STMICROELECTRONICS STM32L151RCT6A

STM32L151xC STM32L152xC
Ultra-low-power 32-bit MCU ARM-based Cortex-M3,
256KB Flash, 32KB SRAM, 8KB EEPROM, LCD, USB, ADC, DAC
Datasheet − production data
Features
■
Ultra-low-power platform
– 1.65 V to 3.6 V power supply
– -40 °C to 85 °C/105 °C temperature range
– 0.35µA Standby mode (3 wakeup pins)
– 1.3µA Standby mode + RTC
– 0.65 µA Stop mode (16 wakeup lines)
– 1.5 µA Stop mode + RTC
– 11 µA Low-power Run mode
– 238 µA/MHz Run mode
– 10 nA ultra-low I/O leakage
– 8 µs wakeup time
UFBGA132 (7 × 7 mm)
UFBGA100 (7 x 7 mm)
Core: ARM 32-bit Cortex -M3 CPU
– From 32 kHz up to 32 MHz max
– 33.3 DMIPS peak (Dhrystone 2.1)
– Memory protection unit
■
Reset and supply management
– Low power, ultrasafe BOR (brownout reset)
with 5 selectable thresholds
– Ultra-low-power POR/PDR
– Programmable voltage detector (PVD)
■
Clock sources
– 1 to 24 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration
– High Speed Internal 16 MHz factorytrimmed RC (+/- 1%)
– Internal Low Power 37 kHz RC
– Internal multispeed low power 65 kHz to
4.2 MHz
– PLL for CPU clock and USB (48 MHz)
■
Pre-programmed bootloader
– USB and USART supported
■
Development support
– Serial wire debug supported
– JTAG and trace supported
February 2013
This is information on a product in full production.
WLCSP63
Memories
– 256 KB Flash with ECC
– 32 KB RAM
– 8 KB of true EEPROM with ECC
– 128 Byte Backup Register
■
LCD Driver for up to 8x40 segments
– Support contrast adjustment
– Support blinking mode
– Step-up converter on board
■
Rich analog peripherals (down to 1.8 V)
– 2x Operational Amplifier
– 12-bit ADC 1Msps up to 40 channels
– 12-bit DAC 2 channels with output buffers
– 2x Ultra-low-power-comparators
(window mode and wake up capability)
■
DMA controller 12x channels
9x peripherals communication interface
– 1xUSB 2.0 (internal 48 MHz PLL)
– 3xUSART
– 3xSPI 16 Mbits/s (2x SPI with I2S)
– 2xI2C (SMBus/PMBus)
■
■
11x timers: 1x 32-bit, 6x 16-bit with up to 4
IC/OC/PWM channels, 2x 16-bit basic timer, 2x
watchdog timers (independent and window)
■ Up to 34 capacitive sensing channels
■ CRC calculation unit, 96-bit unique ID
Table 1.
Reference
Up to 116 fast I/Os (102 I/Os 5V tolerant), all
mappable on 16 external interrupt vectors
WLCSP64
UFQFPN48
(7 x 7 mm)
■
™
■
■
LQFP144 (20 × 20 mm)
LQFP100 (14 × 14 mm)
LQFP64 (10 × 10 mm)
LQFP48 (7 x 7 mm)
STM32L151xC
STM32L152xC
Doc ID 022799 Rev 3
Device summary
Part number
STM32L151CC, STM32L151QC, STM32L151RC,
STM32L151VC STM32L151ZC, STM32L151UC
STM32L152QC, STM32L152RC, STM32L152VC,
STM32L152ZC, STM32L152CC
1/136
www.st.com
1
Contents
STM32L151xC STM32L152xC
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
2/136
2.1
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2
Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2
Shared peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3
Common system strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2
ARM® Cortex™-M3 core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.4
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5
Low power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 23
3.6
GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.8
DMA (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.9
LCD (liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10
ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.10.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.11
DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.12
Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.13
Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 27
3.14
System configuration controller and routing interface . . . . . . . . . . . . . . . 27
3.15
Touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
3.16
3.17
Contents
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.16.1
General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and
TIM11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.16.2
Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16.3
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16.4
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.16.5
Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.17.1
I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.17.2
Universal synchronous/asynchronous receiver transmitter (USART) . . 30
3.17.3
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.17.4
Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.17.5
Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.18
CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 30
3.19
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.2
Embedded reset and power control block characteristics . . . . . . . . . . . 59
6.3.3
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.4
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.5
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.6
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Doc ID 022799 Rev 3
3/136
Contents
7
STM32L151xC STM32L152xC
6.3.7
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.8
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.3.9
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.10
Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 86
6.3.11
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.12
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.13
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.14
TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.15
Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3.16
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.17
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.18
DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.19
Operational amplifier characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.20
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.21
Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.22
LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.1
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.2
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.2.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Ultralow power STM32L15xxC device features and peripheral counts . . . . . . . . . . . . . . . 11
Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 16
CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 16
Functionalities depending on the working mode (from Run/active down to
standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
STM32L15xxC pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 60
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Current consumption in Run mode, code with data processing running from Flash. . . . . . 63
Current consumption in Run mode, code with data processing running from RAM . . . . . . 64
Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Current consumption in Low power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Current consumption in Low power sleep mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 68
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 69
Typical and maximum timings in Low power modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
HSE 1-24 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 84
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Doc ID 022799 Rev 3
5/136
List of tables
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
6/136
STM32L151xC STM32L152xC
SCL frequency (fPCLK1= 32 MHz, VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
ADC clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
RAIN max for fADC = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Operational amplifier characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 116
LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 118
LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data. . . . . . . . . . 120
LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . 122
UFQFPN48 – ultra thin fine pitch quad flat pack no-lead 7 × 7 mm, 0.5 mm pitch
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array mechanical data. . . . 125
UFBGA100, 7 x 7 mm, 100-ball ultra thin, fine pitch ball grid array package mechanical
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
WLCSP64, 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . . . . 128
WLCSP63, 0.400 mm pitch wafer level chip size package mechanical data . . . . . . . . . . 130
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
STM32L15xxC ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Ultra-low-power STM32L15xxC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
STM32L15xZC LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
STM32L15xQC UFBGA132 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
STM32L15xVC UFBGA100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
STM32L15xVC LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
STM32L15xRC LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
STM32L15xRC WLCSP64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
STM32L15xUC WLCSP63 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
STM32L15xCC LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
STM32L15xCC UFQFPN48 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 100
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 106
Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 106
12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 115
Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 117
Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 119
Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 121
Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array package outline . . . . 125
UFBGA100, 7 x 7 mm, 100-ball ultra thin, fine pitch ball grid array package outline . . . . 126
Doc ID 022799 Rev 3
7/136
List of figures
Figure 48.
Figure 49.
Figure 50.
8/136
STM32L151xC STM32L152xC
WLCSP64, 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . . . . 127
WLCSP63, 0.400 mm pitch wafer level chip size package outline . . . . . . . . . . . . . . . . . . 129
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
1
Introduction
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the medium density plus STM32L151xC and STM32L152xC ultra-low-power ARM
Cortex™-based microcontrollers product line. Medium density plus STM32L15xxC devices
are microcontrollers with a Flash memory density of 256 Kbytes.
The medium density plus ultra-low-power STM32L15xxC family includes devices in 9
different package types: from 48 pins to 144 pins. Depending on the device chosen, different
sets of peripherals are included, the description below gives an overview of the complete
range of peripherals proposed in this family.
These features make the medium density plus ultra-low-power STM32L15xxC
microcontroller family suitable for a wide range of applications:
●
Medical and handheld equipment
●
Application control and user interface
●
PC peripherals, gaming, GPS and sport equipment
●
Alarm systems, wired and wireless sensors, Video intercom
●
Utility metering
This STM32L151xC and STM32L152xC datasheet should be read in conjunction with the
STM32L1xxxx reference manual (RM0038). The document "Getting started with
STM32L1xxx hardware development" AN3216 gives a hardware implementation overview.
Both documents are available from the STMicroelectronics website www.st.com.
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical
Reference Manual, available from the www.arm.com website at the following address:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337g.
Figure 1 shows the general block diagram of the device family.
Doc ID 022799 Rev 3
9/136
Description
2
STM32L151xC STM32L152xC
Description
The medium density plus ultra-low-power STM32L15xxC incorporates the connectivity
power of the universal serial bus (USB) with the high-performance ARM Cortex™-M3 32-bit
RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed
embedded memories (Flash memory up to 256 Kbytes and RAM up to 32 Kbytes) and an
extensive range of enhanced I/Os and peripherals connected to two APB buses.
The STM32L15xxC medium density plus devices offer two operational amplifiers, one 12bit ADC, two DACs, two ultra-low-power comparators, one general-purpose 32-bit timer, six
general-purpose 16-bit timers and two basic timers, which can be used as time bases.
Moreover, the medium density plus STM32L15xxC devices contain standard and advanced
communication interfaces: up to two I2Cs, three SPIs, two I2S, three USARTs and a USB.
The STM32L15xxC devices offer up to 34 capacitive sensing channels to simply add touch
sensing functionality to any application.
They also include a real-time clock and a set of backup registers that remain powered in
Standby mode.
Finally, the integrated LCD controller has a built-in LCD voltage generator that allows you to
drive up to 8 multiplexed LCDs with contrast independent of the supply voltage.
The medium density plus ultra-low-power STM32L15xxC operates from a 1.8 to 3.6 V power
supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply
without BOR option. It is available in the -40 to +85 °C temperature range, extended to
105°C in low power dissipation state. A comprehensive set of power-saving modes allows
the design of low-power applications.
10/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Description
2.1
Device overview
Table 2.
Ultralow power STM32L15xxC device features and peripheral counts
Peripheral
STM32L15xCC
STM32L151UC
STM32L15xVC STM32L15xQC STM32L15xZC
STM32L15xRC
Flash (Kbytes)
256
Data EEPROM (Kbytes)
8
RAM (Kbytes)
32
Timers
32 bit
1
Generalpurpose
6
Basic
2
3/(2)
SPI/(I2S)
I2C
Communica
tion interfaces USART
2
3
USB
GPIOs
1
37
51
83
Operation amplifiers
12-bit synchronized
ADC
Number of channels
1
14
1
21
1
25
1
4x18
1
1
4x32 or 8x28
4x44 or 8x40
2
16
23
Max. CPU frequency
Operating voltage
33
34
32 MHz
1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option
1.65 V to 3.6 V without BOR option
Ambient temperature: –40 to +85 °C
Junction temperature: –40 to + 105 °C
Operating temperatures
Packages
1
40
2
2
Comparators
Capacitive sensing
channels
115
2
12-bit DAC
Number of channels
LCD (1)
COM x SEG
109
LQFP48,
UFQFPN48
LQFP64,
WLCSP63,
WLCSP64
LQFP100,
UFBGA100
UFBGA132
LQFP144
1. STM32L152xx devices only.
Doc ID 022799 Rev 3
11/136
Description
2.2
STM32L151xC STM32L152xC
Ultra-low-power device continuum
The ultra-low-power STM32L15xxD, STM32L162xD, STM32L15xxC and STM32L162xC are
fully pin-to-pin and software compatible. Besides the full compatibility within the family, the
devices are part of STMicroelectronics microcontrollers ultra-low-power strategy which also
includes STM8L101xx and STM8L15xx devices. The STM8L and STM32L families allow a
continuum of performance, peripherals, system architecture and features.
They are all based on STMicroelectronics ultralow leakage process.
Note:
The ultra-low-power STM32L and general-purpose STM32Fxxxx families are pin-to-pin
compatible. The STM8L15xxx devices are pin-to-pin compatible with the STM8L101xx
devices. Please refer to the STM32F and STM8L documentation for more information on
these devices.
2.2.1
Performance
All families incorporate highly energy-efficient cores with both Harvard architecture and
pipelined execution: advanced STM8 core for STM8L families and ARM Cortex™-M3 core
for STM32L family. In addition specific care for the design architecture has been taken to
optimize the mA/DMIPS and mA/MHz ratios.
This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.
2.2.2
Shared peripherals
STM8L15xxx, STM32L15xxx and STM32L162xx share identical peripherals which ensure a
very easy migration from one family to another:
2.2.3
●
Analog peripherals: ADC, DAC and comparators
●
Digital peripherals: RTC and some communication interfaces
Common system strategy
To offer flexibility and optimize performance, the STM8L15xxx, STM32L15xxx and
STM32L162xx families use a common architecture:
2.2.4
●
Same power supply range from 1.65 V to 3.6 V
●
Architecture optimized to reach ultralow consumption both in low power modes and
Run mode
●
Fast startup strategy from low power modes
●
Flexible system clock
●
Ultrasafe reset: same reset strategy including power-on reset, power-down reset,
brownout reset and programmable voltage detector
Features
ST ultra-low-power continuum also lies in feature compatibility:
12/136
●
More than 10 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm
●
Memory density ranging from 4 to 384 Kbytes
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Functional overview
3
Functional overview
Figure 1.
Ultra-low-power STM32L15xxC block diagram
TRACECK, TRACED0, TRACED1, TRACED2, TRACED4
J TA G & S W
m ax
: 32 MHz
D bu s
MP U
S ys tem
NV IC
G P D MA 7 c h an n els
E E²
obl
Interfac e
f
@ VDD 33
P O WE R
OR E
VO L T . R E G .
Ibus
M3 C P U
B us Matrix 5 M/5S
NJTRST
JTDI
J T CK /S WC LK
J T MS /S WDAT
J TDO
as A F
V DDC
T race C ontroller E T M
pbus
EE P R O M 64 bit
Supply monitoring
P DR
@ VDD 33
X TAL O S C
1-24 MHz
G P D MA2 5 c h an n els
AH B P C L K
APB PC L K
HC L K
FC L K
B OR
Cap. sens
C O MPx_ INx
G P C om p
PU / PD
P B [15:0]
G P IO P O R T B
P C [15:0]
G P IO P O R T C
P D [15:0]
G P IO P O R T D
P E [15:0]
G P IO P O R T E
P H[2:0]
G P IO P O R T H
G P IO P O R T F
P G [15:0]
G P IO P O R T G
115 A F
E X T .IT
WKU P
MOS I,MIS O ,
S CK ,NS S as A F
S P I1
12bit AD C
US B S RA M 512 B
T IME R 6
T IME R 7
T IMER2
4 C hannels
T IME R 3
4 C hannels
T IME R 4
4 C hannels
1 C hannel
T IME R 10
1 C hannel
T IME R 11
US A R T 2
US A R T 3
R X ,T X , C T S , R T S ,
S martC ard as A F
Sit)P I3/I2S
2x (8x 16b
MO S I,MIS O, S CK ,NS S ,WS ,C K
MCK ,S D as A F
I2C 1
S C L ,S D A
as A F
I2C 2
S C L ,S DA ,S MB us ,P MB us
as A F
US B 2. 0 F S dev ic e
Cap. sensing
L CD 8x 40
O P A MP 1
T IME R 9
4 C hannels
R X ,T X , C T S , R T S ,
S m artC ard as A F
MO S I,MIS O, S CK ,NS S ,WS ,C K
MCK ,S D as A F
APB1: f
APB2: f
General purpose
timers
V L C D =2.5V to 3.6V
Sit)P I2/I2S
2x (8x 16b
WinWA T CH D OG
IF
MAX
Temp s ens or
2 C hann els
L CD B oos ter
AHB/APB1
= 32 MHz
V S S R E F _AD C
@ VDD 33
US AR T 1
*
T A MPER
B ac k up i nterfac e
AHB/APB2
@VDDA
O S C 32_ IN
O S C 32_ OUT
RTC_OUT
R T C V 2 B ack up
reg 12 8
AW U
MAX
40 A F
V D DR E F _AD C *
X T A L 32k Hz
L SAI
@RC
VDD
T IME R 5 (32 bits )
P F [15 :0]
R X ,T X , C T S , R T S ,
S martC ard as A F
@VDDA
G P IO P O R T A
= 32 MHz
P A [15:0]
S tandb y
interface
R C MS I
Int
O S C _IN
O S C _OUT
WD G 32K
VL C D
P VD
PLL &
Clock
Mgmt
RC HS I
AHB :F m ax =32 MHz
VDD A /
VS S A
NRST
P DR
@VDDA
Supply
monitoring
B O R / B g ap
VS S
Vref
256 KB P R OG RA M
8KB DA T A
8KB B OO T
S RA M 32K
V D D 33=1.65V to 3.6V
US B _DP
US B _DM
Px
S E Gx
C O Mx
@VDDA
O P A MP 2
12bit DAC 1
DAC_OUT1 as AF
12 bit DAC 2
DAC_OUT2 as AF
IF
IIFF
VINP
VINM
VOUT
VINP
VINM
VOUT
Doc ID 022799 Rev 3
MS19482V4
13/136
Functional overview
STM32L151xC STM32L152xC
1. Legend:
AF: alternate function
ADC: analog-to-digital converter
BOR: brown out reset
DMA: direct memory access
DAC: digital-to-analog converter
I²C: inter-integrated circuit multimaster interface
3.1
Low power modes
The ultra-low-power STM32L15xxC supports dynamic voltage scaling to optimize its power
consumption in run mode. The voltage from the internal low-drop regulator that supplies the
logic can be adjusted according to the system’s maximum operating frequency and the
external voltage supply.
There are three power consumption ranges:
●
Range 1 (VDD range limited to 2.0V-3.6V), with the CPU running at up to 32 MHz
●
Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz
●
Range 3 (full VDD range), with a maximum CPU frequency limited to 4 MHz (generated
only with the multispeed internal RC oscillator clock source)
Seven low power modes are provided to achieve the best compromise between low power
consumption, short startup time and available wakeup sources:
●
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at
16 MHz is about 1 mA with all peripherals off.
●
Low power run mode
This mode is achieved with the multispeed internal (MSI) RC oscillator set to the
minimum clock (131 kHz), execution from SRAM or Flash memory, and internal
regulator in low power mode to minimize the regulator's operating current. In Low
power run mode, the clock frequency and the number of enabled peripherals are both
limited.
●
Low power sleep mode
This mode is achieved by entering Sleep mode with the internal voltage regulator in
Low power mode to minimize the regulator’s operating current. In Low power sleep
mode, both the clock frequency and the number of enabled peripherals are limited; a
typical example would be to have a timer running at 32 kHz.
When wakeup is triggered by an event or an interrupt, the system reverts to the run
mode with the regulator on.
●
Stop mode with RTC
Stop mode achieves the lowest power consumption while retaining the RAM and
register contents and real time clock. All clocks in the VCORE domain are stopped, the
PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still
running. The voltage regulator is in the low power mode.
The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI
line source can be one of the 16 external lines. It can be the PVD output, the
Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can be
the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp event
or the RTC wakeup.
14/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
●
Functional overview
Stop mode without RTC
Stop mode achieves the lowest power consumption while retaining the RAM and
register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and
HSE crystal oscillators are disabled. The voltage regulator is in the low power mode.
The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI
line source can be one of the 16 external lines. It can be the PVD output, the
Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can
also be wakened by the USB wakeup.
●
Standby mode with RTC
Standby mode is used to achieve the lowest power consumption and real time clock.
The internal voltage regulator is switched off so that the entire VCORE domain is
powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched
off. The LSE or LSI is still running. After entering Standby mode, the RAM and register
contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG,
RTC, LSI, LSE Crystal 32K osc, RCC_CSR).
The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG
reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B),
RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.
●
Standby mode without RTC
Standby mode is used to achieve the lowest power consumption. The internal voltage
regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI
RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After
entering Standby mode, the RAM and register contents are lost except for registers in
the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc,
RCC_CSR).
The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising
edge on one of the three WKUP pin occurs.
Note:
The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by
entering Stop or Standby mode.
Doc ID 022799 Rev 3
15/136
Functional overview
Table 3.
STM32L151xC STM32L152xC
Functionalities depending on the operating power supply range
Functionalities depending on the operating power supply range
Operating power
supply range
DAC and ADC
operation
USB
Dynamic
voltage scaling
range
I/O operation
VDD = 1.65 to 1.8 V
Not functional
Not functional
Range 2 or
range 3
Degraded speed
performance
VDD = 1.8 to 2.0 V
Conversion time
Not functional
up to 500 Ksps
Range 2 or
range 3
Degraded speed
performance
VDD = 2.0 to 2.4 V
Conversion time
up to
500 Ksps
Functional(1)
Range 1, range 2
or range 3
Full speed operation
VDD = 2.4 to 3.6 V
Conversion time
up to
1 Msps
Functional(1)
Range 1, range 2
or range 3
Full speed operation
1. To be USB compliant from the IO voltage standpoint, the minimum VDD is 3.0 V.
Table 4.
16/136
CPU frequency range depending on dynamic voltage scaling
CPU frequency range
Dynamic voltage scaling range
16 MHz to 32 MHz (1ws)
32 kHz to 16 MHz (0ws)
Range 1
8 MHz to 16 MHz (1ws)
32 kHz to 8 MHz (0ws)
Range 2
2.1MHz to 4.2 MHz (1ws)
32 kHz to 2.1 MHz (0ws)
Range 3
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Table 5.
Functional overview
Functionalities depending on the working mode (from Run/active down to
standby)
Standby
Run/Active
Sleep
CPU
Y
--
Y
--
--
--
Flash
Y
Y
Y
N
--
--
RAM
Y
Y
Y
Y
Y
--
Backup Registers
Y
Y
Y
Y
Y
Y
EEPROM
Y
--
Y
Y
Y
--
Brown-out rest
(BOR)
Y
Y
Y
Y
Y
DMA
Y
Y
Y
Y
--
Programable
Voltage Detector
(PVD)
Y
Y
Y
Y
Y
Y
Y
Power On Reset
(POR)
Y
Y
Y
Y
Y
Y
Y
Power Down Rest
(PDR)
Y
Y
Y
Y
Y
Y
High Speed
Internal (HSI)
Y
Y
--
--
--
--
High Speed
External (HSE)
Y
Y
--
--
--
--
Low Speed Internal
(LSI)
Y
Y
Y
Y
Y
--
Low Speed
External (LSE)
Y
Y
Y
Y
Y
--
Multi-Speed
Internal (MSI)
Y
Y
Y
Y
--
--
Inter-Connect
Controler
Y
Y
Y
Y
--
--
RTC
Y
Y
Y
Y
Y
Y
Y
RTC Tamper
Y
Y
Y
Y
Y
Y
Y
Y
Auto WakeUp
(AWU)
Y
Y
Y
Y
Y
Y
Y
Y
LCD
Y
Y
Y
Y
Y
USB
Y
Y
--
--
--
Y
--
Y
(1)
--
Ips
Lowpower
Sleep
Stop
Lowpower
Run
USART
Y
Y
Y
Y
SPI
Y
Y
Y
Y
I2C
Y
Y
Y
Y
Doc ID 022799 Rev 3
Wakeup
capability
Y
Wakeup
capability
Y
--
--
-(1)
--
17/136
Functional overview
Table 5.
STM32L151xC STM32L152xC
Functionalities depending on the working mode (from Run/active down to
standby) (continued)
Standby
Run/Active
Sleep
ADC
Y
Y
--
--
--
--
DAC
Y
Y
Y
Y
Y
--
Tempsensor
Y
Y
Y
Y
Y
--
OP amp
Y
Y
Y
Y
Y
--
Comparators
Y
Y
Y
Y
Y
16-bit and 32-bit
Timers
Y
Y
Y
Y
--
IWDG
Y
Y
Y
Y
Y
WWDG
Y
Y
Y
Y
--
--
Touch sensing
Y
Y
--
--
--
--
Systic Timer
Y
Y
Y
Y
GPIOs
Y
Y
Y
Y
0 µs
0.36 µs
3 µs
32 µs
Ips
Wakeup time to
Run mode
Consumption
VDD=1.8V to 3.6V
(Typ)
Down to
238 µA/MHz
(from Flash)
Down to
55 µA/MHz
(from Flash)
Down to
11 µA
Lowpower
Sleep
Stop
Lowpower
Run
Down to
4.4 µA
Wakeup
capability
Y
Wakeup
capability
---
Y
Y
Y
-Y
Y
3Pins
< 8 µs
50 µs
0.65 µA (No
RTC) VDD=1.8V
0.35 µA (No
RTC) VDD=1.8V
1.5 µA (with
RTC) VDD=1.8V
1 µA (with RTC)
VDD=1.8V
0.65µA (No
RTC) VDD=3.0V
0.35 µA (No
RTC) VDD=3.0V
1.7 µA (with
RTC) VDD=3.0V
1.3 µA (with
RTC) VDD=3.0V
1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before
entering run mode.
3.2
ARM® Cortex™-M3 core with MPU
The ARM Cortex™-M3 processor is the industry leading processor for embedded systems.
