STMICROELECTRONICS STM32F303VCT6

STM32F302xB STM32F302xC
STM32F303xB STM32F303xC
ARM Cortex-M4 32b MCU+FPU, up to 256KB Flash+48KB SRAM
4 ADCs, 2 DAC ch., 7 comp, 4 PGA, timers, 2.0-3.6 V operation
Datasheet - production data
Features
• Core: ARM® Cortex™-M4 32-bit CPU with
FPU (72 MHz max), single-cycle multiplication
and HW division, 90 DMIPS(from CCM)
/1.25 DMIPS/MHz (Dhrystone 2.1), DSP
instruction and MPU (memory protection unit)
• Operating conditions:
– VDD, VDDA voltage range: 2.0 V to 3.6 V
• Memories
– 128 to 256 Kbytes of Flash memory
– Up to 40 Kbytes of SRAM, with HW parity
check implemented on the first 16 Kbytes.
– Routine booster: 8 Kbytes of SRAM on
instruction and data bus, with HW parity
check (CCM)
• CRC calculation unit
• Reset and supply management
– Power-on/Power down reset (POR/PDR)
– Programmable voltage detector (PVD)
– Low power modes: Sleep, Stop and Standby
– VBAT supply for RTC and backup registers
• Clock management
– 4 to 32 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration
– Internal 8 MHz RC with x 16 PLL option
– Internal 40 kHz oscillator
• Up to 87 fast I/Os
– All mappable on external interrupt vectors
– Several 5 V-tolerant
• 12-channel DMA controller
• Up to four ADC 0.20 µS (up to 39 channels)
with selectable resolution of 12/10/8/6 bits, 0 to
3.6 V conversion range, separate analog
supply from 2 to 3.6 V
• Up to two 12-bit DAC channels with analog
supply from 2.4 to 3.6 V
• Seven fast rail-to-rail analog comparators with
analog supply from 2 to 3.6 V
• Up to four operational amplifiers that can be
used in PGA mode, all terminal accessible with
analog supply from 2.4 to 3.6 V
• Up to 24 capacitive sensing channels supporting
touchkey, linear and rotary touch sensors
June 2013
This is information on a product in full production.
LQFP48 (7 × 7 mm)
LQFP64 (10 × 10 mm)
LQFP100 (14 × 14 mm)
• Up to 13 timers
– One 32-bit timer and two 16-bit timers with
up to 4 IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input
– Up to two 16-bit 6-channel advanced-control
timers, with up to 6 PWM channels,
deadtime generation and emergency stop
– One 16-bit timer with 2 IC/OCs, 1
OCN/PWM, deadtime generation and
emergency stop
– Two 16-bit timers with IC/OC/OCN/PWM,
deadtime generation and emergency stop
– Two watchdog timers (independent, window)
– SysTick timer: 24-bit downcounter
– Up to two 16-bit basic timers to drive the
DAC
• Calendar RTC with Alarm, periodic wakeup
from Stop/Standby
• Communication interfaces
– CAN interface (2.0B Active)
– Two I2C Fast mode plus (1 Mbit/s) with 20
mA current sink, SMBus/PMBus, wakeup
from STOP
– Up to five USART/UARTs (ISO 7816
interface, LIN, IrDA, modem control)
– Up to three SPIs, two with multiplexed
half/full duplex I2S interface, 4 to 16
programmable bit frame
– USB 2.0 full speed interface
– Infrared Transmitter
• Serial wire debug, Cortex-M4 with FPU ETM,
JTAG
• 96-bit unique ID
Table 1. Device summary
Reference
Part number
STM32F302xx
STM32F302CB, STM32F302CC, STM32F302RB,
STM32F302RC, STM32F302VB, STM32F302VC
STM32F303xx
STM32F303CB, STM32F303CC, STM32F303RB,
STM32F303RC, STM32F303VB, STM32F303VC
DocID023353 Rev 6
1/132
www.st.com
Contents
STM32F302xx/STM32F303xx
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1
ARM® Cortex™-M4 core with FPU with embedded Flash and SRAM . . . 13
3.2
Memory protection unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3
Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4
Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6
Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.7.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.8
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9
General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10
Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11.1
3.12
2/132
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 19
Fast analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12.3
VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.12.4
OPAMP reference voltage (VOPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14
Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.15
Fast comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16.1
Advanced timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.16.2
General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17) . . 23
3.16.3
Basic timers (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Contents
3.16.4
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.16.5
Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.16.6
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17
Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 24
3.18
Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.19
Universal synchronous/asynchronous receiver transmitter (USART) . . . 27
3.20
Universal asynchronous receiver transmitter (UART) . . . . . . . . . . . . . . . 27
3.21
Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I2S) . 27
3.22
Controller area network (CAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.23
Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.24
Infrared Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.25
Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.26
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.26.1
Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.26.2
Embedded trace macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4
Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 60
6.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 60
6.3.4
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
DocID023353 Rev 6
3/132
4
Contents
7
STM32F302xx/STM32F303xx
6.3.6
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.10
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.12
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.15
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.16
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.17
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.18
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.19
DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3.20
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.21
Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.22
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.23
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.1
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
7.2
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 126
8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F302xx/STM32F303xx family device features and peripheral counts. . . . . . . . . . . 10
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
STM32F302xx/STM32F303xx I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
USART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
STM32F302xx/STM32F303xx SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Capacitive sensing GPIOs available on STM32F302xx/STM32F303xx devices . . . . . . . . 30
No. of capacitive sensing channels available on
STM32F302xx/STM32F303xx devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32F302xx/STM32F303xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Alternate functions for port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Alternate functions for port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Alternate functions for port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Alternate functions for port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Alternate functions for port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Alternate functions for port F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
STM32F302xx/STM32F303xx memory map and peripheral register boundary
addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 60
Programmable voltage detector characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Typical and maximum current consumption from VDD supply at VDD = 3.6V . . . . . . . . . . . 63
Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 64
Typical and maximum VDD consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 65
Typical and maximum VDDA consumption in Stop and Standby modes. . . . . . . . . . . . . . . 65
Typical and maximum current consumption from VBAT supply. . . . . . . . . . . . . . . . . . . . . . 66
Typical current consumption in Run mode, code with data processing running from Flash 67
Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . 68
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
DocID023353 Rev 6
5/132
6
List of tables
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
6/132
STM32F302xx/STM32F303xx
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
WWDG min-max timeout value @72 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
I2C timings specification (see I2C specification, rev.03, June 2007) . . . . . . . . . . . . . . . . . 95
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
USB: Full-speed electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data. . . . . . . . . . . . . 119
LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . 121
LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . 123
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
DocID023353 Rev 6
STM32F302xx/STM32F303xx
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
STM32F302xB/STM32F302xC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
STM32F303xB/STM32F303xC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
STM32F302xx/STM32F303xx LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
STM32F302xx/STM32F303xx LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
STM32F302xx/STM32F303xx LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32F302xx/STM32F303xx memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’) . . . . . . . . . . . 66
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
HSI oscillator accuracy characterization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
TC and TTa I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
TC and TTa I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port. . . . . . . . . . . . . . . . . 89
Five volt tolerant (FT and FTf) I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . 89
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 102
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
OPAMP Voltage Noise versus Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
LQFP100 – 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . 119
Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . 121
Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 123
Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
DocID023353 Rev 6
7/132
7
Introduction
1
STM32F302xx/STM32F303xx
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F302xx/STM32F303xx microcontrollers.
This STM32F302xx/STM32F303xx datasheet should be read in conjunction with the
STM32F302xx/STM32F303xx reference manual. The reference manual is available from
the STMicroelectronics website www.st.com.
For information on the Cortex™-M4 core with FPU please refer to:
8/132
•
Cortex™-M4 with FPU Technical Reference Manual, available from the
www.arm.com website at the following address:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexm.m4/
index.html
•
STM32F3xxx and STM32F4xxx Cortex-M4 programming manual (PM0214)
available from the www.st.com website at the following address:
http://www.st.com/internet/com/TECHNICAL_RESOURCES/
TECHNICAL_LITERATURE/PROGRAMMING_MANUAL/DM00046982.pdf
DocID023353 Rev 6
STM32F302xx/STM32F303xx
2
Description
Description
The STM32F302xx/STM32F303xx family is based on the high-performance
ARM® Cortex™-M4 32-bit RISC core with FPU operating at a frequency of up to 72 MHz,
and embedding a floating point unit (FPU), a memory protection unit (MPU) and an
embedded trace macrocell (ETM). The family incorporates high-speed embedded
memories (up to 256 Kbytes of Flash memory, up to 48 Kbytes of SRAM) and an extensive
range of enhanced I/Os and peripherals connected to two APB buses.
The devices offer up to four fast 12-bit ADCs (5 Msps), up to seven comparators, up to four
operational amplifiers, up to two DAC channels, a low-power RTC, up to five generalpurpose 16-bit timers, one general-purpose 32-bit timer, and two timers dedicated to motor
control. They also feature standard and advanced communication interfaces: up to two I2Cs,
up to three SPIs (two SPIs are with multiplexed full-duplex I2Ss on
STM32F303xB/STM32F303xC devices), three USARTs, up to two UARTs, CAN and USB.
To achieve audio class accuracy, the I2S peripherals can be clocked via an external PLL.
The STM32F302xx/STM32F303xx family operates in the -40 to +85 °C and -40 to +105 °C
temperature ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving
mode allows the design of low-power applications.
The STM32F302xx/STM32F303xx family offers devices in three packages ranging from 48
pins to 100 pins.
The set of included peripherals changes with the device chosen.
DocID023353 Rev 6
9/132
53
Description
STM32F302xx/STM32F303xx
Table 2. STM32F302xx/STM32F303xx family device features and peripheral counts
Peripheral
STM32F
302Cx
STM32F
302Rx
STM32F
302Vx
STM32F
303Cx
STM32F
303Rx
STM32F
303Vx
Flash (Kbytes)
128
256
128
256
128
256
128
256
128
256
128
256
SRAM (Kbytes) on
data bus
24
32
24
32
24
32
32
40
32
40
32
40
CCM (Core Coupled
Memory) RAM
(Kbytes)
Advanced
control
Timers
8
1 (16-bit)
2 (16-bit)
General
purpose
5 (16-bit)
1 (32-bit)
Basic
SPI(I2S)(1)
I2C
Comm.
USART
interfaces
UART
GPIOs
n/a
1 (16-bit)
2 (16-bit)
3
3(2)
2
3
0
2
0
CAN
1
USB
1
2
Normal
I/Os
(TC, TTa)
20
27
45
20
27
45
5 volts
Tolerant
I/Os
(FT, FTf)
17
25
42
17
25
42
17
18
24
DMA channels
Capacitive sensing
channels
12
17
18
24
12-bit ADCs
2
4
12-bit DAC channels
1
2
Analog comparator
4
7
Operational amplifiers
2
4
CPU frequency
72 MHz
Operating voltage
2.0 to 3.6 V
Operating
temperature
Packages
Ambient operating temperature: - 40 to 85 °C / - 40 to 105 °C
Junction temperature: - 40 to 125 °C
LQFP48
LQFP64
LQFP100
LQFP48
LQFP64
LQFP100
1. In STM32F303xB/STM32F303xC devices the SPI interfaces can work in an exclusive way in either the SPI mode or the I2S
audio mode.
10/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Description
Figure 1. STM32F302xB/STM32F302xC block diagram
TPIU
OBL
Ibus
Cortex M4 CPU
Flash
interface
Voltage reg.
3.3 V to 1.8V
MPU/FPU
Fmax: 72 MHz
System
PLL
XTAL OSC
4 -32 MHz
Ind. WDG32K
Standby
interface
AHBPCLK
APBP1CLK
APBP2CLK
HCLK
FCLK
IF
GPIO PORT C
PD[15:0]
GPIO PORT D
PE[15:0]
GPIO PORT E
PF[7:0]
GPIO PORT F
XTAL 32kHz
Backup
RTC
Reg
AWU (64Byte)
Backup
interface
USARTCLK
I2CCLK
ADC SAR
1/2/3/4 CLK
CRC
EXT.IT
WKUP
1 Channel, 1 Comp
Channel, BRK as AF
TIMER 16
1 Channel, 1 Comp
Channel, BRK as AF
TIMER 17
TIMER 1 / PWM
MOSI, MISO,
SCK,NSS as AF
SPI1
RX, TX, CTS, RTS,
SmartCard as AF
USART1
ANTI-TAMP
4 Channels, ETR as AF
TIMER 3
4 Channels, ETR as AF
TIMER 4
4 Channels, ETR as AF
AHB2
APB1
SPI2
MOSI, MISO,
SCK, NSS as AF
SPI3
MOSI, MISO,
SCK, NSS as AF
USART2
RX, TX, CTS, RTS, as AF
USART3
RX, TX, CTS, RTS, as AF
UART4
RX, TX as AF
UART5
RX, TX as AF
I2C1
SCL, SDA, SMBA as AF
I2C2
SCL, SDA, SMBA as AF
bx CAN &
512B SRAM
CAN TX, CAN RX
USB 2.0 FS
USB_DP, USB_DM
IF 12bit DAC1
DAC1_CH1 as AF
USB SRAM 512B
TIMER6
@VDDA
SYSCFG CTL
@VDDA
GP Comparator 6
GP Comparator 4
GP Comparator 2
GP Comparator 1
Xx Ins, 4 OUTs as AF
INTERFACE
TIMER 15
OSC32_IN
OSC32_OUT
WinWATCHDOG
APB2 fmax = 72 MHz
2 Channels,1 Comp
Channel, BRK as AF
VBAT = 1.65V to 3.6V
TIMER2
(32-bit/PWM)
Touch Sensing
Controller
AHB2
APB2
OSC_IN
OSC_OUT
@VSW
APB1 Fmax = 36 MHz
PC[15:0]
Reset &
clock
control
AHB decoder
GPIO PORT B
@VDDIO
RC LS
12-bit ADC1
12-bit ADC2
NRESET
VDDA
VSSA
@VDDA
@VDDA
GP DMA2
5 channels
PB[15:0]
4 Channels,
4 Comp channels,
ETR, BRK as AF
POR /PDR
RC HS 8MHz
GPIO PORT A
XX AF
Supply
Supervision
Reset
Int.
GP DMA1
7 channels
PA[15:0]
XX Groups of
4 channels as AF
POR
PVD
SRAM
40 KB
Temp. sensor
VREF+
VREF-
VDDIO = 2 to 3.6 V
VSS
@VDDIO
FLASH 256 KB
64 bits
Dbus
NVIC
Power
VDD18
ETM
SWJTAG Trace/Trig
BusMatrix
TRADECLK
TRACED[0-3]
as AF
JTRST
JTDI
JTCK/SWCLK
JTMS/SWDIO
JTDO
As AF
OpAmp1
INxx / OUTxx
OpAmp2
INxx / OUTxx
@VDDA
MSv18959V6
1. AF: alternate function on I/O pins.
DocID023353 Rev 6
11/132
53
Description
STM32F302xx/STM32F303xx
Figure 2. STM32F303xB/STM32F303xC block diagram
TPIU
ETM
SWJTAG Trace/Trig
OBL
Ibus
Cortex M4 CPU
Flash
interface
Voltage reg.
3.3 V to 1.8V
MPU/FPU
Fmax: 72 MHz
System
NVIC
CCM RAM
8KB
POR
Supply
Supervision
Reset
Int.
POR /PDR
NRESET
VDDA
VSSA
PVD
SRAM
40 KB
@VDDA
@VDDA
GP DMA1
7 channels
RC HS 8MHz
GP DMA2
5 channels
PLL
@VDDIO
RC LS
XTAL OSC
4 -32 MHz
Ind. WDG32K
Standby
interface
AHBPCLK
Temp. sensor
APBP1CLK
12-bit ADC1
APBP2CLK
HCLK
FCLK
IF
Reset &
clock
control
AHB3
VREF+
VREF-
VDDIO = 2 to 3.6 V
VSS
@VDDIO
FLASH 256 KB
64 bits
Dbus
12-bit ADC2
Power
VDD18
BusMatrix
TRADECLK
TRACED[0-3]
as AF
JTRST
JTDI
JTCK/SWCLK
JTMS/SWDIO
JTDO
As AF
IF
12-bit ADC4
VBAT = 1.65V to 3.6V
@VSW
XTAL 32kHz
Backup
RTC
Reg
AWU (64Byte)
Backup
interface
USARTCLK
I2CCLK
ADC SAR
1/2/3/4 CLK
12-bit ADC3
OSC_IN
OSC_OUT
OSC32_IN
OSC32_OUT
ANTI-TAMP
TIMER2
(32-bit/PWM)
4 Channels, ETR as AF
GPIO PORT B
TIMER 3
4 Channels, ETR as AF
PC[15:0]
GPIO PORT C
TIMER 4
4 Channels, ETR as AF
PD[15:0]
GPIO PORT D
SPI2/I2S
MOSI/SD, MISO/ext_SD,
SCK/CK, NSS/WS, MCLK as AF
PE[15:0]
GPIO PORT E
SPI3/I2S
PF[7:0]
GPIO PORT F
MOSI/SD, MISO/ext_SD,
SCK/CK, NSS/WS, MCLK as AF
USART2
RX, TX, CTS, RTS, as AF
USART3
RX, TX, CTS, RTS, as AF
PB[15:0]
XX Groups of
4 channels as AF
CRC
APB1 Fmax = 36 MHz
GPIO PORT A
AHB2
PA[15:0]
Touch Sensing
Controller
AHB2
APB2
AHB2
APB1
UART4
RX, TX as AF
UART5
RX, TX as AF
I2C1
SCL, SDA, SMBA as AF
I2C2
SCL, SDA, SMBA as AF
WinWATCHDOG
EXT.IT
WKUP
TIMER 15
1 Channel, 1 Comp
Channel, BRK as AF
TIMER 16
1 Channel, 1 Comp
Channel, BRK as AF
TIMER 17
4 Channels,
4 Comp channels,
ETR, BRK as AF
4 Channels,
4 Comp channels,
ETR, BRK as AF
TIMER 1 / PWM
TIMER7
RX, TX, CTS, RTS,
SmartCard as AF
USART1
DAC1_CH2 as AF
OpAmp1
INxx / OUTxx
OpAmp2
INxx / OUTxx
OpAmp3
INxx / OUTxx
OpAmp4
INxx / OUTxx
@VDDA
GP Comparator
p
7
GP Comparator...
GP Comparator 1
Xx Ins, 7 OUTs as AF
1. AF: alternate function on I/O pins.
12/132
DAC1_CH1 as AF
IF 12bit DAC1
@VDDA
SYSCFG CTL
SPI1
USB_DP, USB_DM
TIMER6
TIMER 8 / PWM
MOSI, MISO,
SCK,NSS as AF
CAN TX, CAN RX
USB 2.0 FS
INTERFACE
2 Channels,1 Comp
Channel, BRK as AF
bx CAN &
512B SRAM
USB SRAM 512B
APB2 fmax = 72 MHz
XX AF
DocID023353 Rev 6
@VDDA
MS18960V4
STM32F302xx/STM32F303xx
Functional overview
3
Functional overview
3.1
ARM® Cortex™-M4 core with FPU with embedded Flash and
SRAM
The ARM Cortex-M4 processor with FPU is the latest generation of ARM processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The ARM Cortex-M4 32-bit RISC processor with FPU features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded ARM core, the STM32F302xx/STM32F303xx family is compatible with
all ARM tools and software.
Figure 1 and Figure 2 show the general block diagrams of the
STM32F302xx/STM32F303xx family devices.
3.2
Memory protection unit (MPU)
The memory protection unit (MPU) is used to separate the processing of tasks from the data
protection. The MPU can manage up to 8 protection areas that can all be further divided up
into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes
of addressable memory.
The memory protection unit is especially helpful for applications where some critical or
certified code has to be protected against the misbehavior of other tasks. It is usually
managed by an RTOS (real-time operating system). If a program accesses a memory
location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS
environment, the kernel can dynamically update the MPU area setting, based on the
process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
3.3
Embedded Flash memory
All STM32F302xx/STM32F303xx devices feature up to 256 Kbytes of embedded Flash
memory available for storing programs and data. The Flash memory access time is adjusted
to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz
and 2 wait states above).
DocID023353 Rev 6
13/132
53
Functional overview
3.4
STM32F302xx/STM32F303xx
Embedded SRAM
STM32F302xx/STM32F303xx devices feature up to 48 Kbytes of embedded SRAM with
hardware parity check. The memory can be accessed in read/write at CPU clock speed with
0 wait states, allowing the CPU to achieve 90 Dhrystone Mips at 72 MHz (when running
code from the CCM (Core Coupled Memory) RAM).
•
8 Kbytes of CCM RAM on STM32F303xx devices mapped on both instruction and data
bus, used to execute critical routines or to access data (parity check on all of CCM
RAM).
•
3.5
40 Kbytes of SRAM mapped on the data bus (parity check on first 16 Kbytes of SRAM).
Boot modes
At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options:
•
Boot from user Flash
•
Boot from system memory
•
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory by
using USART1 (PA9/PA10), USART2 (PD5/PD6) or USB (PA11/PA12) through DFU
(device firmware upgrade).
3.6
Cyclic redundancy check (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a
configurable generator polynomial value and size.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at
linktime and stored at a given memory location.
14/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
3.7
Power management
3.7.1
Power supply schemes
3.7.2
Functional overview
•
VSS, VDD = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. It is
provided externally through VDD pins.
•
VSSA, VDDA = 2.0 to 3.6 V: external analog power supply for ADC, DACs, comparators
operational amplifiers, reset blocks, RCs and PLL (minimum voltage to be applied to
VDDA is 2.4 V when the DACs and operational amplifiers are used). The VDDA voltage
level must be always greater or equal to the VDD voltage level and must be provided
first.
•
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Power supply supervisor
The device has an integrated power-on reset (POR) and power-down reset (PDR) circuits.
They are always active, and ensure proper operation above a threshold of 2 V. The device
remains in reset mode when the monitored supply voltage is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit.
•
The POR monitors only the VDD supply voltage. During the startup phase it is required
that VDDA should arrive first and be greater than or equal to VDD.
•
The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce
the power consumption if the application design ensures that VDDA is higher than or
equal to VDD.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD power supply and compares it to the VPVD threshold. An interrupt can be generated
when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD
threshold. The interrupt service routine can then generate a warning message and/or put
the MCU into a safe state. The PVD is enabled by software.
3.7.3
Voltage regulator
The regulator has three operation modes: main (MR), low power (LPR), and power-down.
•
The MR mode is used in the nominal regulation mode (Run)
•
The LPR mode is used in Stop mode.
•
The power-down mode is used in Standby mode: the regulator output is in high
impedance, and the kernel circuitry is powered down thus inducing zero consumption.
The voltage regulator is always enabled after reset. It is disabled in Standby mode.
