STM32F070xB STM32F070x6 ARM®-based 32-bit MCU, up to 128 KB Flash, USB FS 2.0, 11 timers, ADC, communication interfaces, 2.4 - 3.6 V Datasheet - production data Features • Core: ARM® 32-bit Cortex®-M0 CPU, frequency up to 48 MHz • Memories – 32 to 128 Kbytes of Flash memory – 6 to 16 Kbytes of SRAM with HW parity • CRC calculation unit • Reset and power management – Digital & I/Os supply: VDD = 2.4 V to 3.6 V – Analog supply: VDDA = VDD to 3.6 V – Power-on/Power down reset (POR/PDR) – Low power modes: Sleep, Stop, Standby • Clock management – 4 to 32 MHz crystal oscillator – 32 kHz oscillator for RTC with calibration – Internal 8 MHz RC with x6 PLL option – Internal 40 kHz RC oscillator • Up to 51 fast I/Os – All mappable on external interrupt vectors – Up to 5155 I/Os with 5V tolerant capability • 5-channel DMA controller • One 12-bit, 1.0 μs ADC (up to 16 channels) – Conversion range: 0 to 3.6 V – Separate analog supply: 2.4 V to 3.6 V TSSOP20 LQFP64 10x10 mm LQFP48 7x7 mm • Communication interfaces – Up to two I2C interfaces – one supporting Fast Mode Plus (1 Mbit/s) with 20 mA current sink, – one supporting SMBus/PMBus. – Up to four USARTs supporting master synchronous SPI and modem control; one with auto baud rate detection – Up to two SPIs (18 Mbit/s) with 4 to 16 programmable bit frames – USB 2.0 full-speed interface with BCD and LPM support • Serial wire debug (SWD) ® • All packages ECOPACK 2 Table 1. Device summary Reference Part number STM32F070xB STM32F070CB, STM32F070RB STM32F070x6 STM32F070C6, STM32F070F6 • Calendar RTC with alarm and periodic wakeup from Stop/Standby • 11 timers – One 16-bit advanced-control timer for six-channel PWM output – Up to seven 16-bit timers, with up to four IC/OC, OCN, usable for IR control decoding – Independent and system watchdog timers – SysTick timer January 2015 This is information on a product in full production. DocID027114 Rev 2 1/88 www.st.com Contents STM32F070xB STM32F070x6 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 ARM®-Cortex®-M0 core with embedded Flash and SRAM . . . . . . . . . . . 12 3.2 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.4 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 13 3.5 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.2 Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.8 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.9 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.10 3.11 2/88 3.5.1 3.9.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16 3.9.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 16 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.11.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11.2 General-purpose timers (TIM3, TIM14..17) . . . . . . . . . . . . . . . . . . . . . . 19 3.11.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.11.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.11.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.11.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.12 Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.13 Inter-integrated circuit interfaces (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14 Universal synchronous/asynchronous receiver transmitters (USART) . . 22 DocID027114 Rev 2 STM32F070xB STM32F070x6 Contents 3.15 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.16 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 41 6.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 42 6.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.3.6 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6.3.10 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.3.18 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 DocID027114 Rev 2 3/88 4 Contents STM32F070xB STM32F070x6 6.3.19 7 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F070xB/6 family device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . 10 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 STM32F070xB/6 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 STM32F070xB/6 USART implementationF070 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 STM32F070xB/6 SPI implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 STM32F070xB/6 pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 31 Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 32 Alternate functions selected through GPIOC_AFR registers for port C . . . . . . . . . . . . . . . 33 Alternate functions selected through GPIOD_AFR registers for port D . . . . . . . . . . . . . . . 33 Alternate functions selected through GPIOF_AFR registers for port F. . . . . . . . . . . . . . . . 33 STM32F070xB/6 peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . 35 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 42 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Typical and maximum current consumption from VDD supply at VDD = 3.6 V . . . . . . . . . . 43 Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 44 Typical and maximum consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . 44 Typical current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Low-power mode wakeup timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Output voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 DocID027114 Rev 2 5/88 6 List of tables Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. 6/88 STM32F070xB STM32F070x6 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 IWDG min/max timeout period at 40 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 WWDG min/max timeout value at 48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 LQFP64 - 10 x 10 mm low-profile quad flat package mechanical data. . . . . . . . . . . . . . . . 77 LQFP48 - 7 mm x 7 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . 80 TSSOP20 - 20-pin thin shrink small outline package mechanical data . . . . . . . . . . . . . . . 83 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 DocID027114 Rev 2 STM32F070xB STM32F070x6 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 LQFP64 64-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 LQFP48 48-pin package pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 TSSOP20 20-pin package pinout (top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 STM32F070xB/6 memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 77 LQFP64 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 LQFP48 - 7 mm x 7 mm, 48 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 80 LQFP48 recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 TSSOP20 - 20-pin thin shrink small outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 TSSOP20 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 TSSOP20 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 DocID027114 Rev 2 7/88 7 Introduction 1 STM32F070xB STM32F070x6 Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F070xB/6 microcontrollers. This document should be read in conjunction with the STM32F0x0xx reference manual (RM0360). The reference manual is available from the STMicroelectronics website www.st.com. For information on the ARM® Cortex®-M0 core, please refer to the Cortex®-M0 Technical Reference Manual, available from the www.arm.com website. 8/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 2 Description Description The STM32F070xB/6 microcontrollers incorporate the high-performance ARM® Cortex®M0 32-bit RISC core operating at a 48 MHz frequency, high-speed embedded memories (up to 128 Kbytes of Flash memory and up to 16 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (up to two I2Cs, up to two SPIs and up to four USARTs), one USB Full speed device, one 12-bit ADC, seven general-purpose 16-bit timers and an advanced-control PWM timer. The STM32F070xB/6 microcontrollers operate in the -40 to +85 °C temperature range from a 2.4 to 3.6V power supply. A comprehensive set of power-saving modes allows the design of low-power applications. The STM32F070xB/6 microcontrollers include devices in three different packages ranging from 20 pins to 64 pins. Depending on the device chosen, different sets of peripherals are included. The description below provides an overview of the complete range of STM32F070xB/6 peripherals proposed. These features make the STM32F070xB/6 microcontrollers suitable for a wide range of applications such as application control and user interfaces, handheld equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs. DocID027114 Rev 2 9/88 23 Description STM32F070xB STM32F070x6 Table 2. STM32F070xB/6 family device features and peripheral counts Peripheral STM32F070F6 STM32F070C6 STM32F070RB Flash (Kbytes) 32 128 SRAM (Kbytes) 6 16 Advanced control Timers Comm. interfaces 1 (16-bit) General purpose 4 (16-bit) 5 (16-bit) Basic - 2 (16-bit) SPI 1 2 I C 1 2 USART 2 4 2 USB 12-bit ADC (number of channels) GPIOs 1 1 (9 ext. + 3 int.) 1 (10 ext. + 3 int.) 1 (10 ext. + 3 int.) 1 (16 ext. + 3 int.) 15 37 37 51 Max. CPU frequency 48 MHz Operating voltage Operating temperature Packages 10/88 STM32F070CB 2.4 to 3.6 V Ambient operating temperature: -40°C to 85°C Junction temperature: -40°C to 105°C TSSOP20 LQFP48 DocID027114 Rev 2 LQFP48 LQFP64 STM32F070xB STM32F070x6 Description Figure 1. Block diagram 9'' 6HULDO:LUH 'HEXJ )ODVK 2EO LQWHUIDFH 6:&/. 6:',2 DV$) %XVPDWUL[ 65$0 FRQWUROOHU &257(;0&38 I0$; 0+] 19,& 32:(5 92/75(* 9WR9 )ODVK*3/ 8SWR.% ELWV 65$0 8SWR .% 9'',2 WR9 966 #9'',2 9''86%2.,1 #9''$ 325 5HVHW ,QW 6833/< 683(59,6,21 3253'5 1567 9''$ 966$ 5&+60+] 5&+60+] *3'0$ FKDQQHOV #9''$ #9'',2 3// 5&/6 ;7$/26& 0+] 26&B,13) 26&B2873) ,QG:LQGRZ:'* *3,2SRUW$ 3%>@ *3,2SRUW% 3&>@3&>@ *3,2SRUW& 3' *3,2SRUW' 3)>@ *3,2SRUW) 5(6(7 &/2&. &21752/ $+% GHFRGHU 3$>@ $+%3&/. $3%3&/. $'&&/. &(&&/. 86$57&/. +&/. )&/. 86%&/. 3RZHU &RQWUROOHU #96: ;7$/N+] 57& 26&B,1 26&B287 7$03(557& $/$50287 57&LQWHUIDFH &5& 3:07,0(5 FKDQQHOV FRPSO&KDQQHOV %5.(75LQSXWDV$) $+% $3% (;7,7 :.83 $) '' 86% 3+< 86% 65$0 % #9''86% 65$0 % :,QGRZ:'* 7,0(5 FK(75DV$) 7,0(5 FKDQQHODV$) 7,0(5 FKDQQHOV FRPSO%5.DV$) 7,0(5 FKDQQHO FRPSO%5.DV$) 7,0(5 FKDQQHO FRPSO%5.DV$) ,5B287DV$) '%*0&8 026,6' 0,620&. 6&.&. 166:6DV$) 026,6' 0,620&. 6&.&. 