It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The memory protection unit (MPU) improves system reliability by defining the memory
attributes (such as read/write access permissions) for different memory regions. It provides
up to eight different regions and an optional predefined background region.
18/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Functional overview
Owing to its embedded ARM core, the STM32L15xxC is compatible with all ARM tools and
software.
Nested vectored interrupt controller (NVIC)
The ultra-low-power STM32L15xxC embeds a nested vectored interrupt controller able to
handle up to 53 maskable interrupt channels (not including the 16 interrupt lines of
Cortex™-M3) and 16 priority levels.
●
Closely coupled NVIC gives low-latency interrupt processing
●
Interrupt entry vector table address passed directly to the core
●
Closely coupled NVIC core interface
●
Allows early processing of interrupts
●
Processing of late arriving, higher-priority interrupts
●
Support for tail-chaining
●
Processor state automatically saved
●
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.3
Reset and supply management
3.3.1
Power supply schemes
3.3.2
●
VDD = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided
externally through VDD pins.
●
VSSA, VDDA = 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs
and PLL (minimum voltage to be applied to VDDA is 1.8 V when the ADC is used). VDDA
and VSSA must be connected to VDD and VSS, respectively.
Power supply supervisor
The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset
(PDR) that can be coupled with a brownout reset (BOR) circuitry.
The device exists in two versions:
●
The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
●
The other version without BOR operates between 1.65 V and 3.6 V.
After the VDD threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or
not at power-on), the option byte loading process starts, either to confirm or modify default
thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes
1.65 V (whatever the version, BOR active or not, at power-on).
When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever
the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the
power ramp-up should guarantee that 1.65 V is reached on VDD at least 1 ms after it exits
the POR area.
Doc ID 022799 Rev 3
19/136
Functional overview
STM32L151xC STM32L152xC
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To
reduce the power consumption in Stop mode, it is possible to automatically switch off the
internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when
VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external
reset circuit.
Note:
The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive
at power-up.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An
interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when
VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
3.3.3
Voltage regulator
The regulator has three operation modes: main (MR), low power (LPR) and power down.
3.3.4
●
MR is used in Run mode (nominal regulation)
●
LPR is used in the Low power run, Low power sleep and Stop modes
●
Power down is used in Standby mode. The regulator output is high impedance, the
kernel circuitry is powered down, inducing zero consumption but the contents of the
registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC,
LSI, LSE crystal 32K osc, RCC_CSR).
Boot modes
At startup, boot pins are used to select one of three boot options:
●
Boot from Flash memory
●
Boot from System memory
●
Boot from embedded RAM
The boot loader is located in System memory. It is used to reprogram the Flash memory by
using USART1, USART2 or USB. See STM32™ microcontroller system memory boot mode
AN2606 for details.
20/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
3.4
Functional overview
Clock management
The clock controller distributes the clocks coming from different oscillators to the core and
the peripherals. It also manages clock gating for low power modes and ensures clock
robustness. It features:
●
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler.
●
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
●
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
●
System clock source: three different clock sources can be used to drive the master
clock SYSCLK:
●
–
1-24 MHz high-speed external crystal (HSE), that can supply a PLL
–
16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can
supply a PLL
–
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7
frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz).
When a 32.768 kHz clock source is available in the system (LSE), the MSI
frequency can be trimmed by software down to a ±0.5% accuracy.
Auxiliary clock source: two ultra-low-power clock sources that can be used to drive
the LCD controller and the real-time clock:
–
32.768 kHz low-speed external crystal (LSE)
–
37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock can be measured using the high-speed internal RC oscillator for
greater precision.
●
RTC and LCD clock sources: the LSI, LSE or HSE sources can be chosen to clock
the RTC and the LCD, whatever the system clock.
●
USB clock source: the embedded PLL has a dedicated 48 MHz clock output to supply
the USB interface.
●
Startup clock: after reset, the microcontroller restarts by default with an internal 2 MHz
clock (MSI). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.
●
Clock security system (CSS): this feature can be enabled by software. If a HSE clock
failure occurs, the master clock is automatically switched to HSI and a software
interrupt is generated if enabled.
●
Clock-out capability (MCO: microcontroller clock output): it outputs one of the
internal clocks for external use by the application.
Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and
APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See
Figure 2 for details on the clock tree.
Doc ID 022799 Rev 3
21/136
Functional overview
STM32L151xC STM32L152xC
Figure 2.
Clock tree
Standby supplied voltage domain
enable
Watchdog
LSI RC
Watchdog
LS
LSI tempo
RTC enable
RTC
LSE OSC
LSE tempo
LS
LS LS
LS
@VDDCORE
1 MHz
LCD enable
@V33
MSI RC
level shifters
@VDDCORE
CK_ADC
ADC enable
ck_lsi
ck_lse
CK_LCD
MCO
/ 1,2,4,8,16
not deepsleep
/ 2,4,8,16
CK_PWR
@V33
not deepsleep
HSI RC
CK_FCLK
not (sleep or
deepsleep
level shifters
@VDDCORE
System
clock
@V33
HSE
OSC
ck_msi
ck_hsi
ck_hse
level shifters
@VDDCORE
ck_pllin
LS
@V33
1 MHz clock
detector
not (sleep or
deepsleep)
AHB
prescaler
/ 1,2,..512
@V33 ck_pll
PLL
X 3,4,6,8,12
16,24,32,48
/8
CK_CPU
CK_TIMSYS
APB1
APB2
prescaler prescaler
/ 1,2,4,8,16 / 1,2,4,8,16
/ 2, 3, 4
LS
HSE present or not
level shifters
@VDDCORE
Clock
source
control
usben and (not deepsleep)
CK_USB48
ck_usb = Vco / 2 (Vco must be at 96 MHz)
CK_TIMTGO
CK_APB1
timer9en and (not deepsleep)
apb1 periphen and (not deepsleep)
if (APB1 presc = 1)x1
x2
else
apb2 periphen and (not deepsleep)
CK_APB2
MS18583V1
1. For the USB function to be available, both HSE and PLL must be enabled, with the CPU running at either
24 MHz or 32 MHz.
22/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
3.5
Functional overview
Low power real-time clock and backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the sub-second, second, minute, hour (12/24 hour), week day, date, month, year, in BCD
(binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the
month are made automatically. The RTC provides two programmable alarms and
programmable periodic interrupts with wakeup from Stop and Standby modes.
The programmable wakeup time ranges from 120 µs to 36 hours.
The RTC can be calibrated with an external 512 Hz output, and a digital compensation
circuit helps reduce drift due to crystal deviation.
The RTC can also be automatically corrected with a 50/60Hz stable powerline.
The RTC calendar can be updated on the fly down to sub second precision, which enables
network system synchronisation.
A time stamp can record an external event occurrence, and generates an interrupt.
There are thirty-two 32-bit backup registers provided to store 128 bytes of user application
data. They are cleared in case of tamper detection.
Three pins can be used to detect tamper events. A change on one of these pins can reset
backup register and generate an interrupt. To prevent false tamper event, like ESD event,
these three tamper inputs can be digitally filtered.
3.6
GPIOs (general-purpose inputs/outputs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions, and can be individually
remapped using dedicated AFIO registers. All GPIOs are high current capable. The
alternate function configuration of I/Os can be locked if needed following a specific
sequence in order to avoid spurious writing to the I/O registers. The I/O controller is
connected to the AHB with a toggling speed of up to 16 MHz.
External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 24 edge detector lines used to generate
interrupt/event requests. Each line can be individually configured to select the trigger event
(rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 115 GPIOs can be connected
to the 16 external interrupt lines. The 8 other lines are connected to RTC, PVD, USB,
comparator events or capacitive sensing acquisition.
Doc ID 022799 Rev 3
23/136
Functional overview
3.7
STM32L151xC STM32L152xC
Memories
The STM32L15xxC devices have the following features:
●
32 Kbytes of embedded RAM accessed (read/write) at CPU clock speed with 0 wait
states. With the enhanced bus matrix, operating the RAM does not lead to any
performance penalty during accesses to the system bus (AHB and APB buses).
●
The non-volatile memory is divided into three arrays:
–
256 Kbytes of embedded Flash program memory
–
8 Kbytes of data EEPROM
–
Options bytes
The options bytes are used to write-protect or read-out protect the memory (with 4 KB
granularity) and/or readout-protect the whole memory with the following options:
–
Level 0: no readout protection
–
Level 1: memory readout protection, the Flash memory cannot be read from or
written to if either debug features are connected or boot in RAM is selected
–
Level 2: chip readout protection, debug features (Cortex-M3 JTAG and serial wire)
and boot in RAM selection disabled (JTAG fuse)
The whole non-volatile memory embeds the error correction code (ECC) feature.
Note:
Read-out protection with 4KB granularity is available only for packages of 100 pins or below.
3.8
DMA (direct memory access)
The flexible 12-channel, general-purpose DMA is able to manage memory-to-memory,
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports
circular buffer management, avoiding the generation of interrupts when the controller
reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with software trigger
support for each channel. Configuration is done by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose timers,
DAC and ADC.
24/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
3.9
Functional overview
LCD (liquid crystal display)
The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320
pixels.
3.10
●
Internal step-up converter to guarantee functionality and contrast control irrespective of
VDD. This converter can be deactivated, in which case the VLCD pin is used to provide
the voltage to the LCD
●
Supports static, 1/2, 1/3, 1/4 and 1/8 duty
●
Supports static, 1/2, 1/3 and 1/4 bias
●
Phase inversion to reduce power consumption and EMI
●
Up to 8 pixels can be programmed to blink
●
Unneeded segments and common pins can be used as general I/O pins
●
LCD RAM can be updated at any time owing to a double-buffer
●
The LCD controller can operate in Stop mode
ADC (analog-to-digital converter)
A 12-bit analog-to-digital converters is embedded into STM32L15xxC devices with up to 40
external channels, performing conversions in single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs with up to 29
external channel in a group.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all scanned channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
The events generated by the general-purpose timers (TIMx) can be internally connected to
the ADC start triggers, to allow the application to synchronize A/D conversions and timers.
An injection mode allows high priority conversions to be done by interrupting a scan mode
which runs in as a background task.
The ADC includes a specific low power mode. The converter is able to operate at maximum
speed even if the CPU is operating at a very low frequency and has an auto-shutdown
function. The ADC’s runtime and analog front-end current consumption are thus minimized
whatever the MCU operating mode.
3.10.1
Temperature sensor
The temperature sensor (TSENSE) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy
of the temperature measurement. As the offset of the temperature sensor varies from chip
to chip due to process variation, the uncalibrated internal temperature sensor is suitable for
applications that detect temperature changes only.
Doc ID 022799 Rev 3
25/136
Functional overview
STM32L151xC STM32L152xC
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
Table 6.
Temperature sensor calibration values
Calibration value name
3.10.2
Description
Memory address
TSENSE_CAL1
TS ADC raw data acquired at
temperature of 30 °C,
VDDA= 3 V
0x1FF8 00FA - 0x1FF8 00FB
TSENSE_CAL2
TS ADC raw data acquired at
temperature of 110 °C
VDDA= 3 V
0x1FF8 00FE - 0x1FF8 00FF
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. It
enables accurate monitoring of the VDD value (when no external voltage, VREF+, is
available for ADC). The precise voltage of VREFINT is individually measured for each part by
ST during production test and stored in the system memory area. It is accessible in readonly mode.
Table 7.
Internal voltage reference measured values
Calibration value name
VREFINT_CAL
3.11
Description
Raw data acquired at
temperature of 30 °C
VDDA= 3 V
Memory address
0x1FF8 00F8 - 0x1FF8 00F9
DAC (digital-to-analog converter)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs. The chosen design structure is composed of integrated
resistor strings and an amplifier in non-inverting configuration.
This dual digital Interface supports the following features:
●
●
●
●
●
●
●
●
●
●
26/136
Two DAC converters: one for each output channel
Up to 10-bit output
Left or right data alignment in 12-bit mode
Synchronized update capability
Noise-wave generation
Triangular-wave generation
Dual DAC channels, independent or simultaneous conversions
DMA capability for each channel (including the underrun interrupt)
External triggers for conversion
Input reference voltage VREF+
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Functional overview
Eight DAC trigger inputs are used in the STM32L15xxC. The DAC channels are triggered
through the timer update outputs that are also connected to different DMA channels.
3.12
Operational amplifier
The STM32L15xxC embeds two operational amplifiers with external or internal follower
routing capability (or even amplifier and filter capability with external components). When
one operational amplifier is selected, one external ADC channel is used to enable output
measurement.
The operational amplifiers feature:
●
●
●
●
3.13
Low input bias current
Low offset voltage
Low power mode
Rail-to-rail input
Ultra-low-power comparators and reference voltage
The STM32L15xxC embeds two comparators sharing the same current bias and reference
voltage. The reference voltage can be internal or external (coming from an I/O).
●
●
One comparator with fixed threshold
One comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of
the following:
–
DAC output
–
External I/O
–
Internal reference voltage (VREFINT) or a submultiple (1/4, 1/2, 3/4)
Both comparators can wake up from Stop mode, and be combined into a window
comparator.
The internal reference voltage is available externally via a low power / low current output
buffer (driving current capability of 1 µA typical).
3.14
System configuration controller and routing interface
The system configuration controller provides the capability to remap some alternate
functions on different I/O ports.
The highly flexible routing interface allows the application firmware to control the routing of
different I/Os to the TIM2, TIM3 and TIM4 timer input captures. It also controls the routing of
internal analog signals to ADC1, COMP1 and COMP2 and the internal reference voltage
VREFINT.
3.15
Touch sensing
The STM32L15xxC devices provide a simple solution for adding capacitive sensing
functionality to any application. These devices offer up to 34 capacitive sensing channels
distributed over 11 analog I/O groups. Both software and timer capacitive sensing
acquisition modes are supported.
Doc ID 022799 Rev 3
27/136
Functional overview
STM32L151xC STM32L152xC
Capacitive sensing technology is able to detect the presence of a finger near a sensor which
is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation
introduced by the finger (or any conductive object) is measured using a proven
implementation based on a surface charge transfer acquisition principle. It consists of
charging the sensor capacitance and then transferring a part of the accumulated charges
into a sampling capacitor until the voltage across this capacitor has reached a specific
threshold. The capacitive sensing acquisition only requires few external components to
operate.
Reliable touch sensing functionality can be quickly and easily implemented using the free
STM32L1xx STMTouch touch sensing firmware library.
3.16
Timers and watchdogs
The ultra-low-power STM32L15xxC devices include seven general-purpose timers, two
basic timers, and two watchdog timers.
Table 8 compares the features of the general-purpose and basic timers.
Table 8.
Timer feature comparison
Timer
Counter
resolution
Counter type
Prescaler factor
TIM2,
TIM3,
TIM4
16-bit
Up, down,
up/down
Any integer between
1 and 65536
Yes
4
No
TIM5
32-bit
Up, down,
up/down
Any integer between
1 and 65536
Yes
4
No
TIM9
16-bit
Up, down,
up/down
Any integer between
1 and 65536
No
2
No
TIM10,
TIM11
16-bit
Up
Any integer between
1 and 65536
No
1
No
TIM6,
TIM7
16-bit
Up
Any integer between
1 and 65536
Yes
0
No
3.16.1
DMA request Capture/compare Complementary
generation
channels
outputs
General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and
TIM11)
There are seven synchronizable general-purpose timers embedded in the STM32L15xxC
devices (see Table 8 for differences).
TIM2, TIM3, TIM4, TIM5
TIM2, TIM3, TIM4 are based on 16-bit auto-reload up/down counter. TIM5 is based on a 32bit auto-reload up/down counter. They include a 16-bit prescaler. They feature four
independent channels each for input capture/output compare, PWM or one-pulse mode
output. This gives up to 16 input captures/output compares/PWMs on the largest packages.
TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM10,
TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or
event chaining. Their counter can be frozen in debug mode. Any of the general-purpose
timers can be used to generate PWM outputs.
28/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Functional overview
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation.
These timers are capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
TIM10, TIM11 and TIM9
TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit
auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one
independent channel, whereas TIM9 has two independent channels for input capture/output
compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3,
TIM4, TIM5 full-featured general-purpose timers.
They can also be used as simple time bases and be clocked by the LSE clock source
(32.768 kHz) to provide time bases independent from the main CPU clock.
3.16.2
Basic timers (TIM6 and TIM7)
These timers are mainly used for DAC trigger generation. They can also be used as generic
16-bit time bases.
3.16.3
SysTick timer
This timer is dedicated to the OS, but could also be used as a standard downcounter. It is
based on a 24-bit downcounter with autoreload capability and a programmable clock
source. It features a maskable system interrupt generation when the counter reaches 0.
3.16.4
Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 37 kHz internal RC and, as it operates independently of the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes. The counter
can be frozen in debug mode.
3.16.5
Window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the
main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.17
Communication interfaces
3.17.1
I²C bus
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support
standard and fast modes.
They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master
mode. A hardware CRC generation/verification is embedded.
They can be served by DMA and they support SM Bus 2.0/PM Bus.
Doc ID 022799 Rev 3
29/136
Functional overview
3.17.2
STM32L151xC STM32L152xC
Universal synchronous/asynchronous receiver transmitter (USART)
The three USART interfaces are able to communicate at speeds of up to 4 Mbit/s. They
support IrDA SIR ENDEC, are ISO 7816 compliant and have LIN Master/Slave capability.
The three USARTs provide hardware management of the CTS and RTS signals.
All USART interfaces can be served by the DMA controller.
3.17.3
Serial peripheral interface (SPI)
Up to three SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in
full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes.
The SPIs can be served by the DMA controller.
3.17.4
Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can
operate in master or slave mode, and can be configured to operate with a 16-/32-bit
resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192
kHz are supported. When either or both of the I2S interfaces is/are configured in master
mode, the master clock can be output to the external DAC/CODEC at 256 times the
sampling frequency.
The I2Ss can be served by the DMA controller.
3.17.5
Universal serial bus (USB)
The STM32L15xxC embeds a USB device peripheral compatible with the USB full-speed
12 Mbit/s. The USB interface implements a full-speed (12 Mbit/s) function interface. It has
software-configurable endpoint setting and supports suspend/resume. The dedicated
48 MHz clock is generated from the internal main PLL (the clock source must use a HSE
crystal oscillator).
3.18
CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
3.19
Development support
Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
30/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Functional overview
The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a
specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.
The JTAG port can be permanently disabled with a JTAG fuse.
Embedded Trace Macrocell™
The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and
data flow inside the CPU core by streaming compressed data at a very high rate from the
STM32L15xxC through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer running debugger software. TPA
hardware is commercially available from common development tool vendors. It operates
with third party debugger software tools.
Doc ID 022799 Rev 3
31/136
Pin descriptions
STM32L151xC STM32L152xC
Pin descriptions
Figure 3.
STM32L15xZC LQFP144 pinout
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
VDD_3
VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PG15
VDD_11
VSS_11
PG14
PG13
PG12
PG11
PG10
PG9
PD7
PD6
VDD_10
VSS_10
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
LQFP144
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
VDD_2
VSS_2
PH2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
VDD_9
VSS_9
PG8
PG7
PG6
PG5
PG4
PG3
PG2
PD15
PD14
VDD_8
VSS_8
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
VSS_6
VDD_6
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS_7
VDD_7
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS_1
VDD_1
PA3
VSS_4
VDD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PF11
PF12
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
PE2
PE3
PE4
PE5
PE6-WKUP3
VLCD
PC13-WKUP2
PC14-OSC32_IN
PC15-OSC32_OUT
PF0
PF1
PF2
PF3
PF4
PF5
VSS_5
VDD_5
PF6
PF7
PF8
PF9
PF10
OSC_IN
OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VREFVREF+
VDDA
PA0 -WKUP1
PA1
PA2
MS18581V2
32/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Figure 4.
Pin descriptions
STM32L15xQC UFBGA132 ballout
A
PE3
PE1
PB8
BOOT0
PD7
PD5
B
PE4
PE2
PB9
PB7
PB6
PE5
PE0
VDD_3
PB4
PB3
PA15
PA14
PA13
PA12
PD6
PD4
PD3
PD1
PC12
PC10
PA11
PB5
PG14
PG13
PD2
PD0
PC11
PH2
PA10
PF1
PF0
PG12
PG10
PG9
PA9
PA8
PC9
PG5
PC8
PC7
PC6
C
PC13WKUP2
D
PC14PE6OSC32 WKUP3
_IN
VSS_3
PF2
E
PC15OSC32
_OUT
VSS_6
PF3
PF4
PF5
VSS_9
VSS_10
PG3
PG4
VSS_2
VSS_1
VDD_9
VDD_10
PG1
PG2
VDD_2
VDD_1
PG0
PD15
PD14
PD13
F
VLCD
PH0
VSS_5
OSC_IN
PH1
OSC_
OUT
VDD_5
PF6
PF7
H
PC0
NRST
VDD_6
PF8
J
VSSA
PC1
PC2
PA4
PA7
PF9
PF12
PF14
PF15
PD12
PD11
PD10
K
NC
PC3
PA2
PA5
PC4
PF11
PF13
PD9
PD8
PB15
PB14
PB13
L
VREF+
PA0WKUP1
PA3
PA6
PC5
PB2
PE8
PE10
PE12
PB10
PB11
PB12
M
VDDA
PA1
PB0
PB1
PE7
PE9
PE11
PE13
PE14
PE15
G
OPAMP1
OPAMP2
_VINM
_VINM
MS31073V1
1. This figure shows the package top view.
Doc ID 022799 Rev 3
33/136
Pin descriptions
Figure 5.
STM32L151xC STM32L152xC
STM32L15xVC UFBGA100 ballout
2
1
3
4
5
6
7
8
9
10
11
12
A
PE3
PE1
PB8
BOOT0
PD7
PD5
PB4
PB3
PA15
PA14
PA13
PA12
B
PE4
PE2
PB9
PB7
PB6
PD6
PD4
PD3
PD1
PC12
PC10
PA11
C
PC13
WKUP2
PE5
PE0
PD2
PD0
PC11
PH2
PA10
PE6
PC14
VSS_3
OSC32_IN WUKP3
PA9
PA8
PC9
VSS_4
PC8
PC7
PC6
VSS_2
VSS_1
VDD_2
VDD_1
D
E
PC15
VLCD
OSC32_OUT
VDD_3
PB5
F
PH0
OSC_IN
G
PH1
VDD_5
OSC_OUT
H
PC0
NRST
VDD_4
PD15
PD14
PD13
J
VSSA
PC1
PC2
PD12
PD11
PD10
K
VREF-
PC3
PA2
PA5
PC4
L
VREF+
PA0
WKUP1
PA3
PA6
PC5
PB2
M
VDDA
PA1
PA4
PA7
PB0
PB1
VSS_5
PD9
PD8
PB15
PB14
PB13
PE8
PE10
PE12
PB10
PB11
PB12
PE7
PE9
PE11
PE14
PE15
PE13
ai17096d
1. This figure shows the package top view
34/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
STM32L15xVC LQFP100 pinout
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
VDD_3
VSS_3
PE1
PE0
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PC12
PC11
PC10
PA15
PA14
Figure 6.
Pin descriptions
LQFP100
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
VDD_2
VSS_2
PH2
PA 13
PA 12
PA 11
PA 10
PA 9
PA 8
PC9
PC8
PC7
PC6
PD15
PD14
PD13
PD12
PD11
PD10
PD9
PD8
PB15
PB14
PB13
PB12
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
PA3
VSS_4
VDD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
PE10
PE11
PE12
PE13
PE14
PE15
PB10
PB11
VSS_1
VDD_1
PE2
PE3
PE4
PE5
PE6-WKUP3
VLCD
PC13-WKUP2
PC14-OSC32_IN
PC15-OSC32_OUT
VSS_5
VDD_5
PH0-OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VREFVREF+
VDDA
PA0-WKUP1
PA1
PA2
Doc ID 022799 Rev 3
ai15692c
35/136
Pin descriptions
STM32L15xRC LQFP64 pinout
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
Figure 7.
STM32L151xC STM32L152xC
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
47
2
46
3
45
4
44
5
43
6
42
7
41
8
LQFP64
40
9
39
10
38
11
37
12
36
13
35
14
34
15
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
VDD_2
VSS_
2
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PA3
VSS_4
VDD_4
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
VLCD
PC13-WKUP2
PC14-OSC32_IN
PC15-OSC32_OUT
PH0 -OSC_IN
PH1-OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VDDA
PA0-WKUP1
PA1
PA2
ai15693c
36/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Figure 8.