DocID023353 Rev 6
15/132
53
Functional overview
3.7.4
STM32F302xx/STM32F303xx
Low-power modes
The STM32F302xx/STM32F303xx supports three low power modes to achieve the best
compromise between low power consumption, short startup time and available wakeup
sources:
•
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
•
Stop mode
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line
source can be one of the 16 external lines, the PVD output, the USB wakeup on
STM32F303xB/STM32F303xC devices, the RTC alarm, COMPx, I2Cx or U(S)ARTx.
•
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for registers in the Backup
domain and Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pin or an RTC alarm occurs.
Note:
16/132
The RTC, the IWDG and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
DocID023353 Rev 6
STM32F302xx/STM32F303xx
3.8
Functional overview
Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example with
failure of an indirectly used external oscillator).
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and
the low speed APB (APB1) domains. The maximum frequency of the AHB and the high
speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed
APB domain is 36 MHz.
DocID023353 Rev 6
17/132
53
Functional overview
STM32F302xx/STM32F303xx
Figure 3. Clock tree
FLITFCLK
to Flash programming interface
HSI
to I2Cx (x = 1,2)
SYSCLK
I2SSRC
SYSCLK
to I2Sx (x = 2,3)
Ext. clock
I2S_CKIN
USB
prescaler
/1,1.5
8 MHz HSI
HSI RC
USBCLK
to USB interface
/2
HCLK
PLLSRC
PLLMUL
PLL
x2,x3,..
x16
/8
SW
HSI
PLLCLK
AHB
AHB
prescaler
/1,2,..512
HSE
APB1
prescaler
/1,2,4,8,16
SYSCLK
OSC_OUT
OSC_IN
OSC32_IN
OSC32_OUT
PCLK1
SYSCLK
HSI
LSE
4-32 MHz
HSE OSC
/32
LSE OSC
32.768kHz
APB2
prescaler
/1,2,4,8,16
RTCCLK
LSI
LSI RC
40kHz
Main clock
output
/2
PCLK2
to TIM 2,3,4,6,7
to U(S)ARTx (x = 2..5)
to APB2 peripherals
to RTC
If (APB2 prescaler
=1) x1 else x2
LSE
RTCSEL[1:0]
MCO
PCLK1
If (APB1 prescaler
=1) x1 else x2
CSS
/2,/3,...
/16
to AHB bus, core,
memory and DMA
to cortex System timer
FHCLK Cortex free
running clock
to APB1 peripherals
PCLK2
SYSCLK
HSI
LSE
IWDGCLK
to IWDG
PLLCLK
HSI
LSI
HSE
SYSCLK
x2
to TIM 15,16,17
to USART1
TIM1/8
MCO
ADC
Prescaler
/1,2,4
to ADCxy
(xy = 12, 34)
ADC
Prescaler
/1,2,4,6,8,10,12,16,
32,64,128,256
MS19989V4
18/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
3.9
Functional overview
General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current
capable except for analog inputs.
The I/Os alternate function configuration can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/Os registers.
Fast I/O handling allows I/O toggling up to 36 MHz.
3.10
Direct memory access (DMA)
The flexible general-purpose DMA is able to manage memory-to-memory, peripheral-tomemory and memory-to-peripheral transfers. The DMA controller supports circular buffer
management, avoiding the generation of interrupts when the controller reaches the end of
the buffer.
Each of the 12 DMA channels is connected to dedicated hardware DMA requests, with
software trigger support for each channel. Configuration is done by software and transfer
sizes between source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers,
DAC and ADC.
3.11
Interrupts and events
3.11.1
Nested vectored interrupt controller (NVIC)
The STM32F302xx/STM32F303xx devices embed a nested vectored interrupt controller
(NVIC) able to handle up to 66 maskable interrupt channels and 16 priority levels.
The NVIC benefits are the following:
•
Closely coupled NVIC gives low latency interrupt processing
•
Interrupt entry vector table address passed directly to the core
•
Closely coupled NVIC core interface
•
Allows early processing of interrupts
•
Processing of late arriving higher priority interrupts
•
Support for tail chaining
•
Processor state automatically saved
•
Interrupt entry restored on interrupt exit with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
DocID023353 Rev 6
19/132
53
Functional overview
3.12
STM32F302xx/STM32F303xx
Fast analog-to-digital converter (ADC)
Up to four fast analog-to-digital converters 5 MSPS, with selectable resolution between 12
and 6 bit, are embedded in the STM32F302xx/STM32F303xx family devices. The ADCs
have up to 39 external channels. Some of the external channels are shared between
ADC1&2 and between ADC3&4, performing conversions in single-shot or scan modes. In
scan mode, automatic conversion is performed on a selected group of analog inputs.
The ADCs have also internal channels: Temperature sensor connected to ADC1 channel
16, VBAT/2 connected to ADC1 channel 17, Voltage reference VREFINT connected to the 4
ADCs channel 18, VOPAMP1 connected to ADC1 channel 15, VOPAMP2 connected to
ADC2 channel 17, VOPAMP3 connected to ADC3 channel 17, VOPAMP4 connected to
ADC4 channel 17.
Additional logic functions embedded in the ADC interface allow:
•
Simultaneous sample and hold
•
Interleaved sample and hold
•
Single-shunt phase current reading techniques.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers and the advanced-control timers
(TIM1 on all devices and TIM8 on STM32F303xB/STM32F303xC devices) can be internally
connected to the ADC start trigger and injection trigger, respectively, to allow the application
to synchronize A/D conversion and timers.
3.12.1
Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
3.12.2
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and Comparators. VREFINT is internally connected to the ADC_IN18 input channel. The
precise voltage of VREFINT is individually measured for each part by ST during production
test and stored in the system memory area. It is accessible in read-only mode.
20/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
3.12.3
Functional overview
VBAT battery voltage monitoring
This embedded hardware feature allows the application to measure the VBAT battery voltage
using the internal ADC channel ADC_IN17. As the VBAT voltage may be higher than VDDA,
and thus outside the ADC input range, the VBAT pin is internally connected to a bridge
divider by 2. As a consequence, the converted digital value is half the VBAT voltage.
3.12.4
OPAMP reference voltage (VOPAMP)
Every OPAMP reference voltage can be measured using a corresponding ADC internal
channel: VOPAMP1 connected to ADC1 channel 15, VOPAMP2 connected to ADC2
channel 17, VOPAMP3 connected to ADC3 channel 17, VOPAMP4 connected to ADC4
channel 17.
3.13
Digital-to-analog converter (DAC)
Up to two 12-bit buffered DAC channels can be used to convert digital signals into analog
voltage signal outputs. The chosen design structure is composed of integrated resistor
strings and an amplifier in inverting configuration.
This digital interface supports the following features:
3.14
•
Up to two DAC output channels on STM32F303xB/STM32F303xC devices
•
8-bit or 10-bit monotonic output
•
Left or right data alignment in 12-bit mode
•
Synchronized update capability on STM32F303xB/STM32F303xC devices
•
Noise-wave generation
•
Triangular-wave generation
•
Dual DAC channel independent or simultaneous conversions on
STM32F303xB/STM32F303xC devices
•
DMA capability (for each channel on STM32F303xB/STM32F303xC devices)
•
External triggers for conversion
•
Input voltage reference VREF+
Operational amplifier (OPAMP)
The STM32F302xx/STM32F303xx embeds up to four operational amplifiers with external or
internal follower routing and PGA capability (or even amplifier and filter capability with
external components). When an operational amplifier is selected, an external ADC channel
is used to enable output measurement.
The operational amplifier features:
•
8.2 MHz bandwidth
•
0.5 mA output capability
•
Rail-to-rail input/output
•
In PGA mode, the gain can be programmed to be 2, 4, 8 or 16.
DocID023353 Rev 6
21/132
53
Functional overview
3.15
STM32F302xx/STM32F303xx
Fast comparators (COMP)
The STM32F302xx/STM32F303xx devices embed seven fast rail-to-rail comparators with
programmable reference voltage (internal or external), hysteresis and speed (low speed for
low power) and with selectable output polarity.
The reference voltage can be one of the following:
•
External I/O
•
DAC output pin
•
Internal reference voltage or submultiple (1/4, 1/2, 3/4). Refer to Table 26: Embedded
internal reference voltage on page 62 for the value and precision of the internal
reference voltage.
All comparators can wake up from STOP mode, generate interrupts and breaks for the
timers and can be also combined per pair into a window comparator
3.16
Timers and watchdogs
The STM32F302xx/STM32F303xx includes up to two advanced control timers, up to 6
general-purpose timers, two basic timers, two watchdog timers and a SysTick timer. The
table below compares the features of the advanced control, general purpose and basic
timers.
Table 3. Timer feature comparison
Timer type
Timer
Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Advanced
TIM1,
TIM8 (on
STM32F303xB
/STM32F303x
C devices only)
16-bit
Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes
4
Yes
Generalpurpose
TIM2
32-bit
Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes
4
No
Generalpurpose
TIM3, TIM4
16-bit
Up, Down,
Up/Down
Any integer
between 1
and 65536
Yes
4
No
Generalpurpose
TIM15
16-bit
Up
Any integer
between 1
and 65536
Yes
2
1
Generalpurpose
TIM16, TIM17
16-bit
Up
Any integer
between 1
and 65536
Yes
1
1
Basic
TIM6,
TIM7 (on
STM32F303xB
/STM32F303x
C devices only)
16-bit
Up
Any integer
between 1
and 65536
Yes
0
No
22/132
DocID023353 Rev 6
Capture/
Complementary
compare
outputs
Channels
STM32F302xx/STM32F303xx
3.16.1
Functional overview
Advanced timers (TIM1, TIM8)
The advanced-control timers (TIM1 on all devices and TIM8 on
STM32F303xB/STM32F303xC devices) can each be seen as a three-phase PWM
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead-times. They can also be seen as complete general-purpose timers. The 4
independent channels can be used for:
•
Input capture
•
Output compare
•
PWM generation (edge or center-aligned modes) with full modulation capability (0100%)
•
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIM timers (described in
Section 3.16.2 using the same architecture, so the advanced-control timers can work
together with the TIM timers via the Timer Link feature for synchronization or event chaining.
3.16.2
General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17)
There are up to six synchronizable general-purpose timers embedded in the
STM32F302xx/STM32F303xx (see Table 3 for differences). Each general-purpose timer
can be used to generate PWM outputs, or act as a simple time base.
•
TIM2, 3, and TIM4
These are full-featured general-purpose timers:
–
TIM2 has a 32-bit auto-reload up/downcounter and 32-bit prescaler
–
TIM3 and 4 have 16-bit auto-reload up/downcounters and 16-bit prescalers.
These timers all feature 4 independent channels for input capture/output compare,
PWM or one-pulse mode output. They can work together, or with the other generalpurpose timers via the Timer Link feature for synchronization or event chaining.
The counters can be frozen in debug mode.
All have independent DMA request generation and support quadrature encoders.
•
TIM15, 16 and 17
These three timers general-purpose timers with mid-range features:
They have 16-bit auto-reload upcounters and 16-bit prescalers.
–
TIM15 has 2 channels and 1 complementary channel
–
TIM16 and TIM17 have 1 channel and 1 complementary channel
All channels can be used for input capture/output compare, PWM or one-pulse mode
output.
The timers can work together via the Timer Link feature for synchronization or event
chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
DocID023353 Rev 6
23/132
53
Functional overview
3.16.3
STM32F302xx/STM32F303xx
Basic timers (TIM6, TIM7)
These timers are mainly used for DAC trigger generation. They can also be used as a
generic 16-bit time base.
3.16.4
Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 40 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free running timer for application timeout
management. It is hardware or software configurable through the option bytes. The counter
can be frozen in debug mode.
3.16.5
Window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.16.6
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
3.17
•
A 24-bit down counter
•
Autoreload capability
•
Maskable system interrupt generation when the counter reaches 0.
•
Programmable clock source
Real-time clock (RTC) and backup registers
The RTC and the 16 backup registers are supplied through a switch that takes power from
either the VDD supply when present or the VBAT pin. The backup registers are sixteen 32-bit
registers used to store 64 bytes of user application data when VDD power is not present.
They are not reset by a system or power reset, or when the device wakes up from Standby
mode.
24/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Functional overview
The RTC is an independent BCD timer/counter. It supports the following features:
•
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
•
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
•
Automatic correction for 28, 29 (leap year), 30 and 31 days of the month.
•
Two programmable alarms with wake up from Stop and Standby mode capability.
•
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
•
Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy.
•
Three anti-tamper detection pins with programmable filter. The MCU can be woken up
from Stopand Standby modes on tamper event detection.
•
Timestamp feature which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.
•
17-bit Auto-reload counter for periodic interrupt with wakeup from STOP/STANDBY
capability.
The RTC clock sources can be:
•
A 32.768 kHz external crystal
•
A resonator or oscillator
•
The internal low-power RC oscillator (typical frequency of 40 kHz)
•
The high-speed external clock divided by 32.
DocID023353 Rev 6
25/132
53
Functional overview
3.18
STM32F302xx/STM32F303xx
Inter-integrated circuit interface (I2C)
Up to two I2C bus interfaces can operate in multimaster and slave modes. They can support
standard (up to 100 KHz), fast (up to 400 KHz) and fast mode + (up to 1 MHz) modes.
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses
(2 addresses, 1 with configurable mask). They also include programmable analog and
digital noise filters.
Table 4. Comparison of I2C analog and digital filters
Analog filter
Digital filter
Pulse width of
suppressed spikes
≥ 50 ns
Programmable length from 1 to 15
I2C peripheral clocks
Benefits
Available in Stop mode
1. Extra filtering capability vs.
standard requirements.
2. Stable length
Drawbacks
Variations depending on
temperature, voltage, process
Wakeup from Stop on address
match is not available when digital
filter is enabled.
In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability,
Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and
ALERT protocol management. They also have a clock domain independent from the CPU
clock, allowing the I2Cx (x=1,2) to wake up the MCU from Stop mode on address match.
The I2C interfaces can be served by the DMA controller.
Refer to Table 5 for the features available in I2C1 and I2C2.
Table 5. STM32F302xx/STM32F303xx I2C implementation
I2C features(1)
I2C1
I2C2
7-bit addressing mode
X
X
10-bit addressing mode
X
X
Standard mode (up to 100 kbit/s)
X
X
Fast mode (up to 400 kbit/s)
X
X
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)
X
X
Independent clock
X
X
SMBus
X
X
Wakeup from STOP
X
X
1. X = supported.
26/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
3.19
Functional overview
Universal synchronous/asynchronous receiver transmitter
(USART)
The STM32F302xx/STM32F303xx devices have three embedded universal
synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3).
The USART interfaces are able to communicate at speeds of up to 9 Mbits/s.
They provide hardware management of the CTS and RTS signals, they support IrDA SIR
ENDEC, the multiprocessor communication mode, the single-wire half-duplex
communication mode and have LIN Master/Slave capability. The USART interfaces can be
served by the DMA controller.
3.20
Universal asynchronous receiver transmitter (UART)
The STM32F302xx/STM32F303xx devices have 2 embedded universal asynchronous
receiver transmitters (UART4, and UART5). The UART interfaces support IrDA SIR
ENDEC, multiprocessor communication mode and single-wire half-duplex communication
mode. The UART4 interface can be served by the DMA controller.
Refer to Table 6 for the features available in all U(S)ARTs interfaces.
Table 6. USART features
USART modes/features(1)
USART1
USART2
USART3
UART4
UART5
Hardware flow control for modem
X
X
X
Continuous communication using DMA
X
X
X
X
Multiprocessor communication
X
X
X
X
X
Synchronous mode
X
X
X
Smartcard mode
X
X
X
Single-wire half-duplex communication
X
X
X
X
X
IrDA SIR ENDEC block
X
X
X
X
X
LIN mode
X
X
X
X
X
Dual clock domain and wakeup from Stop mode
X
X
X
X
X
Receiver timeout interrupt
X
X
X
X
X
Modbus communication
X
X
X
X
X
Auto baud rate detection
X
X
X
Driver Enable
X
X
X
1. X = supported.
3.21
Serial peripheral interface (SPI)/Inter-integrated sound
interfaces (I2S)
Up to three SPIs are able to communicate up to 18 Mbits/s in slave and master modes in
full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits.
DocID023353 Rev 6
27/132
53
Functional overview
STM32F302xx/STM32F303xx
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different
audio standards can operate as master or slave at half-duplex and full duplex
communication modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit
or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency
from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When
operating in master mode it can output a clock for an external audio component at 256 times
the sampling frequency.
Refer to Table 7 for the features available in SPI1, SPI2 and SPI3.
Table 7. STM32F302xx/STM32F303xx SPI/I2S implementation
SPI features(1)
SPI1
SPI2
SPI3
Hardware CRC calculation
X
X
X
Rx/Tx FIFO
X
X
X
NSS pulse mode
X
X
X
X
X
X
X
I2S mode
TI mode
X
1. X = supported.
3.22
Controller area network (CAN)
The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It
can receive and transmit standard frames with 11-bit identifiers as well as extended frames
with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and
14 scalable filter banks.
3.23
Universal serial bus (USB)
The STM32F302xx/STM32F303xx devices embed an USB device peripheral compatible
with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s)
function interface. It has software-configurable endpoint setting and suspend/resume
support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock
source must use a HSE crystal oscillator). The USB has a dedicated 512-bytes SRAM
memory for data transmission and reception.
28/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
3.24
Functional overview
Infrared Transmitter
The STM32F302xx/STM32F303xx devices provide an infrared transmitter solution. The
solution is based on internal connections between TIM16 and TIM17 as shown in the figure
below.
TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be
sent. The infrared output signal is available on PB9 or PA13.
To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must
be properly configured to generate correct waveforms. All standard IR pulse modulation
modes can be obtained by programming the two timers output compare channels.
Figure 4. Infrared transmitter
TIMER 16
OC
(for envelop)
TIMER 17
PB9/PA13
OC
(for carrier)
MS30365V1
3.25
Touch sensing controller (TSC)
The STM32F302xx/STM32F303xx devices provide a simple solution for adding capacitive
sensing functionality to any application. These devices offer up to 24 capacitive sensing
channels distributed over 8 analog I/O groups.
Capacitive sensing technology is able to detect the presence of a finger near a sensor which
is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation
introduced by the finger (or any conductive object) is measured using a proven
implementation based on a surface charge transfer acquisition principle. It consists of
charging the sensor capacitance and then transferring a part of the accumulated charges
into a sampling capacitor until the voltage across this capacitor has reached a specific
threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the
hardware touch sensing controller and only requires few external components to operate.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library which is free to use and allows touch sensing functionality to be implemented reliably
in the end application.
DocID023353 Rev 6
29/132
53
Functional overview
STM32F302xx/STM32F303xx
Table 8. Capacitive sensing GPIOs available on STM32F302xx/STM32F303xx devices
Group
1
2
3
4
Capacitive sensing
signal name
Pin
name
TSC_G5_IO1
PB3
TSC_G5_IO2
PB4
TSC_G5_IO3
PB6
PA3
TSC_G5_IO4
PB7
TSC_G2_IO1
PA4
TSC_G6_IO1
PB11
TSC_G2_IO2
PA5
TSC_G6_IO2
PB12
TSC_G2_IO3
PA6
TSC_G6_IO3
PB13
TSC_G2_IO4
PA7
TSC_G6_IO4
PB14
TSC_G3_IO1
PC5
TSC_G7_IO1
PE2
TSC_G3_IO2
PB0
TSC_G7_IO2
PE3
TSC_G3_IO3
PB1
TSC_G7_IO3
PE4
TSC_G3_IO4
PB2
TSC_G7_IO4
PE5
TSC_G4_IO1
PA9
TSC_G8_IO1
PD12
TSC_G4_IO2
PA10
TSC_G8_IO2
PD13
TSC_G4_IO3
PA13
TSC_G8_IO3
PD14
TSC_G4_IO4
PA14
TSC_G8_IO4
PD15
Capacitive sensing
signal name
Pin
name
TSC_G1_IO1
PA0
TSC_G1_IO2
PA1
TSC_G1_IO3
PA2
TSC_G1_IO4
Group
5
6
7
8
Table 9. No. of capacitive sensing channels available on
STM32F302xx/STM32F303xx devices
Number of capacitive sensing channels
Analog I/O group
30/132
STM32F30xVx
STM32F30xRx
STM32F30xCx
G1
3
3
3
G2
3
3
3
G3
3
3
2
G4
3
3
3
G5
3
3
3
G6
3
3
3
G7
3
0
0
G8
3
0
0
Number of capacitive
sensing channels
24
18
17
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Functional overview
3.26
Development support
3.26.1
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.
3.26.2
Embedded trace macrocell™
The ARM embedded trace macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F302xx/STM32F303xx through a small number of ETM pins to an external hardware
trace port analyzer (TPA) device. The TPA is connected to a host computer using a highspeed channel. Real-time instruction and data flow activity can be recorded and then
formatted for display on the host computer running debugger software. TPA hardware is
commercially available from common development tool vendors. It operates with third party
debugger software tools.
DocID023353 Rev 6
31/132
53
Pinouts and pin description
4
STM32F302xx/STM32F303xx
Pinouts and pin description
VDD_1
VSS_1
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
Figure 5. STM32F302xx/STM32F303xx LQFP48 pinout
48 47 46 45 44 43 42 41 40 39 38 37
36
35
34
33
4
32
5
31
6
,1&0
30
7
29
8
28
9
27
10
26
11
25
12
13 14 15 16 17 18 19 20 21 22 23 24
1
2
3
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS_2
VDD_2
VBAT
PC13
PC14/OSC32_IN
PC15/OSC32_OUT
PF0/OSC_IN
PF1/OSC_OUT
NRST
VSSA/VREFVDDA/VREF+
PA0
PA1
PA2
32/132
DocID023353 Rev 6
VDD_3
VSS_3
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
.47
STM32F302xx/STM32F303xx
Pinouts and pin description
VDD_1
VSS_1
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
Figure 6. STM32F302xx/STM32F303xx LQFP64 pinout
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
47
2
46
3
45
4
44
5
43
6
42
7
41
8
,1&0
40
9
39
10
38
11
37
12
36
13
35
14
34
15
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
VDD_3
VSS_3
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PA3
PF4
VDD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS_2
VDD_2
VBAT
PC13
PC14/OSC32_IN
PC15/OSC32_OUT
PF0/OSC_IN
PF1/OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA/VREFVDDA
PA0
PA1
PA2
AI6
DocID023353 Rev 6
33/132
53
Pinouts and pin description
STM32F302xx/STM32F303xx
6$$?
633?
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!
Figure 7. STM32F302xx/STM32F303xx LQFP100 pinout
0%
0%
0%
0%
0%
6"!4
0#
0#/3#?).
0#/3#?/54
0&
0&
0&/3#?).
0&/3#?/54
.234
0#
0#
0#
0#
0&
633!62%&
62%&
6$$!
0!