166:6DV$) 63, 63, 6<6&)*,) 7HPS VHQVRU $'LQSXWV #9''$ ELW $'& ,) 86$57 5;7;&76576 &.DV$) 86$57 5;7;&76576 &.DV$) 86$57 5;7;&76576 &.DV$) 86$57 5;7;&76576 &.DV$) ,& 6&/6'$60%$ P$IRU)0 DV$) ,& 6&/6'$DV$) 7,0(5 9''$ 966$ 7,0(5 #9''$ >ĞŐĞŶĚ͗ 6XSSOLHGE\9''$ 6XSSOLHGE\9'' 06Y9 DocID027114 Rev 2 11/88 23 Functional overview STM32F070xB STM32F070x6 3 Functional overview 3.1 ARM®-Cortex®-M0 core with embedded Flash and SRAM The ARM® Cortex®-M0 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM® Cortex®-M0 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The STM32F0xx family has an embedded ARM core and is therefore compatible with all ARM tools and software. Figure 1 shows the general block diagram of the device family. 3.2 Memories The device has the following features: • 6 to 16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for failcritical applications. • The non-volatile memory is divided into two arrays: – 32 to 128 Kbytes of embedded Flash memory for programs and data – Option bytes The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options: – Level 0: no readout protection – Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected ® – Level 2: chip readout protection, debug features (Cortex -M0 serial wire) and boot in RAM selection disabled 3.3 Boot modes At startup, the boot pin and boot selector option bit are used to select one of the three boot options: • Boot from User Flash • Boot from System Memory • Boot from embedded SRAM The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10. 12/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 3.4 Functional overview Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.5 Power management 3.5.1 Power supply schemes • • VDD = 2.4 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins. VDDA = from VDD to 3.6 V: external analog power supply for ADC, Reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC is used). The VDDA voltage level must be always greater or equal to the VDD voltage level and must be provided first. For more details on how to connect power pins, refer to Figure 9: Power supply scheme. 3.5.2 Power supply supervisors The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. • The POR monitors only the VDD supply voltage. During the startup phase it is required that VDDA should arrive first and be greater than or equal to VDD. • The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that VDDA is higher than or equal to VDD. 3.5.3 Voltage regulator The regulator has two operating modes and it is always enabled after reset. • Main (MR) is used in normal operating mode (Run). • Low power (LPR) can be used in Stop mode where the power demand is reduced. In Standby mode, it is put in power down mode. In this mode, the regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost). DocID027114 Rev 2 13/88 23 Functional overview 3.5.4 STM32F070xB STM32F070x6 Low-power modes The STM32F070xB/6 microcontrollers support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: • Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. • Stop mode Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines and RTC. • Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the RTC domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pins, or an RTC event occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. 3.6 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz. 14/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Functional overview Figure 2. Clock tree )/,7)&/. WR)ODVK SURJUDPPLQJLQWHUIDFH +6, WR,& 6<6&/. 0+] +6,5& +6, +&/. 6: 3//65& 35(',9 3//08/ 3// [[ [ +6, 3//&/. +6( WR$+%EXVFRUH PHPRU\DQG'0$ WRFRUWH[6\VWHPWLPHU )&/.&RUWH[IUHHUXQQLQJFORFN $+% $+% SUHVFDOHU 6<6&/. $3% SUHVFDOHU 3&/. WR$3%SHULSKHUDOV &66 26&B287 26&B,1 ,I$3%SUHVFDOHU [HOVH[ 0+] +6(26& 3&/. 6<6&/. +6, /6( 26&B,1 26&B287 /6(26& N+] 57&&/. /6,5& N+] 0&235( 0DLQFORFN RXWSXW WR7,0 WR86$57 WR57& /6( WR86% 57&6(/>@ 0&2 WR7,0 /6, WR,:'* 3//12',9 3//&/. 0&2 +6, +6, +6( 6<6&/. /6, /6( 0+] +6, +6,5& WR$'& DV\QFKURQRXV FORFNLQSXW 069 3.7 General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. DocID027114 Rev 2 15/88 23 Functional overview 3.8 STM32F070xB STM32F070x6 Direct memory access controller (DMA) The 5-channel general-purpose DMA manages memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I2C, USART, all TIMx timers (except TIM14) and ADC. 3.9 Interrupts and events 3.9.1 Nested vectored interrupt controller (NVIC) The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to ® 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex -M0) and 4 priority levels. • Closely coupled NVIC gives low latency interrupt processing • Interrupt entry vector table address passed directly to the core • Closely coupled NVIC core interface • Allows early processing of interrupts • Processing of late arriving higher priority interrupts • Support for tail-chaining • Processor state automatically saved • Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. 3.9.2 Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 32 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 51 GPIOs can be connected to the 16 external interrupt lines. 16/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 3.10 Functional overview Analog to digital converter (ADC) The 12-bit analog to digital converter has up to 16 external and two internal (temperature sensor, voltage reference measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. 3.10.1 Temperature sensor The temperature sensor (TS) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. Table 3. Temperature sensor calibration values Calibration value name TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), VDDA= 3.3 V (± 10 mV) TS_CAL1 3.10.2 Description Memory address 0x1FFF F7B8 - 0x1FFF F7B9 Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC. VREFINT is internally connected to the ADC_IN17 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. Table 4. Internal voltage reference calibration values Calibration value name VREFINT_CAL Description Memory address Raw data acquired at a temperature of 30 °C (± 5 °C), 0x1FFF F7BA - 0x1FFF F7BB VDDA= 3.3 V (± 10 mV) DocID027114 Rev 2 17/88 23 Functional overview 3.11 STM32F070xB STM32F070x6 Timers and watchdogs The STM32F070xB/6 devices include up to six general-purpose timers, two basic timers and one advanced control timer. Table 5 compares the features of the different timers. Table 5. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor Advanced control TIM1 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 Yes TIM3 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM14 16-bit Up Any integer between 1 and 65536 No 1 No TIM15(1) 16-bit Up Any integer between 1 and 65536 Yes 2 No TIM16, TIM17 16-bit Up Any integer between 1 and 65536 Yes 1 Yes TIM6,(1) TIM7(1) 16-bit Up Any integer between 1 and 65536 Yes 0 No General purpose Basic DMA request Capture/compare Complementary generation channels outputs 1. Not available on STM32F070x6 devices. 18/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 3.11.1 Functional overview Advanced-control timer (TIM1) The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for: • Input capture • Output compare • PWM generation (edge or center-aligned modes) • One-pulse mode output If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%). The counter can be frozen in debug mode. Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining. 3.11.2 General-purpose timers (TIM3, TIM14..17) There are five synchronizable general-purpose timers embedded in the STM32F070xB/6 devices (see Table 5 for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base. TIM3 STM32F070xB/6 devices feature one synchronizable 4-channel general-purpose timer. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. It features four independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages. The TIM3 general-purpose timer can work with the TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining. TIM3 has an independent DMA request generation. This timer is capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. The counter can be frozen in debug mode. TIM14 This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output. Its counter can be frozen in debug mode. TIM15, TIM16 and TIM17 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output. DocID027114 Rev 2 19/88 23 Functional overview STM32F070xB STM32F070x6 The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate withTIM1 via the Timer Link feature for synchronization or event chaining. TIM15 can be synchronized with TIM16 and TIM17. TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation. Their counters can be frozen in debug mode. 3.11.3 Basic timers TIM6 and TIM7 These timers can be used as a generic 16-bit time base. 3.11.4 Independent watchdog (IWDG) The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.11.5 System window watchdog (WWDG) The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.11.6 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: • A 24-bit down counter • Autoreload capability • Maskable system interrupt generation when the counter reaches 0 • Programmable clock source (HCLK or HCLK/8) 20/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 3.12 Functional overview Real-time clock (RTC) The RTC is an independent BCD timer/counter. Its main features are the following: • Calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. • Automatic correction for 28, 29 (leap year), 30, and 31 day of the month. • Programmable alarm with wake up from Stop and Standby mode capability. • Periodic wakeup unit with programmable resolution and period. • On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize the RTC with a master clock. • Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy. • Tow anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection. • Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection. • Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC clock sources can be: • A 32.768 kHz external crystal • A resonator or oscillator • The internal low-power RC oscillator (typical frequency of 40 kHz) • The high-speed external clock divided by 32 3.13 Inter-integrated circuit interfaces (I2C) Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s) or Fast mode (up to 400 kbit/s). I2C1 also supports Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive. Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). They also include programmable analog and digital noise filters. Table 6. Comparison of I2C analog and digital filters Analog filter Digital filter Pulse width of suppressed spikes ≥ 50 ns Programmable length from 1 to 15 I2C peripheral clocks Benefits Available in Stop mode 1. Extra filtering capability vs. standard requirements. 2. Stable length Drawbacks Variations depending on temperature, voltage, process DocID027114 Rev 2 - 21/88 23 Functional overview STM32F070xB STM32F070x6 In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. The I2C interfaces can be served by the DMA controller. Refer to Table 7 for the differences between I2C1 and I2C2. Table 7. STM32F070xB/6 I2C implementation I2C features(1) I2C1 I2C2(2) 7-bit addressing mode X X 10-bit addressing mode X X Standard mode (up to 100 kbit/s) X X Fast mode (up to 400 kbit/s) X X Fast Mode Plus (up to 1 Mbit/s) with 20mA output drive I/Os X - Independent clock X - SMBus X - Wakeup from STOP - - 1. X = supported. 2. Only available on STM32F070xB devices. 3.14 Universal synchronous/asynchronous receiver transmitters (USART) The device embeds up to four universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3, USART4 on STM32F070xB devices only), which communicate at speeds of up to 6 Mbit/s. They provide hardware management of the CTS and RTS signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 supports also the auto baud rate feature. The USART interfaces can be served by the DMA controller. Table 8. STM32F070xB/6 USART implementationF070(1) USART1 and USART2 USART3(2)and USART4(2) Hardware flow control for modem X X Continuous communication using DMA X X Multiprocessor communication X X Synchronous mode X X Single-wire half-duplex communication X X Receiver timeout interrupt X - Auto baud rate detection X - USART modes/features 1. Where X means supported. 2. Not available on STM32F070x6 devices. 22/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 3.15 Functional overview Serial peripheral interface (SPI) Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in fullduplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. SPI1 and SPI2 are identical and implement the set of features shown in the following table. Table 9. STM32F070xB/6 SPI implementation SPI features(1) SPI1 SPI2(2) Hardware CRC calculation X X Rx/Tx FIFO X X NSS pulse mode X X TI mode X X 1. X = supported. 2. Available on STM32F070xB only. 3.16 Universal serial bus (USB) The STM32F070xB/6 embeds a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has software-configurable endpoint setting with packet memory up-to 1 KB and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use an HSE crystal oscillator). 3.17 Serial wire debug port (SW-DP) An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU. DocID027114 Rev 2 23/88 23 Pinouts and pin descriptions 4 STM32F070xB STM32F070x6 Pinouts and pin descriptions 3& 3&26&B,1 3&26&B287 3)26&B,1 3)26&B287 1567 3& 3& 3& 3& 966$ 9''$ 3$ 3$ 966 9'' 3$ 3$ /4)3 9'' 966 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 3% 3% 966 9'' 9'' 3% 3% %227 3% 3% 3% 3% 3% 3' 3& 3& 3& 3$ 3$ 9'' 966 Figure 3. LQFP64 64-pin package pinout (top view) 069 24/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Pinouts and pin descriptions 9'' 3& 3&26&B,1 3&26&B287 3)26&B,1 3)26&B287 1567 966$ 9''$ 3$ 3$ 3% 3$ 3$ 3% 3% 3% 3% %227 3% /4)3 9'' 966 3$ 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 9'' 3% 966 3% 3% 3% 3% 3$ 3$ 3$ 3$ 3$ 3$ 3% 9'' 966 Figure 4. LQFP48 48-pin package pinout (top view) 069 Figure 5. TSSOP20 20-pin package pinout (top view) 3$ 3$ 3$>3$@ 3$>3$@ 9'' 966 3% 3$ 3$ 3$ %227 3)26&B,1 3)26&B287 1567 9''$ 3$ 3$ 3$ 3$ 3$ 069 DocID027114 Rev 2 25/88 30 Pinouts and pin descriptions STM32F070xB STM32F070x6 Table 10. Legend/abbreviations used in the pinout table Name Abbreviation Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name Pin name Pin type I/O structure S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O FTf 5 V tolerant I/O, FM+ capable TTa 3.3 V tolerant I/O directly connected to ADC TC Standard 3.3 V I/O B Dedicated BOOT0 pin RST Bidirectional reset pin with embedded weak pull-up resistor Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset. Notes Pin functions Definition Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers LQFP48 TSSOP20 1 1 - Pin name (function after reset) Pin type VDD S Alternate functions Additional functions Digital power supply - WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT - OSC32_IN - OSC32_OUT FT I2C1_SDA(3) OSC_IN I/O FT I2C1_SCL(3) OSC_OUT I/O RST 2 2 - PC13 I/O TC 3 3 - PC14-OSC32_IN (PC14) I/O TC 4 4 - PC15OSC32_OUT (PC15) I/O TC 5 5 2 PF0-OSC_IN (PF0) I/O 6 6 3 PF1-OSC_OUT (PF1) 7 7 4 NRST 26/88 Pin functions Notes LQFP64 Pin numbers I/O structure Table 11. STM32F070xB/6 pin definitions (1) (2) (1) (2) (1) (2) Device reset input / internal reset output (active low) DocID027114 Rev 2 STM32F070xB STM32F070x6 Pinouts and pin descriptions Table 11. STM32F070xB/6 pin definitions (continued) TSSOP20 Notes LQFP48 Pin type Pin functions LQFP64 Pin name (function after reset) I/O structure Pin numbers 8 - - PC0 I/O TTa EVENTOUT ADC_IN10 9 - - PC1 I/O TTa EVENTOUT ADC_IN11 10 - - PC2 I/O TTa SPI2_MISO, EVENTOUT ADC_IN12 11 - - PC3 I/O TTa SPI2_MOSI, EVENTOUT ADC_IN13 12 8 - VSSA S Analog ground 13 9 5 VDDA S Analog power supply 14 10 6 PA0 I/O TTa (4) USART2_CTS, USART4_TX RTC_ TAMP2, WKUP1, ADC_IN0, 15 11 7 PA1 I/O TTa (4) USART2_RTS, TIM15_CH1N, USART4_RX, EVENTOUT ADC_IN1 16 12 8 PA2 I/O TTa (4) USART2_TX, TIM15_CH1 ADC_IN2, WKUP4 TTa (4) USART2_RX, TIM15_CH2 ADC_IN3 Alternate functions Additional functions 17 13 9 PA3 I/O 18 - 15 VSS S Ground 19 - 16 VDD S Digital power supply 20 14 20 PA4 I/O TTa SPI1_NSS, TIM14_CH1, USART2_CK, USB_NOE(3) ADC_IN4 21 15 11 PA5 I/O TTa SPI1_SCK ADC_IN5 SPI1_MISO, TIM3_CH1, TIM1_BKIN, TIM16_CH1, EVENTOUT, USART3_CTS ADC_IN6 SPI1_MOSI, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, EVENTOUT ADC_IN7 22 16 12 PA6 I/O TTa (4) 23 17 13 PA7 I/O TTa 24 - - PC4 I/O TTa (4) EVENTOUT, USART3_TX ADC_IN14 USART3_RX ADC_IN15, WKUP5 25 - - PC5 I/O TTa (4) 26 18 - PB0 I/O TTa (4) TIM3_CH3, TIM1_CH2N, EVENTOUT, USART3_CK ADC_IN8 27 19 14 PB1 I/O TTa (4) TIM3_CH4, USART3_RTS, TIM14_CH1, TIM1_CH3N ADC_IN9 28 20 - PB2 I/O FT - - SPI2_SCK, USART3_TX - 29 21 - PB10 I/O FT (4) DocID027114 Rev 2 27/88 30 Pinouts and pin descriptions STM32F070xB STM32F070x6 Table 11. STM32F070xB/6 pin definitions (continued) (4) TSSOP20 FT LQFP48 Pin type LQFP64 Pin name (function after reset) Notes Pin functions I/O structure Pin numbers 30 22 - PB11 I/O 31 23 - VSS S Ground 32 24 - VDD S Digital power supply 33 25 - PB12 I/O FT (4) TIM1_BKIN, TIM15_BKIN, SPI2_NSS, EVENTOUT, USART3_CK - 34 26 - PB13 I/O FTf (4) SPI2_SCK, I2C2_SCL, TIM1_CH1N, USART3_CTS - 35 27 - PB14 I/O FTf (4) SPI2_MISO, I2C2_SDA, TIM1_CH2N, TIM15_CH1, USART3_RTS - 36 28 - PB15 I/O FT (4) SPI2_MOSI, TIM1_CH3N, TIM15_CH1N, TIM15_CH2 WKUP7, RTC_REFIN 37 - - PC6 I/O FT TIM3_CH1 - 38 - - PC7 I/O FT TIM3_CH2 - 39 - - PC8 I/O FT TIM3_CH3 - 40 - - PC9 I/O FT TIM3_CH4 - 41 29 - PA8 I/O FT USART1_CK, TIM1_CH1, EVENTOUT, MCO - 42 30 17 PA9 I/O FT USART1_TX, TIM1_CH2, TIM15_BKIN, I2C1_SCL(3) - 43 31 18 PA10 I/O FT USART1_RX, TIM1_CH3, TIM17_BKIN, I2C1_SDA(3) - 44 32 17(5) PA11 I/O FT USART1_CTS, TIM1_CH4, EVENTOUT USB_DM 45 33 18(5) PA12 I/O FT USART1_RTS, TIM1_ETR, EVENTOUT USB_DP 46 34 19 PA13 I/O FT IR_OUT, SWDIO, USB_NOE - 47 35 - VSS S Ground 48 36 - VDD S Digital power supply 49 37 20 PA14 I/O 28/88 FT (4) (6) Alternate functions Additional functions USART3_RX, EVENTOUT, I2C2_SDA - USART2_TX, SWCLK DocID027114 Rev 2 - STM32F070xB STM32F070x6 Pinouts and pin descriptions Table 11. STM32F070xB/6 pin definitions (continued) LQFP48 TSSOP20 I/O structure Notes Pin functions LQFP64 Pin numbers 50 38 - PA15 I/O FT (4) SPI1_NSS, USART2_RX, USART4_RTS, EVENTOUT - 51 - - PC10 I/O FT (4) USART3_TX, USART4_TX - 52 - - PC11 I/O FT (4) USART3_RX, USART4_RX - 53 - - PC12 I/O FT (4) USART3_CK, USART4_CK - 54 - - PD2 I/O FT (4) TIM3_ETR, USART3_RTS - 55 39 - PB3 I/O FT SPI1_SCK, EVENTOUT - 56 40 - PB4 I/O FT SPI1_MISO, TIM17_BKIN, TIM3_CH1, EVENTOUT - 57 41 - PB5 I/O FT SPI1_MOSI, I2C1_SMBA, TIM16_BKIN, TIM3_CH2 WKUP6 58 42 - PB6 I/O FTf I2C1_SCL, USART1_TX, TIM16_CH1N - 59 43 - PB7 I/O FTf I2C1_SDA, USART1_RX, USART4_CTS, TIM17_CH1N - 60 44 1 BOOT0 I B 61 45 - PB8 I/O FTf 62 46 - PB9 I/O FTf 63 47 - VSS S Ground 64 48 - VDD S Digital power supply Pin name (function after reset) Pin type (4) (4) Alternate functions Additional functions Boot memory selection (4) I2C1_SCL, TIM16_CH1 - SPI2_NSS, I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT - 1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF. - These GPIOs must not be used as current sources (e.g. to drive an LED). 2. After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC domain and RTC register descriptions in the reference manual. 3. Available on STM32F070x6 devices only. 4. TIM15, I2C2, WKUP4, WKUP5, WKUP6, WKUP7, SPI2, USART3 and USART4 are available on STM32F070xB devices only. 5. On STM32F070x6 devices, pin pair PA11/12 can be remapped instead of pin pair PA9/10 using SYSCFG_CFGR1 register. DocID027114 Rev 2 29/88 30 Pinouts and pin descriptions STM32F070xB STM32F070x6 6. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin and the internal pull-down on the SWCLK pin are activated. 