Pin descriptions
STM32L15xRC WLCSP64 ballout
A
VDD_2
PC10
PD2
PB3
PB5
BOOT0
VSS_3
B
VSS_2
PA14
PC11
PB4
PB6
PB9
C
PA11
PA12
PA15
PC12
PB7
VLCD
PC9
PA9
PA10
PA13
PB8
PC2
PC6
PC7
PC8
PA8
PA5
PA1
VSSA
PC0
PB15
PB14
PB11
PB1
VSS_4
PA0WKUP1
PC3
PC1
PB13
PB12
PB10
PA7
PA6
VDD_4
PA3
VDDA
VDD_1
VSS_1
PB2
PB0
PC5
PC4
PA4
PA2
D
E
F
G
H
VDD_3
PC14PC15- OSC32_IN
OSC32_OUT
NRST
PC13WKUP2
PH1PH0OSC_OUT OSC_IN
MS31070V1
1. This figure shows the package top view.
Doc ID 022799 Rev 3
37/136
Pin descriptions
STM32L151xC STM32L152xC
Figure 9.
STM32L15xUC WLCSP63 ballout
A
VSS_2
PA15
PC11
PD2
PB5
BOOT0
VSS_3
B
PA11
VDD_2
PC10
PC12
PB6
PB8
VDD_3
C
PA9
PA13
PA14
PB3
PB7
PB9
VLCD
D
PC8
PA10
PA12
PB4
PC13
PC15
PC14
PC7
PC9
PA8
PA0
PC1
PC0
NRST
PC6
PB15
PB14
PC4
VSSA
PH0
PH1
PB13
PB12
PB2
PA6
PA1
PC3
PC2
H
VDD_1
PB11
PB1
PA5
VSS
PA2
VDDA
J
VSS_1
PB10
PB0
PC5
PA7
PA4
PA3
E
F
G
MS31071V1
1. This figure shows the package top view.
38/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Pin descriptions
VDD_3
VSS_3
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PA15
PA14
Figure 10. STM32L15xCC LQFP48 pinout
48 47 46 45 44 43 42 41 40 39 38 37
36
1
2
35
3
34
33
4
32
5
31
6
LQFP48
30
7
29
8
28
9
27
10
26
11
25
12
13 14 15 16 17 18 19 20 21 22 23 24
VDD_2
VSS_2
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
PA3
PA4
PA5
PA6
PA7
PB0
PB1
PB2
PB10
PB11
VSS_1
VDD_1
VLCD
PC13-WKUP2
PC14-OSC32_IN
PC15-OSC32_OUT
PH0-OSC_IN
PH1-OSC_OUT
NRST
VSSA
VDDA
PA0-WKUP1
PA1
PA2
ai15694 b
Doc ID 022799 Rev 3
39/136
Pin descriptions
STM32L151xC STM32L152xC
PA14
37
VDD_2
C13-RTC-AF1
2
35
VSS_2
14-OSC32_IN
3
34
PA13
-OSC32_OUT
4
33
PA12
PH0-OSC_IN
5
32
PA11
H1-OSC_OUT
6
31
PA10
NRST
7
30
PA9
VSSA
8
29
PA8
VDDA
9
28
PB15
PA0-WKUP
10
27
PB14
PA1
11
26
PB13
PA2
12
13
15
16
17
18
19
20
21
22
23
25
24
PB12
14
UFQFPN48
VDD_1
36
VSS_1
PA15
PB3
PB4
PB5
PB6
38
PB11
39
PB10
40
PB2
41
PB1
42
PB0
43
PA7
44
PB7
BOOT0
PB8
45
PA6
PB9
46
PA5
VSS_3
47
1
PA4
48
VLCD
PA3
VDD_3
Figure 11. STM32L15xCC UFQFPN48 pinout
ai15695d
1. This figure shows the package top view.
40/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Table 9.
Pin descriptions
STM32L15xxC pin definitions
UFBGA100
LQFP100
LQFP64
WLCSP64
WLCSP63
LQFP48 or UFQFPN48
B2
B2
1
-
-
-
-
PE2
I/O FT
PE2
TIM3_ETR/LCD_SEG38/TRACECLK
2
A1
A1
2
-
-
-
-
PE3
I/O FT
PE3
TIM3_CH1/LCD_SEG39/TRACED0
3
B1
B1
3
-
-
-
-
PE4
I/O FT
PE4
TIM3_CH2/TRACED1
4
C2 C2
4
-
-
-
-
PE5
I/O FT
PE5
TIM9_CH1/TRACED2
PE6
WKUP3/RTC_TAMP3/TIM9_CH2
/TRACED3
Pin name
I / O Level(2)
UFBGA132
1
Type(1)
LQFP144
Pins
Main
function(3)
(after reset)
Alternate functions
5
D2 D2
5
-
-
PE6WKUP3
6
E2
E2
6
1 C6 C7 1
VLCD(4)
7
C1 C1
7
2 C8 D5 2
PC13-WKUP2 I/O FT
PC13
WKUP2/RTC_TAMP1/RTC_TS/RTC_OUT
I/O
PC14
OSC32_IN
I/O
PC15
OSC32_OUT
-
-
I/O FT
S
VLCD
8
D1 D1
8
3 B8 D7 3
PC14OSC32_IN(5)
9
E1
E1
9
4 B7 D6 4
PC15OSC32_OUT
10 D6
-
-
-
-
-
-
PF0
I/O FT
PF0
11 D5
-
-
-
-
-
-
PF1
I/O FT
PF1
12 D4
-
-
-
-
-
-
PF2
I/O FT
PF2
13 E4
-
-
-
-
-
-
PF3
I/O FT
PF3
14 F3
-
-
-
-
-
-
PF4
I/O FT
PF4
15 F4
-
-
-
-
-
-
PF5
I/O FT
PF5
16 F2
F2
10
-
-
-
-
VSS_5
S
VSS_5
S
VDD_5
17 G2 G2 11
-
-
-
-
VDD_5
18 G3
-
-
-
-
-
-
PF6
I/O FT
PF6
TIM5_CH1/TIM5_ETR/ADC_IN27
19 G4
-
-
-
-
-
-
PF7
I/O FT
PF7
TIM5_CH2/ADC_IN28/COMP1_INP
20 H4
-
-
-
-
-
-
PF8
I/O FT
PF8
TIM5_CH3/ADC_IN29/COMP1_INP
21
J6
-
-
-
-
-
-
PF9
I/O FT
PF9
TIM5_CH4/ADC_IN30/COMP1_INP
22
-
-
-
-
-
-
-
PF10
I/O FT
PF10
ADC_IN30/COMP1_INP
I
PH0
OSC_IN
OSC_OUT
23 F1
F1
(6)
12 5 D8 F6 5 PH0-OSC_IN
24 G1 G1 13 6 D7 F7 6
PH1OSC_OUT(6)
O
PH1
25 H2 H2 14 7 C7 E7 7
NRST
I/O
NRST
26 H1 H1 15 8 E8 E6 -
PC0
I/O FT
PC0
LCD_SEG18/ADC_IN10/COMP1_INP
27
J2
J2
16 9 F8 E5 -
PC1
I/O FT
PC1
LCD_SEG19/ADC_IN11/COMP1_INP
28
J3
J3
17 10 D6 G7 -
PC2
I/O FT
PC2
LCD_SEG20/ADC_IN12/COMP1_INP
-
K1
-
PC3
LCD_SEG21/ADC_IN13/COMP1_INP
29 K2
K2
-
-
-
-
-
NC
I
18 11 F7 G6 -
PC3
I/O
Doc ID 022799 Rev 3
41/136
Pin descriptions
Table 9.
STM32L151xC STM32L152xC
STM32L15xxC pin definitions (continued)
I / O Level(2)
Type(1)
J1
J1
19 12 E7 F5 8
31
-
K1
20
-
-
-
-
VREF-
S
VREF-
32
L1
L1
21
-
-
-
-
VREF+
S
VREF+
33 M1 M1 22 13 G8 H7 9
VDDA
S
VDDA
WLCSP63
30
LQFP64
WLCSP64
LQFP100
S
UFBGA100
VSSA
Main
function(3)
(after reset)
UFBGA132
Pin name
LQFP144
LQFP48 or UFQFPN48
Pins
Alternate functions
VSSA
PA0-WKUP1
I/O FT
PA0
WKUP1/RTC_TAMP2/TIM2_CH1_ETR/
TIM5_CH1/USART2_CTS/ADC_IN0/
COMP1_INP
35 M2 M2 24 15 E6 G5 11
PA1
I/O FT
PA1
TIM2_CH2/TIM5_CH2/USART2_RTS/
LCD_SEG0/ADC_IN1/COMP1_INP/
OPAMP1_VINP
36
-
K3
PA2
I/O FT
PA2
TIM2_CH3/TIM5_CH3/TIM9_CH1/
USART2_TX/LCD_SEG1/ADC_IN2/
COMP1_INP/OPAMP1_VINM
-
K3
-
-
-
-
-
-
PA2
I/O FT
PA2
TIM2_CH3/TIM5_CH3/TIM9_CH1
/USART2_TX/LCD_SEG1/ADC_IN2/
COMP1_INP
-
M3
-
-
-
-
-
- OPAMP1_VINM
37
L3
L3
26 17 G7 J7 13
34
L2
L2
23 14 F6 E4 10
25 16 H8 H6 12
I
OPAMP1
_VINM
PA3
I/O
PA3
TIM2_CH4/TIM5_CH4/TIM9_CH2
/USART2_RX/LCD_SEG2/ADC_IN3/
COMP1_INP/OPAMP1_VOUT
38
-
E3
27 18 F5 -
-
VSS_4
S
VSS_4
39
-
H3 28 19 G6 -
-
VDD_4
S
VDD_4
40
J4
M3 29 20 H7 J6 14
PA4
I/O
PA4
SPI1_NSS/SPI3_NSS/I2S3_WS/
USART2_CK/ADC_IN4/DAC_OUT1/
COMP1_INP
41 K4
K4
30 21 E5 H4 15
PA5
I/O
PA5
TIM2_CH1_ETR/SPI1_SCK/ADC_IN5/
DAC_OUT2/COMP1_INP
42
L4
L4
31 22 G5 G4 16
PA6
I/O FT
PA6
TIM3_CH1/TIM10_CH1/SPI1_MISO/
LCD_SEG3/ADC_IN6/COMP1_INP/
OPAMP2_VINP
43
-
M4 32 23 G4 J5 17
PA7
I/O FT
PA7
TIM3_CH2/TIM11_CH1/SPI1_MOSI
/LCD_SEG4/ADC_IN7/COMP1_INP
/OPAMP2_VINM
-
J5
-
-
-
-
-
-
PA7
I/O FT
PA7
TIM3_CH2/TIM11_CH1/SPI1_MOSI/LCD_
SEG4/ ADC_IN7/COMP1_INP
-
M4
-
-
-
-
-
- OPAMP2_VINM
42/136
I
OPAMP2_
VINM
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Table 9.
Pin descriptions
STM32L15xxC pin definitions (continued)
I / O Level(2)
Type(1)
33 24 H6 F4 -
PC4
I/O FT
PC4
LCD_SEG22/ADC_IN14/COMP1_INP
45
L5
34 25 H5 J4 -
PC5
I/O FT
PC5
LCD_SEG23/ADC_IN15/COMP1_INP
46 M5 M5 35 26 H4 J3 18
PB0
I/O
PB0
TIM3_CH3/LCD_SEG5/ADC_IN8
/COMP1_INP/VREF_OUT/
OPAMP2_VOUT
47 M6 M6 36 27 F4 H3 19
PB1
I/O FT
PB1
TIM3_CH4/LCD_SEG6/ADC_IN9/
COMP1_INP/VREF_OUT
PB2
I/O FT PB2/BOOT1
COMP1_INP
PB2
I/O FT PB2/BOOT1
ADC_IN0b/COMP1_INP
L5
-
-
L6
48
L6
-
WLCSP63
K5
LQFP64
WLCSP64
44 K5
LQFP144
LQFP100
Alternate functions
UFBGA100
Main
function(3)
(after reset)
UFBGA132
LQFP48 or UFQFPN48
Pins
37 28 H3 G3 20
-
-
-
-
-
Pin name
49 K6
-
-
-
-
-
-
PF11
I/O FT
PF11
ADC_IN1b/COMP1_INP
50
J7
-
-
-
-
-
-
PF12
I/O FT
PF12
ADC_IN2b/COMP1_INP
51 E3
-
-
-
-
-
-
VSS_6
S
VSS_6
52 H3
-
-
-
-
-
-
VDD_6
S
VDD_6
53 K7
-
-
-
-
-
-
PF13
I/O FT
PF13
ADC_IN3b/COMP1_INP
54
J8
-
-
-
-
-
-
PF14
I/O FT
PF14
ADC_IN6b/COMP1_INP
55
J9
-
-
-
-
-
-
PF15
I/O FT
PF15
ADC_IN7b/COMP1_INP
56 H9
-
-
-
-
-
-
PG0
I/O FT
PG0
ADC_IN8b/COMP1_INP
57 G9
-
-
-
-
-
-
PG1
I/O FT
PG1
ADC_IN9b/COMP1_INP
58 M7 M7 38
-
-
-
-
PE7
I/O
PE7
ADC_IN22/COMP1_INP
59
L7
60 M8
-
-
61
-
L7
39
-
-
-
-
PE8
I/O
PE8
ADC_IN23/COMP1_INP
-
-
-
-
-
-
PE9
I/O
PE9
TIM2_CH1_ETR/ADC_IN24/
COMP1_INP
-
-
-
-
PE9
PE9
TIM2_CH1_ETR/ADC_IN24/
COMP1_INP/TIM5_ETR
-
-
-
-
-
VSS_7
M8 40
-
S
VSS_7
62
-
-
-
-
-
-
-
VDD_7
S
VDD_7
63
L8
L8
41
-
-
-
-
PE10
I/O
PE10
TIM2_CH2/ADC_IN25/COMP1_INP
64 M9 M9 42
-
-
-
-
PE11
I/O FT
PE11
TIM2_CH3
65
43
-
-
-
-
PE12
I/O FT
PE12
TIM2_CH4/SPI1_NSS
66 M10 M10 44
-
-
-
-
PE13
I/O FT
PE13
SPI1_SCK
67 M11 M11 45
-
-
-
-
PE14
I/O FT
PE14
SPI1_MISO
68 M12 M12 46
-
-
-
-
PE15
I/O FT
PE15
SPI1_MOSI
PB10
I/O FT
PB10
TIM2_CH3/I2C2_SCL/USART3_TX
/LCD_SEG10
L9
L9
69 L10 L10 47 29 G3 J2 21
Doc ID 022799 Rev 3
43/136
Pin descriptions
Table 9.
STM32L151xC STM32L152xC
STM32L15xxC pin definitions (continued)
70 L11 L11 48 30 F3 H2 22
PB11
I / O Level(2)
Pin name
Type(1)
LQFP48 or UFQFPN48
WLCSP63
LQFP64
WLCSP64
LQFP100
UFBGA100
UFBGA132
LQFP144
Pins
I/O FT
Main
function(3)
(after reset)
Alternate functions
PB11
TIM2_CH4/I2C2_SDA/USART3_RX
/LCD_SEG11
VSS
S
VSS
71 F12 F12 49 31 H2 J1 23
VSS_1
S
VSS_1
72 G12 G12 50 32 H1 H1 24
VDD_1
S
VDD_1
73 L12 L12 51 33 G2 G2 25
PB12
I/O FT
PB12
TIM10_CH1/I2C2_SMBA/SPI2_NSS
/I2S2_WS/USART3_CK/LCD_SEG12
/ADC_IN18/COMP1_INP
74 K12 K12 52 34 G1 G1 26
PB13
I/O FT
PB13
TIM9_CH1/SPI2_SCK/ I2S2_CK/
USART3_CTS/LCD_SEG13/ADC_IN19
/COMP1_INP
75 K11 K11 53 35 F2 F3 27
PB14
I/O FT
PB14
TIM9_CH2/SPI2_MISO/USART3_RTS
/LCD_SEG14/ADC_IN20/COMP1_INP
76 K10 K10 54 36 F1 F2 28
PB15
I/O FT
PB15
TIM11_CH1/SPI2_MOSI/I2S2_SD
/LCD_SEG15/ADC_IN21/COMP1_INP/
RTC_REFIN
77 K9
K9
55
PD8
I/O FT
PD8
USART3_TX/LCD_SEG28
78 K8
K8
-
-
-
-
-
-
- H5 -
-
-
-
56
-
-
-
-
PD9
I/O FT
PD9
USART3_RX/LCD_SEG29
79 J12 J12 57
-
-
-
-
PD10
I/O FT
PD10
USART3_CK/LCD_SEG30
80 J11 J11 58
-
-
-
-
PD11
I/O FT
PD11
USART3_CTS/LCD_SEG31
81 J10 J10 59
-
-
-
-
PD12
I/O FT
PD12
TIM4_CH1/USART3_RTS/LCD_SEG32
I/O FT
PD13
TIM4_CH2/LCD_SEG33
82 H12 H12 60
-
-
-
-
PD13
83
-
-
-
-
-
-
-
VSS_8
S
VSS_8
84
-
-
-
-
-
-
-
VDD_8
S
VDD_8
85 H11 H11 61
-
-
-
-
PD14
I/O FT
PD14
86 H10 H10 62
-
-
-
-
PD15
I/O FT
PD15
TIM4_CH4/LCD_SEG35
87 G10
-
-
-
-
-
-
PG2
I/O FT
PG2
ADC_IN10b/COMP1_INP
88 F9
-
-
-
-
-
-
PG3
I/O FT
PG3
ADC_IN11b/COMP1_INP
89 F10
-
-
-
-
-
-
PG4
I/O FT
PG4
ADC_IN12b/COMP1_INP
90 E9
-
-
-
-
-
-
PG5
I/O FT
PG5
91
-
-
-
-
-
-
-
PG6
I/O FT
PG6
92
-
-
-
-
-
-
-
PG7
I/O FT
PG7
93
-
-
-
-
-
-
-
PG8
I/O FT
PG8
94 F6
-
-
-
-
-
-
VSS_9
S
VSS_9
95 G6
-
-
-
-
-
-
VDD_9
S
VDD_9
44/136
Doc ID 022799 Rev 3
TIM4_CH3/LCD_SEG34
STM32L151xC STM32L152xC
Table 9.
Pin descriptions
STM32L15xxC pin definitions (continued)
I / O Level(2)
Pin name
Type(1)
LQFP48 or UFQFPN48
WLCSP63
LQFP64
WLCSP64
LQFP100
UFBGA100
UFBGA132
LQFP144
Pins
Main
function(3)
(after reset)
Alternate functions
96 E12 E12 63 37 E1 F1 -
PC6
I/O FT
PC6
TIM3_CH1/I2S2_MCK/LCD_SEG24
97 E11 E11 64 38 E2 E1 -
PC7
I/O FT
PC7
TIM3_CH2/I2S3_MCK/LCD_SEG25
98 E10 E10 65 39 E3 D1 -
PC8
I/O FT
PC8
TIM3_CH3/LCD_SEG26
99 D12 D12 66 40 D1 E2 -
PC9
I/O FT
PC9
TIM3_CH4/LCD_SEG27
100 D11 D11 67 41 E4 E3 29
PA8
I/O FT
PA8
USART1_CK/MCO/LCD_COM0
101 D10 D10 68 42 D2 C1 30
PA9
I/O FT
PA9
USART1_TX/LCD_COM1
102 C12 C12 69 43 D3 D2 31
PA10
I/O FT
PA10
USART1_RX/LCD_COM2
103 B12 B12 70 44 C1 B1 32
PA11
I/O FT
PA11
USART1_CTS/USB_DM/SPI1_MISO
104 A12 A12 71 45 C2 D3 33
PA12
I/O FT
PA12
USART1_RTS/USB_DP/SPI1_MOSI
105 A11 A11 72 46 D4 C2 34
PA13
I/O FT
JTMSSWDAT
106 C11 C11 73
PH2
I/O FT
PH2
-
-
-
-
107 F11 F11 74 47 B1 A1 35
VSS_2
S
108 G11 G11 75 48 A1 B2 36
VDD_2
S
VSS_2
VDD_2
109 A10 A10 76 49 B2 C3 37
PA14
I/O FT
JTCKSWCLK
110 A9
PA15
I/O FT
JTDI
TIM2_CH1_ETR/SPI1_NSS/SPI3_NSS/
I2S3_WS/LCD_SEG17
111 B11 B11 78 51 A2 B3 -
PC10
I/O FT
PC10
SPI3_SCK/I2S3_CK/USART3_TX/
LCD_SEG28/LCD_SEG40/LCD_COM4
112 C10 C10 79 52 B3 A3 -
PC11
I/O FT
PC11
SPI3_MISO/USART3_RX/LCD_SEG29
/LCD_SEG41/LCD_COM5
113 B10 B10 80 53 C4 B4 -
PC12
I/O FT
PC12
SPI3_MOSI/I2S3_SD/USART3_CK/LCD_
SEG30/LCD_SEG42/LCD_COM6
114 C9 C9 81
-
-
-
-
PD0
I/O FT
PD0
TIM9_CH1/SPI2_NSS/I2S2_WS
115 B9
-
-
-
-
PD1
I/O FT
PD1
SPI2_SCK/I2S2_CK
A9
B9
77 50 C3 A2 38
82
116 C8 C8 83 54 A3 A4 -
PD2
I/O FT
PD2
TIM3_ETR/LCD_SEG31/LCD_SEG43
/LCD_COM7
117 B8
B8
84
-
-
-
-
PD3
I/O FT
PD3
SPI2_MISO/USART2_CTS
118 B7
B7
85
-
-
-
-
PD4
I/O FT
PD4
SPI2_MOSI/I2S2_SD/USART2_RTS
119 A6
A6
86
-
-
-
PD5
I/O FT
PD5
USART2_TX
120 F7
-
-
-
-
-
-
VSS_10
S
VSS_10
121 G7
-
-
-
-
-
-
VDD_10
S
VDD_10
122 B6
B6
87
-
-
-
-
PD6
I/O FT
PD6
USART2_RX
123 A5
A5
88
-
-
-
-
PD7
I/O FT
PD7
TIM9_CH2/USART2_CK
Doc ID 022799 Rev 3
45/136
Pin descriptions
Table 9.
STM32L151xC STM32L152xC
STM32L15xxC pin definitions (continued)
WLCSP63
LQFP48 or UFQFPN48
-
-
-
-
PG9
I/O FT
PG9
125 D8
-
-
-
-
-
-
PG10
I/O FT
PG10
126
-
-
-
-
-
-
PG11
I/O FT
PG11
127 D7
-
-
-
-
-
-
PG12
I/O FT
PG12
128 C7
-
-
-
-
-
-
PG13
I/O FT
PG13
129 C6
-
-
-
-
-
-
PG14
I/O FT
130
-
-
-
-
-
-
-
VSS_11
S
VSS_11
131
-
-
-
-
-
-
-
VDD_11
S
VDD_11
132
-
-
-
-
-
-
-
PG15
I/O FT
PG15
-
I / O Level(2)
LQFP64
WLCSP64
-
Pin name
Type(1)
LQFP100
-
UFBGA132
124 D9
LQFP144
UFBGA100
Pins
Main
function(3)
(after reset)
Alternate functions
PG14
133 A8
A8
89 55 A4 C4 39
PB3
I/O FT
JTDO
TIM2_CH2/SPI1_SCK/SPI3_SCK
/I2S3_CK/LCD_SEG7/COMP2_INM
134 A7
A7
90 56 B4 D4 40
PB4
I/O FT
NJTRST
TIM3_CH1/SPI1_MISO/SPI3_MISO
/LCD_SEG8/COMP2_INP
135 C5 C5 91 57 A5 A5 41
PB5
I/O FT
PB5
TIM3_CH2/I2C1_SMBA/SPI1_MOSI/SPI3
_MOSI/I2S3_SD/LCD_SEG9/COMP2_INP
136 B5
B5
92 58 B5 B5 42
PB6
I/O FT
PB6
TIM4_CH1/I2C1_SCL/USART1_TX
/COMP2_INP
137 B4
B4
93 59 C5 C5 43
PB7
I/O FT
PB7
TIM4_CH2/I2C1_SDA/USART1_RX
/PVD_IN/COMP2_INP
138 A4
A4
94 60 A6 A6 44
BOOT0
139 A3
A3
95 61 D5 B6 45
PB8
I/O FT
PB8
TIM4_CH3/TIM10_CH1/I2C1_SCL
/LCD_SEG16
140 B3
B3
96 62 B6 C6 46
PB9
I/O FT
PB9
TIM4_CH4/TIM11_CH1/I2C1_SDA
/LCD_COM3
PE0
I/O FT
PE0
TIM4_ETR/TIM10_CH1/LCD_SEG36
PE1
I/O FT
PE1
TIM11_CH1/LCD_SEG37
141 C3 C3 97
-
-
-
-
142 A2
-
-
-
-
A2
98
I
BOOT0
143 D3 D3 99 63 A7 A7 47
VSS_3
S
VSS_3
144 C4 C4 100 64 A8 B7 48
VDD_3
S
VDD_3
1. I = input, O = output, S = supply.
2. FT = 5 V tolerant.
3. Function availability depends on the chosen device.
4. Applicable to STM32L152xC devices only. In STM32L151xC devices, this pin should be connected to VDD.
5. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is ON (by setting the
LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose
PH0/PH1 I/Os, respectively, when the LSE oscillator is off (after reset, the LSE oscillator is off). The LSE has priority over
the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins
section in the STM32L151xx, STM32L152xx and STM32L162xx reference manual (RM0038).