0!
0!
0!
0&
6$$?
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
0"
633?
6$$?
,1&0
6$$?
633?
0&
0! 0! 0! 0! 0! 0! 0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0" 0"
AI6
Table 10. Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
I/O structure
34/132
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function
during and after reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
FTf
5 V tolerant I/O, FM+ capable
TTa
3.3 V tolerant I/O directly connected to ADC
TC
Standard 3.3V I/O
B
Dedicated BOOT0 pin
RST
Bidirectional reset pin with embedded weak pull-up resistor
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Pinouts and pin description
Table 10. Legend/abbreviations used in the pinout table (continued)
Name
Notes
Pin
functions
Abbreviation
Definition
Unless otherwise specified by a note, all I/Os are set as floating inputs during
and after reset
Alternate
functions
Functions selected through GPIOx_AFR registers
Additional
functions
Functions directly selected/enabled through peripheral registers
DocID023353 Rev 6
35/132
53
Pinouts and pin description
STM32F302xx/STM32F303xx
Table 11. STM32F302xx/STM32F303xx pin definitions
Notes
I/O
FT
(1)
TRACECK, TIM3_CH1,
TSC_G7_IO1, EVENTOUT
2
PE3
I/O
FT
(1)
TRACED0, TIM3_CH2,
TSC_G7_IO2, EVENTOUT
3
PE4
I/O
FT
(1)
TRACED1, TIM3_CH3,
TSC_G7_IO3, EVENTOUT
4
PE5
I/O
FT
(1)
TRACED2, TIM3_CH4,
TSC_G7_IO4, EVENTOUT
5
PE6
I/O
FT
(1)
TRACED3, EVENTOUT
LQFP48
PE2
LQFP64
1
LQFP100
Pin name
(function
after
reset)
I/O structure
Pin functions
Pin type
Pin number
Alternate functions
Additional functions
WKUP3, RTC_TAMP3
6
1
1
VBAT
S
Backup power supply
7
2
2
PC13(2)
I/O
TC
8
3
3
PC14(2)
OSC32_IN I/O
(PC14)
TC
OSC32_IN
OSC32_OUT
TIM1_CH1N
WKUP2, RTC_TAMP1,
RTC_TS, RTC_OUT
PC15(2)
OSC32_
OUT
(PC15)
I/O
TC
10
PF9
I/O
FT
(1)
TIM15_CH1, SPI2_SCK,
EVENTOUT
11
PF10
I/O
FT
(1)
TIM15_CH2, SPI2_SCK,
EVENTOUT
PF0OSC_IN
(PF0)
I/O
FTf
TIM1_CH3N, I2C2_SDA,
OSC_IN
PF1OSC_OUT I/O
(PF1)
FTf
I2C2_SCL
OSC_OUT
9
4
4
12
5
5
13
6
6
14
7
7
NRST
I/O
RST
Device reset input / internal reset output (active low)
15
8
PC0
I/O
TTa
(1)
16
9
PC1
I/O
TTa
(1)
EVENTOUT
ADC12_IN7, COMP7_INP(4)
17
10
PC2
I/O
TTa
(1)
COMP7_OUT(4), EVENTOUT
ADC12_IN8
TTa
(1)
TIM1_BKIN2, EVENTOUT
ADC12_IN9
TTa
(1)
EVENTOUT
ADC12_IN10
18
11
PC3
19
20
36/132
12
8
I/O
PF2
I/O
VSSA/
VREF-
S
EVENTOUT
ADC12_IN6, COMP7_INM(4)
Analog ground/Negative reference voltage
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Pinouts and pin description
Table 11. STM32F302xx/STM32F303xx pin definitions (continued)
Pin functions
Positive reference voltage
22
VDDA
S
Analog power supply
VDDA/
VREF+
S
Analog power supply/Positive reference voltage
13
9
Notes
S
LQFP48
VREF+(3)
LQFP64
21
LQFP100
Pin name
(function
after
reset)
Pin type
I/O structure
Pin number
Alternate functions
Additional functions
23
14
10
PA0
I/O
TTa
USART2_CTS,
TIM2_CH1_ETR,
TIM8_BKIN(4), TIM8_ETR(4),
TSC_G1_IO1, COMP1_OUT,
EVENTOUT
24
15
11
PA1
I/O
TTa
USART2_RTS, TIM2_CH2,
TSC_G1_IO2, TIM15_CH1N,
RTC_REFIN, EVENTOUT
ADC1_IN2, COMP1_INP,
OPAMP1_VINP,
OPAMP3_VINP(4)
25
16
12
PA2
I/O
TTa
USART2_TX, TIM2_CH3,
TIM15_CH1, TSC_G1_IO3,
COMP2_OUT, EVENTOUT
ADC1_IN3, COMP2_INM,
OPAMP1_VOUT
26
17
13
PA3
I/O
TTa
USART2_RX, TIM2_CH4,
TIM15_CH2, TSC_G1_IO4,
EVENTOUT
ADC1_IN4, OPAMP1_VINP,
COMP2_INP,
OPAMP1_VINM
27
18
PF4
I/O
TTa
COMP1_OUT, EVENTOUT
ADC1_IN5
28
19
VDD_4
S
SPI1_NSS, SPI3_NSS,
I2S3_WS(4), USART2_CK,
TSC_G2_IO1, TIM3_CH2,
EVENTOUT
ADC2_IN1, DAC1_OUT1,
OPAMP4_VINP(4),
COMP1_INM, COMP2_INM,
COMP3_INM(4),
COMP4_INM,
COMP5_INM(4),
COMP6_INM,COMP7_INM(4)
TTa
SPI1_SCK, TIM2_CH1_ETR,
TSC_G2_IO2, EVENTOUT
ADC2_IN2, DAC1_OUT2(4)
OPAMP1_VINP,
OPAMP2_VINM,
OPAMP3_VINP(4),
COMP1_INM, COMP2_INM,
COMP3_INM(4),
COMP4_INM,COMP5_INM(4)
, COMP6_INM,
COMP7_INM(4)
TTa
SPI1_MISO, TIM3_CH1,
TIM8_BKIN(4), TIM1_BKIN,
TIM16_CH1, COMP1_OUT,
TSC_G2_IO3, EVENTOUT
ADC2_IN3, OPAMP2_VOUT
29
30
31
20
21
22
14
15
16
PA4
PA5
PA6
I/O
I/O
I/O
TTa
(1)
DocID023353 Rev 6
ADC1_IN1, COMP1_INM,
RTC_ TAMP2, WKUP1,
COMP7_INP(4)
37/132
53
Pinouts and pin description
STM32F302xx/STM32F303xx
Table 11. STM32F302xx/STM32F303xx pin definitions (continued)
32
23
33
34
17
Notes
Pin name
(function
after
reset)
I/O structure
Pin functions
Pin type
LQFP48
LQFP64
LQFP100
Pin number
Alternate functions
Additional functions
SPI1_MOSI, TIM3_CH2,
TIM17_CH1, TIM1_CH1N,
TIM8_CH1N(4), TSC_G2_IO4,
COMP2_OUT, EVENTOUT
ADC2_IN4, COMP2_INP,
OPAMP2_VINP,
OPAMP1_VINP
PA7
I/O
TTa
24
PC4
I/O
TTa
(1)
USART1_TX, EVENTOUT
ADC2_IN5
25
PC5
I/O
TTa
(1)
USART1_RX, TSC_G3_IO1,
EVENTOUT
ADC2_IN11, OPAMP2_VINM,
OPAMP1_VINM
ADC3_IN12(4), COMP4_INP,
OPAMP3_VINP(4),
OPAMP2_VINP
35
26
18
PB0
I/O
TTa
TIM3_CH3, TIM1_CH2N,
TIM8_CH2N(4), TSC_G3_IO2,
EVENTOUT
36
27
19
PB1
I/O
TTa
TIM3_CH4, TIM1_CH3N,
TIM8_CH3N(4), COMP4_OUT,
TSC_G3_IO3, EVENTOUT
ADC3_IN1(4),
OPAMP3_VOUT(4)
37
28
20
PB2
I/O
TTa
TSC_G3_IO4, EVENTOUT
ADC2_IN12, COMP4_INM,
OPAMP3_VINM(4)
38
PE7
I/O
TTa
(1)
TIM1_ETR, EVENTOUT
ADC3_IN13(4), COMP4_INP
39
PE8
I/O
TTa
(1)
TIM1_CH1N, EVENTOUT
COMP4_INM, ADC34_IN6(4)
40
PE9
I/O
TTa
(1)
TIM1_CH1, EVENTOUT
ADC3_IN2(4)
41
PE10
I/O
TTa
(1)
TIM1_CH2N, EVENTOUT
ADC3_IN14(4)
TIM1_CH2, EVENTOUT
ADC3_IN15(4)
42
PE11
I/O
TTa
(1)
43
PE12
I/O
TTa
(1)
TIM1_CH3N, EVENTOUT
ADC3_IN16(4)
44
PE13
I/O
TTa
(1)
TIM1_CH3, EVENTOUT
ADC3_IN3(4)
45
PE14
I/O
TTa
(1)
TIM1_CH4, TIM1_BKIN2,
EVENTOUT
ADC4_IN1(4)
46
PE15
I/O
TTa
(1)
USART3_RX, TIM1_BKIN,
EVENTOUT
ADC4_IN2(4)
47
29
21
PB10
I/O
TTa
USART3_TX, TIM2_CH3,
TSC_SYNC, EVENTOUT
COMP5_INM(4),
OPAMP4_VINM(4),
OPAMP3_VINM(4)
48
30
22
PB11
I/O
TTa
USART3_RX, TIM2_CH4,
TSC_G6_IO1, EVENTOUT
COMP6_INP,
OPAMP4_VINP(4)
49
31
23
VSS_2
S
Digital ground
50
32
24
VDD_2
S
Digital power supply
51
38/132
33
25
PB12
I/O
TTa
SPI2_NSS, I2S2_WS(4),
I2C2_SMBA, USART3_CK,
TIM1_BKIN, TSC_G6_IO2,
EVENTOUT
DocID023353 Rev 6
ADC4_IN3(4),
COMP3_INM(4),
OPAMP4_VOUT(4),
STM32F302xx/STM32F303xx
Pinouts and pin description
Table 11. STM32F302xx/STM32F303xx pin definitions (continued)
52
53
54
34
35
36
26
27
28
PB13
PB14
I/O
I/O
Notes
Pin name
(function
after
reset)
I/O structure
Pin functions
Pin type
LQFP48
LQFP64
LQFP100
Pin number
Alternate functions
Additional functions
TTa
SPI2_SCK, I2S2_CK(4),
USART3_CTS, TIM1_CH1N,
TSC_G6_IO3, EVENTOUT
ADC3_IN5(4),
COMP5_INP(4),
OPAMP4_VINP(4),
OPAMP3_VINP(4)
TTa
SPI2_MISO, I2S2ext_SD(4),
USART3_RTS, TIM1_CH2N,
TIM15_CH1, TSC_G6_IO4,
EVENTOUT
COMP3_INP(4),
ADC4_IN4(4), OPAMP2_VINP
SPI2_MOSI, I2S2_SD(4),
TIM1_CH3N, RTC_REFIN,
TIM15_CH1N, TIM15_CH2,
EVENTOUT
ADC4_IN5(4), COMP6_INM
PB15
I/O
TTa
55
PD8
I/O
TTa
(1)
USART3_TX, EVENTOUT
ADC4_IN12(4),
OPAMP4_VINM(4)
56
PD9
I/O
TTa
(1)
USART3_RX, EVENTOUT
ADC4_IN13(4)
USART3_CK, EVENTOUT
ADC34_IN7(4), COMP6_INM
57
PD10
I/O
TTa
(1)
58
PD11
I/O
TTa
(1)
USART3_CTS, EVENTOUT
ADC34_IN8(4), COMP6_INP,
OPAMP4_VINP(4)
59
PD12
I/O
TTa
(1)
USART3_RTS, TIM4_CH1,
TSC_G8_IO1, EVENTOUT
ADC34_IN9(4),
COMP5_INP(4)
60
PD13
I/O
TTa
(1)
TIM4_CH2, TSC_G8_IO2,
EVENTOUT
ADC34_IN10(4),
COMP5_INM(4)
61
PD14
I/O
TTa
(1)
TIM4_CH3, TSC_G8_IO3,
EVENTOUT
COMP3_INP(4),
ADC34_IN11(4),
OPAMP2_VINP
62
PD15
I/O
TTa
(1)
SPI2_NSS, TIM4_CH4,
TSC_G8_IO4, EVENTOUT
COMP3_INM(4)
I2S2_MCK(4), COMP6_OUT,
TIM8_CH1(4), TIM3_CH1,
EVENTOUT
63
37
PC6
I/O
FT
(1)
64
38
PC7
I/O
FT
(1)
I2S3_MCK(4), TIM8_CH2(4),
TIM3_CH2, COMP5_OUT(4),
EVENTOUT
65
39
PC8
I/O
FT
(1)
TIM8_CH3(4), TIM3_CH3,
COMP3_OUT(4), EVENTOUT
FT
(1)
TIM8_CH4(4), TIM8_BKIN2(4),
TIM3_CH4, I2S_CKIN(4),
EVENTOUT
66
40
PC9
I/O
DocID023353 Rev 6
39/132
53
Pinouts and pin description
STM32F302xx/STM32F303xx
Table 11. STM32F302xx/STM32F303xx pin definitions (continued)
67
68
69
70
71
72
41
42
43
44
45
46
29
30
31
32
33
34
73
PA8
PA9
PA10
PA11
PA12
I/O
I/O
I/O
I/O
I/O
Notes
Pin name
(function
after
reset)
I/O structure
Pin functions
Pin type
LQFP48
LQFP64
LQFP100
Pin number
Alternate functions
Additional functions
FT
I2C2_SMBA, I2S2_MCK(4),
USART1_CK, TIM1_CH1,
TIM4_ETR, MCO,
COMP3_OUT(4), EVENTOUT
FTf
I2C2_SCL, I2S3_MCK(4),
USART1_TX, TIM1_CH2,
TIM2_CH3, TIM15_BKIN,
TSC_G4_IO1,
COMP5_OUT(4), EVENTOUT
FTf
I2C2_SDA, USART1_RX,
TIM1_CH3, TIM2_CH4,
TIM8_BKIN(4), TIM17_BKIN,
TSC_G4_IO2, COMP6_OUT,
EVENTOUT
FT
USART1_CTS, USB_DM,
CAN_RX, TIM1_CH1N,
TIM1_CH4, TIM1_BKIN2,
TIM4_CH1, COMP1_OUT,
EVENTOUT
FT
USART1_RTS, USB_DP,
CAN_TX, TIM1_CH2N,
TIM1_ETR, TIM4_CH2,
TIM16_CH1, COMP2_OUT,
EVENTOUT
USART3_CTS, TIM4_CH3,
TIM16_CH1N, TSC_G4_IO3,
IR_OUT, SWDIO-JTMS,
EVENTOUT
PA13
I/O
FT
PF6
I/O
FTf
(1)
I2C2_SCL, USART3_RTS,
TIM4_CH4, EVENTOUT
74
47
35
VSS_3
S
Ground
75
48
36
VDD_3
S
Digital power supply
76
77
40/132
49
50
37
38
PA14
PA15
I/O
I/O
FTf
I2C1_SDA, USART2_TX,
TIM8_CH2(4), TIM1_BKIN,
TSC_G4_IO4, SWCLK-JTCK,
EVENTOUT
FTf
I2C1_SCL, SPI1_NSS,
SPI3_NSS, I2S3_WS(4), JTDI,
USART2_RX, TIM1_BKIN,
TIM2_CH1_ETR,
TIM8_CH1(4), EVENTOUT
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Pinouts and pin description
Table 11. STM32F302xx/STM32F303xx pin definitions (continued)
PC10
I/O
Notes
Pin name
(function
after
reset)
Pin type
LQFP48
51
Pin functions
I/O structure
78
LQFP64
LQFP100
Pin number
FT
(1)
SPI3_SCK, I2S3_CK(4),
USART3_TX, UART4_TX,
TIM8_CH1N(4), EVENTOUT
SPI3_MISO, I2S3ext_SD(4),
USART3_RX, UART4_RX,
TIM8_CH2N(4), EVENTOUT
Alternate functions
79
52
PC11
I/O
FT
(1)
80
53
PC12
I/O
FT
(1)
SPI3_MOSI, I2S3_SD(4),
USART3_CK, UART5_TX,
TIM8_CH3N(4), EVENTOUT
81
PD0
I/O
FT
(1)
CAN_RX, EVENTOUT
82
PD1
I/O
FT
(1)
CAN_TX, TIM8_CH4(4),
TIM8_BKIN2(4), EVENTOUT
PD2
I/O
FT
(1)
UART5_RX, TIM3_ETR,
TIM8_BKIN(4), EVENTOUT
84
PD3
I/O
FT
(1)
USART2_CTS,
TIM2_CH1_ETR, EVENTOUT
85
PD4
I/O
FT
(1)
USART2_RTS, TIM2_CH2,
EVENTOUT
86
PD5
I/O
FT
(1)
USART2_TX, EVENTOUT
87
PD6
I/O
FT
(1)
USART2_RX, TIM2_CH4,
EVENTOUT
88
PD7
I/O
FT
(1)
USART2_CK, TIM2_CH3,
EVENTOUT
83
89
90
91
54
55
56
57
39
40
41
PB3
PB4
PB5
I/O
I/O
I/O
FT
SPI3_SCK, I2S3_CK(4),
SPI1_SCK, USART2_TX,
TIM2_CH2, TIM3_ETR,
TIM4_ETR, TIM8_CH1N(4),
TSC_G5_IO1, JTDOTRACESWO, EVENTOUT
FT
SPI3_MISO, I2S3ext_SD(4),
SPI1_MISO, USART2_RX,
TIM3_CH1, TIM16_CH1,
TIM17_BKIN, TIM8_CH2N(4),
TSC_G5_IO2, NJTRST,
EVENTOUT
FT
SPI3_MOSI, SPI1_MOSI,
I2S3_SD(4), I2C1_SMBA,
USART2_CK, TIM16_BKIN,
TIM3_CH2, TIM8_CH3N(4),
TIM17_CH1, EVENTOUT
DocID023353 Rev 6
Additional functions
41/132
53
Pinouts and pin description
STM32F302xx/STM32F303xx
Table 11. STM32F302xx/STM32F303xx pin definitions (continued)
92
58
42
PB6
I/O
I2C1_SDA, USART1_RX,
TIM3_CH4, TIM4_CH2,
TIM17_CH1N, TIM8_BKIN(4),
TSC_G5_IO4, EVENTOUT
43
PB7
I/O
FTf
94
60
44
BOOT0
I
B
96
62
45
46
PB8
I/O
Additional functions
FTf
59
61
Alternate functions
I2C1_SCL, USART1_TX,
TIM16_CH1N, TIM4_CH1,
TIM8_CH1(4), TSC_G5_IO3,
TIM8_ETR(4), TIM8_BKIN2(4),
EVENTOUT
93
95
Notes
Pin name
(function
after
reset)
I/O structure
Pin functions
Pin type
LQFP48
LQFP64
LQFP100
Pin number
Boot memory selection
FTf
I2C1_SCL, CAN_RX,
TIM16_CH1, TIM4_CH3,
TIM8_CH2(4), TIM1_BKIN,
TSC_SYNC, COMP1_OUT,
EVENTOUT
I2C1_SDA, CAN_TX,
TIM17_CH1, TIM4_CH4,
TIM8_CH3(4), IR_OUT,
COMP2_OUT, EVENTOUT
PB9
I/O
FTf
97
PE0
I/O
FT
(1)
USART1_TX, TIM4_ETR,
TIM16_CH1, EVENTOUT
98
PE1
I/O
FT
(1)
USART1_RX, TIM17_CH1,
EVENTOUT
99
63
47
VSS_1
S
Ground
100
64
48
VDD_1
S
Digital power supply
1. Function availability depends on the chosen device.
When using the small packages (48 and 64 pin packages), the GPIO pins which are not present on these packages, must
not be configured in analog mode.
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current
(3 mA), the use of GPIO PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (e.g. to drive an LED).
After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the
content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to
the Battery backup domain and BKP register description sections in the reference manual.
3. The VREF+ functionality is available only on the 100 pin package. On the 64-pin and 48-pin packages, the VREF+ is
internally connected to VDDA.