30/88 DocID027114 Rev 2 Pin name AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 PA0 - USART2_CTS - - USART4_TX(1) - - - PA1 EVENTOUT USART2_RTS - - USART4_RX(1) TIM15_CH1N(1) - - TIM15_CH1 (1) USART2_TX - - - - - - TIM15_CH2 (1) USART2_RX - - - - - - - TIM14_CH1 - - - - - - - - TIM16_CH1 EVENTOUT - PA2 PA3 PA4 SPI1_NSS USART2_CK PA5 SPI1_SCK - - (1) DocID027114 Rev 2 PA6 SPI1_MISO TIM3_CH1 TIM1_BKIN - USART3_CTS PA7 SPI1_MOSI TIM3_CH2 TIM1_CH1N - TIM14_CH1 TIM17_CH1 EVENTOUT - PA8 MCO USART1_CK TIM1_CH1 EVENTOUT - - - - PA9 TIM15_BKIN(1) USART1_TX TIM1_CH2 - I2C1_SCL (2) - - - (2) - - - PA10 TIM17_BKIN USART1_RX TIM1_CH3 - PA11 EVENTOUT USART1_CTS TIM1_CH4 - - - - - PA12 EVENTOUT USART1_RTS TIM1_ETR - - - - - PA13 SWDIO IR_OUT USB_NOE - - - - - PA14 SWCLK USART2_TX - - - - - - - - - PA15 SPI1_NSS USART2_RX 1. Available on STM32F070xB devices only. 2. USB_NOE (2) Available on STM32F070x6 devices only. - EVENTOUT I2C1_SDA USART4_RTS (1) STM32F070xB STM32F070x6 Table 12. Alternate functions selected through GPIOA_AFR registers for port A 31/88 32/88 Table 13. Alternate functions selected through GPIOB_AFR registers for port B Pin name AF0 AF1 AF2 AF3 AF4 AF5 PB0 EVENTOUT TIM3_CH3 TIM1_CH2N - USART3_CK(1) USART3_RTS (1) - PB1 TIM14_CH1 TIM3_CH4 TIM1_CH3N - PB2 - - - - - - PB3 SPI1_SCK EVENTOUT - - - - PB4 SPI1_MISO TIM3_CH1 EVENTOUT - - TIM17_BKIN PB5 SPI1_MOSI TIM3_CH2 TIM16_BKIN I2C1_SMBA - - PB6 USART1_TX I2C1_SCL TIM16_CH1N - - - DocID027114 Rev 2 PB7 USART1_RX I2C1_SDA TIM17_CH1N - PB8 - I2C1_SCL TIM16_CH1 - - - PB9 IR_OUT I2C1_SDA TIM17_CH1 EVENTOUT - SPI2_NSS(1) PB10 - I2C2_SCL(1) - - USART3_TX(1) SPI2_SCK(1) PB11 EVENTOUT I2C2_SDA(1) - - USART3_RX(1) - PB12 SPI2_NSS(1) EVENTOUT TIM1_BKIN - USART3_CK(1) TIM15_BKIN(1) PB13 SPI2_SCK(1) - TIM1_CH1N - USART3_CTS(1) I2C2_SCL(1) PB14 SPI2_MISO(1) TIM15_CH1 TIM1_CH2N - USART3_RTS(1) I2C2_SDA(1) PB15 SPI2_MOSI(1) TIM15_CH2 TIM1_CH3N TIM15_CH1N(1) - - STM32F070xB STM32F070x6 1. Available on STM32F070xB devices only. USART4_CTS (1) STM32F070xB STM32F070x6 Table 14. Alternate functions selected through GPIOC_AFR registers for port C Pin name AF0(1) PC0 EVENTOUT(1) - PC1 EVENTOUT (1) - PC2 EVENTOUT (1) SPI2_MISO(1) PC3 EVENTOUT(1) SPI2_MOSI(1) PC4 EVENTOUT(1) USART3_TX(1) PC5 - USART3_RX(1) PC6 TIM3_CH1(1) - PC7 TIM3_CH2(1) - PC8 TIM3_CH3 (1) - TIM3_CH4 (1) - PC9 AF1(1) PC10 USART4_TX (1) USART3_TX(1) PC11 USART4_RX(1) USART3_RX(1) PC12 USART4_CK(1) USART3_CK(1) PC13 - - PC14 - - PC15 - - 1. Available on STM32F070xB devices only. Table 15. Alternate functions selected through GPIOD_AFR registers for port D Pin name AF0(1) AF1(1) PD2 TIM3_ETR(1) - 1. Available on STM32F070xB devices only. Table 16. Alternate functions selected through GPIOF_AFR registers for port F Pin name AF0 AF1 PF0 - I2C1_SDA(1) PF1 - I2C1_SCL(1) 1. Available on STM32F070x6 devices only. DocID027114 Rev 2 33/88 33 Memory mapping 5 STM32F070xB STM32F070x6 Memory mapping Figure 6. STM32F070xB/6 memory map [)))))))) [)) $+% [ [( [( &RUWH[ 0,QWHUQDO 3HULSKHUDOV UHVHUYHG [& [)) $+% [ 5HVHUYHG [$ [ [))))))) [)))) $3% 2SWLRQE\WHV [ [ 6\VWHPPHPRU\ 5HVHUYHG [ [)))& $3% [ [ 5HVHUYHG [ 3HULSKHUDOV [ )ODVKPHPRU\ [ 65$0 [ 5HVHUYHG &2'( [ )ODVKV\VWHPPHPRU\ RU65$0GHSHQGLQJRQ %227FRQILJXUDWLRQ [ [ 5HVHUYHG 069 34/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Memory mapping Table 17. STM32F070xB/6 peripheral register boundary addresses Bus AHB2 AHB1 APB Boundary address Size Peripheral 0x4800 1800 - 0x5FFF FFFF ~384 MB Reserved 0x4800 1400 - 0x4800 17FF 1 KB GPIOF 0x4800 1000 - 0x4800 13FF 1 KB Reserved 0x4800 0C00 - 0x4800 0FFF 1 KB GPIOD 0x4800 0800 - 0x4800 0BFF 1 KB GPIOC 0x4800 0400 - 0x4800 07FF 1 KB GPIOB 0x4800 0000 - 0x4800 03FF 1 KB GPIOA 0x4002 4400 - 0x47FF FFFF ~128 MB Reserved 0x4002 3400 - 0x4002 43FF 4 KB Reserved 0x4002 3000 - 0x4002 33FF 1 KB CRC 0x4002 2400 - 0x4002 2FFF 3 KB Reserved 0x4002 2000 - 0x4002 23FF 1 KB FLASH Interface 0x4002 1400 - 0x4002 1FFF 3 KB Reserved 0x4002 1000 - 0x4002 13FF 1 KB RCC 0x4002 0400 - 0x4002 0FFF 3 KB Reserved 0x4002 0000 - 0x4002 03FF 1 KB DMA 0x4001 8000 - 0x4001 FFFF 32 KB Reserved 0x4001 5C00 - 0x4001 7FFF 9 KB Reserved 0x4001 5800 - 0x4001 5BFF 1 KB DBGMCU 0x4001 4C00 - 0x4001 57FF 3 KB Reserved 0x4001 4800 - 0x4001 4BFF 1 KB TIM17 0x4001 4400 - 0x4001 47FF 1 KB TIM16 0x4001 4000 - 0x4001 43FF 1 KB TIM15 0x4001 3C00 - 0x4001 3FFF 1 KB Reserved 0x4001 3800 - 0x4001 3BFF 1 KB USART1 0x4001 3400 - 0x4001 37FF 1 KB Reserved 0x4001 3000 - 0x4001 33FF 1 KB SPI1 0x4001 2C00 - 0x4001 2FFF 1 KB TIM1 0x4001 2800 - 0x4001 2BFF 1 KB Reserved 0x4001 2400 - 0x4001 27FF 1 KB ADC 0x4001 0800 - 0x4001 23FF 7 KB Reserved 0x4001 0400 - 0x4001 07FF 1 KB EXTI 0x4001 0000 - 0x4001 03FF 1 KB SYSCFG 0x4000 8000 - 0x4000 FFFF 32 KB Reserved DocID027114 Rev 2 35/88 36 Memory mapping STM32F070xB STM32F070x6 Table 17. STM32F070xB/6 peripheral register boundary addresses (continued) Bus APB Boundary address Size Peripheral 0x4000 7400 - 0x4000 7FFF 3 KB Reserved 0x4000 7000 - 0x4000 73FF 1 KB PWR 0x4000 6C00 - 0x4000 6FFF 1 KB Reserved 0x4000 6400 - 0x4000 67FF 2 KB Reserved 0x4000 6000 - 0x4000 63FF 1 KB USB RAM 0x4000 5800 - 0x4000 5BFF 1 KB I2C2(1) 0x4000 5400 - 0x4000 57FF 1 KB I2C1 0x4000 5000 - 0x4000 53FF 3 KB Reserved 0x4000 4C00 - 0x4000 4FFF 1 KB USART4(1) 0x4000 4800 - 0x4000 4BFF 1 KB USART3(1) 0x4000 4400 - 0x4000 47FF 1 KB USART2 0x4000 3C00 - 0x4000 43FF 2 KB Reserved 0x4000 3800 - 0x4000 3BFF 1 KB SPI2(1) 0x4000 3400 - 0x4000 37FF 1 KB Reserved 0x4000 3000 - 0x4000 33FF 1 KB IWDG 0x4000 2C00 - 0x4000 2FFF 1 KB WWDG 0x4000 2800 - 0x4000 2BFF 1 KB RTC 0x4000 2400 - 0x4000 27FF 1 KB Reserved 0x4000 2000 - 0x4000 23FF 1 KB TIM14 0x4000 1800 - 0x4000 1FFF 2 KB Reserved 0x4000 1400 - 0x4000 17FF 1 KB TIM7 0x4000 1000 - 0x4000 13FF 1 KB TIM6 0x4000 0800 - 0x4000 0FFF 2 KB Reserved 0x4000 0400 - 0x4000 07FF 1 KB TIM3 0x4000 0000 - 0x4000 03FF 1 KB Reserved 1. Available on STM32F070xB devices only. 36/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Electrical characteristics 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean ±3σ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean ±2σ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 7. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 8. Figure 7. Pin loading conditions Figure 8. Pin input voltage 0&8SLQ 0&8SLQ & S) 9,1 069 DocID027114 Rev 2 069 37/88 75 Electrical characteristics 6.1.6 STM32F070xB STM32F070x6 Power supply scheme Figure 9. Power supply scheme 287 *3,2V ,1 /HYHOVKLIWHU /6(57& :DNHXSORJLF 9'' [9'' [Q) [) ,2ORJLF .HUQHOORJLF &38 GLJLWDO PHPRULHV 5HJXODWRU [966 9''$ 9''$ 95() Q) ) $'&'$& 95() $QDORJ5&V 3//FRPSDUDWRUV23$03 966$ 069 Caution: 38/88 Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. DocID027114 Rev 2 STM32F070xB STM32F070x6 6.1.7 Electrical characteristics Current consumption measurement Figure 10. Current consumption measurement scheme ,'' 9'' ,''$ 9''$ 069 6.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 18: Voltage characteristics, Table 19: Current characteristics and Table 20: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 18. Voltage characteristics(1) Symbol Ratings Min Max Unit VDD–VSS External main supply voltage -0.3 4.0 V VDDA–VSS External analog supply voltage -0.3 4.0 V VDD–VDDA Allowed voltage difference for VDD > VDDA - 0.4 VIN(2) Input voltage on FT and FTf pins VSS − 0.3 Input voltage on TTa pins VSS − 0.3 BOOT0 0 |VSSx − VSS| VESD(HBM) V 4.0 VDDIOx + 4.0 V (3) V VSS − 0.3 4.0 V Variations between different VDD power pins - 50 mV Variations between all the different ground pins - 50 mV Input voltage on any other pin |ΔVDDx| VDDIOx + 4.0 V (3) Electrostatic discharge voltage (human body model) see Section 6.3.12: Electrical sensitivity characteristics 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 19: Current characteristics for the maximum allowed injected current values. 3. VDDIOx is internally connected with VDD pin. DocID027114 Rev 2 39/88 75 Electrical characteristics STM32F070xB STM32F070x6 Table 19. Current characteristics Symbol Ratings Max. ΣIVDD Total current into sum of all VDD power lines (source)(1) 120 ΣIVSS (1) -120 Total current out of sum of all VSS ground lines (sink) IVDD(PIN) (1) Maximum current into each VDD power pin (source) 100 IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) -100 IIO(PIN) Output current sunk by any I/O and control pin 25 Output current source by any I/O and control pin -25 (2) ΣIIO(PIN) IINJ(PIN)(3) Total output current sunk by sum of all I/Os and control pins 80 Total output current sourced by sum of all I/Os and control pins(2) -80 mA (4) Injected current on FT and FTf pins -5/+0 Injected current on TC and RST pin ±5 (5) ΣIINJ(PIN) Unit Injected current on TTa pins ±5 Total injected current (sum of all I/O and control pins)(6) ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages. 3. A positive injection is induced by VIN > VDDIOx while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 18: Voltage characteristics for the maximum allowed input voltage values. 4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 5. On these I/Os, a positive injection is induced by VIN > VDDA. Negative injection disturbs the analog performance of the device. See note (2) below Table 52: ADC accuracy. 6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 20. Thermal characteristics Symbol TSTG TJ 40/88 Ratings Storage temperature range Maximum junction temperature DocID027114 Rev 2 Value Unit –65 to +150 °C 150 °C STM32F070xB STM32F070x6 Electrical characteristics 6.3 Operating conditions 6.3.1 General operating conditions Table 21. General operating conditions Symbol Parameter Conditions Min Max Unit fHCLK Internal AHB clock frequency - 0 48 fPCLK Internal APB clock frequency - 0 48 VDD Standard operating voltage - 2.4 3.6 V VDDA Analog operating voltage Must have a potential equal to or higher than VDD 2.4 3.6 V TC and RST I/O -0.3 VDDIOx+0.3 TTa I/O -0.3 VDDA+0.3(2) FT and FTf I/O -0.3 5.5(2) BOOT0 0 5.5 LQFP64 - 455 LQFP48 - 364 TSSOP20 - 263 -40 85 -40 105 -40 105 VIN I/O input voltage PD Power dissipation at TA = 85 °C for suffix 6 (1) TA Ambient temperature for the suffix 6 version Maximum power dissipation TJ Junction temperature range Suffix 6 version Low power dissipation(2) MHz V mW °C °C 1. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax. 2. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.2: Thermal characteristics). 