46/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Pin descriptions
6. The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is ON (by setting the HSEON
bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os,
respectively, when the HSE oscillator is off ( after reset, the HSE oscillator is off ). The HSE has priority over the GPIO
function.
Doc ID 022799 Rev 3
47/136
Alternate function input/output
Digital alternate function number
AFIO0
AFIO1
AFIO2
AFIO3
AFIO4
Port
name
AFIO5
AFIO6
AFIO7
.. AFIO10
AFIO11 ..
AFIO14
AFIO15
CPRI
SYSTEM
Alternate function
SYSTEM
BOOT0
BOOT0
NRST
NRST
PA0WKUP1
WKUP1/
TAMPER2
TIM2
TIM3/4/5
TIM9/
10/11
I2C1/2
SPI1/2
SPI3
USART1/2/3
USB
LCD
EVENT OUT
COMP1_INP/
TIMx_IC1_0/
G1IO1
Doc ID 022799 Rev 3
TIM2_CH1_ ETR
TIM5_CH1
USART2_CTS
PA1
TIM2_CH2
TIM5_CH2
USART2_RTS
SEG0
COMP1_INP/
EVENT OUT
TIMx_IC2_0 G1IO2
PA2
TIM2_CH3
TIM5_CH3
TIM9_CH1
USART2_TX
SEG1
COMP1_INP/
TIMx_IC3_0/
G1IO3
EVENT OUT
PA3
TIM2_CH4
TIM5_CH4
TIM9_CH2
USART2_RX
SEG2
COMP1_INP/
TIMx_IC4_0/
G1IO4
EVENT OUT
COMP1_INP/
TIMx_IC1_1
EVENT OUT
COMP1_INP/
TIMx_IC2_1
EVENT OUT
PA4
SPI1_NSS
PA5
TIM2_CH1_ETR*
SPI3_NSS
I2S3_WS
USART2_CK
SPI1_SCK
EVENT OUT
TIM3_CH1
TIM10_ CH1
SPI1_MISO
SEG3
COMP1_INP/
EVENT OUT
TIMx_IC3_1 G2IO1
PA7
TIM3_CH2
TIM11_ CH1
SPI1_MOSI
SEG4
COMP1_INP/
TIMx_IC4_1/
G2IO2
EVENT OUT
USART1_CK
COM0
TIMx_IC1_2/
G4IO1
EVENT OUT
PA9
USART1_TX
COM1
TIMx_IC2_2/
G4IO2
EVENT OUT
PA10
USART1_RX
COM2
TIMx_IC3_2/
G4IO3
EVENT OUT
MCO
PA11
SPI1_MISO
USART1_CTS
USB_DM
TIMx_IC4_2
EVENT OUT
PA12
SPI1_MOSI
USART1_RTS
USB_DP
TIMx_IC1_3/
EVENT OUT
STM32L151xC STM32L152xC
PA6
PA8
Pin descriptions
48/
Table 10.
Alternate function input/output (continued)
Digital alternate function number
AFIO0
AFIO1
AFIO2
AFIO3
AFIO4
Port
name
AFIO5
AFIO6
AFIO7
.. AFIO10
AFIO11 ..
AFIO14
AFIO15
CPRI
SYSTEM
Alternate function
SYSTEM
TIM2
TIM3/4/5
TIM9/
10/11
I2C1/2
SPI1/2
SPI3
USART1/2/3
USB
LCD
PA13
JTMS-SWDIO
TIMx_IC2_3/
G5IO1
EVENT OUT
PA14
JTCK-SWCLK
TIMx_IC3_3/
G5IO2
EVEN TOUT
PA15
JTDI
SEG17
TIMx_IC4_3/
G5IO3
EVEN TOUT
TIM2_CH1_ETR
SPI1_NSS
SPI3_NSS
I2S3_WS
Doc ID 022799 Rev 3
PB0
TIM3_CH3
SEG5
COMP1_INP/
G3IO1
EVEN TOUT
PB1
TIM3_CH4
SEG6
COMP1_INP/
G3IO2
EVENT OUT
COMP1_INP/
G3IO3
EVENT OUT
PB2
BOOT1
PB3
JTDO
PB4
JTRST
TIM2_CH2
SPI1_SCK
TIM3_CH1
SPI3_SCK
I2S3_CK
SEG7
EVENT OUT
SPI1_MISO SPI3_MISO
SEG8
G6IO1
EVENT OUT
SPI3_MOSI
I2S3_SD
SEG9
G6IO2
EVENT OUT
TIM3_CH2
I2C1_
SMBA
PB6
TIM4_CH1
I2C1_SCL
USART1_TX
G6IO3
EVENT OUT
PB7
TIM4_CH2
I2C1_SDA
USART1_RX
G6IO4
EVENT OUT
PB8
TIM4_CH3
TIM10_
CH1
I2C1_SCL
SEG16
EVENT OUT
PB9
TIM4_CH4
TIM11_
CH1
I2C1_SDA
COM3
EVENT OUT
EVENT OUT
PB10
TIM2_CH3
PB11
TIM2_CH4
49/136
PB12
TIM10_
CH1
PB13
TIM9_
CH1
I2C2_SCL
USART3_TX
SEG10
I2C2_SDA
USART3_RX
SEG11
SPI2_NSS
I2C2_SMBA
I2S2_WS
SPI2_SCK
I2S2_CK
EVENT OUT
USART3_CK
SEG12
COMP1_INP/
G7IO1
USART3_CTS
SEG13
COMP1_INP/
G7IO2
EVENT OUT
EVENT OUT
Pin descriptions
PB5
SPI1_MOSI
STM32L151xC STM32L152xC
Table 10.
Alternate function input/output (continued)
Digital alternate function number
AFIO0
AFIO1
AFIO2
AFIO3
AFIO4
AFIO15
AFIO6
AFIO7
.. AFIO10
AFIO11 ..
CPRI
SYSTEM
SEG14
COMP1_INP/
G7IO3
EVENT OUT
SEG15
COMP1_INP/
G7IO4
EVENT OUT
PC0
SEG18
COMP1_INP/
TIMx_IC1_4/
G8IO1
EVENT OUT
PC1
SEG19
COMP1_INP/
TIMx_IC2_4/
G8IO2
EVENT OUT
PC2
SEG20
COMP1_INP/
TIMx_IC3_4/
G8IO3
EVENT OUT
PC3
SEG21
COMP1_INP/
TIMx_IC4_4/
G8IO4
EVENT OUT
PC4
SEG22
COMP1_INP/
TIMx_IC1_5/
G9IO1
EVENT OUT
PC5
SEG23
COMP1_INP/
TIMx_IC2_5/
G9IO2
EVENT OUT
SEG24
TIMx_IC3_5/
G10IO1
EVENT OUT
SEG25
TIMx_IC4_5/
G10IO2
EVENT OUT
Alternate function
SYSTEM
TIM2
TIM3/4/5
PB14
PB15
AFIO5
RTC_REFIN
TIM9/
10/11
I2C1/2
SPI1/2
TIM9_
CH2
SPI2_MISO
TIM11_
CH1
SPI2_MOSI
I2S2_SD
SPI3
USART1/2/3
USART3_RTS
LCD
Doc ID 022799 Rev 3
PC6
TIM3_CH1
PC7
TIM3_CH2
PC8
TIM3_CH3
SEG26
TIMx_IC1_6/
G10IO3
EVENT OUT
PC9
TIM3_CH4
SEG27
TIMx_IC2_6/
G10IO4
EVENT OUT
COM4/
SEG28/
SEG40
TIMx_IC3_6
EVENT OUT
PC10
I2S2_MCK
USB
I2S3_MCK
SPI3_SCK
I2S3_CK
USART3_TX
STM32L151xC STM32L152xC
AFIO14
Port
name
Pin descriptions
50/
Table 10.
Alternate function input/output (continued)
Digital alternate function number
AFIO0
AFIO1
AFIO2
AFIO3
AFIO4
Port
name
AFIO5
AFIO6
AFIO7
.. AFIO10
AFIO11 ..
AFIO14
AFIO15
CPRI
SYSTEM
Alternate function
SYSTEM
TIM2
TIM3/4/5
TIM9/
10/11
I2C1/2
SPI1/2
SPI3
USART1/2/3
USB
LCD
Doc ID 022799 Rev 3
PC11
SPI3_MISO USART3_RX
COM5/
SEG29
/SEG41
TIMx_IC4_6
EVENT OUT
PC12
SPI3_MOSI
USART3_CK
I2S3_SD
COM6/
SEG30/
SEG42
TIMx_IC1_7
EVENT OUT
TIMx_IC2_7
EVENT OUT
PC14
OSC32_IN
OSC32_IN
TIMx_IC3_7
EVENT OUT
PC15
OSC32_
OUT
TIMx_IC4_7
EVENT OUT
SPI2_NSS
I2S2_WS
TIMx_IC1_8
EVENT OUT
SPI2 SCK
I2S2_CK
TIMx_IC2_8
EVENT OUT
TIMx_IC3_8
EVENT OUT
PC13WKUP2
WKUP2/
TAMPER1/
TIMESTAMP/
ALARM_OUT/51
2Hz
OSC32_OUT
PD0
TIM9_CH1
PD1
PD2
COM7/
SEG31/
SEG43
TIM3_ETR
SPI2_MISO
USART2_CTS
TIMx_IC4_8
EVENT OUT
PD4
SPI2_MOSI
I2S2_SD
USART2_RTS
TIMx_IC1_9
EVENT OUT
PD5
USART2_TX
TIMx_IC2_9
EVENT OUT
PD6
USART2_RX
TIMx_IC3_9
EVENT OUT
PD7
51/136
TIMx_IC4_9
EVENT OUT
PD8
TIM9_CH2
USART3_TX
USART2_CK
SEG28
TIMx_IC1_10
EVENT OUT
PD9
USART3_RX
SEG29
TIMx_IC2_10
EVENT OUT
Pin descriptions
PD3
STM32L151xC STM32L152xC
Table 10.
Alternate function input/output (continued)
Digital alternate function number
AFIO0
AFIO1
AFIO2
AFIO3
AFIO4
Port
name
AFIO5
AFIO6
AFIO7
.. AFIO10
AFIO11 ..
AFIO14
AFIO15
CPRI
SYSTEM
Alternate function
SYSTEM
TIM2
TIM3/4/5
TIM9/
10/11
I2C1/2
SPI1/2
SPI3
USART1/2/3
USB
LCD
PD10
USART3_CK
SEG30
TIMx_IC3_10
EVENT OUT
PD11
USART3_CTS
SEG31
TIMx_IC4_10
EVENT OUT
USART3_RTS
SEG32
TIMx_IC1_11
EVENT OUT
Doc ID 022799 Rev 3
PD12
TIM4_CH1
PD13
TIM4_CH2
SEG33
TIMx_IC2_11
EVENT OUT
PD14
TIM4_CH3
SEG34
TIMx_IC3_11
EVENT OUT
PD15
TIM4_CH4
SEG35
TIMx_IC4_11
EVENT OUT
PE0
TIM4_ETR
TIM10_
CH1
SEG36
TIMx_IC1_12
EVENT OUT
TIM11_
CH1
SEG37
TIMx_IC2_12
EVENT OUT
EVENT OUT
PE1
TRACECK
TIM3_ETR
SEG 38
TIMx_IC3_12
PE3
TRACED0
TIM3_CH1
SEG 39
TIMx_IC4_12
EVENT OUT
PE4
TRACED1
TIM3_CH2
TIMx_IC1_13
EVENT OUT
PE5
TRACED2
TIM9_CH1
TIMx_IC2_13
EVENT OUT
PE6WKUP3
WKUP3/
TAMPER3 /
TRACED3
TIM9_CH2
TIMx_IC3_13
EVENT OUT
PE7
COMP1_INP/
TIMx_IC4_13
EVENT OUT
PE8
COMP1_INP/
TIMx_IC1_14
EVENT OUT
COMP1_INP/
TIMx_IC2_14
EVENT OUT
COMP1_INP/
TIMx_IC3_14
EVENT OUT
PE9
TIM2_CH1_ETR
PE10
TIM2_CH2
PE11
TIM2_CH3
PE12
TIM2_CH4
PE13
TIM5_ETR(1)
TIMx_IC4_14
EVENT OUT
SPI1_NSS
TIMx_IC1_15
EVENT OUT
SPI1_SCK
TIMx_IC2_15
EVENT OUT
STM32L151xC STM32L152xC
PE2
Pin descriptions
52/
Table 10.
Alternate function input/output (continued)
Digital alternate function number
AFIO0
AFIO1
AFIO2
AFIO3
AFIO4
Port
name
AFIO5
AFIO6
AFIO7
.. AFIO10
AFIO11 ..
AFIO14
AFIO15
CPRI
SYSTEM
Alternate function
SYSTEM
TIM2
TIM3/4/5
TIM9/
10/11
I2C1/2
SPI1/2
SPI3
USART1/2/3
USB
LCD
PE14
SPI1_MISO
TIMx_IC3_15
EVENT OUT
PE15
SPI1_MOSI
TIMx_IC4_15
EVENT OUT
Doc ID 022799 Rev 3
PF0
EVENT OUT
PF1
EVENT OUT
PF2
EVENT OUT
PF3
EVENT OUT
PF4
EVENT OUT
PF5
EVENT OUT
TIM5_ETR
COMP1_INP
G11IO1
EVENT OUT
PF7
TIM5_CH2
COMP1_INP
G11IO2
EVENT OUT
PF8
TIM5_CH3
COMP1_INP
G11IO3
EVENT OUT
PF9
TIM5_CH4
COMP1_INP
G11IO4
EVENT OUT
PF10
COMP1_INP
G11IO5
EVENT OUT
PF11
COMP1_INP
G3IO4
EVENT OUT
PF12
G3IO5
EVENT OUT
PF13
G9IO3
EVENT OUT
PF14
G9IO4
EVENT OUT
PF15
G2IO3
EVENT OUT
PG0
G2IO4
EVENT OUT
PG1
G2IO5
EVENT OUT
PG2
G7IO5
EVENT OUT
Pin descriptions
53/136
PF6
STM32L151xC STM32L152xC
Table 10.
Alternate function input/output (continued)
Digital alternate function number
AFIO0
AFIO1
AFIO2
AFIO3
AFIO4
Port
name
AFIO5
AFIO6
AFIO7
.. AFIO10
AFIO11 ..
AFIO14
AFIO15
CPRI
SYSTEM
Alternate function
SYSTEM
TIM2
TIM3/4/5
TIM9/
10/11
I2C1/2
SPI1/2
SPI3
USART1/2/3
USB
LCD
PG3
G7IO6
EVENT OUT
PG4
G7IO7
EVENT OUT
Doc ID 022799 Rev 3
PG5
EVENT OUT
PG6
EVENT OUT
PG7
EVENT OUT
PG8
EVENT OUT
PG9
EVENT OUT
PG10
EVENT OUT
PG11
EVENT OUT
PG12
EVENT OUT
PG13
EVENT OUT
PG14
EVENT OUT
PG15
EVENT OUT
Pin descriptions
54/
Table 10.
PH0OSC_
OSC_IN
IN
PH2
1. In 100 pins packages and below only
STM32L151xC STM32L152xC
PH1OSC_
OSC_OUT
OUT
STM32L151xC STM32L152xC
5
Memory mapping
Memory mapping
Figure 12. Memory map
0x4002 67FF
DMA2
0x4002 6400
0x4002 6000
DMA1
reserved
0x4002 4000
Flash Interf ace
0x4002 3C00
RCC
0x4002 3800
0xFFFF FFFF
reserved
0x4002 3400
CRC
0x4002 3000
reserved
7
0xE010 0000
0xE000 0000
0x4002 2000
0x4002 1C00
Co rtex- M3 Internal
Peripherals
0x4002 1800
0x4002 1400
0x4002 1000
6
0x4002 0C00
0x4002 0800
0x4002 0400
0xC000 0000
0x4002 0000
Port G
Port F
Port H
Port E
Port D
Port C
Port B
Port A
reserved
0x4001 3C00
0x4001 3800
5
USART1
reserved
0x4001 3400
SPI1
0x4001 3000
0xA000 0000
reserved
0x4001 2800
ADC
4
0x4001 2400
rese rve d
0x4001 1400
TIM11
0x4001 1000
0x8000 0000
TIM10
0x1FF8 009F
0x4001 0C00
TIM9
reserved
3
0x4001 0800
EXTI
0x4001 0400
0x1FF8 001F
SYSCFG
Option byte
0x4001 0000
0x1FF8 0000
reserved
COMP + RI
0x4000 7C00
reserved
0x4000 7800
2
0x4000 7400
0x1FF0 1FFF
System memory
0x4000 0000
reserved
0x4000 8000
0x6000 0000
Peripherals
DAC1 & 2
PWR
0x4000 7000
reserved
0x1FF0 0000
0x4000 6400
512 byte USB
0x4000 6000
USB Reg isters
0x4000 5C00
1
I2C2
reserved
0x4000 5800
I2C1
0x4000 5400
SRAM
0x2000 0000
reserved
0x4000 4C00
0
USART3
Nonvolatile
0x4000 4800
0x0808 1FFF
USART2
Data EEPROM
memory
0x4000 4400
reserved
0x0808 0000
0x4000 4000
SPI3
0x0000 0000
reserved
0x4000 3C00
SPI2
0x4000 3800
0x4000 3400
0x0803 FFFF
Flash memory
Reserve d
reserved
IWDG
0x4000 3000
WWDG
0x4000 2C00
0x0800 0000
0x0000 0000
Aliased to Flash or system
memory depending on
BOOT pins
0x4000 2800
0x4000 2400
0x4000 1C00
0x4000 1400
0x4000 1000
0x4000 0C00
0x4000 0800
0x4000 0400
RTC
LCD
reserved
TIM7
TIM6
TIM5
TIM4
TIM3
TIM2
0x4000 0000
MS18582V2
Doc ID 022799 Rev 3
55/136
Electrical characteristics
STM32L151xC STM32L152xC
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.6 V (for the
1.65 V ≤ VDD ≤ 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 13.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 14.
Figure 13. Pin loading conditions
Figure 14. Pin input voltage
STM32L15xxx pin
STM32L15xxx pin
C = 50 pF
VIN
ai17851
56/136
Doc ID 022799 Rev 3
ai17852
STM32L151xC STM32L152xC
6.1.6
Electrical characteristics
Power supply scheme
Figure 15. Power supply scheme
OUT
GP I/Os
IN
Level shifter
Standby-power circuitry
(OSC32K,RTC,
Wake-up logic
RTC backup registers)
IO
Logic
Kernel logic
(CPU,
Digital
& Memories)
VDD
VDD1/2/.../N
Regulator
N × 100 nF
+ 1 × 4.7 µF
VSS1/2/.../N
VDD
VDDA
VREF
10 nF
+ 1 µF
10 nF
+ 1 µF
VREF+
ADC
VREF-
Analog:
RCs, PLL,
...
VSSA
MS18291V2
6.1.7
Current consumption measurement
Figure 16. Current consumption measurement scheme
IDD
VDD
VDDA
ai14126b
Doc ID 022799 Rev 3
57/136
Electrical characteristics
6.2
STM32L151xC STM32L152xC
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics,
Table 12: Current characteristics, and Table 13: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 11.
Symbol
VDD–VSS
VIN(2)
Voltage characteristics
Ratings
Min
Max
–0.3
4.0
Input voltage on five-volt tolerant pin
VSS − 0.3
VDD+4.0
Input voltage on any other pin
VSS − 0.3
4.0
External main supply voltage
(including VDDA and VDD)(1)
|ΔVDDx|
Variations between different VDD power pins
50
|VSSX − VSS|
Variations between all different ground pins
50
VESD(HBM)
Electrostatic discharge voltage
(human body model)
Unit
V
mV
see Section 6.3.10
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2.
VIN maximum must always be respected. Refer to Table 12 for maximum allowed injected current values.
Table 12.
Symbol
IVDD
IVSS
Current characteristics
Ratings
Max.
Total current into VDD/VDDA power lines (source)(1)
Total current out of VSS ground lines
(sink)(1)
Output current sunk by any I/O and control pin
IIO
IINJ(PIN) (2)
ΣIINJ(PIN)
Output current sourced by any I/O and control pin
Injected current on five-volt tolerant
Injected current on any other pin
I/O(3)
(4)
Total injected current (sum of all I/O and control pins)(5)
Unit
80
80
25
- 25
mA
+0 /-5
±5
± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. Negative injection disturbs the analog performance of the device. See note in Section 6.3.17.
3. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN)
must never be exceeded. Refer to Table 11 for maximum allowed input voltage values.
4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. IINJ(PIN)
must never be exceeded. Refer to Table 11: Voltage characteristics for the maximum allowed input voltage
values.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
58/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Table 13.
Electrical characteristics
Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Maximum junction temperature
6.3
Operating conditions
6.3.1
General operating conditions
Table 14.
Value
Unit
–65 to +150
°C
150
°C
General operating conditions
Symbol
Parameter
fHCLK
Min
Max
Internal AHB clock frequency
0
32
fPCLK1
Internal APB1 clock frequency
0
32
fPCLK2
Internal APB2 clock frequency
0
32
BOR detector disabled
1.65
3.6
BOR detector enabled,
at power on
1.8
3.6
BOR detector disabled,
after power on
1.65
3.6
1.65
3.6
VDD
VDDA(1)
Standard operating voltage
Analog operating voltage
(ADC and DAC not used)
Analog operating voltage
(ADC or DAC used)
PD
Power dissipation at
TA = 85 °C(3)
TA
Temperature range
TJ
Junction temperature range
Conditions
Must be the same voltage
as VDD(2)
Unit
MHz
V
V
1.8
UFBGA100
3.6
339
Maximum power dissipation
–40
85
Low power dissipation(4)
–40
105
-40 °C ≤ TA ≤ 105 °C
–40
105
mW
°C
°C
1. When the ADC is used, refer to Table 55: ADC characteristics.
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV
between VDD and VDDA can be tolerated during power-up and operation.
3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 73: Thermal
characteristics on page 131).
4. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJ max
(see Table 73: Thermal characteristics on page 131).
6.3.2
Embedded reset and power control block characteristics
The parameters given in the following table are derived from the tests performed under the
ambient temperature condition summarized in Table 14.
Doc ID 022799 Rev 3
59/136
Electrical characteristics
Table 15.
Symbol
STM32L151xC STM32L152xC
Embedded reset and power control block characteristics
Parameter
Conditions
VDD rise time rate
tVDD(1)
VDD fall time rate
Power on/power down reset
threshold
VBOR0
Brown-out reset threshold 0
VBOR1
Brown-out reset threshold 1
VBOR2
Brown-out reset threshold 2
VBOR3
Brown-out reset threshold 3
VBOR4
Brown-out reset threshold 4
VPVD0
Programmable voltage detector
threshold 0
VPVD1
PVD threshold 1
VPVD2
PVD threshold 2
VPVD3
PVD threshold 3
VPVD4
PVD threshold 4
VPVD5
PVD threshold 5
VPVD6
PVD threshold 6
Max
0
∞
BOR detector disabled
0
1000
BOR detector enabled
20
∞
BOR detector disabled
0
1000
2
3.3
0.4
0.7
1.6
Falling edge
1
1.5
1.65
Rising edge
1.3
1.5
1.65
Falling edge
1.67
1.7
1.74
Rising edge
1.69
1.76
1.8
Falling edge
1.87
1.93
1.97
Rising edge
1.96
2.03
2.07
Falling edge
2.22
2.30
2.35
Rising edge
2.31
2.41
2.44
Falling edge
2.45
2.55
2.60
Rising edge
2.54
2.66
2.7
Falling edge
2.68
2.8
2.85
Rising edge
2.78
2.9
2.95
Falling edge
1.8
1.85
1.88
Rising edge
1.88
1.94
1.99
Falling edge
1.98
2.04
2.09
Rising edge
2.08
2.14
2.18
Falling edge
2.20
2.24
2.28
Rising edge
2.28
2.34
2.38
Falling edge
2.39
2.44
2.48
Rising edge
2.47
2.54
2.58
Falling edge
2.57
2.64
2.69
Rising edge
2.68
2.74
2.79
Falling edge
2.77
2.83
2.88
Rising edge
2.87
2.94
2.99
Falling edge
2.97
3.05
3.09
Rising edge
3.08
3.15
3.20
VDD rising, BOR disabled(2)
VPOR/PDR
Typ
BOR detector enabled
VDD rising, BOR enabled
TRSTTEMPO(1) Reset temporization
60/136
Min
Unit
µs/V
ms
V
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Table 15.