4. On STM32F303xx devices only.
42/132
DocID023353 Rev 6
Port
&
Pin
Name
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
TIM8_
ETR
AF11
AF12
AF14
AF15
TIM2_
CH1_
ETR
TSC_
G1_IO1
USART2 COMP1 TIM8_
_CTS
_OUT
BKIN
TIM2_
CH2
TSC_
G1_IO2
USART2
_RTS
TIM15_
CH1N
EVENT
OUT
PA2
TIM2_
CH3
TSC_
G1_IO3
USART2 COMP2 TIM15_
_TX
_OUT
CH1
EVENT
OUT
PA3
TIM2_
CH4
TSC_
G1_IO4
USART2
_RX
EVENT
OUT
PA0
PA1
RTC_
REFIN
DocID023353 Rev 6
PA4
TIM3_ TSC_
CH2
G2_IO1
SPI1_
NSS
TSC_
G2_IO2
SPI1_
SCK
SPI3_NSS,
I2S3_WS
EVENT
OUT
TIM15_
CH2
USART2
_CK
EVENT
OUT
PA5
TIM2_
CH1_
ETR
PA6
TIM16_ TIM3_ TSC_
TIM8_
CH1
CH1
G2_IO3 BKIN
SPI1_
MISO
TIM1_BKIN
COMP1
_OUT
EVENT
OUT
PA7
TIM8_
TIM17_ TIM3_ TSC_
G2_IO4 CH1N
CH1
CH2
SPI1_
MOSI
TIM1_CH1N
COMP2
_OUT
EVENT
OUT
I2C2_
SMBA
I2S2_
MCK
TIM1_CH1
USART1 COMP3
_CK
_OUT
TIM4_
ETR
EVENT
OUT
TSC_
I2C2_
G4_IO1 SCL
I2S3_
MCK
TIM1_CH2
USART1 COMP5 TIM15_
_TX
_OUT
BKIN
TIM2_
CH3
EVENT
OUT
TIM1_CH3
USART1 COMP6
_RX
_OUT
TIM2_
CH4
TIM1_CH1N
USART1 COMP1
TIM4_
CAN_RX
_CTS
_OUT
CH1
MCO
PA9
PA10
PA11
TIM17_
BKIN
TSC_
I2C2_
G4_IO2 SDA
EVENT
OUT
TIM8_
BKIN
TIM1_CH4
EVENT
OUT
TIM1_ USB_
BKIN2 DM
EVENT
OUT
43/132
Pinouts and pin description
PA8
STM32F302xx/STM32F303xx
Table 12. Alternate functions for port A
Port
&
Pin
Name
AF0
AF1
AF2
AF3
AF4
AF5
AF6
AF7
PA12
TIM16_
CH1
PA13
SWDIO TIM16_
-JTMS CH1N
TSC_
G4_IO3
IR_
OUT
USART3
_CTS
PA14
SWCLK
-JTCK
TSC_
I2C1_
G4_IO4 SDA
TIM8_
TIM1_BKIN
CH2
USART2
_TX
SPI1_
NSS
USART2
_RX
PA15 JTDI
TIM2_
CH1_
ETR
TIM1_CH2N
TIM8_
CH1
I2C1_
SCL
SPI3_NSS,
I2S3_WS
AF8
AF9
AF10
USART1 COMP2
TIM4_
CAN_TX
_RTS
_OUT
CH2
TIM4_
CH3
AF11
TIM1_ETR
AF12
AF14
USB_
DP
AF15
EVENT
OUT
EVENT
OUT
EVENT
OUT
TIM1_
BKIN
Pinouts and pin description
44/132
Table 12. Alternate functions for port A (continued)
EVENT
OUT
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Port
&
Pin
Name
AF0
AF1
AF2
AF3
AF4
AF5
AF6
PB0
TIM3_
CH3
TSC_
G3_IO2
TIM8_
CH2N
TIM1_CH2N
PB1
TIM3_
CH4
TSC_
G3_IO3
TIM8_
CH3N
TIM1_CH3N
AF7
AF8
AF9
AF10
AF12
EVENT
OUT
COMP4_
OUT
EVENT
OUT
TSC_
G3_IO4
PB2
DocID023353 Rev 6
PB3
JTDOTIM2_
TRACES
CH2
WO
PB4
NJTRST
AF15
EVENT
OUT
TSC_
G5_IO1
TIM8_
CH1N
SPI1_
SCK
SPI3_SCK,
I2S3_CK
USART2_
TX
TIM3_
ETR
EVENT
OUT
TIM16_ TIM3_
CH1
CH1
TSC_
G5_IO2
TIM8_
CH2N
SPI1_
MISO
SPI3_MISO,
I2S3ext_SD
USART2_
RX
TIM17_
BKIN
EVENT
OUT
PB5
TIM16_ TIM3_
BKIN
CH2
TIM8_
CH3N
I2C1_
SMBA
SPI1_
MOSI
SPI3_MOSI,
I2S3_SD
USART2_
CK
TIM17_
CH1
EVENT
OUT
PB6
TIM16_ TIM4_
CH1N
CH1
TSC_
G5_IO3
I2C1_SCL
TIM8_CH1
TIM8_
ETR
USART1_
TX
TIM8_
BKIN2
EVENT
OUT
PB7
TIM17_ TIM4_
CH1N
CH2
TSC_
G5_IO4
I2C1_
SDA
TIM8_
BKIN
USART1_
RX
TIM3_
CH4
EVENT
OUT
PB8
TIM16_ TIM4_
CH1
CH3
TSC_
SYNC
I2C1_SCL
PB9
TIM17_ TIM4_
CH1
CH4
PB10
TIM2_
CH3
TSC_
SYNC
USART3_
TX
EVENT
OUT
PB11
TIM2_
CH4
TSC_
G6_IO1
USART3_
RX
EVENT
OUT
USART3_
CK
EVENT
OUT
I2C1_
SDA
TSC_
G6_IO2
I2C2_
SMBA
IR_OUT
SPI2_NSS,
I2S2_WS
TIM1_
BKIN
COMP1_
CAN_RX
OUT
TIM8_
CH2
COMP2_
CAN_TX
OUT
TIM8_
CH3
TIM1_
BKIN
EVENT
OUT
EVENT
OUT
Pinouts and pin description
45/132
TIM4_
ETR
PB12
STM32F302xx/STM32F303xx
Table 13. Alternate functions for port B
Port
&
Pin
Name
AF0
AF1
AF2
PB13
TIM15_
CH1
PB14
PB15
RTC_
REFIN
TIM15_ TIM15_
CH2
CH1N
AF3
AF4
AF5
AF6
AF7
AF8
AF9
AF10
AF12
AF15
TSC_
G6_IO3
SPI2_SCK,
I2S2_CK
TIM1_
CH1N
USART3_
CTS
EVENT
OUT
TSC_
G6_IO4
SPI2_MISO, TIM1_
I2S2ext_SD CH2N
USART3_
RTS
EVENT
OUT
TIM1_
CH3N
SPI2_MOSI,
I2S2_SD
EVENT
OUT
Pinouts and pin description
46/132
Table 13. Alternate functions for port B (continued)
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Port &
Pin
Name
AF1
AF2
AF3
AF4
AF5
AF6
AF7
DocID023353 Rev 6
PC0
EVENTOUT
PC1
EVENTOUT
PC2
EVENTOUT
PC3
EVENTOUT
PC4
EVENTOUT
PC5
EVENTOUT
PC6
EVENTOUT
TIM3_CH1
TIM8_CH1
I2S2_MCK
COMP6_OUT
PC7
EVENTOUT
TIM3_CH2
TIM8_CH2
I2S3_MCK
COMP5_OUT
PC8
EVENTOUT
TIM3_CH3
TIM8_CH3
PC9
EVENTOUT
TIM3_CH4
TIM8_CH4
I2S_CKIN
TIM8_BKIN2
PC10
EVENTOUT
TIM8_CH1N
UART4_TX
SPI3_SCK, I2S3_CK
USART3_TX
PC11
EVENTOUT
TIM8_CH2N
UART4_RX
SPI3_MISO, I2S3ext_SD
USART3_RX
PC12
EVENTOUT
TIM8_CH3N
UART5_TX
SPI3_MOSI, I2S3_SD
USART3_CK
PC13
COMP7_OUT
TIM1_BKIN2
STM32F302xx/STM32F303xx
Table 14. Alternate functions for port C
USART1_TX
TSC_G3_IO1
USART1_RX
COMP3_OUT
TIM1_CH1N
PC14
47/132
Pinouts and pin description
PC15
Port &
Pin Name
AF1
AF2
AF3
AF4
AF5
AF6
AF7
DocID023353 Rev 6
PD0
EVENTOUT
CAN_RX
PD1
EVENTOUT
PD2
EVENTOUT
TIM3_ETR
PD3
EVENTOUT
TIM2_CH1_ETR
USART2_CTS
PD4
EVENTOUT
TIM2_CH2
USART2_RTS
PD5
EVENTOUT
PD6
EVENTOUT
TIM2_CH4
USART2_RX
PD7
EVENTOUT
TIM2_CH3
USART2_CK
PD8
EVENTOUT
USART3_TX
PD9
EVENTOUT
USART3_RX
PD10
EVENTOUT
USART3_CK
PD11
EVENTOUT
USART3_CTS
PD12
EVENTOUT
TIM4_CH1
TSC_G8_IO1
PD13
EVENTOUT
TIM4_CH2
TSC_G8_IO2
PD14
EVENTOUT
TIM4_CH3
TSC_G8_IO3
PD15
EVENTOUT
TIM4_CH4
TSC_G8_IO4
TIM8_CH4
TIM8_BKIN
TIM8_BKIN2
CAN_TX
UART5_RX
Pinouts and pin description
48/132
Table 15. Alternate functions for port D
USART2_TX
USART3_RTS
SPI2_NSS
STM32F302xx/STM32F303xx
Port &
Pin Name
AF0
AF1
PE0
EVENTOUT
PE1
EVENTOUT
AF2
AF3
TIM4_ETR
PE2
TRACECK
EVENTOUT
TIM3_CH1
TSC_G7_IO1
PE3
TRACED0
EVENTOUT
TIM3_CH2
TSC_G7_IO2
PE4
TRACED1
EVENTOUT
TIM3_CH3
TSC_G7_IO3
PE5
TRACED2
EVENTOUT
TIM3_CH4
TSC_G7_IO4
PE6
TRACED3
EVENTOUT
DocID023353 Rev 6
PE7
EVENTOUT
TIM1_ETR
PE8
EVENTOUT
TIM1_CH1N
PE9
EVENTOUT
TIM1_CH1
PE10
EVENTOUT
TIM1_CH2N
PE11
EVENTOUT
TIM1_CH2
PE12
EVENTOUT
TIM1_CH3N
PE13
EVENTOUT
TIM1_CH3
PE14
EVENTOUT
TIM1_CH4
PE15
EVENTOUT
TIM1_BKIN
AF4
AF6
AF7
TIM16_CH1
USART1_TX
TIM17_CH1
USART1_RX
STM32F302xx/STM32F303xx
Table 16. Alternate functions for port E
TIM1_BKIN2
USART3_RX
Pinouts and pin description
49/132
Port &
Pin Name
AF1
AF2
AF3
AF4
PF0
I2C2_SDA
PF1
I2C2_SCL
AF5
AF6
AF7
TIM1_CH3N
PF2
EVENTOUT
PF4
EVENTOUT
COMP1_OUT
PF6
EVENTOUT
TIM4_CH4
PF9
EVENTOUT
TIM15_CH1
SPI2_SCK
PF10
EVENTOUT
TIM15_CH2
SPI2_SCK
I2C2_SCL
USART3_RTS
Pinouts and pin description
50/132
Table 17. Alternate functions for port F
DocID023353 Rev 6
STM32F302xx/STM32F303xx
STM32F302xx/STM32F303xx
5
Memory mapping
Memory mapping
Figure 8. STM32F302xx/STM32F303xx memory map
0x5000 07FF
AHB3
0xFFFF FFFF
7
Cortex-M4
with FPU
Internal
Peripherals
0xE000 0000
0x5000 0000
Reserved
0x4800 1800
AHB2
0x4800 0000
Reserved
6
0x4002 43FF
AHB1
0xC000 0000
0x4002 0000
Reserved
5
0x4001 6C00
APB2
0xA000 0000
0x4001 0000
Reserved
4
0x4000 A000
APB1
0x8000 0000
0x4000 0000
3
0x1FFF FFFF
Option bytes
0x6000 0000
0x1FFF F800
System memory
2
0x1FFF D800
Reserved
0x4000 0000
Peripherals
0x1000 2000
CCM RAM
0x1000 0000
Reserved
1
0x2000 0000
0
0x0804 0000
SRAM
Flash memory
0x0800 0000
CODE
Reserved
0x0004 0000
0x0000 0000
Reserved
0x0000 0000
Flash, system
memory or SRAM,
depending on BOOT
configuration
MSv30355V2
DocID023353 Rev 6
51/132
53
Memory mapping
STM32F302xx/STM32F303xx
Table 18. STM32F302xx/STM32F303xx memory map and peripheral register boundary
addresses
Bus
AHB3
AHB2
AHB1
APB2
52/132
Boundary address
Size
(bytes)
Peripheral
0x5000 0400 - 0x5000 07FF
1K
ADC3 - ADC4
0x5000 0000 - 0x5000 03FF
1K
ADC1 - ADC2
0x4800 1800 - 0x4FFF FFFF
~132 M
0x4800 1400 - 0x4800 17FF
1K
GPIOF
0x4800 1000 - 0x4800 13FF
1K
GPIOE
0x4800 0C00 - 0x4800 0FFF
1K
GPIOD
0x4800 0800 - 0x4800 0BFF
1K
GPIOC
0x4800 0400 - 0x4800 07FF
1K
GPIOB
0x4800 0000 - 0x4800 03FF
1K
GPIOA
0x4002 4400 - 0x47FF FFFF
~128 M
0x4002 4000 - 0x4002 43FF
1K
TSC
0x4002 3400 - 0x4002 3FFF
3K
Reserved
0x4002 3000 - 0x4002 33FF
1K
CRC
0x4002 2400 - 0x4002 2FFF
3K
Reserved
0x4002 2000 - 0x4002 23FF
1K
Flash interface
0x4002 1400 - 0x4002 1FFF
3K
Reserved
0x4002 1000 - 0x4002 13FF
1K
RCC
0x4002 0800 - 0x4002 0FFF
2K
Reserved
0x4002 0400 - 0x4002 07FF
1K
DMA2
0x4002 0000 - 0x4002 03FF
1K
DMA1
0x4001 8000 - 0x4001 FFFF
32 K
Reserved
0x4001 4C00 - 0x4001 7FFF
13 K
Reserved
0x4001 4800 - 0x4001 4BFF
1K
TIM17
0x4001 4400 - 0x4001 47FF
1K
TIM16
0x4001 4000 - 0x4001 43FF
1K
TIM15
0x4001 3C00 - 0x4001 3FFF
1K
Reserved
0x4001 3800 - 0x4001 3BFF
1K
USART1
0x4001 3400 - 0x4001 37FF
1K
TIM8
0x4001 3000 - 0x4001 33FF
1K
SPI1
0x4001 2C00 - 0x4001 2FFF
1K
TIM1
0x4001 0800 - 0x4001 2BFF
9K
Reserved
0x4001 0400 - 0x4001 07FF
1K
EXTI
0x4001 0000 - 0x4001 03FF
1K
SYSCFG + COMP + OPAMP
DocID023353 Rev 6
Reserved
Reserved
STM32F302xx/STM32F303xx
Memory mapping
Table 18. STM32F302xx/STM32F303xx memory map and peripheral register boundary
addresses (continued)
Bus
APB1
Boundary address
Size
(bytes)
Peripheral
0x4000 8000 - 0x4000 FFFF
32 K
Reserved
0x4000 7800 - 0x4000 7FFF
2K
Reserved
0x4000 7400 - 0x4000 77FF
1K
DAC (dual)
0x4000 7000 - 0x4000 73FF
1K
PWR
0x4000 6C00 - 0x4000 6FFF
1K
Reserved
0x4000 6800 - 0x4000 6BFF
1K
Reserved
0x4000 6400 - 0x4000 67FF
1K
bxCAN
0x4000 6000 - 0x4000 63FF
1K
USB SRAM 512 bytes
0x4000 5C00 - 0x4000 5FFF
1K
USB device FS
0x4000 5800 - 0x4000 5BFF
1K
I2C2
0x4000 5400 - 0x4000 57FF
1K
I2C1
0x4000 5000 - 0x4000 53FF
1K
UART5
0x4000 4C00 - 0x4000 4FFF
1K
UART4
0x4000 4800 - 0x4000 4BFF
1K
USART3
0x4000 4400 - 0x4000 47FF
1K
USART2
0x4000 4000 - 0x4000 43FF
1K
I2S3ext
0x4000 3C00 - 0x4000 3FFF
1K
SPI3/I2S3
0x4000 3800 - 0x4000 3BFF
1K
SPI2/I2S2
0x4000 3400 - 0x4000 37FF
1K
I2S2ext
0x4000 3000 - 0x4000 33FF
1K
IWDG
0x4000 2C00 - 0x4000 2FFF
1K
WWDG
0x4000 2800 - 0x4000 2BFF
1K
RTC
0x4000 1800 - 0x4000 27FF
4K
Reserved
0x4000 1400 - 0x4000 17FF
1K
TIM7
0x4000 1000 - 0x4000 13FF
1K
TIM6
0x4000 0C00 - 0x4000 0FFF
1K
Reserved
0x4000 0800 - 0x4000 0BFF
1K
TIM4
0x4000 0400 - 0x4000 07FF
1K
TIM3
0x4000 0000 - 0x4000 03FF
1K
TIM2
DocID023353 Rev 6
53/132
53
Electrical characteristics
STM32F302xx/STM32F303xx
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 9.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 10.
Figure 9. Pin loading conditions
Figure 10. Pin input voltage
-#5PIN
-#5PIN
C = 50 pF
6).
-36
54/132
DocID023353 Rev 6
-36
STM32F302xx/STM32F303xx
6.1.6
Electrical characteristics
Power supply scheme
Figure 11. Power supply scheme
VBAT
IN
VDD
4 × VDD
Level shifter
OUT
GP I/Os
4 × 100 nF
+ 1 × 4.7 μF
Backup circuitry
(LSE,RTC,
Wake-up logic
Backup registers)
Po wer swi tch
1.65 - 3.6V
IO
Logic
Kernel logic
(CPU,
Digital
& Memories)
Regulator
3 × VSS
VDDA
VDDA
VREF
10 nF
+ 1 μF
VREF+
10 nF
+ 1 μF
VREF-
ADC/
DAC
!NALOG2#S0,,
COMPARATORS/0!-0
VSSA
MS19875V3
1. Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply
pins.
Caution:
Each power supply pair (VDD/VSS, VDDA/VSSA etc..) must be decoupled with filtering
ceramic capacitors as shown above. These capacitors must be placed as close as possible
to, or below the appropriate pins on the underside of the PCB to ensure the good
functionality of the device.
DocID023353 Rev 6
55/132
117
Electrical characteristics
6.1.7
STM32F302xx/STM32F303xx
Current consumption measurement
Figure 12. Current consumption measurement scheme
)$$?6"!4
6"!4
)$$
6$$
)$$!
6$$!
-36
56/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
6.2
Electrical characteristics
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 19: Voltage characteristics,
Table 20: Current characteristics, and Table 21: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 19. Voltage characteristics(1)
Symbol
Ratings
Min
Max
VDD–VSS
External main supply voltage (including VDDA, VBAT
and VDD)
-0.3
4.0
Allowed voltage difference for VDD > VDDA
-
0.4
Allowed voltage difference for VREF+ > VDDA
-
0.4
Input voltage on FT and FTf pins
VSS − 0.3
VDD + 4.0
Input voltage on TTa pins
VSS − 0.3
4.0
Input voltage on any other pin
VSS − 0.3
4.0
Variations between different VDD power pins
-
50
Variations between all the different ground pins
-
50
VDD–VDDA
VREF+–VDDA(2)
VIN(3)
|ΔVDDx|
|VSSX − VSS|
VESD(HBM)
Electrostatic discharge voltage (human body
model)
Unit
V
mV
see Section 6.3.12: Electrical
sensitivity characteristics
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range. The following relationship must be respected between VDDA and VDD:
VDDA must power on before or at the same time as VDD in the power up sequence.
VDDA must be greater than or equal to VDD.
2. VREF+ must be always lower or equal than VDDA (VREF+ ≤ VDDA). If unused then it must be connected to VDDA.
3. VIN maximum must always be respected. Refer to Table 20: Current characteristics for the maximum allowed injected
current values.
DocID023353 Rev 6
57/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Table 20. Current characteristics
Symbol
Ratings
Max.
ΣIVDD
Total current into sum of all VDD_x power lines (source)
160
ΣIVSS
Total current out of sum of all VSS_x ground lines (sink)
− 160
(1)
IVDD
Maximum current into each VDD_x power line (source)
IVSS
Maximum current out of each VSS _x ground line (sink)(1)
IIO(PIN)
ΣIIO(PIN)
25
− 25
(2)
Total output current sourced by sum of all IOs and control pins(2)
Injected current on TC and RST
Injected current on TTa pins
ΣIINJ(PIN)
− 100
Output current source by any I/O and control pin
Injected current on FT, FTf and B
IINJ(PIN)
100
Output current sunk by any I/O and control pin
Total output current sunk by sum of all IOs and control pins
Unit
pins(3)
pin(4)
(5)
80
mA
− 80
-5/+0
±5
±5
Total injected current (sum of all I/O and control pins)(6)
± 25
1. All main power (VDD, VDDA) and ground (VSS and VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins.The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be
exceeded. Refer to Table 19: Voltage characteristics for the maximum allowed input voltage values.
5. A positive injection is induced by VIN > VDDA while a negative injection is induced by VIN< VSS. IINJ(PIN) must never be
exceeded. Refer also to Table 19: Voltage characteristics for the maximum allowed input voltage values. Negative injection
disturbs the analog performance of the device. See note (2) below Table 68.
6. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 21. Thermal characteristics
Symbol
TSTG
TJ
58/132
Ratings
Storage temperature range
Maximum junction temperature
DocID023353 Rev 6
Value
Unit
–65 to +150
°C
150
°C
STM32F302xx/STM32F303xx
Electrical characteristics
6.3
Operating conditions
6.3.1
General operating conditions
Table 22. General operating conditions
Symbol
Parameter
fHCLK
Min
Max
Internal AHB clock frequency
0
72
fPCLK1
Internal APB1 clock frequency
0
36
fPCLK2
Internal APB2 clock frequency
0
72
Standard operating voltage
2
3.6
2
3.6
VDD
VDDA
VBAT
Analog operating voltage
(OPAMP and DAC not used)
Analog operating voltage
(OPAMP and DAC used)
Conditions
Must have a potential
equal to or higher than
VDD
3.6
1.65
3.6
–0.3
VDD+0.3
–0.3
VDDA+0.3
–0.3
5.5
BOOT0
0
5.5
LQFP100
-
488
LQFP64
-
444
LQFP48
-
364
Maximum power
dissipation
–40
85
Low power dissipation(3)
–40
105
Maximum power
dissipation
–40
105
Low power dissipation
–40
125
6 suffix version
–40
105
7 suffix version
–40
125
TC I/O
VIN
PD
TTa I/O
I/O input voltage
FT and FTf
Power dissipation at TA =
85 °C for suffix 6 or TA =
105 °C for suffix 7(2)
Ambient temperature for 6
suffix version
TA
Ambient temperature for 7
suffix version
TJ
Junction temperature range
I/O(1)
(3)
MHz
V
V
2.4
Backup operating voltage
Unit
V
V
mW
°C
°C
°C
1. To sustain a voltage higher than VDD+0.3 V, the internal pull-up/pull-down resistors must be disabled.
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Table 21: Thermal
characteristics).
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see
Table 21: Thermal characteristics).
DocID023353 Rev 6
59/132
117
Electrical characteristics
6.3.2
STM32F302xx/STM32F303xx
Operating conditions at power-up / power-down
The parameters given in Table 23 are derived from tests performed under the ambient
temperature condition summarized in Table 22.
Table 23. Operating conditions at power-up / power-down
Symbol
Parameter
tVDD
tVDDA
6.3.3
Conditions
Min
Max
VDD rise time rate
0
∞
VDD fall time rate
20
∞
VDDA rise time rate
0
∞
VDDA fall time rate
20
∞
Unit
µs/V
Embedded reset and power control block characteristics
The parameters given in Table 24 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 22.
Table 24. Embedded reset and power control block characteristics
Symbol
VPOR/PDR(1)
VPDRhyst
(1)
tRSTTEMPO(3)
Parameter
Conditions
Power on/power down
reset threshold
Min
Typ
Max
Unit
Falling edge
1.8(2)
1.88
1.96
V
Rising edge
1.84
1.92
2.0
V
-
40
-
mV
1.5
2.5
4.5
ms
PDR hysteresis
POR reset
temporization
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR detector
monitors only VDD.
