
limited.
Figure 33. Circuitry for short-circuit detection
5.2
Polarity inversion
High current (up to 10 A) can be handled by the device with no damage for a longer period
than the blow-out time of a quick 2 A fuse (normally connected in series with the supply).
This features is added to avoid destruction, if during fitting to the car, a mistake on the
connection of the supply is made.
Doc ID 9814 Rev 4
21/28
Built-in protection systems
5.3
STA7360
DC voltage
The maximum operating DC voltage for the STA7360 is 18 V.
5.4
Thermal shutdown
The presence of a thermal limiting circuit offers the following advantages:
1.
an overload on the output (even if it is permanent), or an excessive ambient
temperature can be easily withstood.
2.
the heatsink can have a smaller factor of safety compared with that of a conventional
circuit. There is no device damage in the case of excessive junction temperature: all
that happens is that Po (and therefore Ptot) and Id are reduced.
The maximum allowable power dissipation depends upon the size of the external heatsink
(i.e. its thermal resistance). Figure 34 shows the dissipable power as a function of ambient
temperature for different thermal resistance.
Figure 34. Maximum allowable power dissipation vs. ambient temperature
5.5
Loudspeaker protection
The STA7360 guarantees safe operations even for the loudspeaker in case of accidental
short-circuit. Whenever a single OUT to GND, OUT to VS short-circuit occurs, both the
outputs are switched OFF, thus limiting dangerous DC current flowing through the
loudspeaker.
Figure 35. Restart circuit
22/28
Doc ID 9814 Rev 4
STA7360
6
Application hints
Application hints
This section explains briefly how to get the best from the STA7360 and presents some
application circuits with suggestions for the value of the components. These values can
change depending on the characteristics that the designer of the car radio wants to obtain,
or other parts of the car radio that are connected to the audio block.
To optimize the performance of the audio part it is useful (or indispensable) to analyze also
the parts outside this block that can have an interconnection with the amplifier.
This method can provide components and system cost savings.
6.1
Reducing turn-on/off pop
The STA7360 has been designed in a way that the turn-on (off) transients are controlled
through the charge (discharge) of the Csvr capacitor.
As a result of it, the turn-on (off) transient spectrum contents is limited only to the subsonic
range. The following section gives some brief notes to get the best from this design feature
(it will refer mainly to the stereo application which appears to be in most cases the more
critical from the pop viewpoint. The bridge connection in fact, due to the common-mode
waveform at the outputs, does not give a pop effect).
6.2
Turn-on
Figure 36 shows the output waveform (before and after the "A" weighting filter) compared to
the value of Csvr.
Better pop-on performance is obtained with higher Csvr values (the recommended range is
from 22 µF to 220 µF).
The turn-on delay (during which the amplifier is in mute condition) is essentially a function of
Cout, Csvr:
T1 ≈ 120 • Cout
T2 ≈ 1200 • Csvr
The turn-on delay is given by:
T1+T2 STEREO
T2 BRIDGE
The best performance is obtained by driving the st-by pin with a ramp having a slope slower
than 2 V/ms.
Doc ID 9814 Rev 4
23/28
Application hints
STA7360
Figure 36. Turn-on output waveforms compared to the values of Csvr
a) Csvr = 22 µF
b) Csvr = 47 µF
c) Csvr = 100 µF
24/28
Doc ID 9814 Rev 4
STA7360
6.3
Application hints
Turn-off
A turn-off pop can occur if the st-by pin goes low with a short time constant. This pop is due
to the fast switch-off of the internal current generator of the amplifier.
If the voltage present across the load becomes rapidly zero (due to the fast switchoff) a
small pop occurs, depending also on Cout, Rload.
The parameters that set the switchoff time constant of the st-by pin are:
6.4
●
the st-by capacitor (C4)
●
the SVR capacitor (Csvr)
●
resistors connected from the st-by pin to the logical input (Rext)
Balanced input in bridge configuration
A helpful characteristic of the STA7360 is that, in bridge configuration, a signal present on
both the input capacitors is amplified by the same amount and it is present in phase at the
outputs, so this signal does not produce effects on the load. The typical value of CMRR is
46 dB.
Looking at Figure 37, we can see that a noise signal from the ground of the power amplifier
to the ground of the hypothetical preamplifier is amplified of a factor equal to the gain of the
amplifier (2 * Gv).
Using a configuration of Figure 38 the same ground noise is present at the output multiplied
by the factor 2 * Gv/200.
This means less distortion, less noise (e.g. motor cassette noise) and/or a simplification of
the layout of PC board.
The only limitation of this balanced input is the maximum amplitude of common-mode
signals (few tens of millivolt) to avoid a loss of output power due to the common-mode signal
on the output, but in a large number of cases this signal is within this range.
Figure 37. Balanced input in bridge configuration, example 1
Figure 38. Balanced input in bridge configuration, example 2
Doc ID 9814 Rev 4
25/28
Package information
7
STA7360
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Figure 39. Multiwatt11V package mechanical data and dimensions.
DIM.
mm
MIN.
TYP.
inch
MAX.
MIN.
TYP.
MAX.
A
5
B
2.65
0.104
C
1.6
0.063
D
0.197
1
0.039
E
0.49
0.55
0.019
F
0.88
0.95
0.035
G
1.45
1.7
1.95
0.057
0.067
0.077
G1
16.75
17
17.25
0.659
0.669
0.679
H1
19.6
0.022
0.862
0.874
0.886
0.87
0.886
0.037
0.772
H2
L
20.2
21.9
22.2
22.1
L1
21.7
L2
17.4
L3
17.25
L4
10.3
L7
2.65
M
4.25
M1
4.73
S
1.9
S1
Dia1
OUTLINE AND
MECHANICAL DATA
22.5
0.795
22.5
0.854
18.1
0.685
17.5
17.75
0.679
0.689
0.699
10.7
10.9
0.406
0.421
0.429
2.9
0.104
4.55
4.85
0.167
0.179
0.191
5.08
5.43
0.186
0.200
0.214
2.6
0.075
0.102
1.9
2.6
0.075
0.102
3.65
3.85
0.144
0.152
0.713
0.114
Multiwatt11 (Vertical)
0016035 H
26/28
Doc ID 9814 Rev 4
STA7360
8
Revision history
Revision history
Table 6.
Document revision history
Date
Revision
Changes
Sep-2003
1
Initial release.
Nov-2005
2
Add Vst_on and Vst_off in electrical characteristics.
Jan-2006
3
Modified Vst_on max value in Table 4.
12-Dec-2011
4
Added Table 1: Device summary
Updated ECOPACK® text in Section 7: Package information
Revised document presentation, layout; minor textual updates
Doc ID 9814 Rev 4
27/28
STA7360
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
28/28
Doc ID 9814 Rev 4