Symbol
Vhyst
Electrical characteristics
Embedded reset and power control block characteristics (continued)
Parameter
Hysteresis voltage
Conditions
Min
Typ
Max
BOR0 threshold
-
40
-
All BOR and PVD thresholds
excepting BOR0
-
100
-
Unit
mV
1. Guaranteed by characterisation, not tested in production.
2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.
Doc ID 022799 Rev 3
61/136
Electrical characteristics
6.3.3
STM32L151xC STM32L152xC
Embedded internal reference voltage
The parameters given in Table 16 are based on characterization results, unless otherwise
specified.
Table 16.
Embedded internal reference voltage
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
– 40 °C < TJ < +105 °C
1.202
1.224
1.242
V
VREFINT out(1)
Internal reference voltage
IREFINT
Internal reference current
consumption
-
1.4
2.3
µA
TVREFINT
Internal reference startup time
-
2
3
ms
VVREF_MEAS
VDDA and VREF+ voltage during
VREFINT factory measure
2.99
3
3.01
V
AVREF_MEAS
Accuracy of factory-measured
VREF value(2)
Including uncertainties
due to ADC and
VDDA/VREF+ values
-
-
±5
mV
–40 °C < TJ < +105 °C
-
20
50
0 °C < TJ < +50 °C
-
-
20
TCoeff(3)
Temperature coefficient
ACoeff(3)
Long-term stability
1000 hours, T= 25 °C
-
-
1000
ppm
VDDCoeff(3)
Voltage coefficient
3.0 V < VDDA < 3.6 V
-
-
2000
ppm/V
TS_vrefint(3)(4)
ADC sampling time when
reading the internal reference
voltage
-
5
10
µs
TADC_BUF(3)
Startup time of reference voltage
buffer for ADC
-
-
10
µs
IBUF_ADC(3)
Consumption of reference
voltage buffer for ADC
-
13.5
25
µA
IVREF_OUT(3)
VREF_OUT output current(5)
-
-
1
µA
CVREF_OUT(3)
VREF_OUT output load
-
-
50
pF
Consumption of reference
voltage buffer for VREF_OUT
and COMP
-
730
1200
nA
ILPBUF(3)
ppm/°C
VREFINT_DIV1(3)
1/4 reference voltage
24
25
26
VREFINT_DIV2(3)
1/2 reference voltage
49
50
51
VREFINT_DIV3(3)
3/4 reference voltage
74
75
76
1. Tested in production.
2. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes.
3. Guaranteed by design, not tested in production.
4. Shortest sampling time can be determined in the application by multiple iterations.
5. To guarantee less than 1% VREF_OUT deviation.
62/136
Doc ID 022799 Rev 3
%
VREFINT
STM32L151xC STM32L152xC
6.3.4
Electrical characteristics
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code. The current consumption is measured as described in Figure 16: Current
consumption measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to Dhrystone 2.1 code.
Maximum current consumption
The MCU is placed under the following conditions:
●
VDD = 3.6 V
●
All I/O pins are in input mode with a static value at VDD or VSS (no load)
●
All peripherals are disabled except when explicitly mentioned
●
The Flash memory access time is adjusted depending on fHCLK frequency and voltage
range
●
Prefetch and 64-bit access are enabled in configurations with 1 wait state
The parameters given in Table 17, Table 14 and Table 15 are derived from tests performed
under ambient temperature and VDD supply voltage conditions summarized in Table 14.
Table 17.
Current consumption in Run mode, code with data processing running from Flash
Max(1)
Symbol Parameter
Conditions
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
fHSE = fHCLK up to
Range 2,
16 MHz included,
VCORE=1.5 V
fHSE = fHCLK/2
above 16 MHz (PLL VOS[1:0] = 10
ON)(2)
IDD
(Run
from
Flash)
Supply
current in
Run mode,
code
executed
from Flash
HSI clock source
(16 MHz)
MSI clock, 65 kHz
MSI clock, 524 kHz
MSI clock, 4.2 MHz
fHCLK
Typ
Unit
1 MHz
360
500
500
500
2 MHz
620
750
750
750
4 MHz
1070
1200
1200
1200
4 MHz
1.30
1.6
1.6
1.6
8 MHz
2.4
2.9
2.9
2.9
16 MHz
4.6
5.2
5.2
5.2
55 °C 85 °C 105 °C
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
8 MHz
2.9
3.5
3.5
3.5
16 MHz
5.7
6.5
6.5
6.5
32 MHz
10.4
12
12
12
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
16 MHz
4.5
5.2
5.2
5.2
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
32 MHz
10.9
12.3
12.3
12.3
65 kHz
0.05
0.079 0.092
0.13
524 kHz
0.17
0.2
0.21
0.25
4.2 MHz
1.0
1.1
1.1
1.2
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
µA
mA
1. Based on characterization, not tested in production, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
Doc ID 022799 Rev 3
63/136
Electrical characteristics
Table 18.
STM32L151xC STM32L152xC
Current consumption in Run mode, code with data processing running from RAM
Max(1)
Symbol
Parameter
Conditions
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
fHSE = fHCLK up to
16 MHz included,
fHSE = fHCLK/2
above 16 MHz
(PLL ON)(2)
IDD
(Run
from
RAM)
Supply current
in Run mode,
code executed
from RAM,
Flash switched
off
Typ
1 MHz
310
470
470
470
2 MHz
590
780
780
780
1200
1200(3)
4 MHz
1030 1200
105 °C
1.2
1.5
1.5
1.5
8 MHz
2.3
3
3
3
16 MHz
4.3
5
5
5
8 MHz
2.7
3.5
3.5
3.5
16 MHz
5.0
5.55
5.55
5.55
32 MHz
9.8
10.9
10.9
10.9
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
16 MHz
4.3
4.8
4.8
4.8
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
32 MHz
10.1
11.7
11.7
11.7
65 kHz
40
48.5
63
100
524 kHz
148
175
183
215
4.2 MHz
990
1032
1034
1100
MSI clock, 65 kHz
Range 3,
MSI clock, 524 kHz VCORE=1.2 V
VOS[1:0] = 11
MSI clock, 4.2 MHz
1. Based on characterization, not tested in production, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).
3. Tested in production.
64/136
Unit
55 °C 85 °C
4 MHz
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
HSI clock source
(16 MHz)
fHCLK
Doc ID 022799 Rev 3
µA
mA
µA
STM32L151xC STM32L152xC
Table 19.
Electrical characteristics
Current consumption in Sleep mode
Max(1)
Symbol Parameter
Conditions
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
fHSE = fHCLK up to
16 MHz included,
Range 2,
fHSE = fHCLK/2
VCORE=1.5 V
above 16 MHz (PLL VOS[1:0] = 10
ON)(2)
Supply
current in
Sleep
mode,
code
executed
from RAM,
Flash
switched
HSI clock source
OFF
(16 MHz)
IDD
(Sleep)
1 MHz
180
220
220
220
2 MHz
225
300
300
300
4 MHz
300
380
380
380(3)
4 MHz
360
500
500
500
8 MHz
570
700
700
700
16 MHz
990
1100
1100
1100
8 MHz
675
800
800
16 MHz 1150 1250
1250
1250
32 MHz 2300 2700
2700
2700
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
16 MHz 1025 1100
1100
1100
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
32 MHz 2460 2700
2700
2700
Range 3,
VCORE=1.2 V
VOS[1:0] = 11
fHSE = fHCLK up to
Range 2,
16 MHz included,
VCORE=1.5 V
fHSE = fHCLK/2
above 16 MHz (PLL VOS[1:0] = 10
ON)(2)
HSI clock source
(16 MHz)
Unit
55 °C 85 °C 105 °C
800
Range 3,
MSI clock, 524 kHz VCORE=1.2 V
VOS[1:0] = 11
MSI clock, 4.2 MHz
Supply
current in
Sleep
mode,
code
executed
from Flash
Typ
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
MSI clock, 65 kHz
IDD
(Sleep)
fHCLK
65 kHz
30
36
46
72
524 kHz
50
58
67
92
4.2 MHz
210
245
251
273
1 MHz
190
250
250
250
2 MHz
235
300
300
300
4 MHz
315
380
380
380
4 MHz
390
500
500
500
8 MHz
600
700
700
700
16 MHz 1000 1120
1120
1120
8 MHz
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
800
800
800
16 MHz 1160 1300
1300
1300
32 MHz 2310 2700
2700
2700
Range 2,
VCORE=1.5 V
VOS[1:0] = 10
16 MHz 1040 1160
1160
1160
Range 1,
VCORE=1.8 V
VOS[1:0] = 01
32 MHz 2500 2800
2800
2800
Supply
MSI clock, 65 kHz
current in
MSI clock, 524 kHz
Sleep
Range 3,
mode,
VCORE=1.2V
VOS[1:0] = 11
code
MSI clock, 4.2 MHz
executed
from Flash
690
65 kHz
42
50
60
90
524 kHz
63
72
82
110
µA
µA
µA
4.2 MHz
Doc ID 022799 Rev 3
230
263
265
290
65/136
Electrical characteristics
STM32L151xC STM32L152xC
1. Based on characterization, not tested in production, unless otherwise specified.
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)
3. Tested in production.
Table 20.
Symbol
Current consumption in Low power run mode
Parameter
Conditions
All
peripherals
OFF, code
executed
from RAM,
Flash
switched
OFF, VDD
from 1.65 V
to 3.6 V
IDD
(LP Run)
Supply
current in
Low power
run mode
Max allowed
current in
Low power
run mode
MSI clock, 65 kHz
fHCLK = 65 kHz
MSI clock, 131 kHz
fHCLK = 131 kHz
MSI clock, 65 kHz
fHCLK = 32 kHz
All
peripherals
OFF, code
executed
from Flash,
VDD from
1.65 V to
3.6 V
IDD max
(LP Run)
MSI clock, 65 kHz
fHCLK = 32 kHz
MSI clock, 65 kHz
fHCLK = 65 kHz
MSI clock, 131 kHz
fHCLK = 131 kHz
Typ
(1)
TA = -40 °C to 25 °C
11
14
TA = 85 °C
26
32
TA = 105 °C
53
72
TA =-40 °C to 25 °C
18
21
TA = 85 °C
33
40
TA = 105 °C
60
78
TA = -40 °C to 25 °C
36
41
TA = 55 °C
39
44
TA = 85 °C
50
58
TA = 105 °C
78
95
TA = -40 °C to 25 °C
36
40.5
TA = 85 °C
53
60
TA = 105 °C
81
100
TA = -40 °C to 25 °C
44
49
TA = 85 °C
61
67
TA = 105 °C
89
107
TA = -40 °C to 25 °C
64
71
TA = 55 °C
68
73
TA = 85 °C
80
88
TA = 105 °C
101
110
-
200
VDD from
1.65 V to
3.6 V
1. Based on characterization, not tested in production, unless otherwise specified.
66/136
Max
Doc ID 022799 Rev 3
Unit
µA
STM32L151xC STM32L152xC
Table 21.
Symbol
Electrical characteristics
Current consumption in Low power sleep mode
Parameter
Conditions
MSI clock, 65 kHz
fHCLK = 32 kHz
Flash OFF
MSI clock, 65 kHz
fHCLK = 32 kHz
Flash ON
All
peripherals
MSI clock, 65 kHz
OFF, VDD
from 1.65 V fHCLK = 65 kHz,
Flash ON
to 3.6 V
Typ
MSI clock, 65 kHz
fHCLK = 32 kHz
TIM9 and
USART1
enabled,
Flash ON,
VDD from
1.65 V to
3.6 V
MSI clock, 65 kHz
fHCLK = 65 kHz
(1)
TA = -40 °C to 25 °C
4.4
-
TA = -40 °C to 25 °C
18
21
TA = 85 °C
24
27
TA = 105 °C
35
43
TA = -40 °C to 25 °C 18.6
21
TA = 85 °C
24.5
28
TA = 105 °C
35
42
TA = -40 °C to 25 °C 22
MSI clock, 131 kHz T = 55 °C
23.5
A
fHCLK = 131 kHz,
TA = 85 °C
28.5
Flash ON
TA = 105 °C
39
Supply
current in
IDD
Low power
(LP Sleep)
sleep
mode
Max
25
26
31
45
TA = -40 °C to 25 °C
18
20.5
TA = 85 °C
24
27
TA = 105 °C
35
43
TA = -40 °C to 25 °C 18.6
21
TA = 85 °C
24.5
28
TA = 105 °C
35
42
TA = -40 °C to 25 °C
22
25
23.5
26
28.5
31
39
45
-
200
MSI clock, 131 kHz TA = 55 °C
fHCLK = 131 kHz
TA = 85 °C
TA = 105 °C
Max
allowed
VDD from
current in
IDD max
1.65 V to
(LP Sleep) Low power
3.6 V
Sleep
mode
Unit
µA
1. Based on characterization, not tested in production, unless otherwise specified.
Doc ID 022799 Rev 3
67/136
Electrical characteristics
Table 22.
Symbol
STM32L151xC STM32L152xC
Typical and maximum current consumptions in Stop mode
Parameter
Typ Max(1) Unit
Conditions
TA = -40°C to 25°C
VDD = 1.8 V
1.5
TA = -40°C to 25°C
1.7
4
TA = 55°C
2.4
6
TA= 85°C
5.4
10
TA = 105°C
11.0
23
TA = -40°C to 25°C
3.8
6
TA = 55°C
4.4
7
TA= 85°C
7.4
12
TA = 105°C
14.4
27
TA = -40°C to 25°C
7.8
10
8.3
11
11.4
16
TA = 105°C
20.5
44
TA = -40°C to 25°C
2.1
-
TA = 55°C
2.8
-
TA= 85°C
3.8
-
TA = 105°C
11.1
-
TA = -40°C to 25°C
4.2
-
4.8
-
7.9
-
TA = 105°C
15.0
-
TA = -40°C to 25°C
8.2
-
8.7
-
11.9
-
TA = 105°C
21.4
-
TA = -40°C to 25°C
VDD = 1.8V
1.6
-
T = -40°C to 25°C
LCD OFF A
VDD = 3.0V
1.9
-
TA = -40°C to 25°C
VDD = 3.6V
2.1
-
LCD OFF
RTC clocked by LSI or
LSE external clock
(32.768kHz), regulator
LCD ON
in LP mode,HSI and
(static
HSE OFF (no
(2)
independent watchdog) duty)
LCD ON T = 55°C
A
(1/8
(3) TA= 85°C
duty)
IDD (Stop Supply current in Stop
with RTC) mode with RTC enabled
LCD OFF
RTC clocked by LSE
external quartz
(32.768kHz), regulator
in LP mode, HSI and
HSE OFF (no
independent
watchdog(4)
68/136
LCD ON T = 55°C
A
(static
duty)(2) TA= 85°C
LCD ON T = 55°C
A
(1/8
(3)
T
A= 85°C
duty)
Doc ID 022799 Rev 3
µA
STM32L151xC STM32L152xC
Table 22.
Symbol
Electrical characteristics
Typical and maximum current consumptions in Stop mode (continued)
Parameter
Typ Max(1) Unit
Conditions
Regulator in LP mode, HSI and
HSE OFF, independent watchdog TA = -40°C to 25°C
and LSI enabled
IDD (Stop)
Supply current in Stop
mode (RTC disabled)
IDD
Supply current during
(WU from
wakeup from Stop mode
Stop)
Regulator in LP mode, LSI, HSI
and HSE OFF (no independent
watchdog)
1.6
TA = -40°C to 25°C 0.65
1
TA = 55°C
1.3
3
TA= 85°C
4.4
9
TA = 105°C
10.0
22(5)
2
-
1.45
-
1.45
-
MSI = 4.2 MHz
MSI = 1.05 MHz
MSI = 65 kHz
2.2
TA = -40°C to 25°C
(6)
µA
mA
1. Based on characterization, not tested in production, unless otherwise specified.
2. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected.
3. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.
4. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF
loading capacitors.
5. Tested in production.
6. When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the remaining part
of the wakeup period, the current corresponds the Run mode current.
Table 23.
Symbol
Typical and maximum current consumptions in Standby mode
Parameter
Conditions
RTC clocked by LSI (no
independent watchdog)
IDD
Supply current in Standby
(Standby
mode with RTC enabled
with RTC)
RTC clocked by LSE
external quartz(no
independent watchdog)(3)
Typ
TA = -40 °C to 25 °C
1.3
1.9
TA = 55 °C
1.44
2.2
TA= 85 °C
1.90
4
TA = 105 °C
3.05
8.3(2)
TA = -40 °C to 25 °C
1.7
-
TA = 55 °C
1.84
-
TA= 85 °C
2.33
-
TA = 105 °C
3.59
-
Independent watchdog and
TA = -40 °C to 25 °C
LSI enabled
IDD
Supply current in Standby
(Standby) mode (RTC disabled)
TA = -40 °C to 25 °C
Independent watchdog and TA = 55 °C
LSI OFF
TA = 85 °C
TA = 105 °C
IDD
Supply current during wakeup
(WU from
time from Standby mode
Standby)
Max(1) Unit
TA = -40 °C to 25 °C
µA
1
1.7
0.35
0.6
0.47
0.9
1.2
2.75
2.9
7(2)
1
-
1. Based on characterization, not tested in production, unless otherwise specified
Doc ID 022799 Rev 3
69/136
Electrical characteristics
STM32L151xC STM32L152xC
2. Tested in production.
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF
loading capacitors.
70/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Electrical characteristics
Wakeup time from low-power mode
The wakeup times given in the following table are measured with the MSI RC oscillator. The
clock source used to wake up the device depends on the current operating mode:
●
Sleep mode: the clock source is the clock that was set before entering Sleep mode
●
Stop mode: the clock source is the MSI oscillator in the range configured before
entering Stop mode
●
Standby mode: the clock source is the MSI oscillator running at 2.1 MHz
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 14.
Table 24.
Typical and maximum timings in Low power modes
Symbol
Parameter
tWUSLEEP
Wakeup from Sleep mode
tWUSLEEP_LP
Wakeup from Low power
sleep mode
fHCLK = 262 kHz
tWUSTDBY
Typ
Max(1) Unit
fHCLK = 32 MHz
0.4
-
fHCLK = 262 kHz
Flash enabled
46
-
fHCLK = 262 kHz
Flash switched OFF
46
-
fHCLK = fMSI = 4.2 MHz
8.2
-
fHCLK = fMSI = 4.2 MHz
Voltage range 1 and 2
7.7
8.9
fHCLK = fMSI = 4.2 MHz
Voltage range 3
8.2
13.1
10.2
13.4
16
20
fHCLK = fMSI = 524 kHz
31
37
fHCLK = fMSI = 262 kHz
57
66
fHCLK = fMSI = 131 kHz
112
123
fHCLK = MSI = 65 kHz
221
236
Wakeup from Standby mode
fHCLK = MSI = 2.1 MHz
FWU bit = 1
58
104
Wakeup from Standby mode
fHCLK = MSI = 2.1 MHz
FWU bit = 0
2.6
3.25
Wakeup from Stop mode,
regulator in Run mode
tWUSTOP
Conditions
fHCLK = fMSI = 2.1 MHz
Wakeup from Stop mode,
regulator in low power mode fHCLK = fMSI = 1.05 MHz
µs
ms
1. Based on characterization, not tested in production, unless otherwise specified
Doc ID 022799 Rev 3
71/136
Electrical characteristics
STM32L151xC STM32L152xC
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in the following table. The MCU
is placed under the following conditions:
●
all I/O pins are in input mode with a static value at VDD or VSS (no load)
●
all peripherals are disabled unless otherwise mentioned
●
the given value is calculated by measuring the current consumption
–
with all peripherals clocked off
–
with only one peripheral clocked on
Table 25.
Peripheral current consumption(1)
Typical consumption, VDD = 3.0 V, TA = 25 °C
Range 1,
VCORE=
1.8 V
VOS[1:0] =
01
Range 2,
VCORE=
1.5 V
VOS[1:0] =
10
Range 3,
VCORE=
1.2 V
VOS[1:0] =
11
Low power
sleep and
run
TIM2
13
11
9
11
TIM3
12
10
9
11
TIM4
12
10
9
11
TIM5
16
13
11
14
TIM6
4
4
4
4
TIM7
4
4
4
4
LCD
4
3
3
4
WWDG
3
2.5
2.5
3
SPI2
8
7
9
7.5
SPI3
7
6
7
6
USART2
8
7
7
7
USART3
8
7
7
7
I2C1
8
7
6
7
I2C2
7
6
5
6
USB
15
7
7
7
PWR
3
3
3
3
DAC
6
5
4.5
5
COMP
4
3.5
3.5
4
Peripheral
APB1
72/136
Doc ID 022799 Rev 3
Unit
µA/MHz
(fHCLK)
STM32L151xC STM32L152xC
Table 25.
Electrical characteristics
Peripheral current consumption(1) (continued)
Typical consumption, VDD = 3.0 V, TA = 25 °C
Range 1,
VCORE=
1.8 V
VOS[1:0] =
01
Range 2,
VCORE=
1.5 V
VOS[1:0] =
10
Range 3,
VCORE=
1.2 V
VOS[1:0] =
11
Low power
sleep and
run
SYSCFG &
RI
3
2
2
3
TIM9
8
7
6
7
TIM10
6
5
5
5
TIM11
6
5
5
5
ADC
10
8
7
8
SPI1
4
4
4
4
USART1
8
7
6
7
GPIOA
7
6
5
6
GPIOB
7
6
5
6
GPIOC
7
6
5
6
GPIOD
7
6
5
6
GPIOE
7
6
5
6
GPIOF
7
6
5
6
GPIOG
7
6
5
6
GPIOH
2
2
1
2
0.5
0.5
0.5
1
(3)
Peripheral
APB2
(2)
Unit
µA/MHz
(fHCLK)
AHB
CRC
FLASH
26
26
29
-
DMA1
18
15
13
18
DMA2
16
14
12
16
279
221
219
215
All enabled
IDD (RTC)
0.4
IDD (LCD)
3.1
IDD (ADC)(4)
1450
IDD (DAC)(5)
340
IDD (COMP1)
0.16
IDD (COMP2)
IDD (PVD / BOR)
Slow mode
2
Fast mode
5
(6)
µA
2.6
IDD (IWDG)
0.25
Doc ID 022799 Rev 3
73/136
Electrical characteristics
STM32L151xC STM32L152xC
1. Data based on differential IDD measurement between all peripherals OFF an one peripheral with clock
enabled, in the following conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz
(range 3), fHCLK = 64kHz (Low power run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for
each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production.
2. HSI oscillator is OFF for this measure.
3. In low power sleep and run mode, the Flash memory must always be in power-down mode.
4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC
conversion (HSI consumption not included).
5. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC
conversion of VDD/2. DAC is in buffered mode, output is left floating.
6. Including supply current of internal reference voltage.
6.3.5
External clock source characteristics
High-speed external user clock generated from an external source
Table 26.
High-speed external user clock characteristics(1)
Symbol
Parameter
Conditions
Typ
Max
Unit
1
8
32
MHz
fHSE_ext
User external clock source
frequency
VHSEH
OSC_IN input pin high level voltage
0.7VDD
-
VDD
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3VDD
tw(HSE)
tw(HSE)
OSC_IN high or low time
12
-
-
tr(HSE)
tf(HSE)
OSC_IN rise or fall time
-
-
20
OSC_IN input capacitance
-
2.6
-
pF
45
-
55
%
-
-
±1
µA
Cin(HSE)
IL
V
ns
DuCy(HSE) Duty cycle
OSC_IN Input leakage current
VSS ≤ VIN ≤ VDD
1. Guaranteed by design, not tested in production.
74/136
Min
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Electrical characteristics
Low-speed external user clock generated from an external source
The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
Table 27.