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
3. Guaranteed by design, not tested in production.
60/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Electrical characteristics
Table 25. Programmable voltage detector characteristics
Symbol
Min(1)
Typ
Max(1)
Rising edge
2.1
2.18
2.26
Falling edge
2
2.08
2.16
Rising edge
2.19
2.28
2.37
Falling edge
2.09
2.18
2.27
Rising edge
2.28
2.38
2.48
Falling edge
2.18
2.28
2.38
Rising edge
2.38
2.48
2.58
Falling edge
2.28
2.38
2.48
Rising edge
2.47
2.58
2.69
Falling edge
2.37
2.48
2.59
Rising edge
2.57
2.68
2.79
Falling edge
2.47
2.58
2.69
Rising edge
2.66
2.78
2.9
Falling edge
2.56
2.68
2.8
Rising edge
2.76
2.88
3
Falling edge
2.66
2.78
2.9
Parameter
VPVD0
PVD threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
Conditions
Unit
V
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
VPVD7
PVD threshold 7
VPVDhyst(2)
PVD hysteresis
-
100
-
mV
IDD(PVD)
PVD current
consumption
-
0.15
0.26
µA
1. Data based on characterization results only, not tested in production.
2. Guaranteed by design, not tested in production.
DocID023353 Rev 6
61/132
117
Electrical characteristics
6.3.4
STM32F302xx/STM32F303xx
Embedded reference voltage
The parameters given in Table 26 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 22.
Table 26. Embedded internal reference voltage
Symbol
Parameter
VREFINT
Internal reference voltage
TS_vrefint
ADC sampling time when
reading the internal
reference voltage
VRERINT
Internal reference voltage
spread over the
temperature range
TCoeff
Conditions
Min
Typ
Max
Unit
–40 °C < TA < +105 °C
1.16
1.2
1.25
V
–40 °C < TA < +85 °C
VDD = 3 V ±10 mV
Temperature coefficient
1.24
(1)
1.16
1.2
V
2.2
-
-
µs
-
-
10(2)
mV
-
-
100(2) ppm/°C
1. Data based on characterization results, not tested in production.
2. Guaranteed by design, not tested in production.
Table 27. Internal reference voltage calibration values
Calibration value name
VREFINT_CAL
6.3.5
Description
Raw data acquired at
temperature of 30 °C
VDDA= 3.3 V
Memory address
0x1FFF F7BA - 0x1FFF F7BB
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 12: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to CoreMark code.
Typical and maximum current consumption
The MCU is placed under the following conditions:
62/132
•
All I/O pins are in input mode with a static value at VDD or VSS (no load)
•
All peripherals are disabled except when explicitly mentioned
•
The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0
to 24 MHz,1 wait state from 24 to 48 MHz and 2 wait states from 48 to 72 MHz)
•
Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
•
When the peripherals are enabled fPCLK2 = fHCLK and fPCLK1 = fHCLK/2
•
When fHCLK > 8 MHz, the PLL is ON and the PLL input is equal to HSI/2 (4 MHz) or
HSE (8 MHz) in bypass mode.
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Electrical characteristics
The parameters given in Table 28 to Table 32 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 22.
Table 28. Typical and maximum current consumption from VDD supply at VDD = 3.6V
All peripherals enabled
Symbol Parameter Conditions
Supply
current in
Run mode,
executing
from Flash
External
clock (HSE
bypass)
Internal
clock (HSI)
IDD
fHCLK
Max @ TA(1)
Typ
Supply
current in
Run mode,
executing
from RAM
Internal
clock (HSI)
Max @ TA(1)
Typ
25 °C
85 °C
105 °C
72 MHz 61.2
65.8
67.6
68.5
64 MHz 54.7
59.1
60.2
48 MHz 41.7
45.1
32 MHz 28.1
Unit
25 °C
85 °C
105 °C
27.8
30.3
30.7
31.5
61.1
24.6
27.2
27.6
28.3
46.2
47.2
19.2
21.1
21.4
21.8
31.5
32.5
32.7
12.9
14.6
14.8
15.3
24 MHz 21.4
23.7
24.4
25.2
10.0
11.4
11.4
12.1
8 MHz
7.4
8.4
8.6
9.4
3.6
4.1
4.4
5.0
1 MHz
1.3
1.6
1.8
2.6
0.8
1.0
1.2
2.1
64 MHz 49.7
54.4
55.4
56.3
24.5
27.2
27.4
28.1
48 MHz 37.9
42.2
43.0
43.5
18.9
21.4
21.5
21.6
32 MHz 25.8
29.2
29.2
30.0
12.7
14.2
14.6
15.2
24 MHz 19.7
22.3
22.6
23.2
6.7
7.7
7.9
8.5
8 MHz
7.8
8.3
8.8
3.5
4.0
4.4
5.0
72 MHz 60.8 66.2
69.7
70.4(2)
27.4
31.7(2)
32.2
32.5(2)
64 MHz 54.3
59.1
62.2
63.3
24.3
28.3
28.7
28.8
48 MHz 41.0
45.6
47.3
47.9
18.3
21.6
21.9
22.1
32 MHz 27.6
32.4
32.4
32.9
12.3
15.0
15.2
15.4
24 MHz 20.8
23.9
24.3
25.0
9.3
11.3
11.4
12.0
8 MHz
6.9
7.8
8.7
9.0
3.1
3.7
4.2
4.9
1 MHz
0.9
1.2
1.5
2.3
0.4
0.6
1.0
1.8
64 MHz 49.2
53.9
55.2
57.4
23.9
27.8
28.2
28.4
48 MHz 37.3
40.8
41.4
44.1
18.2
21.0
21.6
21.9
32 MHz 25.1
27.6
29.1
30.1
12.0
14.0
14.5
15.1
24 MHz 19.0
21.6
22.1
22.9
6.3
7.2
7.7
8.1
8 MHz
7.3
7.9
8.4
3.0
3.5
4.0
4.7
6.9
(2)
External
clock (HSE
bypass)
All peripherals disabled
6.4
DocID023353 Rev 6
mA
63/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Table 28. Typical and maximum current consumption from VDD supply at VDD = 3.6V (continued)
All peripherals enabled
Symbol Parameter Conditions
IDD
Supply
current in
Sleep
mode,
executing
from Flash
or RAM
External
clock (HSE
bypass)
Internal
clock (HSI)
fHCLK
Max @ TA(1)
Typ
All peripherals disabled
Max @ TA(1)
Typ
25 °C
85 °C
105 °C
72 MHz 44.0
48.4
49.4
50.5
64 MHz 39.2
43.3
44.0
48 MHz 29.6
32.7
32 MHz 19.7
Unit
25 °C
85 °C
105 °C
6.6
7.5
7.9
8.7
45.2
6.0
6.8
7.2
7.9
33.3
34.3
4.5
5.2
5.6
6.3
23.3
23.3
23.5
3.1
3.5
4.0
4.8
24 MHz 14.9
17.6
17.8
18.3
2.4
2.8
3.3
3.9
8 MHz
4.9
5.7
6.1
6.9
0.8
1.0
1.4
2.2
1 MHz
0.6
0.9
1.2
2.1
0.1
0.3
0.6
1.5
64 MHz 34.2
38.1
39.2
40.3
5.7
6.3
6.8
7.5
48 MHz 25.8
28.7
29.6
30.3
4.3
4.8
5.2
5.9
32 MHz 17.4
19.4
19.9
20.7
2.9
3.2
3.7
4.5
24 MHz 13.2
15.1
15.6
15.9
1.5
1.8
2.2
2.9
8 MHz
5.0
5.6
6.2
0.7
0.9
1.2
2.1
4.5
mA
1. Data based on characterization results, not tested in production unless otherwise specified.
2. Data based on characterization results and tested in production with code executing from RAM.
Table 29. Typical and maximum current consumption from the VDDA supply
VDDA = 2.4 V
Symbol Parameter
IDDA
Supply
current in
Run mode,
code
executing
from Flash
or RAM
Conditions
(1)
HSE
bypass
HSI clock
fHCLK
Typ
VDDA = 3.6 V
Max @ TA(2)
25 °C
85 °C 105 °C
Typ
Max @ TA(2)
25 °C
Unit
85 °C 105 °C
72 MHz
225
276
289
297
245
302
319
329
64 MHz
198
249
261
268
216
270
284
293
48 MHz
149
195
204
211
159
209
222
230
32 MHz
102
145
152
157
110
154
162
169
24 MHz
80
119
124
128
86
126
131
135
8 MHz
2
3
4
6
3
4
5
9
1 MHz
2
3
5
7
3
4
6
9
64 MHz
270
323
337
344
299
354
371
381
48 MHz
220
269
280
286
244
293
309
318
32 MHz
173
218
228
233
193
239
251
257
24 MHz
151
194
200
204
169
211
219
225
8 MHz
73
97
99
103
88
105
110
116
1. Current consumption from the VDDA supply is independent of whether the peripherals are on or off. Furthermore when the
PLL is off, IDDA is independent from the frequency.
2. Data based on characterization results, not tested in production.
64/132
DocID023353 Rev 6
µA
STM32F302xx/STM32F303xx
Electrical characteristics
Table 30. Typical and maximum VDD consumption in Stop and Standby modes
Symbol Parameter
IDD
Typ @VDD (VDD=VDDA)
Max(1)
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V
TA = TA = TA =
25 °C 85 °C 105 °C
Conditions
Regulator in run mode,
20.05 20.33 20.42 20.50 20.67 20.80 44.2(2) 553 1202(2)
Supply
all oscillators OFF
current in
Stop mode Regulator in low-power 7.63 7.77 7.90 8.07 8.17 8.33 30.6(2) 529 1156(2)
mode, all oscillators OFF
Supply
current in
Standby
mode
LSI ON and IWDG ON
0.80
0.96
1.09
1.23
1.37
1.51
-
LSI OFF and IWDG OFF 0.60
0.74
0.83
0.93
1.02
1.11 5.0(2)
-
-
7.8
13.3(2)
Unit
µA
1. Data based on characterization results, not tested in production unless otherwise specified.
2. Data based on characterization results and tested in production.
Table 31. Typical and maximum VDDA consumption in Stop and Standby modes
IDDA
Supply
current in
Standby
mode
Supply
current in
Stop mode
Supply
current in
Standby
mode
VDDA monitoring OFF
Supply
current in
Stop mode
Max(1)
2.0 V 2.4 V 2.7 V 3.0 V 3.3 V 3.6 V
TA = TA = TA =
25 °C 85 °C 105 °C
Conditions
VDDA monitoring ON
Symbol Parameter
Typ @VDD (VDD = VDDA)
Regulator in run mode,
1.81 1.95 2.07 2.20 2.35 2.52
all oscillators OFF
3.7
5.5
8.8
Regulator in low-power
mode, all oscillators
1.81 1.95 2.07 2.20 2.35 2.52
OFF
3.7
5.5
8.8
-
-
-
3.5
5.4
9.2
Regulator in run mode,
1.05 1.08 1.10 1.15 1.22 1.29
all oscillators OFF
-
-
-
Regulator in low-power
mode, all oscillators
1.05 1.08 1.10 1.15 1.22 1.29
OFF
-
-
-
LSI ON and IWDG ON 1.44 1.52 1.60 1.71 1.84 1.98
-
-
-
LSI OFF and IWDG
OFF
-
-
-
LSI ON and IWDG ON 2.22 2.42 2.59 2.78
LSI OFF and IWDG
OFF
3.0
3.24
1.69 1.82 1.94 2.08 2.23 2.40
0.93 0.95 0.98 1.02 1.08 1.15
Unit
µA
1. Data based on characterization results, not tested in production.
DocID023353 Rev 6
65/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Table 32. Typical and maximum current consumption from VBAT supply
Symbol
Para
meter
Max
@VBAT = 3.6 V(2)
Typ @VBAT
Conditions
(1)
LSE & RTC
ON; "Xtal
mode"
lower
driving
capability;
Backup LSEDRV[1:
domain 0] = '00'
IDD_VBAT
supply LSE & RTC
current ON; "Xtal
mode"
higher
driving
capability;
LSEDRV[1:
0] = '11'
1.65V
1.8V
2V
0.48
0.50
0.52
2.4V 2.7V
0.58
3V
Unit
T = TA = TA =
3.3V 3.6V A
25°C 85°C 105°C
0.65 0.72 0.80 0.90
1.1
1.5
2.0
µA
0.83
0.86
0.90
0.98
1.03 1.10 1.20 1.30
1.5
2.2
2.9
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Data based on characterization results, not tested in production.
Figure 13. Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0] = ’00’)
6
6
6
6
6
6
)
6"!4—!
6
6
#
#
#
#
4! #
-36
66/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Electrical characteristics
Typical current consumption
The MCU is placed under the following conditions:
•
VDD = VDDA = 3.3 V
•
All I/O pins available on each package are in analog input configuration
•
The Flash access time is adjusted to fHCLK frequency (0 wait states from 0 to 24 MHz,
1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz), and Flash
prefetch is ON
•
When the peripherals are enabled, fAPB1 = fAHB/2, fAPB2 = fAHB
•
PLL is used for frequencies greater than 8 MHz
•
AHB prescaler of 2, 4, 8,16 and 64 is used for the frequencies 4 MHz, 2 MHz, 1 MHz,
500 kHz and 125 kHz respectively.
Table 33. Typical current consumption in Run mode, code with data processing running from
Flash
Typ
Symbol
IDD
Parameter
Conditions
Supply current in
Run mode from
VDD supply
Running from HSE
crystal clock 8 MHz,
code executing from
Flash
IDDA(1) (2)
Supply current in
Run mode from
VDDA supply
fHCLK
Peripherals
enabled
Peripherals
disabled
72 MHz
61.3
28.0
64 MHz
54.8
25.4
48 MHz
41.9
19.3
32 MHz
28.5
13.3
24 MHz
21.8
10.4
16 MHz
14.9
7.2
8 MHz
7.7
3.9
4 MHz
4.5
2.5
2 MHz
2.8
1.7
1 MHz
1.9
1.3
500 kHz
1.4
1.1
125 kHz
1.1
0.9
72 MHz
240.3
239.5
64 MHz
210.9
210.3
48 MHz
155.8
155.6
32 MHz
105.7
105.6
24 MHz
82.1
82.0
16 MHz
58.8
58.8
8 MHz
2.4
2.4
4 MHz
2.4
2.4
2 MHz
2.4
2.4
1 MHz
2.4
2.4
500 kHz
2.4
2.4
125 kHz
2.4
2.4
Unit
mA
µA
1. VDDA monitoring is ON.
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators,
OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.
DocID023353 Rev 6
67/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Table 34. Typical current consumption in Sleep mode, code running from Flash or RAM
Typ
Symbol
IDD
Parameter
Conditions
Supply current in
Sleep mode from
VDD supply
Running from HSE
crystal clock 8 MHz,
code executing from
Flash or RAM
IDDA(1) (2)
Supply current in
Sleep mode from
VDDA supply
fHCLK
Peripherals
enabled
Peripherals
disabled
72 MHz
44.1
7.0
64 MHz
39.7
6.3
48 MHz
30.3
4.9
32 MHz
20.5
3.5
24 MHz
15.4
2.8
16 MHz
10.6
2.0
8 MHz
5.4
1.1
4 MHz
3.2
1.0
2 MHz
2.1
0.9
1 MHz
1.5
0.8
500 kHz
1.2
0.8
125 kHz
1.0
0.8
72 MHz
239.7
238.5
64 MHz
210.5
209.6
48 MHz
155.0
155.6
32 MHz
105.3
105.2
24 MHz
81.9
81.8
16 MHz
58.7
58.6
8 MHz
2.4
2.4
4 MHz
2.4
2.4
2 MHz
2.4
2.4
1 MHz
2.4
2.4
500 kHz
2.4
2.4
125 kHz
2.4
2.4
Unit
mA
µA
1. VDDA monitoring is ON.
2. When peripherals are enabled, the power consumption of the analog part of peripherals such as ADC, DAC, Comparators,
OpAmp etc. is not included. Refer to the tables of characteristics in the subsequent sections.
68/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Electrical characteristics
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 52: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (seeTable 36: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
I SW = V DD × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT+CS
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
DocID023353 Rev 6
69/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Table 35. Switching output I/O current consumption
Symbol
Parameter
Conditions(1)
VDD = 3.3 V
Cext = 0 pF
C = CINT + CEXT+ CS
VDD = 3.3 V
Cext = 10 pF
C = CINT + CEXT +CS
ISW
I/O current
consumption
VDD = 3.3 V
Cext = 22 pF
C = CINT + CEXT +CS
VDD = 3.3 V
Cext = 33 pF
C = CINT + CEXT+ CS
VDD = 3.3 V
Cext = 47 pF
C = CINT + CEXT+ CS
1. CS = 5 pF (estimated value).
70/132
DocID023353 Rev 6
I/O toggling
frequency (fSW)
Typ
2 MHz
0.90
4 MHz
0.93
8 MHz
1.16
18 MHz
1.60
36 MHz
2.51
48 MHz
2.97
2 MHz
0.93
4 MHz
1.06
8 MHz
1.47
18 MHz
2.26
36 MHz
3.39
48 MHz
5.99
2 MHz
1.03
4 MHz
1.30
8 MHz
1.79
18 MHz
3.01
36 MHz
5.99
2 MHz
1.10
4 MHz
1.31
8 MHz
2.06
18 MHz
3.47
36 MHz
8.35
2 MHz
1.20
4 MHz
1.54
8 MHz
2.46
18 MHz
4.51
36 MHz
9.98
Unit
mA
STM32F302xx/STM32F303xx
Electrical characteristics
On-chip peripheral current consumption
The MCU is placed under the following conditions:
•
all I/O pins are in analog input configuration
•
all peripherals are disabled unless otherwise mentioned
•
•
the given value is calculated by measuring the current consumption
–
with all peripherals clocked off
–
with only one peripheral clocked on
ambient operating temperature at 25°C and VDD = VDDA = 3.3 V.
Table 36. Peripheral current consumption
Peripheral
Typical consumption(1)
Unit
IDD
BusMatrix (2)
5.6
DMA1
15.3
DMA2
12.5
CRC
2.1
GPIOA
10.0
GPIOB
10.3
GPIOC
2.2
GPIOD
8.8
GPIOE
3.3
GPIOF
3.0
TSC
5.5
ADC1&2
17.3
ADC3&4
18.8
APB2-Bridge (3)
3.6
SYSCFG
7.3
TIM1
40.0
SPI1
8.8
TIM8
36.4
USART1
23.3
TIM15
17.1
TIM16
10.1
TIM17
APB1-Bridge
µA/MHz
11.0
(3)
6.1
TIM2
49.1
TIM3
38.8
TIM4
38.3
DocID023353 Rev 6
71/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Table 36. Peripheral current consumption (continued)
Peripheral
Typical consumption(1)
Unit
IDD
TIM6
9.7
TIM7
12.1
WWDG
6.4
SPI2
40.4
SPI3
40.0
USART2
41.9
USART3
40.2
UART4
36.5
UART5
30.8
I2C1
10.5
I2C2
10.4
USB
26.2
CAN
33.4
PWR
5.7
DAC
15.4
µA/MHz
1. The power consumption of the analog part (IDDA) of peripherals such as ADC, DAC, Comparators, OpAmp
etc. is not included. Refer to the tables of characteristics in the subsequent sections.
2. BusMatrix is automatically active when at least one master is ON (CPU, DMA1 or DMA2).
3. The APBx bridge is automatically active when at least one peripheral is ON on the same bus.
72/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
6.3.6
Electrical characteristics
Wakeup time from low-power mode
The wakeup times given in Table 37 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
•
For Stop or Sleep mode: the wakeup event is WFE.
•
WKUP1 (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 22.
Table 37. Low-power mode wakeup timings
Symbol
tWUSTOP
Parameter
Wakeup from
Stop mode
Typ @VDD, VDD = VDDA
Conditions
Max
2.0 V
2.4 V
2.7 V
3V
3.3 V
3.6 V
Regulator in
run mode
4.1
3.9
3.8
3.7
3.6
3.5
4.5
Regulator in
low power
mode
7.9
6.7
6.1
5.7
5.4
5.2
9
69.2
60.3
56.4
53.7
51.7
50
100
tWUSTANDBY(1)
Wakeup from LSI and
Standby mode IWDG OFF
tWUSLEEP
Wakeup from
Sleep mode
6
-
Unit
µs
CPU
clock
cycles
1. Data based on characterization results, not tested in production.
DocID023353 Rev 6
73/132
117
Electrical characteristics
6.3.7
STM32F302xx/STM32F303xx
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The
external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the
recommended clock input waveform is shown in Figure 14.
Table 38. High-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1
8
32
MHz
fHSE_ext
User external clock source
frequency(1)
VHSEH
OSC_IN input pin high level voltage
0.7VDD
-
VDD
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3VDD
tw(HSEH)
tw(HSEL)
OSC_IN high or low time(1)
15
-
-
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1)
-
-
20
V
ns
1. Guaranteed by design, not tested in production.
Figure 14. High-speed external clock source AC timing diagram
T7(3%(
6(3%(
6(3%,
TR(3%
TF(3%
T7(3%,
T
4(3%
-36
74/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Electrical characteristics
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The
external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the
recommended clock input waveform is shown in Figure 15
Table 39. Low-speed external user clock characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
-
32.768
1000
kHz
-
VDD
fLSE_ext
User External clock source
frequency(1)
VLSEH
OSC32_IN input pin high level
voltage
0.7VDD
VLSEL
OSC32_IN input pin low level
voltage
VSS
-
0.3VDD
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time(1)
450
-
-
tr(LSE)
tf(LSE)
V
ns
OSC32_IN rise or fall
time(1)
-
-
50
1. Guaranteed by design, not tested in production.
Figure 15. Low-speed external clock source AC timing diagram
T7,3%(
6,3%(
6,3%,
TR,3%
TF,3%
T7,3%,
T
4,3%
-36
DocID023353 Rev 6
75/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 40. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 40. HSE oscillator characteristics
Symbol
fOSC_IN
RF
Parameter
Conditions(1)
Min(2)
Typ
Max(2)
Unit
4
8
32
MHz
-
200
-
-
8.5
VDD=3.3 V, Rm= 30Ω,
CL=10 pF@8 MHz
-
0.4
-
VDD=3.3 V, Rm= 45Ω,
CL=10 pF@8 MHz
-
0.5
-
VDD=3.3 V, Rm= 30Ω,
CL=10 pF@32 MHz
-
0.8
-
VDD=3.3 V, Rm= 30Ω,
CL=10 pF@32 MHz
-
1
-
VDD=3.3 V, Rm= 30Ω,
CL=10 pF@32 MHz
-
1.5
-
Startup
10
-
-
mA/V
VDD is stabilized
-
2
-
ms
Oscillator frequency
Feedback resistor
During startup
IDD
gm
tSU(HSE)(4)
HSE current consumption
Oscillator transconductance
Startup time
(3)
kΩ
mA
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by design, not tested in production.
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer.