6.3.2 Operating conditions at power-up / power-down The parameters given in Table 22 are derived from tests performed under the ambient temperature condition summarized in Table 21. Table 22. Operating conditions at power-up / power-down Symbol tVDD tVDDA Parameter VDD rise time rate VDD fall time rate VDDA rise time rate VDDA fall time rate Conditions - - DocID027114 Rev 2 Min Max 0 ∞ 20 ∞ 0 ∞ 20 ∞ Unit μs/V 41/88 75 Electrical characteristics 6.3.3 STM32F070xB STM32F070x6 Embedded reset and power control block characteristics The parameters given in Table 23 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. Table 23. Embedded reset and power control block characteristics Symbol VPOR/PDR(1) VPDRhyst tRSTTEMPO(4) Parameter Power on/power down reset threshold Conditions Min Typ Max Unit Falling edge(2) 1.80 1.88 1.96(3) V 1.84(3) 1.92 2.00 V - 40 - mV 1.50 2.50 4.50 ms Rising edge PDR hysteresis Reset temporization 1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector monitors only VDD. 2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value. 3. Data based on characterization results, not tested in production. 4. Guaranteed by design, not tested in production. 6.3.4 Embedded reference voltage The parameters given in Table 24 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. Table 24. Embedded internal reference voltage Symbol Parameter Conditions Min Typ VREFINT Internal reference voltage –40 °C < TA < +85 °C 1.16 1.2 1.24(1) tS_vrefint ADC sampling time when reading the internal reference voltage ΔVREFINT Internal reference voltage spread over the temperature range TCoeff VDDA = 3 V Temperature coefficient Max Unit V 4(2) - - μs - - 10(2) mV - 100(2) - 100(2) ppm/°C 1. Data based on characterization results, not tested in production. 2. Guaranteed by design, not tested in production. 6.3.5 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 10: Current consumption measurement scheme. 42/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Electrical characteristics All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code. Typical and maximum current consumption The MCU is placed under the following conditions: • All I/O pins are in analog input mode • All peripherals are disabled except when explicitly mentioned • The Flash memory access time is adjusted to the fHCLK frequency: – 0 wait state and Prefetch OFF from 0 to 24 MHz – 1 wait state and Prefetch ON above 24 MHz • When the peripherals are enabled fPCLK = fHCLK The parameters given in Table 25 to Table 27 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. Table 25. Typical and maximum current consumption from VDD supply at VDD = 3.6 V Symbol All peripherals enabled IDD IDD IDD Parameter Conditions fHCLK Max @ TA(1) Unit Typ 85 °C Supply current in HSI or HSE clock, PLL on Run mode, code executing from Flash HSI or HSE clock, PLL off Supply current in Run mode, code executing from RAM Supply current in Sleep mode, code executing from Flash or RAM HSI or HSE clock, PLL on HSI or HSE clock, PLL off HSI or HSE clock, PLL on HSI or HSE clock, PLL off 48 MHz 24.1 27.6 24 MHz 12.4 14.4 8 MHz 4.52 5.28 48 MHz 23.1 25.0 24 MHz 11.5 13.6 8 MHz 4.34 5.03 48 MHz 15.0 17.3 24 MHz 7.53 8.87 8 MHz 2.95 3.41 mA mA mA 1. Data based on characterization results, not tested in production unless otherwise specified. DocID027114 Rev 2 43/88 75 Electrical characteristics STM32F070xB STM32F070x6 Table 26. Typical and maximum current consumption from the VDDA supply VDDA = 3.6 V Symbol Conditions(1) Parameter fHCLK Typ Max @ TA Unit 85 °C HSE bypass, PLL on IDDA Supply current in Run or Sleep mode, code executing from Flash or RAM 48 MHz 165 196 8 MHz 3.6 5.2 1 MHz 3.6 5.2 HSI clock, PLL on 48 MHz 245 279 HSI clock, PLL off 8 MHz 83.4 95.3 HSE bypass, PLL off μA 1. Current consumption from the VDDA supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash or RAM. Furthermore, when the PLL is off, IDDA is independent from the frequency. Table 27. Typical and maximum consumption in Stop and Standby modes Symbol IDD Parameter Supply current in Stop mode Typ @VDD (VDD = VDDA) Max(1) 3.6 V TA = 85 °C Regulator in run mode, all oscillators OFF 15.9 49 Regulator in low-power mode, all oscillators OFF 3.7 33 1.5 - Regulator in run or lowpower mode, all oscillators OFF 2.8 3.6 LSI ON and IWDG ON 3.5 - LSI OFF and IWDG OFF 2.6 3.6 Regulator in run or lowpower mode, all oscillators OFF 1.5 - LSI ON and IWDG ON 2.2 - LSI OFF and IWDG OFF 1.4 - Conditions Supply current in LSI ON and IWDG ON Standby mode Supply current in Stop mode VDDA monitoring ON Supply current in Standby mode IDDA Supply current in Stop mode VDDA monitoring OFF Supply current in Standby mode 1. Data based on characterization results, not tested in production unless otherwise specified. 44/88 DocID027114 Rev 2 Unit μA STM32F070xB STM32F070x6 Electrical characteristics Typical current consumption The MCU is placed under the following conditions: • VDD = VDDA = 3.3 V • All I/O pins are in analog input configuration • The Flash access time is adjusted to fHCLK frequency: – 0 wait state and Prefetch OFF from 0 to 24 MHz – 1 wait state and Prefetch ON above 24 MHz • When the peripherals are enabled, fPCLK = fHCLK • PLL is used for frequencies greater than 8 MHz • AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively Table 28. Typical current consumption in Run mode, code with data processing running from Flash Typ Symbol IDD IDDA Parameter Conditions Supply current in Run Running from mode from VDD HSE crystal supply clock 8 MHz, Supply current in Run code executing mode from VDDA from Flash supply DocID027114 Rev 2 fHCLK Peripherals Peripherals enabled disabled 48 MHz 23.5 13.5 8 MHz 4.8 3.1 48 MHz 163.3 163.3 8 MHz 2.5 2.5 Unit mA μA 45/88 75 Electrical characteristics STM32F070xB STM32F070x6 I/O system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 46: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption measured previously, the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DDIOx × f SW × C where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDDIOx is the I/O supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT + CEXT + CS CS is the PCB board capacitance including the pad pin. The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. 46/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Electrical characteristics Table 29. Switching output I/O current consumption Symbol Parameter Conditions(1) VDDIOx = 3.3 V CEXT = 0 pF C = CINT + CEXT+ CS ISW I/O current consumption VDDIOx = 3.3 V CEXT = 22 pF C = CINT + CEXT+ CS VDDIOx = 3.3 V CEXT = 47 pF C = CINT + CEXT+ CS C = Cint I/O toggling frequency (fSW) Typ 4 MHz 0.18 8 MHz 0.37 16 MHz 0.76 24 MHz 1.39 48 MHz 2.188 4 MHz 0.49 8 MHz 0.94 16 MHz 2.38 24 MHz 3.99 4 MHz 0.81 8 MHz 1.7 16 MHz 3.67 Unit mA 1. CS = 7 pF (estimated value). DocID027114 Rev 2 47/88 75 Electrical characteristics 6.3.6 STM32F070xB STM32F070x6 Wakeup time from low-power mode The wakeup times given in Table 30 are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture. The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz. The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode. The wakeup source from Standby mode is the WKUP1 pin (PA0). All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. Table 30. Low-power mode wakeup timings Symbol Parameter Conditions Typ @VDD = VDDA Max Unit = 3.3 V tWUSTOP Wakeup from Stop mode Regulator in run mode 2.8 5 - 51 - - 4 SYSCLK cycles - tWUSTANDBY Wakeup from Standby mode tWUSLEEP 48/88 Wakeup from Sleep mode DocID027114 Rev 2 μs STM32F070xB STM32F070x6 6.3.7 Electrical characteristics External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 11: High-speed external clock source AC timing diagram. Table 31. High-speed external user clock characteristics Parameter(1) Symbol Min Typ Max Unit - 8 32 MHz fHSE_ext User external clock source frequency VHSEH OSC_IN input pin high level voltage 0.7 VDDIOx - VDDIOx VHSEL OSC_IN input pin low level voltage VSS - 0.3 VDDIOx 15 - - tw(HSEH) tw(HSEL) OSC_IN high or low time tr(HSE) tf(HSE) OSC_IN rise or fall time V ns - - 20 1. Guaranteed by design, not tested in production. Figure 11. High-speed external clock source AC timing diagram WZ+6(+ 9+6(+ 9+6(/ WU+6( WI+6( WZ+6(/ W 7+6( 069 DocID027114 Rev 2 49/88 75 Electrical characteristics STM32F070xB STM32F070x6 Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in Figure 12. Table 32. Low-speed external user clock characteristics Parameter(1) Symbol Min Typ Max Unit kHz fLSE_ext User external clock source frequency - 32.768 1000 VLSEH OSC32_IN input pin high level voltage 0.7 VDDIOx - VDDIOx VLSEL OSC32_IN input pin low level voltage VSS - 0.3 VDDIOx 450 - - tw(LSEH) OSC32_IN high or low time tw(LSEL) tr(LSE) tf(LSE) V ns OSC32_IN rise or fall time - - 50 1. Guaranteed by design, not tested in production. Figure 12. Low-speed external clock source AC timing diagram WZ/6(+ 9/6(+ 9/6(/ WU/6( WI/6( WZ/6(/ W 7/6( 069 50/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Electrical characteristics High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 33. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 33. HSE oscillator characteristics Symbol fOSC_IN Parameter Conditions(1) Min(2) Typ Max(2) Unit 4 8 32 MHz - 200 - kΩ - - 8.5 VDD = 3.3 V, Rm = 45 Ω, CL = 10 pF@8 MHz - 0.5 - VDD = 3.3 V, Rm = 30 Ω, CL = 20 pF@32 MHz - 1.5 - Startup 10 - - mA/V VDD is stabilized - 2 - ms Oscillator frequency Feedback resistor RF (3) During startup IDD HSE current consumption gm tSU(HSE) Oscillator transconductance (4) Startup time mA 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Guaranteed by design, not tested in production. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 13). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. DocID027114 Rev 2 51/88 75 Electrical characteristics STM32F070xB STM32F070x6 Figure 13. Typical application with an 8 MHz crystal 5HVRQDWRUZLWKLQWHJUDWHG FDSDFLWRUV &/ 26&B,1 0+] UHVRQDWRU &/ 5(;7 I+6( 5) %LDV FRQWUROOHG JDLQ 26&B287 069 1. REXT value depends on the crystal characteristics. 52/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Electrical characteristics Low-speed external clock generated from a crystal resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 34. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 34. LSE oscillator characteristics (fLSE = 32.768 kHz) Symbol IDD gm Parameter LSE current consumption Oscillator transconductance tSU(LSE)(3) Startup time Conditions(1) Min(2) Typ Max(2) Unit LSEDRV[1:0]=00 lower driving capability - 0.5 0.9 LSEDRV[1:0]= 01 medium low driving capability - - 1 LSEDRV[1:0] = 10 medium high driving capability - - 1.3 LSEDRV[1:0]=11 higher driving capability - - 1.6 LSEDRV[1:0]=00 lower driving capability 5 - - LSEDRV[1:0]= 01 medium low driving capability 8 - - LSEDRV[1:0] = 10 medium high driving capability 15 - - LSEDRV[1:0]=11 higher driving capability 25 - - VDDIOx is stabilized - 2 - μA μA/V s 1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for ST microcontrollers”. 2. Guaranteed by design, not tested in production. 3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com. DocID027114 Rev 2 53/88 75 Electrical characteristics STM32F070xB STM32F070x6 Figure 14. Typical application with a 32.768 kHz crystal 5HVRQDWRUZLWKLQWHJUDWHG FDSDFLWRUV &/ 26&B,1 I+6( 'ULYH SURJUDPPDEOH DPSOLILHU N+] UHVRQDWRU 26&B287 &/ 069 Note: 54/88 An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. DocID027114 Rev 2 STM32F070xB STM32F070x6 6.3.8 Electrical characteristics Internal clock source characteristics The parameters given in Table 35 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. The provided curves are characterization results, not tested in production. High-speed internal (HSI) RC oscillator Table 35. HSI oscillator characteristics(1) Symbol fHSI TRIM Parameter Conditions Min Typ Max Unit Frequency - - 8 - MHz HSI user trimming step - - - 1(2) % - (2) DuCyHSI Duty cycle ACCHSI Accuracy of the HSI oscillator (factory calibrated) tSU(HSI) HSI oscillator startup time IDDA(HSI) HSI oscillator power consumption TA = -40 to 85°C 45 - 55 (2) % - ±5 - % - ±1(3) - % - 1(2) - 2(2) μs - - 80 - μA TA = 25°C 1. VDDA = 3.3 V, TA = -40 to 85°C unless otherwise specified. 2. Guaranteed by design, not tested in production. 3. With user calibration. High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC) Table 36. HSI14 oscillator characteristics(1) Symbol fHSI14 TRIM Parameter Conditions Frequency HSI14 user-trimming step Accuracy of the HSI14 oscillator (factory calibrated) tsu(HSI14) HSI14 oscillator startup time IDDA(HSI14) Typ - 14 - DuCy(HSI14) Duty cycle ACCHSI14 Min TA = –40 to 85 °C HSI14 oscillator power consumption Max Unit - MHz (2) % - 1 45(2) - 55(2) - ±5 1(2) - 2(2) μs - 100 - μA % % 1. VDDA = 3.3 V, TA = -40 to 85 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. DocID027114 Rev 2 55/88 75 Electrical characteristics STM32F070xB STM32F070x6 Low-speed internal (LSI) RC oscillator Table 37. LSI oscillator characteristics(1) Symbol fLSI tsu(LSI) Parameter Min Typ Max Unit 30 40 50 kHz LSI oscillator startup time - - 85 μs LSI oscillator power consumption - 0.75 - μA Frequency (2) IDDA(LSI)(2) 1. VDDA = 3.3 V, TA = -40 to 85 °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 6.3.9 PLL characteristics The parameters given in Table 38 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. Table 38. PLL characteristics Value Symbol fPLL_IN fPLL_OUT tLOCK JitterPLL Parameter Unit Min Typ Max 1(2) 8.0 24(2) MHz PLL input clock duty cycle 40 (2) - 60(2) % PLL multiplier output clock 16(2) - 48 MHz PLL lock time - - 200(2) μs Cycle-to-cycle jitter - - 300(2) ps PLL input clock(1) 1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by fPLL_OUT. 2. Guaranteed by design, not tested in production. 56/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 6.3.10 Electrical characteristics Memory characteristics Flash memory The characteristics are given at TA = -40 to 85 °C unless otherwise specified. Table 39. Flash memory characteristics Min Typ Max(1) Unit 16-bit programming time TA = -40 to +85 °C - 53.5 - μs Page erase time (2) TA = -40 to +85 °C - 30 - ms tME Mass erase time TA = -40 to +85 °C - 30 - ms IDD Supply current Write mode - - 10 mA Erase mode - - 12 mA 2.4 - 3.6 V Symbol tprog tERASE Vprog Parameter Conditions Programming voltage 1. Guaranteed by design, not tested in production. 2. Page size is 1KB for STM32F070x6 devices and 2KB for STM32F070xB devices. Table 40. Flash memory endurance and data retention Symbol NEND tRET Parameter Endurance Data retention Conditions TA = -40 to +85 °C 1 kcycle(2) at TA = 85 °C Min(1) Unit 1 kcycles 20 Years 1. Data based on characterization results, not tested in production. 2. Cycling performed over the whole temperature range. 6.3.11 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: • Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. • FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 41. They are based on the EMS levels and classes defined in application note AN1709. DocID027114 Rev 2 57/88 75 Electrical characteristics STM32F070xB STM32F070x6 Table 41. EMS characteristics Symbol Parameter Level/ Class Conditions VFESD VDD = 3.3V, LQFP48, TA = +25 °C, Voltage limits to be applied on any I/O pin fHCLK = 48 MHz, to induce a functional disturbance conforming to IEC 61000-4-2 3B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3V, LQFP48, TA = +25°C, fHCLK = 48 MHz, conforming to IEC 61000-4-4 4B Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: • Corrupted program counter • Unexpected reset • Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 42. EMI characteristics Symbol Parameter SEMI 58/88 Conditions Monitored frequency band 0.1 to 30 MHz VDD = 3.6 V, TA = 25 °C, 30 to 130 MHz LQFP100 package Peak level compliant with 130 MHz to 1 GHz IEC 61967-2 EMI Level DocID027114 Rev 2 Max vs. [fHSE/fHCLK] Unit 8/48 MHz -3 23 dBμV 17 4 - STM32F070xB STM32F070x6 6.3.12 Electrical characteristics Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 43. ESD absolute maximum ratings Symbol Ratings Conditions Packages Class Maximum value(1) Unit VESD(HBM) Electrostatic discharge voltage TA = +25 °C, conforming (human body model) to JESD22-A114 All 2 2000 V VESD(CDM) Electrostatic discharge voltage TA = +25 °C, conforming (charge device model) to ANSI/ESD STM5.3.1 All II 500 V 1. Data based on characterization results, not tested in production. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: • A supply overvoltage is applied to each power supply pin. • A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 44. Electrical sensitivities Symbol LU Parameter Static latch-up class Conditions TA = +105 °C conforming to JESD78A DocID027114 Rev 2 Class II level A 59/88 75 Electrical characteristics 6.3.13 STM32F070xB STM32F070x6 I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDDIOx (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μA/+0 μA range) or other functional failure (for example reset occurrence or oscillator frequency deviation). The characterization results are given in Table 45. Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection. Table 45. I/O current injection susceptibility Functional susceptibility Symbol Description Unit Negative Positive injection injection IINJ 6.3.14 Injected current on BOOT0 and PF1 pins -0 NA Injected current on PA9, PB3, PB13, PF11 pins with induced leakage current on adjacent pins less than 50 μA -5 NA Injected current on PA11 and PA12 pins with induced leakage current on adjacent pins less than -1 mA -5 NA Injected current on all other FT and FTf pins -5 NA Injected current on PB0 and PB1 pins -5 NA Injected current on PC0 pin -0 +5 Injected current on all other TTa, TC and RST pins -5 +5 mA I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 46 are derived from tests performed under the conditions summarized in Table 21: General operating conditions. All I/Os are designed as CMOS- and TTL-compliant (except BOOT0). 60/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Electrical characteristics Table 46. I/O static characteristics Symbol VIL VIH Vhys Ilkg RPU Parameter Low level input voltage High level input voltage Schmitt trigger hysteresis Input leakage current(2) Weak pull-up equivalent resistor (4) RPD Weak pull-down equivalent resistor(4) CIO I/O pin capacitance Conditions Min Typ Max TC and TTa I/O - - 0.3 VDDIOx+0.07(1) FT and FTf I/O - - 0.475 VDDIOx–0.2(1) BOOT0 - - 0.3 VDDIOx–0.3(1) All I/Os except BOOT0 pin - - 0.3 VDDIOx TC and TTa I/O 0.445 VDDIOx+0.398(1) - - - - - - 0.5 VDDIOx+0.2 FT and FTf I/O (1) (1) 0.2 VDDIOx+0.95 BOOT0 Unit V V All I/Os except BOOT0 pin 0.7 VDDIOx - - TC and TTa I/O - 200(1) - FT and FTf I/O - 100(1) - BOOT0 - 300 (1) - TC, FT and FTf I/O TTa in digital mode VSS ≤ VIN ≤ VDDIOx - - ± 0.1 TTa in digital mode VDDIOx ≤ VIN ≤ VDDA - - 1 TTa in analog mode VSS ≤ VIN ≤ VDDA - - ± 0.2 FT and FTf I/O (3) VDDIOx ≤ VIN ≤ 5 V - - 10 VIN = VSS 25 40 55 kΩ VIN = VDDIOx 25 40 55 kΩ - 5 - pF mV μA 1. Data based on design simulation only. Not tested in production. 2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 45: I/O current injection susceptibility. 3. To sustain a voltage higher than VDDIOx + 0.3 V, the internal pull-up/pull-down resistors must be disabled. 4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order). DocID027114 Rev 2 61/88 75 Electrical characteristics STM32F070xB STM32F070x6 All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 15 for standard I/Os, and in Figure 16 for 5 V tolerant I/Os. The following curves are design simulation results, not tested in production. Figure 15. TC and TTa I/O input characteristics 3 VIN (V) 2.5 TESTED RANGE TTL standard requirement 2 1.5 UNDEFINED INPUT RANGE 1 TTL standard requirement 0.5 TESTED RANGE 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VDDIOx (V) MS32130V3 62/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Electrical characteristics Figure 16. Five volt tolerant (FT and FTf) I/O input characteristics 3 VIN (V) 2.5 TESTED RANGE TTL standard requirement 2 1.5 1 TTL standard requirement 0.5 TESTED RANGE 0 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 VDDIOx (V) MS32131V3 DocID027114 Rev 2 63/88 75 Electrical characteristics STM32F070xB STM32F070x6 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed VOL/VOH). In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: • The sum of the currents sourced by all the I/Os on VDDIOx, plus the maximum consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating ΣIVDD (see Table 18: Voltage characteristics). • The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of the MCU sunk on VSS, cannot exceed the absolute maximum rating ΣIVSS (see Table 18: Voltage characteristics). Output voltage levels Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT, TTa or TC unless otherwise specified). Table 47. Output voltage characteristics(1) Symbol Parameter VOL Output low level voltage for an I/O pin VOH Output high level voltage for an I/O pin VOL(2) Output low level voltage for an I/O pin VOH(2) Output high level voltage for an I/O pin VOL(2) Output low level voltage for an I/O pin VOH(2) Output high level voltage for an I/O pin VOLFm+ (2) Output low level voltage for an FTf I/O pin in Fm+ mode Conditions Min Max |IIO| = 8 mA VDDIOx ≥ 2.7 V - 0.4 VDDIOx–0.4 - - 1.3 VDDIOx–1.3 - - 0.4 VDDIOx–0.4 - |IIO| = 20 mA VDDIOx ≥ 2.7 V - 0.4 V |IIO| = 10 mA - 0.4 V |IIO| = 20 mA VDDIOx ≥ 2.7 V |IIO| = 6 mA Unit V V V 1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 18: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣIIO. 2. Data based on characterization results. Not tested in production. Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 17 and Table 48, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. 64/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Electrical characteristics Table 48. I/O AC characteristics(1)(2) OSPEEDRy [1:0] value(1) Symbol Parameter Conditions Min Max Unit - 2 MHz - 125 - 125 - 10 - 25 - 25 CL = 30 pF, VDDIOx ≥ 2.7 V - 50 CL = 50 pF, VDDIOx ≥ 2.7 V - 30 CL = 50 pF, 2.4 V ≤ VDDIOx < 2.7 V - 20 CL = 30 pF, VDDIOx ≥ 2.7 V - 5 CL = 50 pF, VDDIOx ≥ 2.7 V - 8 CL = 50 pF, 2.4 V ≤ VDDIOx < 2.7 V - 12 CL = 30 pF, VDDIOx ≥ 2.7 V - 5 CL = 50 pF, VDDIOx ≥ 2.7 V - 8 CL = 50 pF, 2.4 V ≤ VDDIOx < 2.7 V - 12 - 2 - 12 - 34 10 - fmax(IO)out Maximum frequency(3) x0 tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx ≥ 2.4 V fmax(IO)out Maximum frequency(3) 01 tf(IO)out Output fall time tr(IO)out Output rise time CL = 50 pF, VDDIOx ≥ 2.4 V (3) fmax(IO)out Maximum frequency 11 tf(IO)out tr(IO)out Fm+ configuration (4) Output fall time Output rise time fmax(IO)out Maximum frequency(3) CL = 50 pF, VDDIOx ≥ 2.4 V tf(IO)out Output fall time tr(IO)out Output rise time tEXTIpw Pulse width of external signals detected by the EXTI controller ns MHz ns MHz ns MHz ns ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0360 reference manual for a description of GPIO Port configuration register. 2. Guaranteed by design, not tested in production. 3. The maximum frequency is defined in Figure 17. 4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0360 for a detailed description of Fm+ I/O configuration. DocID027114 Rev 2 65/88 75 Electrical characteristics STM32F070xB STM32F070x6 Figure 17. I/O AC characteristics definition W I,2RXW W U,2RXW 7 7DQGLIWKHGXW\F\FOHLV 0D[LPXPIUHTXHQF\LVDFKLHYHGLIWW U I ZKHQORDGHGE\&VHHWKHWDEOH,2$&FKDUDFWHULVWLFVGHILQLWLRQ 069 6.3.15 NRST pin characteristics The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, RPU. Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 21: General operating conditions. Table 49. NRST pin characteristics Symbol Parameter Conditions Min Typ Max VIL(NRST) NRST input low level voltage - - - 0.3 VDD+0.07(1) VIH(NRST) NRST input high level voltage - 0.445 VDD+0.398(1) - - Vhys(NRST) NRST Schmitt trigger voltage hysteresis - - 200 - mV VIN = VSS 25 40 55 kΩ - - 100(1) ns 2.7 < VDD < 3.6 300(3) - - 2.4 < VDD < 3.6 500(3) - - RPU Weak pull-up equivalent resistor(2) VF(NRST) NRST input filtered pulse VNF(NRST) NRST input not filtered pulse 1. Data based on design simulation only. Not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order). 3. Data based on design simulation only. Not tested in production. 66/88 DocID027114 Rev 2 Unit V ns STM32F070xB STM32F070x6 Electrical characteristics Figure 18. Recommended NRST pin protection 9'' ([WHUQDO UHVHWFLUFXLWU\ 538 1567 ,QWHUQDOUHVHW )LOWHU ) 069 1. The external capacitor protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 49: NRST pin characteristics. Otherwise the reset will not be taken into account by the device. DocID027114 Rev 2 67/88 75 Electrical characteristics 6.3.16 STM32F070xB STM32F070x6 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 50 are preliminary values derived from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage conditions summarized in Table 21: General operating conditions. Note: It is recommended to perform a calibration after each power-up. Table 50. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit VDDA Analog supply voltage for ADC ON - 2.4 - 3.6 V VDD = VDDA = 3.3 V - 0.9 - mA IDDA (ADC) Current consumption of the ADC(1) fADC ADC clock frequency - 0.6 - 14 MHz fS(2) Sampling rate - 0.05 - 1 MHz fADC = 14 MHz - - 823 kHz - - - 17 1/fADC fTRIG(2) External trigger frequency VAIN Conversion voltage range - 0 - VDDA V RAIN(2) External input impedance See Equation 1 and Table 51 for details - - 50 kΩ RADC(2) Sampling switch resistance - - - 1 kΩ CADC(2) Internal sample and hold capacitor - - - 8 pF tCAL(2) Calibration time fADC = 14 MHz 5.9 μs - 83 1/fADC 1.5 ADC cycles + 2 fPCLK cycles - 1.5 ADC cycles + 3 fPCLK cycles ADC clock = PCLK/2 - 4.5 - fPCLK cycle ADC clock = PCLK/4 - 8.5 - fPCLK cycle ADC clock = HSI14 WLATENCY(2) tlatr(2) ADC_DR register write latency fADC = fPCLK/2 = 14 MHz 0.196 μs fADC = fPCLK/2 5.5 1/fPCLK 0.219 μs 10.5 1/fPCLK Trigger conversion latency fADC = fPCLK/4 = 12 MHz fADC = fPCLK/4 JitterADC tS(2) 68/88 ADC jitter on trigger conversion Sampling time fADC = fHSI14 = 14 MHz 0.188 - 0.259 μs fADC = fHSI14 - 1 - 1/fHSI14 fADC = 14 MHz 0.107 - 17.1 μs 1.5 - 239.5 1/fADC DocID027114 Rev 2 STM32F070xB STM32F070x6 Electrical characteristics Table 50. ADC characteristics (continued) Symbol Parameter Conditions tSTAB(2) Power-up time tCONV(2) Total conversion time (including sampling time) Min Typ Max Unit 0 0 1 μs 1 - 18 μs fADC = 14 MHz 14 to 252 (tS for sampling +12.5 for successive approximation) 1/fADC 1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 μA on IDDA and 60 μA on IDD should be taken into account. 2. Guaranteed by design, not tested in production. Equation 1: RAIN max formula TS - – R ADC R AIN < ------------------------------------------------------------N+2 f ADC × C ADC × ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Table 51. RAIN max for fADC = 14 MHz Ts (cycles) tS (μs) RAIN max (kΩ)(1) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 NA 239.5 17.1 NA 1. Guaranteed by design, not tested in production. Table 52. ADC accuracy(1)(2)(3) Symbol ET Parameter Test conditions Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error fPCLK = 48 MHz, fADC = 14 MHz, RAIN < 10 kΩ VDDA = 2.7 V to 3.6 V TA = −40 to 85 °C Typ Max(4) ±3.3 ±4 ±1.9 ±2.8 ±2.8 ±3 ±0.7 ±1.3 ±1.2 ±1.7 Unit LSB 1. ADC DC accuracy values are measured after internal calibration. 2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC accuracy. DocID027114 Rev 2 69/88 75 Electrical characteristics STM32F070xB STM32F070x6 3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges. 4. Data based on characterization results, not tested in production. Figure 19. ADC accuracy characteristics (* ([DPSOHRIDQDFWXDO WUDQVIHUFXUYH 7KHLGHDOWUDQVIHUFXUYH (QG SRLQWFRUUHODWLRQOLQH (7 (7 7RWDO 8QDGMXVWHG (UURU PD[LPXP GHYLDWLRQ EHWZHHQ WKHDFWXDODQGWKHLGHDOWUDQVIHU FXUYHV (2 2IIVHW(UURUGHYLDWLRQEHWZHHQWKHILUVWDFWXDO WUDQVLWLRQDQGWKH ILUVWLGHDORQH (* *DLQ (UURU GHYLDWLRQ EHWZHHQ WKH ODVW LGHDO WUDQVLWLRQDQGWKH ODVWDFWXDORQH (' 'LIIHUHQWLDO/LQHDULW\(UURU PD[LPXPGHYLDWLRQ EHWZHHQ DFWXDOVWHSVDQGWKHLGHDORQH (/ ,QWHJUDO /LQHDULW\ (UURU PD[LPXP GHYLDWLRQ EHWZHHQ DQ\ DFWXDO WUDQVLWLRQ DQG WKH HQG SRLQW FRUUHODWLRQOLQH (2 (/ (' /6%,'($/ 966$ 9''$ -36 Figure 20. Typical connection diagram using the ADC 9 ''$ 6DPSOHDQGKROG$'& FRQ YHU WHU 97 5 $,1 9$,1 5 $'& $,1[ & SDU DVLWLF 97 ,/ $ ELW FRQ YHU WHU &$'& 069 1. Refer to Table 50: ADC characteristics for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. 70/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Electrical characteristics General PCB design guidelines Power supply decoupling should be performed as shown in Figure 9: Power supply scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. 6.3.17 Temperature sensor characteristics Table 53. TS characteristics Symbol Parameter TL(1) Typ Max Unit - ±1 ±2 °C 4.0 4.3 4.6 mV/°C 1.34 1.43 1.52 V Startup time 4 - 10 μs ADC sampling time when reading the temperature 4 - - μs VSENSE linearity with temperature Avg_Slope(1) Average slope Voltage at 30 °C (± 5 V30 tSTART Min (1) tS_temp(1) °C)(2) 1. Guaranteed by design, not tested in production. 2. Measured at VDDA = 3.3 V ± 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3: Temperature sensor calibration values. 6.3.18 Timer characteristics The parameters given in the following tables are guaranteed by design. Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 54. TIMx characteristics Symbol Parameter Conditions Min Max Unit 1 - tTIMxCLK 20.8 - ns 0 fTIMxCLK/2 MHz tres(TIM) Timer resolution time fEXT Timer external clock frequency on CH1 to CH4 fTIMxCLK = 48 MHz 0 24 MHz Timer resolution TIMx - 16 bit 1 65536 tTIMxCLK 0.0208 1365 μs - 65536 × 65536 tTIMxCLK - 89.48 s ResTIM tCOUNTER tMAX_COUNT 16-bit counter clock period Maximum possible count with 32-bit counter fTIMxCLK = 48 MHz fTIMxCLK = 48 MHz fTIMxCLK = 48 MHz DocID027114 Rev 2 71/88 75 Electrical characteristics STM32F070xB STM32F070x6 Table 55. IWDG min/max timeout period at 40 kHz (LSI)(1) Prescaler divider PR[2:0] bits Min timeout RL[11:0]= 0x000 Max timeout RL[11:0]= 0xFFF /4 0 0.1 409.6 /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 6 or 7 6.4 26214.4 Unit ms 1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty. Table 56. WWDG min/max timeout value at 48 MHz (PCLK) 6.3.19 Prescaler WDGTB Min timeout value Max timeout value 1 0 0.0853 5.4613 2 1 0.1706 10.9226 4 2 0.3413 21.8453 8 3 0.6826 43.6906 Unit ms Communication interfaces I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: • Standard-mode (Sm): with a bit rate up to 100 kbit/s • Fast-mode (Fm): with a bit rate up to 400 kbit/s • Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s. The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to Reference manual). The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I2C I/Os characteristics. All I2C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics: 72/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Electrical characteristics Table 57. I2C analog filter characteristics(1) Symbol Parameter Min Max Unit tAF Maximum pulse width of spikes that are suppressed by the analog filter 50(2) 260(3) ns 1. Guaranteed by design, not tested in production. 