Low-speed external user clock characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
1
32.768
1000
kHz
0.7VDD
-
VDD
fLSE_ext
User external clock source
frequency
VLSEH
OSC32_IN input pin high level
voltage
VLSEL
OSC32_IN input pin low level
voltage
VSS
-
0.3VDD
tw(LSE)
tw(LSE)
OSC32_IN high or low time
465
-
-
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time
-
-
10
OSC32_IN input capacitance
-
0.6
-
pF
45
-
55
%
-
-
±1
µA
V
CIN(LSE)
ns
DuCy(LSE) Duty cycle
IL
OSC32_IN Input leakage current
VSS ≤ VIN ≤ VDD
1. Guaranteed by design, not tested in production
Figure 17. Low-speed external clock source AC timing diagram
VLSEH
90%
VLSEL
10%
tr(LSE)
tf(LSE)
tW(LSE)
OSC32_IN
IL
tW(LSE)
t
TLSE
EXTER NAL
CLOCK SOURC E
fLSE_ext
STM32Lxx
ai18233
Doc ID 022799 Rev 3
75/136
Electrical characteristics
STM32L151xC STM32L152xC
Figure 18. High-speed external clock source AC timing diagram
VHSEH
90%
VHSEL
10%
tr(HSE)
tf(HSE)
tW(HSE)
tW(HSE)
t
THSE
EXTER NAL
CLOCK SOURC E
fHSE_ext
OSC _IN
IL
STM32Lxx
ai18232
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on characterization
results obtained with typical external components specified in Table 28. In the application,
the resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
76/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Table 28.
Symbol
Electrical characteristics
HSE 1-24 MHz oscillator characteristics(1)(2)
Parameter
Conditions
fOSC_IN Oscillator frequency
1
RF
Feedback resistor
C
Recommended load
capacitance versus
equivalent serial resistance
of the crystal (RS)(3)
IHSE
HSE driving current
HSE oscillator power
IDD(HSE)
consumption
gm
tSU(HSE)
(4)
Oscillator transconductance
Startup time
Min Typ
Max
Unit
24
MHz
-
200
-
kΩ
RS = 30 Ω
-
20
-
pF
VDD= 3.3 V, VIN = VSS
with 30 pF load
-
-
3
mA
C = 20 pF
fOSC = 16 MHz
-
-
2.5 (startup)
0.7 (stabilized)
C = 10 pF
fOSC = 16 MHz
-
-
2.5 (startup)
0.46 (stabilized)
Startup
3.5
-
-
mA
/V
VDD is stabilized
-
1
-
ms
mA
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Based on characterization results, not tested in production.
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a
humid environment, due to the induced leakage and the bias condition change. However, it is
recommended to take this point into account if the MCU is used in tough humidity conditions.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer.
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 19). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2. Refer to the application note AN2867 “Oscillator design guide for ST
microcontrollers” available from the ST website www.st.com.
Doc ID 022799 Rev 3
77/136
Electrical characteristics
STM32L151xC STM32L152xC
Figure 19. HSE oscillator circuit diagram
fHSE to core
Rm
Lm
RF
CO
CL1
OSC_IN
Cm
gm
Resonator
Consumption
control
Resonator
STM32
OSC_OUT
CL2
ai18235
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on characterization
results obtained with typical external components specified in Table 29. In the application,
the resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 29.
Symbol
LSE oscillator characteristics (fLSE = 32.768 kHz)(1)
Parameter
Conditions
Min
Typ
Max
Unit
fLSE
Low speed external oscillator
frequency
-
32.768
-
kHz
RF
Feedback resistor
-
1.2
-
MΩ
C(2)
Recommended load capacitance
versus equivalent serial
resistance of the crystal (RS)(3)
RS = 30 kΩ
-
8
-
pF
ILSE
LSE driving current
VDD = 3.3 V, VIN = VSS
-
-
1.1
µA
VDD = 1.8 V
-
450
-
VDD = 3.0 V
-
600
-
VDD = 3.6V
-
750
-
IDD (LSE)
Oscillator transconductance
gm
tSU(LSE)
LSE oscillator current
consumption
(4)
Startup time
3
VDD is stabilized
-
1
nA
-
µA/V
-
s
1. Based on characterization, not tested in production.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator
design guide for ST microcontrollers”.
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details.
4.
78/136
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary
significantly with the crystal manufacturer.
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Electrical characteristics
Note:
For CL1 and CL2, it is recommended to use high-quality ceramic capacitors in the 5 pF to
15 pF range selected to match the requirements of the crystal or resonator (see Figure 20).
CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load
capacitance which is the series combination of CL1 and CL2.
Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where
Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is
between 2 pF and 7 pF.
Caution:
To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended
to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load
capacitance of 12.5 pF.
Example: if you choose a resonator with a load capacitance of CL = 6 pF and Cstray = 2 pF,
then CL1 = CL2 = 8 pF.
Figure 20. Typical application with a 32.768 kHz crystal
Resonator with
integrated capacitors
CL1
fLSE
OSC32_IN
32.768 kH z
resonator
CL2
RF
Bias
controlled
gain
OSC32_OU T
STM32L15xxx
ai17853
Doc ID 022799 Rev 3
79/136
Electrical characteristics
6.3.6
STM32L151xC STM32L152xC
Internal clock source characteristics
The parameters given in Table 30 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 14.
High-speed internal (HSI) RC oscillator
Table 30.
Symbol
fHSI
TRIM
(1)(2)
HSI oscillator characteristics
Parameter
Conditions
Min
Typ
Max
Unit
Frequency
VDD = 3.0 V
-
16
-
MHz
HSI user-trimmed
resolution
Trimming code is not a multiple of 16
-
± 0.4
0.7
%
Trimming code is a multiple of 16
-
Accuracy of the
ACCHSI(2) factory-calibrated
HSI oscillator
-
± 1.5
%
VDDA = 3.0 V, TA = 25 °C
-1(3)
-
1(3)
%
VDDA = 3.0 V, TA = 0 to 55 °C
-1.5
-
1.5
%
VDDA = 3.0 V, TA = -10 to 70 °C
-2
-
2
%
VDDA = 3.0 V, TA = -10 to 85 °C
-2.5
-
2
%
VDDA = 3.0 V, TA = -10 to 105 °C
-4
-
2
%
VDDA = 1.65 V to 3.6 V
TA = -40 to 105 °C
-4
-
3
%
tSU(HSI)(2)
HSI oscillator
startup time
-
3.7
6
µs
IDD(HSI)(2)
HSI oscillator
power consumption
-
100
140
µA
1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are
multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).
2. Based on characterization, not tested in production.
3. Tested in production.
Low-speed internal (LSI) RC oscillator
Table 31.
LSI oscillator characteristics
Symbol
fLSI(1)
DLSI(2)
tsu(LSI)(3)
IDD(LSI)
(3)
Parameter
Min
Typ
Max
Unit
LSI frequency
26
38
56
kHz
LSI oscillator frequency drift
0°C ≤ TA ≤ 85°C
-10
-
4
%
LSI oscillator startup time
-
-
200
µs
LSI oscillator power consumption
-
400
510
nA
1. Tested in production.
2. This is a deviation for an individual part, once the initial frequency has been measured.
3. Guaranteed by design, not tested in production.
80/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Electrical characteristics
Multi-speed internal (MSI) RC oscillator
Table 32.
MSI oscillator characteristics
Symbol
Parameter
Condition
Typ
Max
Unit
MSI range 0
65.5
-
MSI range 1
131
-
MSI range 2
262
-
MSI range 3
524
-
MSI range 4
1.05
-
MSI range 5
2.1
-
MSI range 6
4.2
-
±0.5
-
%
±3
-
%
-
2.5
%/V
MSI range 0
0.75
-
MSI range 1
1
-
MSI range 2
1.5
-
MSI range 3
2.5
-
MSI range 4
4.5
-
MSI range 5
8
-
MSI range 6
15
-
kHz
fMSI
ACCMSI
Frequency after factory calibration, done at
VDD= 3.3 V and TA = 25 °C
Frequency error after factory calibration
DTEMP(MSI)(1)
MSI oscillator frequency drift
0 °C ≤ TA ≤ 85 °C
DVOLT(MSI)(1)
MSI oscillator frequency drift
1.65 V ≤ VDD ≤ 3.6 V, TA = 25 °C
IDD(MSI)(2)
MSI oscillator power consumption
Doc ID 022799 Rev 3
MHz
µA
81/136
Electrical characteristics
Table 32.
Symbol
tSU(MSI)
STM32L151xC STM32L152xC
MSI oscillator characteristics (continued)
Parameter
MSI oscillator startup time
Condition
Typ
Max
MSI range 0
30
-
MSI range 1
20
-
MSI range 2
15
-
MSI range 3
10
-
MSI range 4
6
-
MSI range 5
5
-
MSI range 6,
Voltage range 1
and 2
3.5
-
MSI range 6,
Voltage range 3
5
-
MSI range 0
-
40
MSI range 1
-
20
MSI range 2
-
10
MSI range 3
-
4
MSI range 4
-
2.5
MSI range 5
-
2
MSI range 6,
Voltage range 1
and 2
-
2
MSI range 3,
Voltage range 3
-
3
Any range to
range 5
-
4
Any range to
range 6
-
6
Unit
µs
tSTAB(MSI)(2)
fOVER(MSI)
MSI oscillator stabilization time
MHz
MSI oscillator frequency overshoot
1. This is a deviation for an individual part, once the initial frequency has been measured.
2. Based on characterization, not tested in production.
82/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
6.3.7
Electrical characteristics
PLL characteristics
The parameters given in Table 33 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 14.
Table 33.
PLL characteristics
Value
Symbol
Parameter
Unit
Min
Typ
Max(1)
PLL input clock(2)
2
-
24
MHz
PLL input clock duty cycle
45
-
55
%
fPLL_OUT
PLL output clock
2
-
32
MHz
tLOCK
Worst case PLL lock time
PLL input = 2 MHz
PLL VCO = 96 MHz
-
100
130
µs
Jitter
Cycle-to-cycle jitter
-
± 600
ps
IDDA(PLL)
Current consumption on VDDA
-
220
450
IDD(PLL)
Current consumption on VDD
-
120
150
fPLL_IN
µA
1. Based on characterization, not tested in production.
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with
the range defined by fPLL_OUT.
6.3.8
Memory characteristics
The characteristics are given at TA = -40 to 105 °C unless otherwise specified.
RAM memory
Table 34.
Symbol
VRM
RAM and hardware registers
Parameter
Conditions
Data retention mode(1)
STOP mode (or RESET)
Min
Typ
Max
Unit
1.65
-
-
V
1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware
registers (only in Stop mode).
Doc ID 022799 Rev 3
83/136
Electrical characteristics
STM32L151xC STM32L152xC
Flash memory and data EEPROM
Table 35.
Symbol
Flash memory and data EEPROM characteristics
Min
Typ
Max(1)
Unit
1.65
-
3.6
V
Erasing
-
3.28
3.94
Programming
-
3.28
3.94
Average current during
the whole programming /
erase operation
-
600
900
µA
Maximum current (peak) TA = 25 °C, VDD = 3.6 V
during the whole
programming / erase
operation
-
1.5
2.5
mA
Parameter
VDD
Operating voltage
Read / Write / Erase
tprog
Programming time for
word or half-page
IDD
Conditions
ms
1. Guaranteed by design, not tested in production.
Table 36.
Flash memory and data EEPROM endurance and retention
Value
Symbol
NCYC(2)
Parameter
Cycling (erase / write)
Program memory
Cycling (erase / write)
EEPROM data memory
Data retention (program memory) after
10 kcycles at TA = 85 °C
tRET(2)
Data retention (EEPROM data memory)
after 300 kcycles at TA = 85 °C
Data retention (program memory) after
10 kcycles at TA = 105 °C
Data retention (EEPROM data memory)
after 300 kcycles at TA = 105 °C
Conditions
TA = -40°C to
105 °C
10
-
Unit
kcycles
300
-
-
30
-
-
30
-
-
TRET = +85 °C
years
10
-
-
10
-
-
TRET = +105 °C
1. Based on characterization not tested in production.
2. Characterization is done according to JEDEC JESD22-A117.
84/136
Min(1) Typ Max
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
6.3.9
Electrical characteristics
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the
device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
●
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
●
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 37. They are based on the EMS levels and classes
defined in application note AN1709.
Table 37.
EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
VDD = 3.3 V, LQFP100, TA = +25 °C,
Voltage limits to be applied on any I/O pin to
fHCLK = 32 MHz
induce a functional disturbance
conforms to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP100, TA = +25 °C,
fHCLK = 32 MHz
conforms to IEC 61000-4-4
4A
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
●
Corrupted program counter
●
Unexpected reset
●
Critical data corruption (control registers...)
Doc ID 022799 Rev 3
85/136
Electrical characteristics
STM32L151xC STM32L152xC
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 38.
EMI characteristics
Max vs. frequency range
Symbol Parameter
SEMI
6.3.10
Conditions
VDD = 3.3 V,
TA = 25 °C,
Peak level LQFP100 package
compliant with IEC
61967-2
Monitored
frequency band
4 MHz
16 MHz 32 MHz
voltage voltage voltage
range 3 range 2 range 1
0.1 to 30 MHz
3
-6
-5
30 to 130 MHz
18
4
-7
130 MHz to 1GHz
15
5
-7
SAE EMI Level
2.5
2
1
Unit
dBµV
-
Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 39.
Symbol
ESD absolute maximum ratings
Ratings
Conditions
VESD(HBM)
Electrostatic discharge
TA = +25 °C, conforming
voltage (human body model) to JESD22-A114
2
2000
VESD(CDM)
Electrostatic discharge
TA = +25 °C, conforming
voltage (charge device model) to JESD22-C101
II
500
1. Based on characterization results, not tested in production.
86/136
Class Maximum value(1) Unit
Doc ID 022799 Rev 3
V
STM32L151xC STM32L152xC
Electrical characteristics
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
●
A supply overvoltage is applied to each power supply pin
●
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 40.
Symbol
LU
6.3.11
Electrical sensitivities
Parameter
Conditions
Static latch-up class
Class
TA = +105 °C conforming to JESD78A
II level A
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard pins) should be avoided during normal product operation. However,
in order to give an indication of the robustness of the microcontroller in cases when
abnormal injection accidentally happens, susceptibility tests are performed on a sample
basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into the
I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error, out of spec current
injection on adjacent pins or other functional failure (for example reset, oscillator frequency
deviation, LCD levels, etc.).
The test results are given in the following table.
Table 41. I/O current injection susceptibility
Functional susceptibility
Symbol
IINJ
Description
Negative
injection
Positive
injection
Injected current on true open-drain pins
-5
+0
Injected current on all 5 V tolerant (FT) pins
-5
+0
Injected current on any other pin
-5
+5
Doc ID 022799 Rev 3
Unit
mA
87/136
Electrical characteristics
6.3.12
STM32L151xC STM32L152xC
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 42 are derived from tests
performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL
compliant.
Table 42.
I/O static characteristics
Symbol
VIL
Parameter
Conditions
VIL
Typ
Max
VSS - 0.3
-
0.8
-
VDD+0.3
-
5.5V
-
0.3VDD(3)
-
VDD+0.3
-
5.25
-
5.5
10% VDD(7)
-
-
VSS ≤ VIN ≤ VDD
I/Os with LCD
-
-
±50
VSS ≤ VIN ≤ VDD
I/Os with analog
switches
-
-
±50
VSS ≤ VIN ≤ VDD
I/Os with analog
switches and LCD
-
-
±50
VSS ≤ VIN ≤ VDD
I/Os with USB
-
-
TBD
VSS ≤ VIN ≤ VDD
Standard I/Os
-
-
±50
VIN = VSS
30
45
60
kΩ
VIN = VDD
30
45
60
kΩ
-
5
-
pF
Input low level voltage
TTL ports
2.7 V ≤ VDD≤ 3.6 V
Standard I/O input high level voltage
VIH
Min
FT
(2)
I/O input high level voltage
Input low level voltage
CMOS ports
1.65 V ≤ VDD≤ 3.6 V
Standard I/O Input high level voltage
CMOS ports
1.65 V ≤ VDD≤ 3.6 V
CMOS ports
1.65 V ≤ VDD≤ 2.0 V
VIH
FT
(5)
2(1)
I/O input high level voltage
–0.3
0.7 VDD(3)(4)
CMOS ports
2.0 V≤ VDD≤ 3.6 V
Vhys
Ilkg
RPU
Standard I/O Schmitt trigger voltage
hysteresis(6)
Input leakage current (8)(3)
Weak pull-up equivalent resistor(9)(3)
RPD
Weak pull-down equivalent
CIO
I/O pin capacitance
resistor(9)(3)
1. Guaranteed by design.
2. FT = 5V tolerant. To sustain a voltage higher than VDD +0.5 the internal pull-up/pull-down resistors must be disabled.
3. Tested in production
4. 0.7VDD for 5V-tolerant receiver
5. FT = Five-volt tolerant.
6. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.
7. With a minimum of 200 mV. Based on characterization, not tested in production.
88/136
Doc ID 022799 Rev 3
Unit
V
nA
STM32L151xC STM32L152xC
Electrical characteristics
8. The max. value may be exceeded if negative current is injected on adjacent pins.
9. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This
MOS/NMOS contribution to the series resistance is minimum (~10% order).
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA with the non-standard VOL/VOH specifications given in Table 43.
in the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:
●
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 12).
●
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 12).
Output voltage levels
Unless otherwise specified, the parameters given in Table 43 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 14. All I/Os are CMOS and TTL compliant.
Table 43.
Output voltage characteristics
Symbol
Parameter
VOL(1)(2)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH(3)(2)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
VOL (1)(4)
Output low level voltage for an I/O pin
when 8 pins are sunk at same time
VOH (3)(4)
Output high level voltage for an I/O pin
when 8 pins are sourced at same time
VOL(1)(4)
Output low level voltage for an I/O pin
when 4 pins are sunk at same time
VOH(3)(4)
Output high level voltage for an I/O pin
when 4 pins are sourced at same time
Conditions
IIO = +8 mA
2.7 V < VDD < 3.6 V
IIO =+ 4 mA
1.65 V < VDD <
2.7 V
IIO = +20 mA
2.7 V < VDD < 3.6 V
Min
Max
-
0.4
2.4
-
-
0.45
VDD-0.45
-
-
1.3
VDD-1.3
-
Unit
V
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
2. Tested in production.
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
4. Based on characterization data, not tested in production.
Doc ID 022799 Rev 3
89/136
Electrical characteristics
STM32L151xC STM32L152xC
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 21 and
Table 44, respectively.
Unless otherwise specified, the parameters given in Table 44 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 14.
Table 44.
OSPEEDRx
[1:0] bit
value(1)
I/O AC characteristics(1)
Symbol
Parameter
fmax(IO)out Maximum frequency(3)
00
tf(IO)out
tr(IO)out
Output rise and fall time
fmax(IO)out Maximum frequency(3)
01
tf(IO)out
tr(IO)out
Output rise and fall time
Fmax(IO)out Maximum frequency(3)
10
tf(IO)out
tr(IO)out
Output rise and fall time
Fmax(IO)out Maximum frequency(3)
11
-
tf(IO)out
tr(IO)out
Output rise and fall time
tEXTIpw
Pulse width of external
signals detected by the
EXTI controller
Min
Max(2)
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
400
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
400
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
625
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
625
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
2
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
1
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
125
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
250
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
10
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
2
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
25
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
125
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
50
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
8
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
5
CL = 50 pF, VDD = 1.65 V to 2.7 V
-
30
Conditions
Unit
kHz
ns
MHz
ns
MHz
ns
MHz
ns
8
-
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32L151xx, STM32L152xx and STM32L162xx
reference manual for a description of GPIO Port configuration register.
2. Guaranteed by design. Not tested in production.
3. The maximum frequency is defined in Figure 21.
90/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Electrical characteristics
Figure 21. I/O AC characteristics definition
90%
10%
50%
50%
90%
10%
External
Output
on 50pF
tr(I O)out
tr(I O)out
T
Maximum frequency is achieved if (tr + tf)  2/3)T and if the duty cycle is (45-55%)
when loaded by 50 pF
ai14131
6.3.13
NRST pin characteristics
The NRST pin input driver uses CMOS technology.
Unless otherwise specified, the parameters given in Table 45 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 14.
Table 45.
Symbol
NRST pin characteristics
Parameter
Conditions
Min
Typ Max Unit
VIL(NRST)(1) NRST input low level voltage
VSS
-
0.8
VIH(NRST)(1) NRST input high level voltage
1.4
-
VDD
IOL = 2 mA
2.7 V < VDD < 3.6 V
-
-
IOL = 1.5 mA
1.65 V < VDD < 2.7 V
-
-
10%VDD(2)
-
-
mV
30
45
60
kΩ
-
-
50
ns
350
-
-
ns
NRST output low level
VOL(NRST)(1)
voltage
Vhys(NRST)(1)
NRST Schmitt trigger voltage
hysteresis
RPU
Weak pull-up equivalent
resistor(3)
VF(NRST)(1)
NRST input filtered pulse
VNF(NRST)(1)
NRST input not filtered pulse
VIN = VSS
V
0.4
1. Guaranteed by design, not tested in production.
2. 200 mV minimum value
3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
the series resistance is around 10%.
Doc ID 022799 Rev 3
91/136
Electrical characteristics
STM32L151xC STM32L152xC
Figure 22. Recommended NRST pin protection
VDD
External
reset circuit(1)
NRST(2)
RPU
Internal reset
Filter
0.1 μF
STM32L15xxx
ai17854
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 45. Otherwise the reset will not be taken into account by the device.
6.3.14
TIM timer characteristics
The parameters given in the following table are guaranteed by design.
Refer to Section 6.3.11: I/O current injection characteristics for details on the input/output
alternate function characteristics (output compare, input capture, external clock, PWM
output).
Table 46.
Symbol
tres(TIM)
fEXT
ResTIM
tCOUNTER
TIMx(1) characteristics
Parameter
Conditions
Min
Max
Unit
1
-
tTIMxCLK
31.25
-
ns
0
fTIMxCLK/2
MHz
0
16
MHz
16
bit
65536
tTIMxCLK
2048
µs
-
65536 × 65536
tTIMxCLK
-
134.2
s
Timer resolution time
fTIMxCLK = 32 MHz
Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 32 MHz
Timer resolution
16-bit counter clock period
1
when internal clock is
selected (timer’s prescaler f
TIMxCLK = 32 MHz 0.0312
disabled)
tMAX_COUNT Maximum possible count
fTIMxCLK = 32 MHz
1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.
92/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
6.3.15
Electrical characteristics
Communications interfaces
I2C interface characteristics
Unless otherwise specified, the parameters given in Table 47 are derived from tests
performed under ambient temperature, fPCLK1 frequency and VDD supply voltage conditions
summarized in Table 14.
The STM32L15xxC product line I2C interface meets the requirements of the standard I2C
communication protocol with the following restrictions: SDA and SCL are not “true” opendrain I/O pins. When configured as open-drain, the PMOS connected between the I/O pin
and VDD is disabled, but is still present.
The I2C characteristics are described in Table 47. Refer also to Section 6.3.11: I/O current
injection characteristics for more details on the input/output alternate function characteristics
(SDA and SCL).
Table 47.
I2C characteristics
Standard mode I2C(1)
Symbol
Fast mode I2C(1)(2)
Parameter
Unit
Min
Max
Min
Max
tw(SCLL)
SCL clock low time
4.7
-
1.3
-
tw(SCLH)
SCL clock high time
4.0
-
0.6
-
tsu(SDA)
SDA setup time
250
-
100
-
th(SDA)
SDA data hold time
0
-
0
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
-
1000
20 + 0.1Cb
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
-
300
-
300
th(STA)
Start condition hold time
4.0
-
0.6
-
tsu(STA)
Repeated Start condition
setup time
4.7
-
0.6
-
tsu(STO)
Stop condition setup time
4.0
-
0.6
-
μs
tw(STO:STA)
Stop to Start condition time
(bus free)
4.7
-
1.3
-
μs
Cb
Capacitive load for each bus
line
-
400
-
400
pF
µs
ns
µs
1. Guaranteed by design, not tested in production.
2. fPCLK1 must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to
achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast
mode clock.
3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL
signal.
Doc ID 022799 Rev 3
93/136
Electrical characteristics
STM32L151xC STM32L152xC
Figure 23. I2C bus AC waveforms and measurement circuit
VDD
VDD
4 .7 k
4 .7 k
STM32L15xxx
100
SDA
I2C bus
100
SCL
S TART REPEATED
S TART
S TART
tsu(STA)
SDA
tf(SDA)
tr(SDA)
th(STA)
SCL
tw(SCKH)
tsu(SDA)
tw(SCKL)
tr(SCK)
tsu(STA:STO)
S TOP
th(SDA)
tsu(STO)
tf(SCK)
ai17855
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Table 48.
SCL frequency (fPCLK1= 32 MHz, VDD = 3.3 V)(1)(2)
I2C_CCR value
fSCL (kHz)
RP = 4.7 kΩ
400
0x801B
300
0x8024
200
0x8035
100
0x00A0
50
0x0140
20
0x0320
2
1. RP = External pull-up resistance, fSCL = I C speed.
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external
components used to design the application.