76/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Electrical characteristics
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 16). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note:
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 16. Typical application with an 8 MHz crystal
2ESONATORWITH
INTEGRATEDCAPACITORS
#,
F(3%
/3#?).
-( Z
RESONATOR
#,
2%84
2&
"IAS
CONTROLLED
GAIN
/3#?/5 4
-36
1. REXT value depends on the crystal characteristics.
DocID023353 Rev 6
77/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 41. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 41. LSE oscillator characteristics (fLSE = 32.768 kHz)
Symbol
IDD
gm
tSU(LSE)(3)
Parameter
LSE current consumption
Oscillator
transconductance
Startup time
Conditions(1)
Min(2)
Typ
Max(2)
LSEDRV[1:0]=00
lower driving capability
-
0.5
0.9
LSEDRV[1:0]=01
medium low driving capability
-
-
1
LSEDRV[1:0]=10
medium high driving capability
-
-
1.3
LSEDRV[1:0]=11
higher driving capability
-
-
1.6
LSEDRV[1:0]=00
lower driving capability
5
-
-
LSEDRV[1:0]=01
medium low driving capability
8
-
-
LSEDRV[1:0]=10
medium high driving capability
15
-
-
LSEDRV[1:0]=11
higher driving capability
25
-
-
VDD is stabilized
-
2
-
Unit
µA
µA/V
s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator design guide for
ST microcontrollers”.
2. Guaranteed by design, not tested in production.
3.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.
Note:
78/132
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Electrical characteristics
Figure 17. Typical application with a 32.768 kHz crystal
2ESONATORWITH
INTEGRATEDCAPACITORS
#,
F,3%
/3#?).
$RIVE
PROGRAMMABLE
AMPLIFIER
K( Z
RESONATOR
#,
Note:
/3#?/5 4
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
DocID023353 Rev 6
79/132
117
Electrical characteristics
6.3.8
STM32F302xx/STM32F303xx
Internal clock source characteristics
The parameters given in Table 42 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 22.
High-speed internal (HSI) RC oscillator
Table 42. HSI oscillator characteristics(1)
Symbol
fHSI
TRIM
DuCy(HSI)
ACCHSI
Parameter
Conditions
Min
Typ
Max
Unit
Frequency
-
8
-
MHz
HSI user trimming step
-
-
1(2)
%
Duty cycle
(2)
45
Accuracy of the HSI
oscillator (factory
calibrated)
-
55
(2)
%
%
TA = –40 to 105 °C
–3.8(3)
-
4.6(3)
TA = –10 to 85 °C
–2.9(3)
-
2.9(3)
%
-
-
-
%
–1
-
1
%
TA = 0 to 70 °C
TA = 25 °C
tsu(HSI)
HSI oscillator startup
time
1(2)
-
2(2)
µs
IDD(HSI)
HSI oscillator power
consumption
-
80
100(2)
µA
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
3. Data based on characterization results, not tested in production.
Figure 18. HSI oscillator accuracy characterization results
!## (3)
-!8
-).
4!; #=
-36
1. The above curves are based on characterisation results, not tested in production.
80/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Electrical characteristics
Low-speed internal (LSI) RC oscillator
Table 43. LSI oscillator characteristics(1)
Symbol
fLSI
tsu(LSI)
Parameter
Min
Typ
Max
Unit
30
40
50
kHz
LSI oscillator startup time
-
-
85
µs
LSI oscillator power consumption
-
0.75
1.2
µA
Frequency
(2)
IDD(LSI)(2)
1. VDDA = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
6.3.9
PLL characteristics
The parameters given in Table 44 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 22.
Table 44. PLL characteristics
Value
Symbol
fPLL_IN
fPLL_OUT
Parameter
Unit
Min
Typ
Max
1(2)
-
24(2)
MHz
PLL input clock duty cycle
(2)
40
-
60(2)
%
PLL multiplier output clock
16(2)
-
72
MHz
PLL input clock(1)
tLOCK
PLL lock time
-
-
200(2)
µs
Jitter
Cycle-to-cycle jitter
-
-
300(2)
ps
1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
2. Guaranteed by design, not tested in production.
DocID023353 Rev 6
81/132
117
Electrical characteristics
6.3.10
STM32F302xx/STM32F303xx
Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 105 °C unless otherwise specified.
Table 45. Flash memory characteristics
Min
Typ
Max(1)
Unit
16-bit programming time TA = –40 to +105 °C
40
53.5
60
µs
Page (2 KB) erase time
TA = –40 to +105 °C
20
-
40
ms
tME
Mass erase time
TA = –40 to +105 °C
20
-
40
ms
IDD
Supply current
Write mode
-
-
10
mA
Erase mode
-
-
12
mA
Symbol
tprog
tERASE
Parameter
Conditions
1. Guaranteed by design, not tested in production.
Table 46. Flash memory endurance and data retention
Value
Symbol
NEND
tRET
Parameter
Endurance
Data retention
Conditions
TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions)
10
1 kcycle(2) at TA = 85 °C
30
(2)
1 kcycle
10
at TA = 105 °C
kcycles(2)
at TA = 55 °C
1. Data based on characterization results, not tested in production.
2. Cycling performed over the whole temperature range.
82/132
Min(1)
DocID023353 Rev 6
10
20
Unit
kcycles
Years
STM32F302xx/STM32F303xx
6.3.11
Electrical characteristics
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
•
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
•
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 47. They are based on the EMS levels and classes
defined in application note AN1709.
Table 47. EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
VDD = 3.3 V, LQFP100, TA = +25°C,
Voltage limits to be applied on any I/O pin to
fHCLK = 72 MHz
induce a functional disturbance
conforms to IEC 61000-4-2
3B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25°C,
fHCLK = 72 MHz
conforms to IEC 61000-4-4
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
•
Corrupted program counter
•
Unexpected reset
•
Critical Data corruption (control registers...)
DocID023353 Rev 6
83/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 48. EMI characteristics
Symbol Parameter
SEMI
6.3.12
Monitored
frequency band
Conditions
Max vs. [fHSE/fHCLK]
Unit
8/72 MHz
0.1 to 30 MHz
VDD = 3.3 V, TA = 25 °C,
30 to 130 MHz
LQFP100 package
Peak level
compliant with IEC
130 MHz to 1GHz
61967-2
SAE EMI Level
7
20
dBµV
27
4
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 49. ESD absolute maximum ratings
Symbol
VESD(HBM)
Ratings
Conditions
Electrostatic discharge
TA = +25 °C, conforming
voltage (human body model) to JESD22-A114
Electrostatic discharge
VESD(CDM) voltage (charge device
model)
TA = +25 °C, conforming
to JESD22-C101
1. Data based on characterization results, not tested in production.
84/132
DocID023353 Rev 6
Class
Maximum
value(1)
2
2000
Unit
V
II
500
STM32F302xx/STM32F303xx
Electrical characteristics
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
•
A supply overvoltage is applied to each power supply pin
•
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 50. Electrical sensitivities
Symbol
LU
6.3.13
Parameter
Static latch-up class
Conditions
TA = +105 °C conforming to JESD78A
Class
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of –5 µA/+0 µA range), or other functional failure (for example reset occurrence or oscillator
frequency deviation).
The test results are given in Table 51
DocID023353 Rev 6
85/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Table 51. I/O current injection susceptibility
Functional susceptibility
Symbol
IINJ
Note:
86/132
Description
Negative
injection
Positive
injection
Injected current on BOOT0
–0
NA
Injected current on PC0, PC1, PC2, PC3, PF2, PA0,
PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5,
PB2 with induced leakage current on other pins from this
group less than -50 µA
–5
-
Injected current on PB0, PB1, PE7, PE8, PE9, PE10,
PE11, PE12, PE13, PE14, PE15, PB12, PB13, PB14,
PB15, PD8, PD9, PD10, PD11, PD12, PD13, PD14 with
induced leakage current on other pins from this group
less than -50 µA
–5
-
Injected current on PC0, PC1, PC2, PC3, PF2, PA0,
PA1, PA2, PA3, PF4, PA4, PA5, PA6, PA7, PC4, PC5,
PB2, PB0, PB1, PE7, PE8, PE9, PE10, PE11, PE12,
PE13, PE14, PE15, PB12, PB13, PB14, PB15, PD8,
PD9, PD10, PD11, PD12, PD13, PD14 with induced
leakage current on other pins from this group less than
400 µA
-
+5
Injected current on any other FT and FTf pins
–5
NA
Injected current on any other pins
–5
+5
mA
It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
DocID023353 Rev 6
Unit
STM32F302xx/STM32F303xx
6.3.14
Electrical characteristics
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 52 are derived from tests
performed under the conditions summarized in Table 22. All I/Os are CMOS and TTL
compliant.
Table 52. I/O static characteristics
Symbol
VIL
VIH
Parameter
Low level input
voltage
High level input
voltage
Conditions
Vhys
Ilkg
Input leakage
current (3)
Typ
Max
Unit
(1)
TC and TTa I/O
-
-
0.3 VDD+0.07
FT and FTf I/O
-
-
0.475 VDD-0.2 (1)
BOOT0
-
-
0.3 VDD–0.3 (1)
All I/Os except BOOT0
-
-
0.3 VDD (2)
TC and TTa I/O
0.445 VDD+0.398 (1)
-
-
FT and FTf I/O
0.5 VDD+0.2 (1)
-
-
-
-
BOOT0
All I/Os except BOOT0
Schmitt trigger
hysteresis
Min
0.2 VDD+0.95
0.7 VDD
(2)
(1)
-
V
(1)
-
TC and TTa I/O
-
200
FT and FTf I/O
-
100 (1)
-
BOOT0
-
300
(1)
-
TC, FT and FTf I/O
TTa I/O in digital mode
VSS ≤ VIN ≤ VDD
-
-
±0.1
TTa I/O in digital mode
VDD ≤ VIN ≤ VDDA
-
-
1
TTa I/O in analog mode
VSS ≤ VIN ≤ VDDA
-
-
±0.2
FT and FTf I/O(4)
VDD ≤ VIN ≤ 5 V
-
-
10
mV
µA
RPU
Weak pull-up
equivalent resistor(5)
VIN = VSS
25
40
55
kΩ
RPD
Weak pull-down
equivalent resistor(5)
VIN = VDD
25
40
55
kΩ
CIO
I/O pin capacitance
-
5
-
pF
1. Data based on design simulation.
2. Tested in production.
3. Leakage could be higher than the maximum value. if negative current is injected on adjacent pins. Refer to Table 51: I/O
current injection susceptibility.
4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled.
5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
PMOS/NMOS contribution to the series resistance is minimum (~10% order).
DocID023353 Rev 6
87/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 19 and Figure 20 for standard I/Os.
Figure 19. TC and TTa I/O input characteristics - CMOS port
VIL/VIH (V)
min
nts VIH
dard
S stan
CMO
VIHmin 2.0
Tested
eme
requir
= 0.7
VDD
98
ns
+0.3
5V DD imulatio
0.44
s
=
n
V IHmin on desig
d
Base
ns
0.07imulatio
D+
0.3V Design s
=
x
V ILma ed on d
Bas
uction
in prod
1.3
Area not determined
CMOS standard requirements VILmax = 0.3VDD
VILmax 0.7
0.6
in
Tested
ion
product
VDD (V)
2.0
2.7
3.0
3.3
3.6
MS30255V2
Figure 20. TC and TTa I/O input characteristics - TTL port
VIL/VIH (V)
98 ns
+0.3
tio
45V DD simula
n
= 0.4
V IHmin on desig
d
Base
s
0.07 ulation
D+
0.3V D sign sim
x=
a
e
m
d
V IL
d on
Base
TTL standard requirements VIHmin = 2 V
VIHmin 2.0
1.3
Area not determined
VILmax 0.8
0.7
TTL standard requirements VILmax = 0.8 V
VDD (V)
2.0
2.7
3.0
3.3
3.6
MS30256V2
88/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Electrical characteristics
Figure 21. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port
VIL/VIH (V)
2.0
Tested in
0.7 VDD
production
0.2 ulations
V DD+
= 0.5 sign sim
e
on d
ased
V IHmin
B
-0.2
tions
75V DD simula
= 0.4
ign
V ILmax on des
d
Base
Area not determined
1.0
CMOS standard requirements VILmax = 0.3VDD
oduction
0.5
ts VIHmin =
quiremen
andard re
CMOS st
Tested in pr
VDD (V)
2.0
3.6
MS30257V2
Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics - TTL port
VIL/VIH (V)
TTL standard requirements VIHmin = 2 V
2.0
Area not determined
1.0
ns
0.2
V DD+ simulatio
= 0.5
n
V IHmin n desig
do
Base
-0.2
tions
75V DD imula
= 0.4design s
in
m
V IL d on
Base
0.8
TTL standard requirements VILmax = 0.8 V
0.5
VDD (V)
2.0
2.7
3.6
MS30258V2
DocID023353 Rev 6
89/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
•
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 20).
•
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 20).
Output voltage levels
Unless otherwise specified, the parameters given in Table 53 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 22. All I/Os (FT, TTa and TC unless otherwise specified) are CMOS and TTL
compliant.
Table 53. Output voltage characteristics
Symbol
Parameter
VOL(1)
Output low level voltage for an I/O pin
VOH(3)
Output high level voltage for an I/O pin
VOL (1)
Output low level voltage for an I/O pin
VOH (3)
Output high level voltage for an I/O pin
VOL(1)(4)
Output low level voltage for an I/O pin
VOH(3)(4)
Output high level voltage for an I/O pin
VOL(1)(4)
Output low level voltage for an I/O pin
VOH(3)(4)
Output high level voltage for an I/O pin
VOLFM+(1)(4)
Output low level voltage for an FTf I/O pin in
FM+ mode
Conditions
Min
Max
CMOS port(2)
IIO = +8 mA
2.7 V < VDD < 3.6 V
-
0.4
VDD–0.4
-
-
0.4
2.4
-
-
1.3
VDD–1.3
-
-
0.4
VDD–0.4
-
-
0.4
TTL port(2)
IIO = +8 mA
2.7 V < VDD < 3.6 V
IIO = +20 mA
2.7 V < VDD < 3.6 V
IIO = +6 mA
2 V < VDD < 2.7 V
IIO = +20 mA
2.7 V < VDD < 3.6 V
Unit
V
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 20 and the sum of
IIO (I/O ports and control pins) must not exceed ΣIIO(PIN).
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 20 and the sum
of IIO (I/O ports and control pins) must not exceed ΣIIO(PIN).
4. Data based on design simulation.
90/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Electrical characteristics
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 23 and
Table 54, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 22.
Table 54. I/O AC characteristics(1)
OSPEEDRy [1:0]
value(1)
x0
01
Symbol
Parameter
fmax(IO)out
Maximum frequency(2)
tf(IO)out
Output high to low level
fall time
tr(IO)out
Output low to high level
rise time
fmax(IO)out
Maximum frequency(2)
tf(IO)out
Output high to low level
fall time
tr(IO)out
Output low to high level
rise time
Conditions
Min
Max
Unit
-
2(3)
MHz
-
125(3)
-
125
(3)
-
10(3)
-
25(3)
-
(3)
25
-
50(3)
MHz
-
30(3)
MHz
-
20(3)
MHz
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
8(3)
CL = 50 pF, VDD = 2 V to 2.7 V
-
12(3)
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
8(3)
CL = 50 pF, VDD = 2 V to 2.7 V
-
12(3)
-
2(4)
-
12(4)
CL = 50 pF, VDD = 2 V to 3.6 V
CL = 50 pF, VDD = 2 V to 3.6 V
CL = 50 pF, VDD = 2 V to 3.6 V
fmax(IO)out
Maximum
CL = 50 pF, VDD = 2.7 V to 3.6 V
CL = 50 pF, VDD = 2 V to 2.7 V
11
tf(IO)out
tr(IO)out
FM+
configuration(4)
-
Output high to low level
fall time
Output low to high level
rise time
MHz
CL = 50 pF, VDD = 2 V to 3.6 V
CL = 30 pF, VDD = 2.7 V to 3.6 V
frequency(2)
ns
ns
fmax(IO)out
Maximum frequency(2)
tf(IO)out
Output high to low level
fall time
tr(IO)out
Output low to high level
rise time
-
34(4)
tEXTIpw
Pulse width of external
signals detected by the
EXTI controller
10(3)
-
CL = 50 pF, VDD = 2 V to 3.6 V
ns
MHz
ns
ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0316 reference manual for a description of
GPIO Port configuration register.
2. The maximum frequency is defined in Figure 23.
3. Guaranteed by design, not tested in production.
4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F30x and STM32F302xx/STM32F303xx
reference manual RM0316 for a description of FM+ I/O mode configuration.
DocID023353 Rev 6
91/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Figure 23. I/O AC characteristics definition
90%
10%
50%
50%
90%
10%
NAL
UT
pF
6.3.15
tr(I O)out
tr(I O)out
T
NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 52).
Unless otherwise specified, the parameters given in Table 55 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 22.
Table 55. NRST pin characteristics
Symbol
Parameter
Conditions
VIL(NRST)(1) NRST Input low level voltage
VIH(NRST)(1)
NRST Input high level voltage
Vhys(NRST)
NRST Schmitt trigger voltage hysteresis
RPU
VF(NRST)(1)
VNF(NRST)(1)
Weak pull-up equivalent
resistor(2)
VIN = VSS
NRST Input filtered pulse
Min
Typ
Max
-
-
0.3VDD+
0.07(1)
-
-
-
200
-
mV
25
40
55
kΩ
-
100(1)
ns
-
-
ns
(1)
500
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
92/132
DocID023353 Rev 6
V
0.445VDD+
0.398(1)
-
NRST Input not filtered pulse
Unit
STM32F302xx/STM32F303xx
Electrical characteristics
Figure 24. Recommended NRST pin protection
6$$
%XTERNAL
RESETCIRCUIT
205
.234
)NTERNAL2ESET
&ILTER
—&
-36
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 55. Otherwise the reset will not be taken into account by the device.
6.3.16
Timer characteristics
The parameters given in Table 56 are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 56. TIMx(1)(2) characteristics
Symbol
tres(TIM)
fEXT
ResTIM
tCOUNTER
Parameter
Conditions
Timer resolution time
Timer external clock
frequency on CH1 to CH4
Timer resolution
Min
Max
Unit
1
-
tTIMxCLK
fTIMxCLK = 72 MHz
(except TIM1/8)
13.9
-
ns
fTIMxCLK = 144 MHz,
x= 1.8
6.95
-
ns
0
fTIMxCLK/2
MHz
fTIMxCLK = 72 MHz
0
36
MHz
TIMx (except TIM2)
-
16
TIM2
-
32
1
65536
tTIMxCLK
0.0139
910
µs
0.0069
455
µs
-
65536 × 65536
tTIMxCLK
fTIMxCLK = 72 MHz
-
59.65
s
fTIMxCLK = 144 MHz,
x= 1.8
-
29.825
s
fTIMxCLK = 72 MHz
16-bit counter clock period (except TIM1/8)
fTIMxCLK = 144 MHz,
x= 1.8
tMAX_COUNT
Maximum possible count
with 32-bit counter
bit
1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM8, TIM15, TIM16 and TIM17
timers.
2. Guaranteed by design, not tested in production.
DocID023353 Rev 6
93/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Table 57. IWDG min/max timeout period at 40 kHz (LSI) (1)
Prescaler divider
PR[2:0] bits
Min timeout (ms) RL[11:0]=
0x000
Max timeout (ms) RL[11:0]=
0xFFF
/4
0
0.1
409.6
/8
1
0.2
819.2
/16
2
0.4
1638.4
/32
3
0.8
3276.8
/64
4
1.6
6553.6
/128
5
3.2
13107.2
/256
7
6.4
26214.4
1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can vary from 30
to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing
of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.
Table 58. WWDG min-max timeout value @72 MHz (PCLK)(1)
Prescaler
WDGTB
Min timeout value
Max timeout value
1
0
0.05687
3.6409
2
1
0.1137
7.2817
4
2
0.2275
14.564
8
3
0.4551
29.127
1. Guaranteed by design, not tested in production.
94/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
6.3.17
Electrical characteristics
Communications interfaces
I2C interface characteristics
The I2C interface meets the requirements of the standard I2C communication protocol with
the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” opendrain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is
disabled, but is still present.
The I2C characteristics are described in Table 59. Refer also to Section 6.3.14: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
Table 59. I2C timings specification (see I2C specification, rev.03, June 2007)(1)
Standard mode
Symbol
Fast mode
Fast Mode Plus
Parameter
Unit
Min
Max
Min
Max
Min
Max
0
100
0
400
0
1000
KHz
-
1.3
-
0.5
-
µs
0.26
-
µs
fSCL
SCL clock frequency
tLOW
Low period of the SCL clock
4.7
tHIGH
High Period of the SCL clock
4
tr
Rise time of both SDA and SCL
signals
-
1000
-
300
-
120
ns
tf
Fall time of both SDA and SCL
signals
-
300
-
300
-
120
ns
Data hold time
0
-
0
-
0
-
µs
-
3.45(2)
-
0.9(2)
-
0.45(2)
µs
-
3.45(2)
-
0.9(2)
-
0.45(2)
µs
tHD;DAT
tVD;DAT
Data valid time
0.6
tVD;ACK
Data valid acknowledge time
tSU;DAT
Data setup time
250
-
100
-
50
-
ns
tHD:STA
Hold time (repeated) START
condition
4.0
-
0.6
-
0.26
-
µs
tSU:STA
Set-up time for a repeated START
condition
4.7
-
0.6
-
0.26
tSU:STO
Set-up time for STOP condition
4.0
-
0.6
-
0.26
-
µs
Bus free time between a
STOP and START condition
4.7
-
1.3
-
0.5
-
µs
-
400
-
400
-
550
pF
tBUF
Cb
Capacitive load for each bus line
µs
1. The I2C characteristics are the requirements from I2C bus specification rev03. They are guaranteed by design when
I2Cx_TIMING register is correctly programmed (Refer to the reference manual). These characteristics are not tested in
production.
2. The maximum tHD;DAT could be 3.45 µs, 0.9 µs and 0.45 µs for standard mode, fast mode and fast mode plus, but must
be less than the maximum of tVD;DAT or tVD;ACK by a transition time.
DocID023353 Rev 6
95/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Table 60. I2C analog filter characteristics(1)
Symbol
tSP
Parameter
Pulse width of spikes that are
suppressed by the analog filter
Min
Max
Unit
50
260
ns
1. Guaranteed by design, not tested in production.
Figure 25. I2C bus AC waveforms and measurement circuit
VDD_I2C
Rp
VDD_I2C
MCU
Rp
Rs
SDA
I2C bus
Rs
SCL
-36
1. Rs: Series protection resistors, Rp: Pull-up resistors, VDD_I2C: I2C bus supply.
96/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Electrical characteristics
SPI/I2S characteristics
Unless otherwise specified, the parameters given in Table 61 for SPI or in Table 62 for I2S
are derived from tests performed under ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 22.