2. Spikes with widths below tAF(min) are filtered. 3. Spikes with widths above tAF(max) are not filtered SPI characteristics Unless otherwise specified, the parameters given in Table 58 for SPI are derived from tests performed under the ambient temperature, fPCLKx frequency and supply voltage conditions summarized in Table 21: General operating conditions. Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics. Table 58. SPI characteristics(1) Symbol fSCK 1/tc(SCK) Parameter SPI clock frequency Conditions Min Max Master mode - 18 Slave mode - 18 - 6 tr(SCK) tf(SCK) SPI clock rise and fall time Capacitive load: C = 15 pF tsu(NSS) NSS setup time Slave mode 4Tpclk - th(NSS) NSS hold time Slave mode 2Tpclk + 10 - SCK high and low time Master mode, fPCLK = 36 MHz, presc = 4 Tpclk/2 -2 Tpclk/2 + 1 Master mode 4 - Slave mode 5 - Master mode 4 - Slave mode 5 - tw(SCKH) tw(SCKL) tsu(MI) tsu(SI) th(MI) th(SI) Data input setup time Data input hold time ta(SO)(2) Data output access time Slave mode, fPCLK = 20 MHz 0 3Tpclk tdis(SO)(3) Data output disable time Slave mode 0 18 tv(SO) Data output valid time Slave mode (after enable edge) - 22.5 tv(MO) Data output valid time Master mode (after enable edge) - 6 Slave mode (after enable edge) 11.5 - Master mode (after enable edge) 2 - Slave mode 25 75 th(SO) th(MO) DuCy(SCK) Data output hold time SPI slave input clock duty cycle Unit MHz ns ns % 1. Data based on characterization results, not tested in production. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z DocID027114 Rev 2 73/88 75 Electrical characteristics STM32F070xB STM32F070x6 Figure 21. SPI timing diagram - slave mode and CPHA = 0 E^^ŝŶƉƵƚ ƚĐ;^<Ϳ ƚŚ;E^^Ϳ ^</ŶƉƵƚ ƚ^h;E^^Ϳ W,с Ϭ WK>сϬ ƚǁ;^<,Ϳƚǁ;^<>Ϳ W,с Ϭ WK>сϭ ƚǀ;^KͿ ƚĂ;^KͿ D/^K Khd W hd ƚƌ;^<ͿƚĨ;^<Ϳ ƚĚŝƐ;^KͿ ƚŚ;^KͿ D^ K hd / dϲ Khd D ^ /E / dϭ /E >^ Khd ƚƐƵ;^/Ϳ DK^/ / EWhd >^ /E ƚŚ;^/Ϳ DLF Figure 22. SPI timing diagram - slave mode and CPHA = 1 E^^ŝŶƉƵƚ ^</ŶƉƵƚ ƚ^h;E^^Ϳ W ,сϭ W K>сϬ W ,сϭ W K>сϭ ƚĐ;^<Ϳ ƚǁ;^>,Ϳ ƚǁ;^>>Ϳ ƚǀ;^KͿ ƚĂ;^KͿ D/^ K Khd W hd ƚŚ;^KͿ D^ K hd ƚƐƵ;^/Ϳ DK^ / / EWhd ƚŚ;E^^Ϳ / dϲ Khd ƚƌ;^>Ϳ ƚĨ;^>Ϳ ƚĚŝƐ;^KͿ > ^ Khd ƚŚ;^/Ϳ / dϭ /E D^ /E > ^ /E DL 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. 74/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Electrical characteristics Figure 23. SPI timing diagram - master mode (IGH .33INPUT 3#+/UTPUT #0(! #0/, 3#+/UTPUT TC3#+ #0(! #0/, #0(! #0/, #0(! #0/, TSU-) -)3/ ).0 54 TW3#+( TW3#+, TR3#+ TF3#+ -3 "). ") 4). ,3"). TH-) -/3) /54054 - 3"/54 ,3"/54 " ) 4/54 TV-/ TH-/ AI6 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. USB characteristics The STM32F070xB/6 USB interface is fully compliant with the USB specification version 2.0 and is USB-IF certified (for Full-speed device operation). Table 59. USB electrical characteristics Symbol VDD Parameter Conditions USB transceiver operating voltage Min. Typ Max. Unit 3.0(1) - 3.6 V μs tSTARTUP(2) USB transceiver startup time - - 1.0 RPUI Embedded USB_DP pull-up value during idle 1.1 1.26 1.5 RPUR Embedded USB_DP pull-up value during reception 2.0 2.26 2.6 ZDRV(2) Output driver impedance(3) 28 40 44 kΩ Driving high and low Ω 1. The STM32F070xB/6 USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V voltage range. 2. Guaranteed by design, not tested in production. 3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching impedance is already included in the embedded driver. DocID027114 Rev 2 75/88 75 Package characteristics STM32F070xB STM32F070x6 7 Package characteristics 7.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 76/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Package characteristics Figure 24. LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package outline PP *$8*(3/$1( F $ $ $ 6($7,1*3/$1( & $ FFF & ' ' ' . / / 3,1 ,'(17,),&$7,21 ( ( ( E H :B0(B9 1. Drawing is not to scale. Table 60. LQFP64 - 10 x 10 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 0.200 0.0035 - 0.0079 D 11.800 12.000 12.200 0.4646 0.4724 0.4803 D1 9.800 10.000 10.200 0.3858 0.3937 0.4016 D3 - 7.500 - - 0.2953 - E 11.800 12.000 12.200 0.4646 0.4724 0.4803 E1 9.800 10.000 10.200 0.3858 0.3937 0.4016 E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - DocID027114 Rev 2 77/88 86 Package characteristics STM32F070xB STM32F070x6 Table 60. LQFP64 - 10 x 10 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 K 0° 3.5° 7° 0° 3.5° 7° 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 25. LQFP64 recommended footprint 1. Dimensions are in millimeters. 78/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Package characteristics Device marking for LQFP64 The following figure shows the device marking for the LQFP64 package. Figure 26. LQFP64 marking example (package top view) 5HYLVLRQFRGH 3 3URGXFWLGHQWLILFDWLRQ 45.' 3#5 'DWHFRGH : 88 3LQLGHQWLILFDWLRQ 069 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID027114 Rev 2 79/88 86 Package characteristics STM32F070xB STM32F070x6 Figure 27. LQFP48 - 7 mm x 7 mm, 48 pin low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'%0,!.% CCC # + ! $ $ , , $ % % % B 0). )$%.4)&)#!4)/. E "?-%?6 1. Drawing is not to scale. Table 61. LQFP48 - 7 mm x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min A 80/88 Typ Max Min Typ Max - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - DocID027114 Rev 2 STM32F070xB STM32F070x6 Package characteristics Table 61. LQFP48 - 7 mm x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 K 0° 3.5° 7° 0° 3.5° 7° 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 28. LQFP48 recommended footprint AID 1. Dimensions are in millimeters. DocID027114 Rev 2 81/88 86 Package characteristics STM32F070xB STM32F070x6 Device marking for LQFP48 The following figure shows the device marking for the LQFP48 package. Figure 29. LQFP48 marking example (package top view) 'HYLFHLGHQWLILFDWLRQ 45. '$#5 'DWHFRGH : 88 3LQLGHQWLILFDWLRQ 3 5HYLVLRQFRGH 069 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 82/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 Package characteristics Figure 30. TSSOP20 - 20-pin thin shrink small outline $ C % % 3%!4).' 0,!.% # MM '!5'%0,!.% 0). )$%.4)&)#!4)/. K AAA # ! ! , ! B , E 9!?-%?6 1. Drawing is not to scale. Table 62. TSSOP20 - 20-pin thin shrink small outline package mechanical data inches(1) millimeters Symbol Min A Typ Max Min Typ - 1.2 - - 0.0472 A1 0.05 - 0.15 0.002 - 0.0059 A2 0.8 1 1.05 0.0315 0.0394 0.0413 b 0.19 0.3 0.0075 - 0.0118 c 0.09 0.2 0.0035 - 0.0079 D(2) 6.4 6.5 6.6 0.252 0.2559 0.2598 E 6.2 6.4 6.6 0.2441 0.252 0.2598 4.3 4.4 4.5 0.1693 0.1732 0.1772 e - 0.65 - - 0.0256 - L 0.45 0.6 0.75 0.0177 0.0236 0.0295 L1 - 1 - - 0.0394 - k 0.0° - 8.0° 0.0° - 8.0° aaa - - 0.1 - - 0.0039 E1 (3) 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm per side. 3. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side. DocID027114 Rev 2 83/88 86 Package characteristics STM32F070xB STM32F070x6 Figure 31. TSSOP20 recommended footprint 9!?&0?6 1. Dimensions are in millimeters. Device marking for TSSOP20 The following figure shows the device marking for the TSSOP20 package. Figure 32. TSSOP20 marking example (package top view) 'HYLFHLGHQWLILFDWLRQ ''1 'DWHFRGH 3LQLGHQWLILFDWLRQ 5HYLVLRQFRGH : 88 3 069 1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 84/88 DocID027114 Rev 2 STM32F070xB STM32F070x6 7.2 Package characteristics Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 21: General operating conditions. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: • TA max is the maximum ambient temperature in °C, • ΘJA is the package junction-to-ambient thermal resistance, in °C/W, • PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), • PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ ((VDD - VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 63. Package thermal characteristics Symbol ΘJ 7.2.1 Parameter Value Thermal resistance junction-ambient LQFP64 - 10 mm x 10 mm 44 Thermal resistance junction-ambient LQFP48 - 7 mm x 7 mm 55 Thermal resistance junction-ambient TSSOP20 - 6.5 mm x 6.4 mm 76 Unit °C/W Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org DocID027114 Rev 2 85/88 86 Part numbering 8 STM32F070xB STM32F070x6 Part numbering For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office. + Table 64. Ordering information scheme Example: STM32 Device family STM32 = ARM-based 32-bit microcontroller Product type F = General-purpose Sub-family 070 = STM32F070xx Pin count F = 20 pins C = 48 pins R = 64 pins Code size 4 = 16 Kbytes of Flash memory 6 = 32 Kbytes of Flash memory 8 = 64 Kbytes of Flash memory B = 128 Kbytes of Flash memory C = 256 Kbytes of Flash memory Package P = TSSOP T = LQFP Temperature range 6 = –40 to 85 °C Options xxx = programmed parts TR = tape and reel 86/88 DocID027114 Rev 2 F 070 C 6 T 6 x STM32F070xB STM32F070x6 9 Revision history Revision history Table 65. Document revision history Date Revision 27-Nov-2014 1 Initial release. 2 Updated the number of SPI in Features and Section 2: Description. Updated Section 3.15: Serial peripheral interface (SPI). Updated the footnote4. of Table 11: STM32F070xB/6 pin definitions, and added the reference to PB9 pin. Moved the AF3 data to AF4 for PA9 and PA10 pins in Table 12: Alternate functions selected through GPIOA_AFR registers for port A. Added the reference to footnote 1. to AF0 data for PB12, PB13, PB14 and PB15, and to AF5 data for PB9 and PB10 in Table 13: Alternate functions selected through GPIOB_AFR registers for port B. Added the reference to footnote 1. to SPI2 in Table 17: STM32F070xB/6 peripheral register boundary addresses. 15-Jan-2015 Changes DocID027114 Rev 2 87/88 87 STM32F070xB STM32F070x6 IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved 88/88 DocID027114 Rev 2