94/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Electrical characteristics
SPI characteristics
Unless otherwise specified, the parameters given in the following table are derived from
tests performed under ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 14.
Refer to Section 6.3.11: I/O current injection characteristics for more details on the
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 49.
SPI characteristics(1)
Symbol
fSCK
1/tc(SCK)
Min
Max(2)
Master mode
-
16
Slave mode
-
16
Parameter
Conditions
SPI clock frequency
MHz
(3)
Slave transmitter
-
SPI clock rise and fall time
Capacitive load: C = 30 pF
-
6
ns
SPI slave input clock duty cycle
Slave mode
30
70
%
tsu(NSS)
NSS setup time
Slave mode
4tHCLK
-
th(NSS)
NSS hold time
Slave mode
2tHCLK
-
SCK high and low time
Master mode
tSCK/2−5
tSCK/2+3
Master mode
5
-
Slave mode
6
-
Master mode
5
-
Slave mode
5
-
tr(SCK)(2)
tf(SCK)(2)
DuCy(SCK)
tw(SCKH)(2)
tw(SCKL)(2)
tsu(MI)(2)
tsu(SI)(2)
Data input setup time
(2)
th(MI)
th(SI)
(2)
12
Unit
Data input hold time
ta(SO)(4)
Data output access time
Slave mode
0
3tHCLK
tv(SO) (2)
Data output valid time
Slave mode
-
33
tv(MO)(2)
Data output valid time
Master mode
-
6.5
Slave mode
17
-
Master mode
0.5
-
th(SO)
(2)
th(MO)
(2)
ns
Data output hold time
1. The characteristics above are given for voltage range 1.
2. Based on characterization, not tested in production.
3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK))
ranging between 40 to 60%.
4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.
Doc ID 022799 Rev 3
95/136
Electrical characteristics
STM32L151xC STM32L152xC
Figure 24. SPI timing diagram - slave mode and CPHA = 0
NSS input
tc(SCK)
th(NSS)
tSU(NSS)
SCK Input
CPHA= 0
CPOL=0
tw(SCKH)
tw(SCKL)
CPHA= 0
CPOL=1
tv(SO)
ta(SO)
MISO
OUT P UT
tr(SCK)
tf(SCK)
th(SO)
MS B O UT
BI T6 OUT
tdis(SO)
LSB OUT
tsu(SI)
MOSI
I NPUT
B I T1 IN
M SB IN
LSB IN
th(SI)
ai14134c
Figure 25. SPI timing diagram - slave mode and CPHA = 1(1)
NSS input
tSU(NSS)
SCK Input
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tc(SCK)
tw(SCKH)
tw(SCKL)
tv(SO)
ta(SO)
MISO
OUT P UT
MS B O UT
tsu(SI)
MOSI
I NPUT
th(NSS)
th(SO)
BI T6 OUT
tr(SCK)
tf(SCK)
tdis(SO)
LSB OUT
th(SI)
B I T1 IN
M SB IN
LSB IN
ai14135
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
96/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Electrical characteristics
Figure 26. SPI timing diagram - master mode(1)
High
NSS input
SCK Input
CPHA= 0
CPOL=0
SCK Input
tc(SCK)
CPHA=1
CPOL=0
CPHA= 0
CPOL=1
CPHA=1
CPOL=1
tsu(MI)
MISO
INP UT
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
MS BIN
BI T6 IN
LSB IN
th(MI)
MOSI
OUTPUT
M SB OUT
B I T1 OUT
tv(MO)
LSB OUT
th(MO)
ai14136
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Doc ID 022799 Rev 3
97/136
Electrical characteristics
6.3.16
STM32L151xC STM32L152xC
I2S characteristics
Table 50.
Symbol
fMCK
I2S characteristics
Parameter
Conditions
Min
Max
256 x 8K 256xFs (1)
I2S Main Clock Output
Master data: 32 bits
-
64xFs
Slave data: 32 bits
-
64xFs
30
70
fCK
I2S clock frequency
DCK
I2S clock frequency duty cycle Slave receiver, 48KHz
tr(CK)
I2S clock rise time
tf(CK)
I2S clock fall time
tv(WS)
WS valid time
Master mode
4
24
th(WS)
WS hold time
Master mode
0
-
tsu(WS)
WS setup time
Slave mode
15
-
th(WS)
WS hold time
Slave mode
0
-
tsu(SD_MR) Data input setup time
Master receiver
8
-
tsu(SD_SR) Data input setup time
Slave receiver
9
-
th(SD_MR)
Master receiver
5
-
Slave receiver
4
-
Unit
MHz
MHz
%
8
Capacitive load CL=30pF
8
ns
Data input hold time
th(SD_SR)
tv(SD_ST)
Data output valid time
Slave transmitter
(after enable edge)
-
64
th(SD_ST)
Data output hold time
Slave transmitter
(after enable edge)
22
-
tv(SD_MT) Data output valid time
Master transmitter
(after enable edge)
-
12
th(SD_MT) Data output hold time
Master transmitter
(after enable edge)
8
-
1. The maximum for 256xFs is 8 MHz
Note:
98/136
Refer to the I2S section of the product reference manual for more details about the sampling
frequency (Fs), fMCK, fCK and DCK values. These values reflect only the digital peripheral
behavior, source clock precision might slightly change them. DCK depends mainly on the
ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of
(I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Electrical characteristics
Figure 27. I2S slave timing diagram (Philips protocol)(1)
CK Input
tc(CK)
CPOL = 0
CPOL = 1
tw(CKH)
th(WS)
tw(CKL)
WS input
tv(SD_ST)
tsu(WS)
SDtransmit
LSB transmit(2)
MSB transmit
Bitn transmit
tsu(SD_SR)
LSB transmit
th(SD_SR)
LSB receive(2)
SDreceive
th(SD_ST)
MSB receive
Bitn receive
LSB receive
ai14881b
1. Measurement points are done at CMOS levels: 0.3 × VDD and 0.7 × VDD.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 28. I2S master timing diagram (Philips protocol)(1)
tf(CK)
tr(CK)
CK output
tc(CK)
CPOL = 0
tw(CKH)
CPOL = 1
tv(WS)
th(WS)
tw(CKL)
WS output
tv(SD_MT)
SDtransmit
LSB transmit(2)
MSB transmit
LSB receive(2)
LSB transmit
th(SD_MR)
tsu(SD_MR)
SDreceive
Bitn transmit
th(SD_MT)
MSB receive
Bitn receive
LSB receive
ai14884b
1. Based on characterization, not tested in production.
2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Doc ID 022799 Rev 3
99/136
Electrical characteristics
STM32L151xC STM32L152xC
USB characteristics
The USB interface is USB-IF certified (full speed).
Table 51.
USB startup time
Symbol
tSTARTUP(1)
Parameter
Max
Unit
1
µs
USB transceiver startup time
1. Guaranteed by design, not tested in production.
Table 52.
USB DC electrical characteristics
Min.(1)
Max.(1)
Unit
3.0
3.6
V
0.2
-
Differential common mode range Includes VDI range
0.8
2.5
Single ended receiver threshold
1.3
2.0
-
0.3
2.8
3.6
Symbol
Parameter
Conditions
Input levels
VDD
VDI(2)
VCM
(2)
VSE(2)
USB operating voltage
Differential input sensitivity
I(USB_DP, USB_DM)
V
Output levels
VOL(3)
VOH
(3)
RL of 1.5 kΩ to 3.6 V(4)
Static output level low
Static output level high
RL of 15 kΩ to
V
VSS(4)
1. All the voltages are measured from the local ground potential.
2. Guaranteed by characterization, not tested in production.
3. Tested in production.
4. RL is the load connected on the USB drivers.
Figure 29. USB timings: definition of data signal rise and fall time
Crossover
points
Differen tial
Data L ines
VCRS
VS S
Table 53.
tr
tf
ai14137
USB: full speed electrical characteristics
Driver characteristics(1)
Symbol
Conditions
Min
Max
Unit
tr
Rise time(2)
CL = 50 pF
4
20
ns
tf
Time(2)
CL = 50 pF
4
20
ns
tr/tf
90
110
%
1.3
2.0
V
trfm
VCRS
100/136
Parameter
Fall
Rise/ fall time matching
Output signal crossover voltage
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Electrical characteristics
1. Guaranteed by design, not tested in production.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
6.3.17
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 55 are guaranteed by design.
Table 54.
Symbol
fADC
ADC clock frequency
Parameter
ADC clock
frequency
Conditions
Min
Max
VREF+ = VDDA
16
VREF+ < VDDA
2.4 V ≤ VDDA ≤ 3.6 V VREF+ > 2.4 V
8
Voltage
range 1 & 2
VREF+ < VDDA
VREF+ ≤ 2.4 V
1.8 V ≤ VDDA ≤ 2.4 V
4
0.480
VREF+ = VDDA
8
VREF+ < VDDA
4
Voltage range 3
Table 55.
Symbol
MHz
4
ADC characteristics
Parameter
Conditions
Min
Typ
Max
1.8
-
3.6
1.8(1)
-
VDDA
VDDA
Power supply
VREF+
Positive reference voltage
VREF-
Negative reference voltage
-
VSSA
-
IVDDA
Current on the VDDA input
pin
-
1000
1450
IVREF(2)
Current on the VREF input
pin
VAIN
Unit
2.4 V ≤ VDDA ≤ 3.6 V
VREF+ must be below
or equal to VDDA
V
µA
Peak
-
700
400
Average
Conversion voltage range(3)
-
450
0(4)
-
VREF+
Direct channels
0.03
-
1
Multiplexed channels
0.03
-
0.76
Direct channels
0.03
-
1.07
Multiplexed channels
0.03
-
0.8
Direct channels
0.03
-
1.23
Multiplexed channels
0.03
-
0.89
Direct channels
0.03
-
1.54
Multiplexed channels
0.03
-
1
12-bit sampling rate
V
Msps
10-bit sampling rate
fS
Unit
Msps
8-bit sampling rate
Msps
6-bit sampling rate
Msps
Doc ID 022799 Rev 3
101/136
Electrical characteristics
Table 55.
Symbol
tS
STM32L151xC STM32L152xC
ADC characteristics (continued)
Parameter
Sampling time
Conditions
Min
Typ
Max
Direct channels
2.4 V ≤ VDDA ≤ 3.6 V
0.25(5)
-
-
Multiplexed channels
2.4 V ≤ VDDA ≤ 3.6 V
0.56(5)
-
-
Direct channels
1.8 V ≤ VDDA ≤ 2.4 V
0.56
(5)
Multiplexed channels
1.8 V ≤ VDDA ≤ 2.4 V
µs
fADC = 16 MHz
tCONV
Total conversion time
(including sampling time)
CADC
Internal sample and hold
capacitor
fTRIG
External trigger frequency
Regular sequencer
fTRIG
External trigger frequency
Injected sequencer
RAIN(6)
External input impedance
tlat
Injection trigger conversion
latency
fADC = 16 MHz
tlatr
Regular trigger conversion
latency
fADC = 16 MHz
tSTAB
Unit
-
-
1(5)
-
-
4
-
384
1/fADC
1
-
24.75
µs
4 to 384 (sampling
phase) +12 (successive
approximation)
Direct channels
-
1/fADC
16
pF
Multiplexed channels
-
-
12-bit conversions
-
-
6/8/10-bit conversions
-
-
12-bit conversions
-
-
Tconv+2 1/fADC
6/8/10-bit conversions
-
-
Tconv+1 1/fADC
-
-
50
-
-
0.5
219
-
281
ns
3.5
-
4.5
1/fADC
156
-
219
ns
2.5
-
3.5
1/fADC
-
-
3.5
µs
Tconv+1 1/fADC
Tconv
1/fADC
kΩ
Power-up time
1. The Vref+ input can be grounded if neither the ADC nor the DAC are used (this allows to shut down an
external voltage reference).
2. The current consumption through VREF is composed of two parameters:
- one constant (max 300 µA)
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses
So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x
400 = 450 µA at 1Msps
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on
the package. Refer to Section 4: Pin descriptions for further details.
4. VSSA or VREF- must be tied to ground.
5. Minimum sampling and conversion time is reached for maximum Rext = 0.5 kΩ.
6. For 1 Msps, maximum Rext is 0.5 kΩ.
102/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Table 56.
ADC accuracy(1)(2)
Symbol
Parameter
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
ENOB
Effective number of bits
SINAD
Signal-to-noise and
distortion ratio
SNR
Signal-to-noise ratio
THD
Total harmonic distortion
Electrical characteristics
Test conditions
2.4 V ≤ VDDA ≤ 3.6 V
2.4 V ≤ VREF+ ≤ 3.6 V
fADC = 8 MHz, RAIN = 50 Ω
TA = -40 to 105 °C
2.4 V ≤ VDDA ≤ 3.6 V
VDDA = VREF+
fADC = 16 MHz, RAIN = 50 Ω
TA = -40 to 105 °C
1 kHz ≤ Finput ≤ 100 kHz
Min(3)
Typ
Max(3)
-
2
4
-
1
2
-
1.5
3.5
-
1
2
-
1.7
3
9.2
10
-
57.5
62
-
57.5
62
-
-74
-75
-
-
4
6.5
-
2
4
-
4
6
-
1
2
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
-
1.5
3
ET
Total unadjusted error
-
2
3
EO
Offset error
-
1
1.5
EG
Gain error
-
1.5
2
ED
Differential linearity error
-
1
2
EL
Integral linearity error
-
1
1.5
2.4 V ≤ VDDA ≤ 3.6 V
1.8 V ≤ VREF+ ≤ 2.4 V
fADC = 4 MHz, RAIN = 50 Ω
TA = -40 to 105 °C
1.8 V ≤ VDDA ≤ 2.4 V
1.8 V ≤ VREF+ ≤ 2.4 V
fADC = 4 MHz, RAIN = 50 Ω
TA = -40 to 105 °C
Unit
LSB
bits
dB
LSB
LSB
1. ADC DC accuracy values are measured after internal calibration.
2. ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.11 does not affect the ADC
accuracy.
3. Based on characterization, not tested in production.
Doc ID 022799 Rev 3
103/136
Electrical characteristics
STM32L151xC STM32L152xC
Figure 30. ADC accuracy characteristics
V
V
[1LSBIDEAL = REF+ (or DDA depending on package)]
4096
4096
EG
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
4095
4094
4093
(2)
ET
ET=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
EO=Offset Error: deviation between the first actual
transition and the first ideal one.
EG=Gain Error: deviation between the last ideal
transition and the last actual one.
ED=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
EL=Integral Linearity Error: maximum deviation
between any actual transition and the end point
correlation line.
(3)
7
(1)
6
5
EO
4
EL
3
ED
2
1 LSBIDEAL
1
0
1
VSSA
2
3
4
5
6
7
4093 4094 4095 4096
VDDA
ai14395b
Figure 31. Typical connection diagram using the ADC
VDD
(1)
RAIN
VAIN
VT
0.6 V
AINx
Cparasitic
VT
0.6 V
IL± 50 nA
STM32L15xxx
Sample and hold ADC
converter
RADC(1)
12-bit
converter
CADC(1)
ai17856b
1. Refer to Table 55 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
104/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Electrical characteristics
Figure 32. Maximum dynamic current consumption on VREF+ supply pin during ADC
conversion
Sampling (n cycles)
Conversion (12 cycles)
ADC clock
Iref+
700µA
300µA
Table 57.
RAIN max for fADC = 16 MHz(1)
RAIN max (kΩ)
Ts
(cycles)
Ts
(µs)
Multiplexed channels
Direct channels
2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA < 3.3 V
1.8 V < VDDA < 2.4 V
4
0.25
Not allowed
Not allowed
0.7
Not allowed
9
0.5625
0.8
Not allowed
2.0
1.0
16
1
2.0
0.8
4.0
3.0
24
1.5
3.0
1.8
6.0
4.5
48
3
6.8
4.0
15.0
10.0
96
6
15.0
10.0
30.0
20.0
192
12
32.0
25.0
50.0
40.0
384
24
50.0
50.0
50.0
50.0
1. Guaranteed by design, not tested in production.
Doc ID 022799 Rev 3
105/136
Electrical characteristics
STM32L151xC STM32L152xC
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 33 or Figure 34,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed as close as possible to the chip.
Figure 33. Power supply and reference decoupling (VREF+ not connected to VDDA)
STM32L15xxx
VREF+
(see note 1)
1 μF // 100 nF
VDDA
1 μF // 100 nF
VSSA /VREF–
(see note 1)
ai17857b
1. VREF+ and VREF– inputs are available only on 100-pin packages.
Figure 34. Power supply and reference decoupling (VREF+ connected to VDDA)
STM32L15xxx
VREF+/VDDA
(See note 1)
1 μF // 100 nF
VREF–/VSSA
(See note 1)
ai17858a
1. VREF+ and VREF– inputs are available only on 100-pin packages.
106/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
6.3.18
Electrical characteristics
DAC electrical specifications
Data guaranteed by design, not tested in production, unless otherwise specified.
Table 58.
Symbol
DAC characteristics
Parameter
Conditions
Min
Typ
Max
1.8
-
3.6
1.8
-
3.6
Unit
VDDA
Analog supply voltage
VREF+
Reference supply voltage
VREF-
Lower reference voltage
Current consumption on
VREF+ supply
VREF+ = 3.3 V
No load, middle code (0x800)
-
130
220
IDDVREF+(1)
No load, worst code (0x000)
-
220
350
No load, middle code (0x800)
-
210
320
IDDA(1)
Current consumption on
VDDA supply
VDDA = 3.3 V
No load, worst code (0xF1C)
-
320
520
RL(2)
Resistive load
5
-
-
kΩ
-
-
50
pF
DAC output buffer OFF
6
8
10
kΩ
DAC output buffer ON
0.2
-
VDDA – 0.2
V
DAC output buffer OFF
0.5
-
VREF+ – 1LSB
mV
CL ≤ 50 pF, RL ≥ 5 kΩ
DAC output buffer ON
-
1.5
3
No RLOAD, CL ≤ 50 pF
DAC output buffer OFF
-
1.5
3
CL ≤ 50 pF, RL ≥ 5 kΩ
DAC output buffer ON
-
2
4
No RLOAD, CL ≤ 50 pF
DAC output buffer OFF
-
2
4
CL ≤ 50 pF, RL ≥ 5 kΩ
DAC output buffer ON
-
±10
±25
No RLOAD, CL ≤ 50 pF
DAC output buffer OFF
-
±5
±8
No RLOAD, CL ≤ 50 pF
DAC output buffer OFF
-
±1.5
±5
CL
(2)
VDAC_OUT
DNL
INL
(1)
(1)
Offset(1)
Offset1(1)
V
VSSA
µA
DAC output buffer ON
Capacitive load
Output impedance
RO
VREF+ must always be below
VDDA
Voltage on DAC_OUT
output
Differential non
Integral non
linearity(3)
linearity(4)
Offset error at code
0x800 (5)
Offset error at code
0x001(6)
Doc ID 022799 Rev 3
LSB
107/136
Electrical characteristics
Table 58.
Symbol
dOffset/dT(1)
Gain(1)
dGain/dT(1)
TUE(1)
STM32L151xC STM32L152xC
DAC characteristics (continued)
Parameter
Offset error temperature
coefficient (code 0x800)
Gain error(7)
Gain error temperature
coefficient
Total unadjusted error
Conditions
VDDA = 3.3V
VREF+ = 3.0V
TA = 0 to 50 °C
DAC output buffer OFF
Min
Typ
Max
-20
-10
0
Unit
µV/°C
VDDA = 3.3V
VREF+ = 3.0V
TA = 0 to 50 °C
DAC output buffer ON
0
CL ≤ 50 pF, RL ≥ 5 kΩ
DAC output buffer ON
-
20
50
+0.1 / -0.2% +0.2 / -0.5%
%
No RLOAD, CL ≤ 50 pF
DAC output buffer OFF
-
+0 / -0.2%
+0 / -0.4%
VDDA = 3.3V
VREF+ = 3.0V
TA = 0 to 50 °C
DAC output buffer OFF
-10
-2
0
µV/°C
VDDA = 3.3V
VREF+ = 3.0V
TA = 0 to 50 °C
DAC output buffer ON
-40
-8
0
CL ≤ 50 pF, RL ≥ 5 kΩ
DAC output buffer ON
-
12
30
LSB
No RLOAD, CL ≤ 50 pF
DAC output buffer OFF
-
8
12
Settling time (full scale: for
a 12-bit code transition
between the lowest and
C ≤ 50 pF, RL ≥ 5 kΩ
the highest input codes till L
DAC_OUT reaches final
value ±1LSB
-
7
12
µs
Max frequency for a
correct DAC_OUT change
Update rate (95% of final value) with 1 CL ≤ 50 pF, RL ≥ 5 kΩ
LSB variation in the input
code
-
1
Msps
tSETTLING
tWAKEUP
Wakeup time from off
state (setting the ENx bit
in the DAC Control
register)(8)
CL ≤ 50 pF, RL ≥ 5 kΩ
-
9
15
µs
PSRR+
VDDA supply rejection ratio
CL ≤ 50 pF, RL ≥ 5 kΩ
(static DC measurement)
-
-60
-35
dB
1. Data based on characterization results.
2. Connected between DAC_OUT and VSSA.
3. Difference between two consecutive codes - 1 LSB.
4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 4095.
5. Difference between the value measured at Code (0x800) and the ideal value = VREF+/2.
108/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Electrical characteristics
6. Difference between the value measured at Code (0x001) and the ideal value.
7. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and 0xFFF when
buffer is OFF, and from code giving 0.2 V and (VDDA – 0.2) V when buffer is ON.
8. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).
Figure 35. 12-bit buffered /non-buffered DAC
Buffered/Non-buffered DAC
Buffer(1)
R LOAD
DAC_OUTx
12-bit
digital to
analog
converter
C LOAD
ai17157V2
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the
DAC_CR register.
6.3.19
Operational amplifier characteristics
Table 59.
Operational amplifier characteristics
Symbol
CMIR
Condition(1)
Parameter
Common mode input range
Maximum
calibration range
VIOFFSET
Min(2)
Typ
Max(2)
0
-
VDD
-
-
±15
Input offset voltage
mV
After offset
calibration
-
-
±1.5
-
-
±40
-
-
±80
-
-
1
-
-
10
Normal mode
-
-
500
Low power mode
-
-
100
-
100
220
-
30
60
ΔVIOFFSET
Input offset voltage Normal mode
drift
Low power mode
IIB
Input current bias
ILOAD
Drive current
IDD
Consumption
Common mode
rejection ration
Normal mode
-
-85
-
CMRR
Low power mode
-
-90
-
Power supply
rejection ratio
Normal mode
-
-85
-
-
-90
-
Dedicated input
General purpose
input
75 °C
µV/°C
nA
µA
Normal mode
PSRR
Unit
Low power mode
No load,
quiescent mode
µA
dB
DC
Low power mode
Doc ID 022799 Rev 3
dB
109/136
Electrical characteristics
Table 59.
STM32L151xC STM32L152xC
Operational amplifier characteristics (continued)
Symbol
Condition(1)
Parameter
Normal mode
Low power mode
GBW
VDD>2.4 V
Max(2)
400
1000
3000
150
300
800
200
500
2200
70
150
800
Slew rate
VDD<2.4 V
Normal mode
VDD>2.4 V
(between 0.1 V and
VDD-0.1 V)
-
700
-
Low power mode
VDD>2.4 V
-
100
-
-
300
-
-
50
-
Normal mode
55
100
-
Low power mode
65
110
-
4
-
-
20
-
-
-
-
50
VDD100
-
-
VDD-50
-
-
-
-
100
-
-
50
Normal mode
Low power mode
VDD<2.4 V
Open loop gain
Resistive load
CLOAD
Capacitive load
VOHSAT
High saturation
voltage
V/ms
dB
Normal mode
RLOAD
Unit
kHZ
Low power mode
AO
Typ
Bandwidth
Normal mode
SR
Min(2)
Low power mode
VDD<2.4 V
Normal mode
Low power mode
Normal mode
ILOAD = max or
RLOAD = min
kΩ
pF
mV
VOLSAT
Low saturation
voltage
ϕm
Phase margin
-
60
-
°
GM
Gain margin
-
-12
-
dB
tOFFTRIM
Offset trim time: during calibration,
minimum time needed between two
steps to have 1 mV accuracy
-
1
-
ms
tWAKEUP
low power mode
Normal mode
CLOAD ≤ 50 pf,
RLOAD ≥ 4 kΩ
-
10
-
Low power mode
CLOAD ≤ 50 pf,
RLOAD ≥ 20 kΩ
-
30
-
Wakeup time
µs
1. Operating conditions are limited to junction temperature (0 °C to 105 °C) when VDD is below 2 V. Otherwise, the operating
temperature range is 105 °C to -40 °C.