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I2S).
Table 61. SPI characteristics(1)
Symbol
fSCK
1/tc(SCK)
Parameter
SPI clock frequency
Conditions
Min
Max
Master mode
-
18
Slave mode
-
18
-
8
ns
%
tr(SCK)
tf(SCK)
SPI clock rise and fall
time
Capacitive load: C = 30 pF
DuCy(SCK)
SPI slave input clock
duty cycle
Slave mode
30
70
tsu(NSS)
NSS setup time
Slave mode
2Tpclk
-
th(NSS)
NSS hold time
Slave mode
4Tpclk
-
SCK high and low time
Master mode, fPCLK = 36 MHz,
presc = 4
Tpclk/2 Tpclk/2
-3
+3
tw(SCKH)
tw(SCKL)
Master mode
5.5
-
Slave mode
6.5
-
Master mode
5
-
Slave mode
5
-
Data output access time Slave mode, fPCLK = 24 MHz
0
4Tpclk
Data output disable time Slave mode
0
24
tv(SO)
Data output valid time
Slave mode (after enable edge)
-
39
tv(MO)
Data output valid time
Master mode (after enable edge)
-
3
Slave mode (after enable edge)
15
-
Master mode (after enable edge)
4
-
tsu(MI)
tsu(SI)
th(MI)
th(SI)
ta(SO)(2)
tdis(SO)
(3)
th(SO)
th(MO)
Data input setup time
Data input hold time
Data output hold time
Unit
MHz
ns
1. Data based on characterization results, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate
the data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put
the data in Hi-Z.
DocID023353 Rev 6
97/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Figure 26. SPI timing diagram - slave mode and CPHA = 0
NSS input
tc(SCK)
th(NSS)
tSU(NSS)
SCK Input
CPHA= 0
CPOL=0
tw(SCKH)
tw(SCKL)
CPHA= 0
CPOL=1
tv(SO)
ta(SO)
MISO
OUT P UT
tr(SCK)
tf(SCK)
th(SO)
MS B O UT
BI T6 OUT
tdis(SO)
LSB OUT
tsu(SI)
MOSI
I NPUT
B I T1 IN
M SB IN
LSB IN
th(SI)
ai14134c
Figure 27. SPI timing diagram - slave mode and CPHA = 1(1)
NSS input
tSU(NSS)
SCK Input
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tc(SCK)
tw(SCKH)
tw(SCKL)
tv(SO)
ta(SO)
MISO
OUT P UT
th(SO)
MS B O UT
tsu(SI)
MOSI
I NPUT
th(NSS)
BI T6 OUT
tr(SCK)
tf(SCK)
tdis(SO)
LSB OUT
th(SI)
M SB IN
B I T1 IN
LSB IN
ai14135
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
98/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Electrical characteristics
Figure 28. SPI timing diagram - master mode(1)
(IGH
.33INPUT
3#+/UTPUT
#0(! #0/,
3#+/UTPUT
TC3#+
#0(!
#0/,
#0(! #0/,
#0(!
#0/,
TW3#+(
TW3#+,
TSU-)
-)3/
).0 54
TR3#+
TF3#+
-3 ").
") 4).
,3").
TH-)
-/3)
/54054
" ) 4/54
- 3"/54
TV-/
,3"/54
TH-/
AI6
1. Measurement points are done at 0.5VDD and with external CL = 30 pF.
Table 62. I2S characteristics(1)
Symbol
Parameter
Conditions
Min
Max
fCK
1/tc(CK)
I2S clock frequency
Master data: 16 bits,
audio freq=48 kHz
1.496
1.503
Slave
0
12.288
-
8
2
tr(CK)
tf(CK)
I S clock rise and fall
time
Capacitive load
CL = 30 pF
tw(CKH)
I2S clock high time
331
-
tw(CKL)
I2S clock low time
Master fPCLK= 36 MHz,
audio frequency =
48 kHz
332
-
tv(WS)
WS valid time
Master mode
4
-
th(WS)
WS hold time
Master mode
4
-
tsu(WS)
WS setup time
Slave mode
4
-
th(WS)
WS hold time
Slave mode
0
-
Duty Cycle
I2S slave input clock
duty cycle
Slave mode
30
70
DocID023353 Rev 6
Unit
MHz
ns
%
99/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Table 62. I2S characteristics(1) (continued)
Symbol
Parameter
Conditions
Min
tsu(SD_MR)
Data input setup time
Master receiver
9
tsu(SD_SR)
Data input setup time
Slave receiver
2
Master receiver
0
Slave receiver
0
th(SD_MR)
th(SD_SR)
Data input hold time
Data output valid time
Slave transmitter
(after enable edge)
th(SD_ST)
Data output hold time
Slave transmitter
(after enable edge)
tv(SD_MT)
Data output valid time
Master transmitter
(after enable edge)
th(SD_MT)
Data output hold time
Master transmitter
(after enable edge)
tv(SD_ST)
Max
Unit
29
ns
12
3
2
1. Data based on characterization results, not tested in production.
Figure 29. I2S slave timing diagram (Philips protocol)(1)
CK Input
tc(CK)
CPOL = 0
CPOL = 1
tw(CKH)
th(WS)
tw(CKL)
WS input
tv(SD_ST)
tsu(WS)
SDtransmit
LSB transmit(2)
MSB transmit
tsu(SD_SR)
SDreceive
LSB receive(2)
Bitn transmit
th(SD_ST)
LSB transmit
th(SD_SR)
MSB receive
Bitn receive
LSB receive
ai14881b
1. Measurement points are done at 0.5VDD and with external CL=30 pF.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
100/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Electrical characteristics
Figure 30. I2S master timing diagram (Philips protocol)(1)
tf(CK)
tr(CK)
CK output
tc(CK)
CPOL = 0
tw(CKH)
CPOL = 1
tv(WS)
th(WS)
tw(CKL)
WS output
tv(SD_MT)
SDtransmit
LSB transmit(2)
MSB transmit
LSB receive(2)
LSB transmit
th(SD_MR)
tsu(SD_MR)
SDreceive
Bitn transmit
th(SD_MT)
MSB receive
Bitn receive
LSB receive
ai14884b
1. Measurement points are done at 0.5VDD and with external CL=30 pF.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
USB characteristics
Table 63. USB startup time
Symbol
tSTARTUP(1)
Parameter
USB transceiver startup time
Max
Unit
1
µs
1. Guaranteed by design, not tested in production.
DocID023353 Rev 6
101/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Table 64. USB DC electrical characteristics
Symbol
Parameter
Min.(1)
Max.(1)
Unit
3.0(3)
3.6
V
I(USB_DP, USB_DM)
0.2
-
Includes VDI range
0.8
2.5
1.3
2.0
Conditions
Input levels
VDD
USB operating voltage(2)
VDI(4)
Differential input sensitivity
VCM(4)
Differential common mode range
VSE(4)
Single ended receiver threshold
V
Output levels
VOL
Static output level low
RL of 1.5 kΩ to 3.6 V(5)
-
0.3
VOH
Static output level high
RL of 15 kΩ to VSS(5)
2.8
3.6
V
1. All the voltages are measured from the local ground potential.
2. To be compliant with the USB 2.0 full-speed electrical specification, the USB_DP (D+) pin should be pulled
up with a 1.5 kΩ resistor to a 3.0-to-3.6 V voltage range.
3. The STM32F3xxx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics
which are degraded in the 2.7-to-3.0 V VDD voltage range.
4. Guaranteed by design, not tested in production.
5. RL is the load connected on the USB drivers.
Figure 31. USB timings: definition of data signal rise and fall time
Crossover
points
Differen tial
Data L ines
VCRS
VS S
102/132
tf
tr
ai14137
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Electrical characteristics
Table 65. USB: Full-speed electrical characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
CL = 50 pF
4
-
20
ns
CL = 50 pF
4
-
20
ns
tr/tf
90
-
110
%
1.3
-
2.0
V
28
40
44
Ω
Driver characteristics
tr
tf
trfm
VCRS
Rise time(2)
Fall time
(2)
Rise/ fall time matching
Output signal crossover voltage
Output driver
Z
Impedance(3) DRV
driving high and low
1. Guaranteed by design, not tested in production.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter
7 (version 2.0).
3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-), the matching impedance is
already included in the embedded driver.
CAN (controller area network) interface
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (CAN_TX and CAN_RX).
6.3.18
ADC characteristics
Unless otherwise specified, the parameters given in Table 66 to Table 68 are guaranteed by
design, with conditions summarized in Table 22.
Table 66. ADC characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VDDA
Analog supply voltage for
ADC
2
-
3.6
V
VREF+
Positive reference voltage
2
-
VDDA
V
0.14
-
72
MHz
Resolution = 12 bits,
Fast Channel
0.01
-
5.14
Resolution = 10 bits,
Fast Channel
0.012
-
6
Resolution = 8 bits,
Fast Channel
0.014
-
7.2
Resolution = 6 bits,
Fast Channel
0.0175
-
9
fADC = 72 MHz
Resolution = 12 bits
-
-
5.14
MHz
Resolution = 12 bits
-
-
14
1/fADC
0
-
VREF+
V
-
-
100
kΩ
fADC
fS(1)
fTRIG(1)
VAIN
RAIN
(1)
ADC clock frequency
Sampling rate
External trigger frequency
Conversion voltage
range(2)
External input impedance
DocID023353 Rev 6
MSPS
103/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Table 66. ADC characteristics (continued)
Symbol
Parameter
Conditions
CADC(1)
Internal sample and hold
capacitor
tCAL(1)
Calibration time
tlatr(1)
Trigger conversion latency
Regular and injected
channels without conversion
abort
tlatrinj(1)
tS(1)
TADCVREG
(1)
_STUP
tCONV(1)
Typ
Max
Unit
-
5
-
pF
fADC = 72 MHz
Trigger conversion latency
Injected channels aborting a
regular conversion
Sampling time
Min
µs
112
1/fADC
CKMODE = 00
1.5
2
2.5
1/fADC
CKMODE = 01
-
-
2
1/fADC
CKMODE = 10
-
-
2.25
1/fADC
CKMODE = 11
-
-
2.125
1/fADC
CKMODE = 00
2.5
3
3.5
1/fADC
CKMODE = 01
-
-
3
1/fADC
CKMODE = 10
-
-
3.25
1/fADC
CKMODE = 11
-
-
3.125
1/fADC
fADC = 72 MHz
0.021
-
8.35
µs
1.5
-
601.5
1/fADC
-
-
10
µs
0.19
-
8.52
µs
ADC Voltage Regulator
Start-up time
Total conversion time
(including sampling time)
1.56
fADC = 72 MHz
Resolution = 12 bits
14 to 614 (tS for sampling + 12.5 for
successive approximation)
Resolution = 12 bits
1/fADC
1. Data guaranteed by design.
2. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.
Refer to Section 4: Pinouts and pin description for further details.
Table 67. Maximum ADC RAIN (1)
Resolution
12 bits
104/132
RAIN max (kΩ)
Sampling
cycle @
72 MHz
Sampling
time [ns] @
72 MHz
Fast channels(2)
Slow
channels
Other
channels(3)
1.5
20.83
0.018
NA
NA
2.5
34.72
0.150
NA
0.022
4.5
62.50
0.470
0.220
0.180
7.5
104.17
0.820
0.560
0.470
19.5
270.83
2.70
1.80
1.50
61.5
854.17
8.20
6.80
4.70
181.5
2520.83
22.0
18.0
15.0
601.5
8354.17
82.0
68.0
47.0
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Electrical characteristics
Table 67. Maximum ADC RAIN (1) (continued)
Resolution
10 bits
8 bits
6 bits
RAIN max (kΩ)
Sampling
cycle @
72 MHz
Sampling
time [ns] @
72 MHz
Fast channels(2)
Slow
channels
Other
channels(3)
1.5
20.83
0.082
NA
NA
2.5
34.72
0.270
0.082
0.100
4.5
62.50
0.560
0.390
0.330
7.5
104.17
1.20
0.82
0.68
19.5
270.83
3.30
2.70
2.20
61.5
854.17
10.0
8.2
6.8
181.5
2520.83
33.0
27.0
22.0
601.5
8354.17
100.0
82.0
68.0
1.5
20.83
0.150
NA
0.039
2.5
34.72
0.390
0.180
0.180
4.5
62.50
0.820
0.560
0.470
7.5
104.17
1.50
1.20
1.00
19.5
270.83
3.90
3.30
2.70
61.5
854.17
12.00
12.00
8.20
181.5
2520.83
39.00
33.00
27.00
601.5
8354.17
100.00
100.00
82.00
1.5
20.83
0.270
0.100
0.150
2.5
34.72
0.560
0.390
0.330
4.5
62.50
1.200
0.820
0.820
7.5
104.17
2.20
1.80
1.50
19.5
270.83
5.60
4.70
3.90
61.5
854.17
18.0
15.0
12.0
181.5
2520.83
56.0
47.0
39.0
601.5
8354.17
100.00
100.0
100.0
1. Data based on characterization results, not tested in production.
2. All fast channels, expect channels on PA2, PA6, PB1, PB12.
3. Channels available on PA2, PA6, PB1 and PB12.
DocID023353 Rev 6
105/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Table 68. ADC accuracy - limited test conditions (1)(2)
Symbol Parameter
ET
Single ended
Total
unadjusted
error
Differential
Single ended
EO
Offset error
Differential
Single ended
EG
Gain error
Differential
ED
EL
ENOB
SINAD
106/132
Differential
linearity
error
Integral
linearity
error
Effective
number of
bits
Signal-tonoise and
distortion
ratio
Min
Conditions
ADC clock freq. ≤ 72 MHz
Sampling freq. ≤ 5 Msps
VDDA = VREF+ = 3.3 V
25°C
Single ended
Differential
Single ended
Differential
Single ended
Differential
Single ended
Differential
DocID023353 Rev 6
Max
(3)
Typ
Fast channel 5.1 Ms
-
±3.5
±6
Slow channel 4.8 Ms
-
±4.5
±7
Fast channel 5.1 Ms
-
±3.5
±6
Slow channel 4.8 Ms
-
±3.5
±6
Fast channel 5.1 Ms
-
±1
±5
Slow channel 4.8 Ms
-
±1
±5
Fast channel 5.1 Ms
-
±1
±3
Slow channel 4.8 Ms
-
±1
±3
Fast channel 5.1 Ms
-
±3
±6
Slow channel 4.8 Ms
-
±4
±6
Fast channel 5.1 Ms
-
±1
±2
Slow channel 4.8 Ms
-
±1.5
±3
Fast channel 5.1 Ms
-
±1
±1
Slow channel 4.8 Ms
-
±1
±1.5
Fast channel 5.1 Ms
-
±1
±1
Slow channel 4.8 Ms
-
±1
±1
Fast channel 5.1 Ms
-
±1.5
±3
Slow channel 4.8 Ms
-
±2
±3
Fast channel 5.1 Ms
-
±1
±2
Slow channel 4.8 Ms
-
±1
±2
(3)
Fast channel 5.1 Ms
10.3 10.7
-
Slow channel 4.8 Ms
10.4 10.7
-
Fast channel 5.1 Ms
10.9 11.3
-
Slow channel 4.8 Ms
10.9 11.3
-
Fast channel 5.1 Ms
64
66
-
Slow channel 4.8 Ms
65
66
-
Fast channel 5.1 Ms
67
70
-
Slow channel 4.8 Ms
67
70
-
Unit
LSB
bits
dB
STM32F302xx/STM32F303xx
Electrical characteristics
Table 68. ADC accuracy - limited test conditions (1)(2) (continued)
Symbol Parameter
Single ended
SNR
THD
Signal-tonoise ratio
Total
harmonic
distortion
Min
Conditions
ADC clock freq. ≤ 72 MHz
Sampling freq ≤ 5 Msps
VDDA = VREF+ = 3.3 V
25°C
Differential
Single ended
Differential
Max
(3)
Typ
Fast channel 5.1 Ms
64
67
-
Slow channel 4.8 Ms
65
67
-
Fast channel 5.1 Ms
68
70
-
Slow channel 4.8 Ms
69
70
-
Fast channel 5.1 Ms
-
-75
-72
Slow channel 4.8 Ms
-
-72
-70
Fast channel 5.1 Ms
-
-80
-74
Slow channel 4.8 Ms
-
-76
-71
(3)
Unit
dB
1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
3. Data based on characterization results, not tested in production.
DocID023353 Rev 6
107/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Table 69. ADC accuracy (1)(2)(3)
Symbol Parameter
ET
Single ended
Total
unadjusted
error
Differential
Single ended
EO
Offset error
Differential
Single ended
EG
Gain error
Differential
ED
EL
ENOB
Differential ADC clock freq. ≤ 72 MHz,
Sampling freq. ≤ 5 Msps
linearity
error
1.8 V ≤ VDDA, VREF+ ≤ 3.6 V
Integral
linearity
error
Effective
number of
bits
Signal-tonoise and
SINAD
distortion
ratio
108/132
Min(4) Max(4) Unit
Conditions
Single ended
Differential
Single ended
Differential
Single ended
Differential
Single ended
Differential
DocID023353 Rev 6
Fast channel 5.1 Ms
-
±8
Slow channel 4.8 Ms
-
±8
Fast channel 5.1 Ms
-
±7
Slow channel 4.8 Ms
-
±7
Fast channel 5.1 Ms
-
±7
Slow channel 4.8 Ms
-
±7
Fast channel 5.1 Ms
-
±4
Slow channel 4.8 Ms
-
±4
Fast channel 5.1 Ms
-
±7
Slow channel 4.8 Ms
-
±7
Fast channel 5.1 Ms
-
±3
Slow channel 4.8 Ms
-
±3
Fast channel 5.1 Ms
-
±1.5
Slow channel 4.8 Ms
-
±1.5
Fast channel 5.1 Ms
-
±1.5
Slow channel 4.8 Ms
-
±1
Fast channel 5.1 Ms
-
±3
Slow channel 4.8 Ms
-
±3
Fast channel 5.1 Ms
-
±2
Slow channel 4.8 Ms
-
±2
Fast channel 5.1 Ms
10.2
-
Slow channel 4.8 Ms
10.2
-
Fast channel 5.1 Ms
10.8
-
Slow channel 4.8 Ms
10.8
-
Fast channel 5.1 Ms
-
63
Slow channel 4.8 Ms
-
63
Fast channel 5.1 Ms
-
67
Slow channel 4.8 Ms
-
67
LSB
bits
dB
STM32F302xx/STM32F303xx
Electrical characteristics
Table 69. ADC accuracy (1)(2)(3) (continued)
Symbol Parameter
Fast channel 5.1 Ms
64
-
Slow channel 4.8 Ms
64
-
Fast channel 5.1 Ms
Differential
ADC clock freq. ≤ 72 MHz,
Slow channel 4.8 Ms
Sampling freq ≤ 5 Msps,
Fast channel 5.1 Ms
1.8 V ≤ VDDA, VREF+ ≤ 3.6 V Single ended
Slow channel 4.8 Ms
67
-
67
-
-
-70
-
-69
Fast channel 5.1 Ms
-
-72
Slow channel 4.8 Ms
-
-70
Single ended
SNR
THD
Signal-tonoise ratio
Total
harmonic
distortion
Min(4) Max(4) Unit
Conditions
Differential
dB
1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.14 does not affect the ADC
accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. Data based on characterization results, not tested in production.
Figure 32. ADC accuracy characteristics
V
V
[1LSBIDEAL = REF+ (or DDA depending on package)]
4096
4096
EG
4095
4094
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
4093
(2)
ET
(3)
7
(1)
6
5
4
EO
EL
3
ED
2
ET=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
EO=Offset Error: deviation between the first actual
transition and the first ideal one.
EG=Gain Error: deviation between the last ideal
transition and the last actual one.
ED=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
EL=Integral Linearity Error: maximum deviation
between any actual transition and the end point
correlation line.
1 LSBIDEAL
1
0
1
VSSA
2
3
4
5
6
7
4093 4094 4095 4096
VDDA
DocID023353 Rev 6
ai14395b
109/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Figure 33. Typical connection diagram using the ADC
VDD
RAIN(1)
VAIN
Sample and hold ADC
converter
VT
0.6 V
2!$#
AINx
Cparasitic
IL±1 μA
VT
0.6 V
12-bit
converter
C!$#
-36
1. Refer to Table 66 for the values of RAIN.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 11. The 10 nF capacitor
should be ceramic (good quality) and it should be placed as close as possible to the chip.
6.3.19
DAC electrical specifications
Table 70. DAC characteristics
Symbol
VDDA
Parameter
Analog supply voltage for
DAC ON
RLOAD(1) Resistive load with buffer ON
VREF+
Positive reference voltage
RO(1)
Impedance output with buffer
OFF
CLOAD(1) Capacitive load
Min
Typ
Max
Unit
2.4
-
3.6
V
5
-
-
kΩ
2.4
-
3.6
V
VREF+ must be always equal to or
less than VDDA
-
-
15
When the buffer is OFF, the Minimum
resistive load between DAC_OUT
kΩ
and VSS to have a 1% accuracy is
1.5 MΩ
-
-
50
Maximum capacitive load at
pF DAC_OUT pin (when the buffer is
ON).
DAC_OUT Lower DAC_OUT voltage
min(1)
with buffer ON
0.2
-
-
V
DAC_OUT Higher DAC_OUT voltage
max(1) with buffer ON
-
-
VDDA – 0.2
V
DAC_OUT Lower DAC_OUT voltage
min(1)
with buffer OFF
-
0.5
-
mV
DAC_OUT Higher DAC_OUT voltage
max(1) with buffer OFF
-
-
VREF+ – 1LSB
V
110/132
Comments
DocID023353 Rev 6
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input code
(0x0E0) to (0xF1C) at VREF+ = 3.6 V
and (0x155) and (0xEAB) at VREF+ =
2.4 V
It gives the maximum output
excursion of the DAC.
STM32F302xx/STM32F303xx
Electrical characteristics
Table 70. DAC characteristics (continued)
Symbol
Min
Typ
Max
Unit
Comments
DAC DC current
consumption in quiescent
mode (Standby mode)(2)
-
-
380
µA
With no load, middle code (0x800) on
the input
-
-
480
µA
With no load, worst code (0xF1C) on
the input
Differential non linearity
Difference between two
consecutive code-1LSB)
-
-
±0.5
LSB Given for a 10-bit input code
-
-
±2
LSB Given for a 12-bit input code
-
-
±1
LSB Given for a 10-bit input code
INL(3)
Integral non linearity
(difference between
measured value at Code i
and the value at Code i on a
line drawn between Code 0
and last Code 1023)
-
-
±4
LSB Given for a 12-bit input code
-
-
±10
mV
Offset(3)
Offset error
(difference between
measured value at Code
(0x800) and the ideal value =
VDDA/2)
-
-
±3
LSB
Given for a 10-bit input code at VREF+
= 3.6 V
-
-
±12
LSB
Given for a 12-bit input code at VREF+
= 3.6 V
-
-
±0.5
%
Settling time (full scale: for a
10-bit input code transition
between the lowest and the
tSETTLING(3)
highest input codes when
DAC_OUT reaches final
value ±1LSB
-
3
4
µs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
Max frequency for a correct
DAC_OUT change when
small variation in the input
code (from code i to i+1LSB)
-
-
1
MS/s CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
Wakeup time from off state
tWAKEUP(3) (Setting the ENx bit in the
DAC Control register)
-
6.5
10
CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ
µs input code between lowest and
highest possible ones.