2. Data based on characterization results, not tested in production.
110/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
6.3.20
Electrical characteristics
Temperature sensor characteristics
Table 60.
Temperature sensor characteristics
Symbol
Parameter
TL(1)
VSENSE linearity with temperature
Avg_Slope
(1)
Average slope
(2)
Min
Typ
Max
Unit
-
±1
±2
°C
1.48
1.61
1.75
mV/°C
612
626.8
641.5
mV
µA
V110
Voltage at 110°C ±5°C
IDDA(TEMP)(3)
Current consumption
-
3.4
6
tSTART(3)
Startup time
-
-
10
TS_temp(4)(3)
ADC sampling time when reading the
temperature
10
-
-
µs
1. Guaranteed by characterization, not tested in production.
2. Measured at VDD = 3 V ±10 mV. V110 ADC conversion result is stored in the TSENSE_CAL2 byte.
3. Guaranteed by design, not tested in production.
4. Shortest sampling time can be determined in the application by multiple iterations.
6.3.21
Comparator
Table 61.
Symbol
Comparator 1 characteristics
Parameter
Conditions
Min(1)
Typ
Max(1)
Unit
3.6
V
VDDA
Analog supply voltage
R400K
R400K value
-
400
-
R10K
R10K value
-
10
-
0.6
-
VDDA
-
7
10
-
3
10
-
±3
±10
mV
0
1.5
10
mV/1000 h
-
160
260
nA
VIN
tSTART
Comparator startup time
Propagation delay
Voffset
Comparator offset
ICOMP1
kΩ
Comparator 1 input
voltage range
td
dVoffset/dt
1.65
µs
(2)
Comparator offset
variation in worst voltage
stress conditions
V
VDDA = 3.6 V
VIN+ = 0 V
VIN- = VREFINT
TA = 25 °C
Current consumption(3)
1. Based on characterization, not tested in production.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
3. Comparator consumption only. Internal reference voltage not included.
Doc ID 022799 Rev 3
111/136
Electrical characteristics
Table 62.
Symbol
VDDA
VIN
STM32L151xC STM32L152xC
Comparator 2 characteristics
Parameter
Analog supply voltage
Comparator startup time
td slow
Propagation delay(2) in slow mode
td fast
Propagation delay(2) in fast mode
Voffset
Comparator offset error
dThreshold/ Threshold voltage temperature
dt
coefficient
Current consumption(3)
Min
Typ Max(1) Unit
1.65
-
3.6
V
0
-
VDDA
V
Fast mode
-
15
20
Slow mode
-
20
25
1.65 V ≤ VDDA ≤ 2.7 V
-
1.8
3.5
2.7 V ≤ VDDA ≤ 3.6 V
-
2.5
6
1.65 V ≤ VDDA ≤ 2.7 V
-
0.8
2
2.7 V ≤ VDDA ≤ 3.6 V
-
1.2
4
-
±4
±20
mV
VDDA = 3.3V
TA = 0 to 50 °C
V- = VREF+, 3/4 VREF+,
1/2 VREF+, 1/4 VREF+.
-
15
30
ppm
/°C
Fast mode
-
3.5
5
Slow mode
-
0.5
2
Comparator 2 input voltage range
tSTART
ICOMP2
Conditions
µs
µA
1. Based on characterization, not tested in production.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not
included.
112/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
6.3.22
Electrical characteristics
LCD controller
The STM32L15xxC embeds a built-in step-up converter to provide a constant LCD
reference voltage independently from the VDD voltage. An external capacitor Cext must be
connected to the VLCD pin to decouple this converter.
Table 63.
Symbol
LCD controller characteristics
Parameter
Min
Typ
Max
VLCD
LCD external voltage
-
-
3.6
VLCD0
LCD internal reference voltage 0
-
2.6
-
VLCD1
LCD internal reference voltage 1
-
2.73
-
VLCD2
LCD internal reference voltage 2
-
2.86
-
VLCD3
LCD internal reference voltage 3
-
2.98
-
VLCD4
LCD internal reference voltage 4
-
3.12
-
VLCD5
LCD internal reference voltage 5
-
3.26
-
VLCD6
LCD internal reference voltage 6
-
3.4
-
VLCD7
LCD internal reference voltage 7
-
3.55
-
Cext
VLCD external capacitance
0.1
2
Unit
V
µF
Supply current at VDD = 2.2 V
-
3.3
-
Supply current at VDD = 3.0 V
-
3.1
-
Low drive resistive network overall value
5.28
6.6
7.92
MΩ
High drive resistive network total value
192
240
288
kΩ
V44
Segment/Common highest level voltage
-
-
VLCD
V
V34
Segment/Common 3/4 level voltage
-
3/4 VLCD
-
V23
Segment/Common 2/3 level voltage
-
2/3 VLCD
-
V12
Segment/Common 1/2 level voltage
-
1/2 VLCD
-
V13
Segment/Common 1/3 level voltage
-
1/3 VLCD
-
V14
Segment/Common 1/4 level voltage
-
1/4 VLCD
-
V0
Segment/Common lowest level voltage
0
-
-
Segment/Common level voltage error
TA = -40 to 85 °C
-
-
± 50
ILCD(1)
RHtot(2)
RL
(2)
ΔVxx(3)
µA
V
mV
1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD
connected.
2. Guaranteed by design, not tested in production.
3. Based on characterization, not tested in production.
Doc ID 022799 Rev 3
113/136
Package characteristics
STM32L151xC STM32L152xC
7
Package characteristics
7.1
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
114/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Package characteristics
Figure 36. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline
Seating plane
C
A
A2 A1
c
b
0.25 mm
gage plane
ccc
C
k
D
D1
A1
D3
L1
108
73
72
109
E3 E1
144
Pin 1
identification
L
E
37
36
1
e
ME_1A
Drawing is not to scale.
Doc ID 022799 Rev 3
115/136
Package characteristics
Table 64.
STM32L151xC STM32L152xC
LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical
data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.600
0.0630
A1
0.050
0.150
0.0020
A2
1.350
1.400
1.450
0.0531
0.0551
0.0571
b
0.170
0.220
0.270
0.0067
0.0087
0.0106
c
0.090
0.200
0.0035
D
21.800
22.000
22.200
0.8583
0.8661
0.8740
D1
19.800
20.000
20.200
0.7795
0.7874
0.7953
D3
0.0059
0.0079
17.500
E
21.800
E1
19.800
0.6890
22.000
22.200
0.8583
20.000
20.200
0.7795
0.8661
0.8740
0.7874
0.7953
E3
17.500
0.6890
e
0.500
0.0197
L
0.450
0.600
L1
k
0.750
0.0177
7°
0°
0.0236
1.000
0°
3.5°
ccc
3.5°
0.080
108
73
1.35
72
0.35
0.5
17.85
19.9
144
22.6
37
1
36
19.9
22.6
ai14905c
1. Dimensions are in millimeters.
Doc ID 022799 Rev 3
7°
0.0031
Figure 37. Recommended footprint
109
0.0295
0.0394
1. Values in inches are converted from mm and rounded to 4 decimal digits.
116/136
Max
STM32L151xC STM32L152xC
Package characteristics
Figure 38. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline
c
A1
A
A2
SEATING
PLANE
C
0.25 mm
GAUGE PLANE
L
D
K
A1
ccc C
L1
D1
D3
51
75
50
100
26
PIN 1
1
IDENTIFICATION
E
E3
E1
b
76
25
e
1L_ME_V3
1. Drawing is not to scale.
Doc ID 022799 Rev 3
117/136
Package characteristics
Table 65.
STM32L151xC STM32L152xC
LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical
data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.600
A1
0.050
A2
1.350
b
0.170
c
0.090
D
15.800
D1
13.800
D3
0.0630
0.150
0.0020
0.0059
1.400
1.450
0.0531
0.0551
0.0571
0.220
0.270
0.0067
0.0087
0.0106
0.200
0.0035
16.000
16.200
0.6220
0.6299
0.6378
14.000
14.200
0.5433
0.5512
0.5591
0.0079
12.000
0.4724
E
15.800
16.000
16.200
0.6220
0.6299
0.6378
E1
13.800
14.000
14.200
0.5433
0.5512
0.5591
E3
12.000
0.4724
e
0.500
0.0197
L
0.450
0.600
L1
k
0.750
0.0177
0.0236
1.000
0.0°
3.5°
ccc
7.0°
0.0°
3.5°
0.080
75
51
50
0.5
0.3
16.7
7.0°
0.0031
Figure 39. Recommended footprint
76
0.0295
0.0394
1. Values in inches are converted from mm and rounded to 4 decimal digits.
14.3
100
26
1.2
1
25
12.3
16.7
ai14906
1. Dimensions are in millimeters.
118/136
Max
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Package characteristics
Figure 40. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline
c
A1
A
A2
SEATING
PLANE
C
0.25 mm
GAUGE PLANE
A1
ccc C
K
L
D
L1
D1
D3
33
48
32
49
64
PIN 1
IDENTIFICATION
E
E1
E3
b
17
16
1
e
5W_ME_V2
1. Drawing is not to scale.
Doc ID 022799 Rev 3
119/136
Package characteristics
Table 66.
STM32L151xC STM32L152xC
LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
A
Min
Typ
1.600
A1
0.050
0.150
0.0630
0.0020
0.0059
A2
1.400
1.350
1.450
0.0551
0.0531
0.0571
b
0.220
0.170
0.270
0.0087
0.0067
0.0106
0.090
0.200
0.0035
0.0079
c
D
12.000
11.800
12.200
0.4724
0.4646
0.4803
D1
10.000
9.800
10.200
0.3937
0.3858
0.4016
D3
7.500
E
12.000
11.800
12.200
0.4724
0.4646
0.4803
E1
10.000
9.800
10.200
0.3937
0.3858
0.4016
E3
7.500
0.2953
e
0.500
0.0197
L
0.600
0.0177
0.0295
L1
1.000
0.2953
0.450
0.750
K
0.0236
0.0394
ccc
0.080
3.5
0.0
7.0
0.0031
3.5
0.0
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 41. Recommended footprint
48
33
0.3
49
12.7
32
0.5
10.3
10.3
64
17
1.2
1
16
7.8
12.7
ai14909
1. Dimensions are in millimeters.
120/136
Max
Doc ID 022799 Rev 3
7.0
STM32L151xC STM32L152xC
Package characteristics
Figure 42. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline
c
A1
A
A2
SEATING
PLANE
C
0.25 mm
GAUGE PLANE
ccc C
K
A1
D
L
D1
L1
D3
36
25
37
24
48
E
E1
E3
b
13
PIN 1
IDENTIFICATION
1
12
e
5B_ME_V2
1. Drawing is not to scale.
Doc ID 022799 Rev 3
121/136
Package characteristics
Table 67.
STM32L151xC STM32L152xC
LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
A
Min
Typ
1.600
A1
0.050
A2
1.350
b
0.170
c
0.090
D
8.800
D1
6.800
D3
0.0630
0.150
0.0020
1.400
1.450
0.0531
0.0551
0.0571
0.220
0.270
0.0067
0.0087
0.0106
0.200
0.0035
9.000
9.200
0.3465
0.3543
0.3622
7.000
7.200
0.2677
0.2756
0.2835
5.500
0.0059
0.0079
0.2165
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
5.500
0.2165
e
0.500
0.0197
L
0.450
0.600
L1
k
0.750
0.0177
1.000
0°
0.0236
3.5°
7°
0°
3.5°
0.080
Figure 43. Recommended footprint
0.50
1.20
0.30
25
36
37
24
0.20
7.30
5.80
7.30
48
13
12
1
1.20
5.80
9.70
ai14911b
1. Dimensions are in millimeters.
Doc ID 022799 Rev 3
7°
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
9.70
0.0295
0.0394
ccc
122/136
Max
STM32L151xC STM32L152xC
Package characteristics
Figure 44. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline
Pin 1 indentifier
laser marking area
D
A
E
E
T
ddd
A1
Seating
plane
b
e
Detail Y
D
Exposed pad
area
Y
D2
1
L
48
C 0.500x45°
pin1 corner
E2
R 0.125 typ.
Detail Z
1
Z
48
A0B9_ME_V3
1. Drawing is not to scale.
1. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
1. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
Doc ID 022799 Rev 3
123/136
Package characteristics
Table 68.
STM32L151xC STM32L152xC
UFQFPN48 – ultra thin fine pitch quad flat pack no-lead 7 × 7 mm, 0.5 mm
pitch
package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
D
6.900
7.000
7.100
0.2717
0.2756
0.2795
E
6.900
7.000
7.100
0.2717
0.2756
0.2795
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
T
b
0.152
0.200
0.0060
0.250
e
0.300
0.0079
0.0098
0.500
0.0197
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 45. Recommended footprint
7.30
48
37
1
36
6.20
0.20
7.30
6.20
5.60
5.80
5.60
0.30
12
25
13
0.55
24
5.80
0.50
0.75
ai15697
1. Dimensions are in millimeters.
124/136
Doc ID 022799 Rev 3
0.0118
STM32L151xC STM32L152xC
Package characteristics
Figure 46. UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array package
outline
Z Seating plane
ddd Z
A2 A3
A1 A
e
A1 ball
A1 ball
identifier index area
F
X
E
A
F
D
e
Y
M
12
1
BOTTOM VIEW
Øb (132 balls)
Øeee M Z Y X
Ø fff M Z
TOP VIEW
A0G8_ME_V1
1. Drawing is not to scale.
Table 69.
UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array
mechanical data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Typ
Max
A
0.530
0.460
0.600
0.0209
0.0181
0.0236
A1
0.080
0.050
0.110
0.0031
0.0020
0.0043
A2
0.450
0.400
0.500
0.0177
0.0157
0.0197
A3
0.320
0.270
0.370
0.0126
0.0106
0.0146
b
0.280
0.170
0.330
0.0110
0.0067
0.0130
D
7.000
6.950
7.050
0.2756
0.2736
0.2776
E
7.000
6.950
7.050
0.2756
0.2736
0.2776
e
0.500
F
0.750
0.0276
0.0315
0.0197
0.700
0.800
0.0295
ddd
0.080
0.0031
eee
0.150
0.0059
fff
0.050
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 022799 Rev 3
125/136
Package characteristics
STM32L151xC STM32L152xC
Figure 47. UFBGA100, 7 x 7 mm, 100-ball ultra thin, fine pitch ball grid array package
outline
Z Seating plane
ddd Z
A4 A3 A2
A1 A
E1
e
A1 ball
A1 ball
identifier index area
F
X
E
A
F
D1
D
e
Y
M
12
1
BOTTOM VIEW
Øb (100 balls)
Ø eee M Z Y X
Ø fff M Z
TOP VIEW
A0C2_ME_V2
1. Drawing is not to scale.
Table 70.
UFBGA100, 7 x 7 mm, 100-ball ultra thin, fine pitch ball grid array package
mechanical
data
inches(1)
millimeters
Symbol
Min
Typ
Max
Min
Max
A
0.530
0.460
0.600
0.0209
0.0181
0.0236
A1
0.080
0.050
0.110
0.0031
0.0020
0.0043
A2
0.450
0.400
0.500
0.0177
0.0157
0.0197
A3
0.130
0.080
0.180
0.0051
0.0031
0.0071
A4
0.320
0.270
0.370
0.0126
0.0106
0.0146
b
0.250
0.200
0.300
0.0098
0.0079
0.0118
D
7.000
6.950
7.050
0.2756
0.2736
0.2776
D1
5.500
5.450
5.550
0.2165
0.2146
0.2185
E
7.000
6.950
7.050
0.2756
0.2736
0.2776
E1
5.500
5.450
5.550
0.2165
0.2146
0.2185
e
0.500
F
0.750
0.0276
0.0315
0.0197
0.700
0.800
0.0295
ddd
0.100
0.0039
eee
0.150
0.0059
fff
0.050
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
126/136
Typ
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Package characteristics
Figure 48. WLCSP64, 0.400 mm pitch wafer level chip size package outline
D
A1 corner
Detail A
E
A
A2
Side view
Wafer back side
Detail A
(rotated 90 °)
Bump
A1
eee
b
Seating plane
e1
F
G
8
1
A
e1
e
H
G
e
Bump side
F
A0JV_ME
1. Drawing is not to scale.
Doc ID 022799 Rev 3
127/136
Package characteristics
Table 71.
STM32L151xC STM32L152xC
WLCSP64, 0.400 mm pitch wafer level chip size package mechanical data
inches(1)
millimeters
Symbol
A
Min
Typ
Max
Min
Typ
Max
0.540
0.570
0.600
0.0205
0.0224
0.0244
A1
0.19
0.0067
0.0075
0.0083
A2
0.380
0.0138
0.0150
0.0161
b
0.240
0.270
0.300
0.0094
0.0106
0.0118
D
4.504
4.539
4.574
0.1779
0.1787
0.1795
E
4.876
4.911
4.946
0.1926
0.1933
0.1941
e
0.400
0.0157
e1
2.800
0.1102
F
0.870
0.0343
G
1.056
eee
0.0416
0.050
1. Values in inches are converted from mm and rounded to 4 decimal digits.
128/136
Doc ID 022799 Rev 3
0.0020
STM32L151xC STM32L152xC
Package characteristics
Figure 49. WLCSP63, 0.400 mm pitch wafer level chip size package outline
e1
bbb
A1 Ball location
F
G
Detail A
e2
e
G
A
A2
F
e
A3
Bottom view
Bumb side
Side view
A
A2
Bump
Front view
A1
FFF
D
Seating plane
Detail A
(rotated 90 °)
E
A1 reference
location
BBB
Top view
Wafer back Side
"5(@.&
1. Drawing is not to scale.
Doc ID 022799 Rev 3
129/136
Package characteristics
Table 72.
STM32L151xC STM32L152xC
WLCSP63, 0.400 mm pitch wafer level chip size package mechanical data
inches(1)
millimeters
Symbol
A
Min
Typ
Max
Min
Typ
Max
0.540
0.570
0.600
0.0213
0.0224
0.0236
A1
0.190
0.0075
A2
0.380
0.0150
A3
0.025
0.0010
Øb
0.240
0.270
0.300
0.0094
0.0106
0.0118
D
3.193
3.228
3.263
0.1257
0.1271
0.1285
E
4.129
4.164
4.199
0.1626
0.1639
0.1653
e
0.400
0.0157
e1
2.400
0.0945
e2
3.200
0.1260
F
0.414
0.0163
G
0.482
0.0190
aaa
0.100
bbb
0.100
0.0039
ccc
0.100
0.0039
ddd
0.050
0.0020
eee
0.050
0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
130/136
0.0039
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
7.2
Package characteristics
Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max × ΘJA)
Where:
●
TA max is the maximum ambient temperature in °C,
●
ΘJA is the package junction-to-ambient thermal resistance, in °C/W,
●
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
●
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 73.
Symbol
ΘJA
Thermal characteristics
Parameter
Value
Thermal resistance junction-ambient
LQFP144 - 20 x 20 mm / 0.5 mm pitch
40
Thermal resistance junction-ambient
UFBGA132 - 7 x 7 mm
60
Thermal resistance junction-ambient
UFBGA100 - 7 x 7 mm
59
Thermal resistance junction-ambient
LQFP100 - 14 x 14 mm / 0.5 mm pitch
43
Thermal resistance junction-ambient
LQFP64 - 10 x 10 mm / 0.5 mm pitch
46
Thermal resistance junction-ambient
WLCSP64 - 0.400 mm pitch
46
Thermal resistance junction-ambient
WLCSP63 - 0.400 mm pitch
49
Thermal resistance junction-ambient
LQFP48 - 7 x 7 mm / 0.5 mm pitch
55
Thermal resistance junction-ambient
UFQFPN48 - 7 x 7 mm / 0.5 mm pitch
16
Doc ID 022799 Rev 3
Unit
°C/W
131/136
Package characteristics
STM32L151xC STM32L152xC
Figure 50. Thermal resistance
3000.00
2500.00
Forbidden area
TJ > TJ max
2000.00
PD (mW)
WLCSP63
LQFP64 10x10mm
1500.00
UFBGA100 7x7mm
1000.00
500.00
0.00
100
75
50
25
0
Temperature(°C)
MS31405V2
7.2.1
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
132/136
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
8
Ordering information scheme
Ordering information scheme
Table 74.
STM32L15xxC ordering information scheme
Example:
STM32
L 151 R C
T
6
D xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
L = Low power
Device subfamily
151: Devices without LCD
152: Devices with LCD
Pin count
C = 48 pins
U = 63 pins
R = 64 pins
V = 100 pins
Q = 132 pins
Z = 144 pins
Flash memory size
C = 256 Kbytes of Flash memory
Package
H = BGA
T = LQFP
Y = WLCSP
U = UFQFPN
Temperature range
6 = Industrial temperature range, –40 to 85 °C
Options
No character = VDD range: 1.8 to 3.6 V and BOR enabled
D = VDD range: 1.65 to 3.6 V and BOR disabled
Packing
TR = tape and reel
No character = tray or tube
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Doc ID 022799 Rev 3
133/136
Revision history
9
STM32L151xC STM32L152xC
Revision history
Table 75.
Document revision history
Date
Revision
21-Feb-2012
1
Initial release.
2
Added WLCSP63 package.
Updated Figure 1: Ultra-low-power STM32L15xxC block diagram.
Changed maximum number of touch sensing channels to 34, and
updated Table 2: Ultralow power STM32L15xxC device features and
peripheral counts.
Added Table 5: Functionalities depending on the working mode (from
Run/active down to standby), and Table 4: CPU frequency range
depending on dynamic voltage scaling.
Updated Section 3.10: ADC (analog-to-digital converter) to add
Section 3.10.1: Temperature sensor and Section 3.10.2: Internal
voltage reference (VREFINT).
Updated Figure 6: STM32L15xVC LQFP100 pinout.
Table 9: STM32L15xxC pin definitions: updated name of reference
manual in footnote 5.
Changed I2C1_SMBAI into I2C1_SMBA in Table 9: STM32L15xxC
pin definitions.
Modified PB10/11/12 for AFIO4 alternate function, and replaced
LBAR by NADV for AFIO12 in Table 10: Alternate function
input/output.
Removed caution note below Figure 15: Power supply scheme.
Added Note 2 in Table 15: Embedded reset and power control block
characteristics.
Updated Table 14: General operating conditions.
Updated Table 22: Typical and maximum current consumptions in
Stop mode and added Note 6. Updated Table 23: Typical and
maximum current consumptions in Standby mode. Updated tWUSTOP
in Table 24: Typical and maximum timings in Low power modes.
Updated Table 25: Peripheral current consumption.
Updated Table 49: SPI characteristics, added Note 1 and Note 3, and
applied Note 2 to tr(SCK), tf(SCK), tw(SCKH), tw(SCKL), tsu(MI), tsu(SI),
th(MI), and th(SI).
Added Table 50: I2S characteristics, Figure 27: I2S slave timing
diagram (Philips protocol)(1) and Figure 28: I2S master timing
diagram (Philips protocol)(1).
Updated Table 60: Temperature sensor characteristics.
Added Figure 50: Thermal resistance.
12-Oct-2012
134/136
Changes
Doc ID 022799 Rev 3
STM32L151xC STM32L152xC
Table 75.
Revision history
Document revision history (continued)
Date
01-Feb-2013
Revision
Changes
3
Removed AHB1/AHB2 and corrected typo on APB1/APB2 in
Figure 1: Ultra-low-power STM32L15xxC block diagram
Updated “OP amp” line in Table 5: Functionalities depending on the
working mode (from Run/active down to standby)
Added IWDG and WWDG rows in Table 5: Functionalities depending
on the working mode (from Run/active down to standby)
Updated address range in Table 7: Internal voltage reference
measured values
The comment "HSE = 16 MHz(2) (PLL ON for fHCLK above 16
MHz)" replaced by "fHSE = fHCLK up to 16 MHz included, fHSE =
fHCLK/2 above 16 MHz (PLL ON)(2)” in table Table 19: Current
consumption in Sleep mode
replaced pin names D7,C7,C6,C8,B8,A8 respectively by
D11,D10,C12,B12,A12,A11 in column UFBGA100 of Table 9:
STM32L15xxC pin definitions
Added more alternate functions supported on pin K3 and M4 for
UFBGA100 package in Table 9: STM32L15xxC pin definitions
Added part number STM32L151CC in Table 1: Device summary
Updated Stop mode current to 1.5 µA in Ultra-low-power platform
Updated entire Section 7: Package characteristics
Doc ID 022799 Rev 3
135/136
STM32L151xC STM32L152xC
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
136/136
Doc ID 022799 Rev 3