Power supply rejection ratio
PSRR+ (1) (to VDDA) (static DC
measurement
-
–67
–40
dB No RLOAD, CLOAD = 50 pF
IDDA(3)
DNL(3)
Gain
error(3)
Update
rate(3)
Parameter
Gain error
Given for a 12-bit input code
1. Guaranteed by design, not tested in production.
2. Quiescent mode refers to the state of the DAC a keeping steady value on the output, so no dynamic consumption is
involved.
3. Data based on characterization results, not tested in production.
DocID023353 Rev 6
111/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Figure 34. 12-bit buffered /non-buffered DAC
Buffered/Non-buffered DAC
Buffer(1)
R LOAD
DACx_OUT
12-bit
digital to
analog
converter
C LOAD
ai17157
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
6.3.20
Comparator characteristics
Table 71. Comparator characteristics(1)
Symbol
Min
Typ
Max
Analog supply voltage
2
-
3.6
VIN
Comparator input voltage
range
0
-
VDDA
VBG
Scaler input voltage
-
1.2
-
VSC
Scaler offset voltage
-
±5
±10
mV
tS_SC
Scaler startup time from
power down
-
-
0.1
ms
tSTART
Comparator startup time
Startup time to reach propagation delay
specification
-
-
60
µs
Ultra-low power mode
-
2
4.5
-
0.7
1.5
-
0.3
0.6
VDDA ≥ 2.7 V
-
50
100
VDDA < 2.7 V
-
100
240
Ultra-low power mode
-
2
7
Low power mode
-
0.7
2.1
Medium power mode
-
0.3
1.2
VDDA ≥ 2.7 V
-
90
180
VDDA < 2.7 V
-
110
300
VDDA
Parameter
Conditions
Low power mode
Propagation delay for
200 mV step with 100 mV Medium power mode
overdrive
High speed mode
tD
Propagation delay for full
range step with 100 mV
overdrive
High speed mode
Unit
V
µs
ns
µs
ns
Voffset
Comparator offset error
-
±4
±10
mV
dVoffset/dT
Offset error temperature
coefficient
-
18
-
µV/°
C
112/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Electrical characteristics
Table 71. Comparator characteristics(1) (continued)
Symbol
IDD(COMP)
Vhys
Parameter
COMP current
consumption
Comparator hysteresis
Conditions
Min
Typ
Max
Ultra-low power mode
-
1.2
1.5
Low power mode
-
3
5
Medium power mode
-
10
15
High speed mode
-
75
100
No hysteresis
(COMPxHYST[1:0]=00)
-
0
-
High speed mode
Low hysteresis
(COMPxHYST[1:0]=01) All other power
modes
3
High speed mode
Medium hysteresis
(COMPxHYST[1:0]=10) All other power
modes
7
High speed mode
High hysteresis
(COMPxHYST[1:0]=11) All other power
modes
18
5
9
19
Unit
µA
13
8
10
26
15
mV
19
49
31
40
1. Data based on characterization results, not tested in production.
DocID023353 Rev 6
113/132
117
Electrical characteristics
6.3.21
STM32F302xx/STM32F303xx
Operational amplifier characteristics
Table 72. Operational amplifier characteristics(1)
Symbol
Parameter
VDDA
Analog supply voltage
CMIR
Common mode input range
Condition
25°C, No Load
on output.
VIOFFSET
Input offset voltage
Maximum
calibration range All
voltage/Temp.
Min
Typ
Max
Unit
2.4
-
3.6
V
0
-
VDDA
V
-
-
4
-
-
6
mV
25°C, No Load
on output.
-
-
1.6
All
voltage/Temp.
-
-
3
Input offset voltage drift
-
5
-
µV/°C
ILOAD
Drive current
-
-
500
µA
IDDOPAMP
Consumption
-
690
1450
µA
-
90
-
dB
73
117
-
dB
After offset
calibration
ΔVIOFFSET
No load,
quiescent mode
CMRR
Common mode rejection ratio
PSRR
Power supply rejection ratio
GBW
Bandwidth
-
8.2
-
MHz
SR
Slew rate
-
4.7
-
V/µs
RLOAD
Resistive load
4
-
-
kΩ
CLOAD
Capacitive load
-
-
50
pF
Rload = min,
Input at VDDA.
-
-
100
Rload = 20K,
Input at VDDA.
-
-
20
Rload = min,
input at 0V
-
-
100
Rload = 20K,
input at 0V.
-
-
20
Phase margin
-
62
-
°
Offset trim time: during calibration,
minimum time needed between two
steps to have 1 mV accuracy
-
-
2
ms
-
2.8
5
µs
VOHSAT
VOLSAT
ϕm
tOFFTRIM
tWAKEUP
114/132
DC
High saturation voltage
Low saturation voltage
Wake up time from OFF state.
CLOAD ≤ 50 pf,
RLOAD ≥ 4 kΩ,
Follower
configuration
DocID023353 Rev 6
mV
STM32F302xx/STM32F303xx
Electrical characteristics
Table 72. Operational amplifier characteristics(1) (continued)
Symbol
PGA gain
Rnetwork
Parameter
Condition
Min
Typ
Max
-
2
-
-
4
-
-
8
-
-
16
-
Gain=2
-
5.4/5.4
-
Gain=4
-
16.2/5.4
-
Gain=8
-
37.8/5.4
-
Gain=16
-
40.5/2.7
-
-1%
-
1%
-
-
±0.2(3)
PGA Gain = 2,
Cload = 50pF,
Rload = 4 KΩ
-
4
-
PGA Gain = 4,
Cload = 50pF,
Rload = 4 KΩ
-
2
-
PGA Gain = 8,
Cload = 50pF,
Rload = 4 KΩ
-
1
-
PGA Gain = 16,
Cload = 50pF,
Rload = 4 KΩ
-
0.5
-
@ 1KHz, Output
loaded with
4 KΩ
-
109
-
Non inverting gain value
R2/R1 internal resistance values in
PGA mode (2)
PGA gain error PGA gain error
Ibias
PGA BW
en
OPAMP input bias current
PGA bandwidth for different non
inverting gain
Voltage noise density
@ 10KHz,
Output loaded
with 4 KΩ
Unit
kΩ
µA
MHz
-
43
-
nV
----------Hz
1. Guaranteed by design, not tested in production.
2. R2 is the internal resistance between OPAMP output and OPAMP inverting input.
R1 is the internal resistance between OPAMP inverting input and ground.
The PGA gain =1+R2/R1
3. Mostly TTa I/O leakage, when used in analog mode.
DocID023353 Rev 6
115/132
117
Electrical characteristics
STM32F302xx/STM32F303xx
Figure 35. OPAMP Voltage Noise versus Frequency
116/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
6.3.22
Electrical characteristics
Temperature sensor characteristics
Table 73. TS characteristics
Symbol
Parameter
TL(1)
Min
Typ
Max
Unit
-
±1
±2
°C
Average slope
4.0
4.3
4.6
mV/°C
Voltage at 25 °C
1.34
1.43
1.52
V
4
-
10
µs
2.2
-
-
µs
VSENSE linearity with temperature
(1)
Avg_Slope
V25
tSTART(1)
TS_temp(1)(2)
Startup time
ADC sampling time when reading the
temperature
1. Guaranteed by design, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.
Table 74. Temperature sensor calibration values
Calibration value name
6.3.23
Description
Memory address
TS_CAL1
TS ADC raw data acquired at
temperature of 30 °C,
VDDA= 3.3 V
0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2
TS ADC raw data acquired at
temperature of 110 °C
VDDA= 3.3 V
0x1FFF F7C2 - 0x1FFF F7C3
VBAT monitoring characteristics
Table 75. VBAT monitoring characteristics
Symbol
Parameter
Min
Typ
Max
Unit
KΩ
R
Resistor bridge for VBAT
-
50
-
Q
Ratio on VBAT measurement
-
2
-
Error on Q
-1
-
+1
%
ADC sampling time when reading the VBAT
1mV accuracy
2.2
-
-
µs
Er
(1)
TS_vbat(1)(2)
1. Guaranteed by design, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.
DocID023353 Rev 6
117/132
117
Package characteristics
STM32F302xx/STM32F303xx
7
Package characteristics
7.1
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
118/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Package characteristics
Figure 36. LQFP100 – 14 x 14 mm, 100-pin low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
'!5'%0,!.%
,
$
!
+
CCC #
,
$
$
%
%
%
B
0).
)$%.4)&)#!4)/.
E
,?-%?6
1. Drawing is not to scale.
Table 76. LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data
Symbol
Min
Typ
A
Max
Min
Typ
1.60
A1
0.05
A2
1.35
b
0.17
c
0.09
D
15.80
D1
13.80
D3
E
inches(1)
millimeters
0.063
0.15
0.002
1.40
1.45
0.0531
0.0551
0.0571
0.22
0.27
0.0067
0.0087
0.0106
0.2
0.0035
16.00
16.2
0.622
0.6299
0.6378
14.00
14.2
0.5433
0.5512
0.5591
12.00
15.80
Max
16.00
0.0059
0.0079
0.4724
16.2
DocID023353 Rev 6
0.622
0.6299
0.6378
119/132
128
Package characteristics
STM32F302xx/STM32F303xx
Table 76. LQPF100 – 14 x 14 mm, low-profile quad flat package mechanical data (continued)
Symbol
E1
inches(1)
millimeters
Min
Typ
Max
Min
Typ
Max
13.80
14.00
14.2
0.5433
0.5512
0.5591
E3
12.00
0.4724
e
0.50
0.0197
L
0.45
0.60
L1
K
0.75
0.0177
0.0236
1.00
0°
0.0394
3.5°
7°
ccc
0°
3.5°
0.08
Figure 37. Recommended footprint
75
51
76
50
0.5
0.3
14.3
100
26
1.2
1
25
12.3
16.7
ai14906b
1. Dimensions are in millimeters.
120/132
7°
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
16.7
0.0295
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Package characteristics
Figure 38. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
'!5'%0,!.%
!
CCC #
+
,
$
,
$
$
0).
)$%.4)&)#!4)/.
%
%
%
B
E
7?-%?6
1. Drawing is not to scale.
Table 77. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.60
A1
0.05
A2
1.350
b
0.17
Max
0.0630
0.15
0.0020
1.40
1.45
0.0531
0.0551
0.0571
0.22
0.27
0.0067
0.0087
0.0106
DocID023353 Rev 6
0.0059
121/132
128
Package characteristics
STM32F302xx/STM32F303xx
Table 77. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data (continued)
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
0.20
0.0035
Max
c
0.09
D
11.80
12.00
12.20
0.4646
0.4724
0.4803
D1
9.80
10.00
10.20
0.3858
0.3937
0.4016
D3
0.0079
7.50
0.2953
E
11.80
12.00
12.20
0.4646
0.4724
0.4803
E1
9.80
10.00
10.20
0.3858
0.3937
0.4016
E3
7.50
0.2953
e
0.50
0.0197
L
0.45
L1
K
0.60
0.75
0.0177
0.0236
1.00
0°
0.0394
3.5°
7°
ccc
0°
3.5°
0.08
Figure 39. Recommended footprint
7°
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
AIB
1. Dimensions are in millimeters.
122/132
0.0295
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Package characteristics
Figure 40. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package outline
C
!
!
!
3%!4).'
0,!.%
#
MM
'!5'%0,!.%
CCC #
+
!
$
$
,
,
$
0).
)$%.4)&)#!4)/.
%
%
%
B
E
"?-%?6
1. Drawing is not to scale.
Table 78. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data
Symbol
Min
Typ
A
Max
Min
Typ
1.60
A1
0.05
A2
1.35
b
0.17
c
0.09
D
8.80
D1
6.80
D3
inches(1)
millimeters
Max
0.0630
0.15
0.0020
1.40
1.45
0.0531
0.0551
0.0571
0.22
0.27
0.0067
0.0087
0.0106
0.20
0.0035
9.00
9.20
0.3465
0.3543
0.3622
7.00
7.20
0.2677
0.2756
0.2835
5.50
0.0059
0.0079
0.2165
DocID023353 Rev 6
123/132
128
Package characteristics
STM32F302xx/STM32F303xx
Table 78. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data (continued)
Symbol
inches(1)
millimeters
Min
Typ
Max
Min
Typ
Max
E
8.80
9.00
9.20
0.3465
0.3543
0.3622
E1
6.80
7.00
7.20
0.2677
0.2756
0.2835
E3
5.50
0.2165
e
0.50
0.0197
L
0.45
L1
K
0.60
0.75
0.0177
0.0236
1.00
0°
0.0394
3.5°
7°
ccc
0°
3.5°
0.08
Figure 41. Recommended footprint
AID
1. Dimensions are in millimeters.
124/132
7°
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
0.0295
DocID023353 Rev 6
STM32F302xx/STM32F303xx
7.2
Package characteristics
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 22: General operating conditions on page 59.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x ΘJA)
Where:
•
TA max is the maximum ambient temperature in °C,
•
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
•
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
•
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 79. Package thermal characteristics
Symbol
ΘJA
7.2.1
Parameter
Value
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch
45
Thermal resistance junction-ambient
LQFP48 - 7 × 7 mm
55
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch
41
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
DocID023353 Rev 6
125/132
128
Package characteristics
7.2.2
STM32F302xx/STM32F303xx
Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Section 8: Part numbering.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature.
As applications do not commonly use the STM32F302xx/STM32F303xx at maximum
dissipation, it is useful to calculate the exact power consumption and junction temperature
to determine which temperature range will be best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2),
IDDmax = 50 mA, VDD = 3.5 V, maximum 3 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V and maximum 2 I/Os used at the same time in output
at low level with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 3 × 8 mA × 0.4 V + 2 × 20 mA × 1.3 V = 61.6 mW
This gives: PINTmax = 175 mW and PIOmax = 61.6 mW:
PDmax = 175 + 61.6 = 236.6 mW
Thus: PDmax = 236.6 mW
Using the values obtained in Table 79 TJmax is calculated as follows:
–
For LQFP64, 45°C/W
TJmax = 82 °C + (45°C/W × 236.6 mW) = 82 °C + 10.65 °C = 92.65 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Section 8: Part numbering).
126/132
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Package characteristics
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high ambient
temperatures with a low dissipation, as long as junction temperature TJ remains within the
specified range.
Assuming the following application conditions:
Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2),
IDDmax = 20 mA, VDD = 3.5 V, maximum 9 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V
PINTmax = 20 mA × 3.5 V= 70 mW
PIOmax = 9 × 8 mA × 0.4 V = 28.8 mW
This gives: PINTmax = 70 mW and PIOmax = 28.8 mW:
PDmax = 70 + 28.8 = 98.8 mW
Thus: PDmax = 98.8 mW
Using the values obtained in Table 79 TJmax is calculated as follows:
–
For LQFP100, 41°C/W
TJmax = 115 °C + (41°C/W × 98.8 mW) = 115 °C + 4.05 °C = 119.05 °C
This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Section 8: Part numbering).
DocID023353 Rev 6
127/132
128
Part numbering
8
STM32F302xx/STM32F303xx
Part numbering
Table 80. Ordering information scheme
Example:
STM32F303 R
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
302 = STM32F302xx
303 = STM32F303xx
Pin count
C = 48 pins
R = 64 pins
V = 100 pins
Flash memory size
B = 128 Kbytes of Flash memory (medium density)
C = 256 Kbytes of Flash memory (high density)
Package
T = LQFP
Temperature range
6 = Industrial temperature range, –40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
Options
xxx = programmed parts
TR = tape and reel
128/132
DocID023353 Rev 6
B
T
6
xxx
STM32F302xx/STM32F303xx
9
Revision history
Revision history
Table 81. Document revision history
Date
Revision
Changes
22-Jun-2012
1
Initial release
07-Sep-2012
2
Modified Features on cover page.
Modified Table 2: STM32F301xx family device features and peripheral
counts
Added clock tree to Section 3.8: Clocks and startup
Added Table 5: STM32F302xx/STM32F303xx I2C implementation
Added Table 6: USART features
Added Table 7: STM32F302xx/STM32F303xx SPI/I2S implementation
Modified Table 8: Capacitive sensing GPIOs available on
STM32F302xx/STM32F303xx devices
Modified Figure 5, Figure 6 and Figure 7:
STM32F302xx/STM32F303xx LQFP100 pinout
Modified Table 11: STM32F302xx/STM32F303xx pin definitions
Modified Figure 11: Power supply scheme
Modified Table 19: Voltage characteristics
Modified Table 20: Current characteristics
Modified Table 23: Operating conditions at power-up / power-down
Added footnote to Table 29: Typical and maximum current
consumption from the VDDA supply
Added footnote to Table 33 and Table 34: Typical current consumption
in Sleep mode, code running from Flash or RAM
Removed table “Switching output I/O current consumption” and table
“Peripheral current consumption”
Added note under Figure 17: Typical application with a 32.768 kHz
crystal
Updated Table 42: HSI oscillator characteristics
Updated Wakeup time from low-power mode and Table 37: Low-power
mode wakeup timings
Updated Table 45: Flash memory characteristics
Updated Table 50: Electrical sensitivities
Updated Table 51: I/O current injection susceptibility
Updated Table 52: I/O static characteristics
Updated Table 53: Output voltage characteristics
Updated Table 55: NRST pin characteristics
Updated Table 61: SPI characteristics
Updated Table 62: I2S characteristics
Corrected LQFP100 in Section 7.2.3: Selecting the product
temperature range
21-Sep-2012
3
Updated Table 61: SPI characteristics
DocID023353 Rev 6
129/132
131
Revision history
STM32F302xx/STM32F303xx
Table 81. Document revision history
Date
05-Dec-2012
130/132
Revision
Changes
4
Updated first page
Removed references to VDDSDx and VSSSD
Added reference to PM0214 in Section 1
Moved Temp. sensor calibartion values toTable 74 and VREF
calibration values to Table 27
Updated Table 2: STM32F302xx/STM32F303xx family device features
and peripheral counts
UpdatedSection 3.4: Embedded SRAM
Updated Section 3.2: Memory protection unit (MPU)
Updated Section 3.23: Universal serial bus (USB)
Modified Section 3.25: Touch sensing controller (TSC)
Updated heading of Table 6: USART features
Updated Table 11: STM32F302xx/STM32F303xx pin definitions
Added notes to PC13, PC14 and PC15 in Table 11:
STM32F302xx/STM32F303xx pin definitions
Updated Figure 11: Power supply scheme
Modified Table 19: Voltage characteristics
Modified Table 20: Current characteristics
Modified Table 22: General operating conditions
Modified Figure 13: Typical VBAT current consumption (LSE and RTC
ON/LSEDRV[1:0] = ’00’)
Updated Section 6.3.14: I/O port characteristics
Updated Table 28: Typical and maximum current consumption from
VDD supply at VDD = 3.6V and Table 29: Typical and maximum
current consumption from the VDDA supply
Updated Table 30: Typical and maximum VDD consumption in Stop
and Standby modes and Table 31: Typical and maximum VDDA
consumption in Stop and Standby modes
Updated Table 32: Typical and maximum current consumption from
VBAT supply
Added Figure 13: Typical VBAT current consumption (LSE and RTC
ON/LSEDRV[1:0] = ’00’)
Updated Table 33: Typical current consumption in Run mode, code
with data processing running from Flash and Table 34: Typical current
consumption in Sleep mode, code running from Flash or RAM
Added Table 36: Peripheral current consumption
Added Table 35: Switching output I/O current consumption
Updated Section 6.3.6: Wakeup time from low-power mode
Modified ESD absolute maximum ratings
Modified Table 53: Output voltage characteristics
Updated EMI characteristics
Updated Table 54: I/O AC characteristics
Updated Table 51: I/O current injection susceptibility
Updated Table 56: TIMx characteristics
Updated Section 7.2: Thermal characteristics
Added Table 67: Maximum ADC RAIN
Added Table 68: ADC accuracy - limited test conditions
Updated Table 64: ADC accuracy - limited test conditions 2)
Updated Table 70: DAC characteristics
Updated Table 72: Operational amplifier characteristics
Updated figures and tables in Section 7: Package characteristics
DocID023353 Rev 6
STM32F302xx/STM32F303xx
Revision history
Table 81. Document revision history
Date
08-Jan-2013
24-Jun-2013
Revision
Changes
5
Updated Vhys and Ilkg in Table 52: I/O static characteristics.
Updated VIL(NRST), VIH(NRST), and VNF(NRST) in Table 55: NRST pin
characteristics.
Updated Table 68: ADC accuracy - limited test conditions and
Table 64: ADC accuracy - limited test conditions 2).
6
Replaced Cortex-M4F with Cortex M4 with FPU
Updated Core, Memories and SPI bullet points in Features
Removed 8KB CCM SRAM from STM32F302xx devices, updated
Figure 1: STM32F302xB/STM32F302xC block diagram and Table 2:
STM32F302xx/STM32F303xx family device features and peripheral
counts
Updated Section 3.4: Embedded SRAM
Added VREF+ in Section 3.13: Digital-to-analog converter (DAC)
Removed DMA support for UART5 in Table 6: USART features
Added ‘reference clock detection’ bullet in Section 3.17: Real-time
clock (RTC) and backup registers
Added paragraph ‘The touch sensing controller is fully...’ in
Section 3.25: Touch sensing controller (TSC)
Updated Comparison of I2C analog and digital filters
Updated Section 3.9: General-purpose input/outputs (GPIOs)
Added ‘EVENTOUT’ in Table 11: STM32F302xx/STM32F303xx pin
definitions and added note to ‘VREF+’ pin
Updated ΣIVDD in Table 20: Current characteristics and Output driving
current
Updated Table 59: I2C timings specification (see I2C specification,
rev.03, June 2007) and Figure 25: I2C bus AC waveforms and
measurement circuit
Added VREF+ row to Table 66: ADC characteristics, replaced VDDA
with VREF+, updated tconv and added note to ‘conversion voltage
range
Added VREF+ row to Table 70: DAC characteristics and replaced
VDDA with VREF+
Added ‘PGA BW’ and ‘en’ in Table 72: Operational amplifier
characteristics
DocID023353 Rev 6
131/132
131
STM32F302xx/STM32F303xx
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE
CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
132/132
DocID023353 Rev 6