M61111FP Coil-less VIF/SIF REJ03F0014-0100Z Rev.1.00 Aug.25.2003 Description The M61111FP is a semiconductor integrated circuit built-in the PLL inter-carrier method VIF/SIF dedicated to NTSC. The circuit includes the VIF amplifier, image waveform detection, APC detection, IF/RF, AGC, VCO, AFT, LOCK DET, EQ, AF amplifier, limitter, FM waveform detector circuits, and acts as a small tuner. Features • • • • • • • Eliminates the need for the VCO coil for intermediate frequency signal processing AFT adjustment is not required and flat temperature characteristics is realized Reference frequency of 3.58 MHz/4.00 MHz Image intermediate frequency US (47.75 MHz)/JP (58 .75 MHz) VIF/SIF mute function SIF buffer output available FM receivable (optional) Recommended Operating Conditions • Power-supply voltage range: 4.75 to 5.25 V • Recommended power-supply voltage: 5.0 V Application • TV, VCR Pin Configuration 1 24 EQ AMP F/B TV / FM SW 2 23 IF AGC 2 Video in 3 22 IF AGC 1 Vcc 4 21 VIF in 2 Video det out 5 20 VIF in 1 19 GND 18 QIF in ( Inter / Split SW) 17 RF AGC 16 AFT (FM Carrier det) M611 11 FP Video out APC 6 VCO F/B (Defeat) 7 SIF in (Delay Point) 8 Vreg 9 SIF out (US / JP SW) 10 15 Logic Vcc Audio out 11 14 Ref Signal (3.58/4.00) Audio Level Cont. 12 13 Logic GND Rev.1.00, Aug.25.2003, page 1 of 19 M61111FP Block Diagram Ref Signal (3.58/4.00) Logic GND RF AGC AFT (FM Carrier det) AF AMP FM De t LIM AMP Logic Vcc QIF in (Inter / Split SW) 10 11 12 VCO F/B (Defeat) SIF in (Delay Point) Vreg SIF out (US / JP SW) Audio out Audio Level Cont. 5 Video out TV / FM SW Video in Vcc Video det out APC 9 4 GND VIF in 1 VIF in 2 IF AGC 1 8 3 16 IF AGC 2 7 2 6 1 LPF SIF AMP AFT Co il-less VCO EQ AMP 13 17 EQ AMP F/B Rev.1.00, Aug.25.2003, page 2 of 19 APC Video De t IF AGC De t AMP VIF AM P 14 18 15 19 20 21 23 22 24 RF AGC M61111FP Absolute Maximum Ratings (25°C, unless otherwise noted) Parameter Symbol Ratings Unit Supply voltage Vcc 6.0 V Total power dissipation Operating temperature Storage temperature Pd Topr1 Tstg 728 −20 to 75 −40 to 150 mW °C °C Temperature Characteristics (Maximum Ratings) Mounting in standard circuit board 800 728 (mW) 700 600 Power Dissipation Pd 500 437 400 300 200 100 0 0 25 50 75 100 125 150 Ambient Temperature (°C) Recommended Operating Conditions (25°C, unless otherwise noted) Parameter Terminal # Ratings Unit Supply voltage 4, 15 5.0 V Functional supply voltage range Reference Frequency GND 4, 15 14 13, 18, 19 4.75 to 5.25 3.579545 GND V MHz — Rev.1.00, Aug.25.2003, page 3 of 19 M61111FP Pin Function Pin No. Pin Name Function 1 Video out Video out terminal. Equivalent Circuit 4 200 1 1.4mA 2 3 TV/FM SW Video in TV/FM SW terminal Open: TV Mode GND: FM Mode Connecting to GND with 100 kohm or adding to 1/2 Vcc at this terminal select to search mode. 4 This terminal is input the video signal from Pin5 “Video det out” by SIF trap. Input this terminal to DC of Video det signal is necessary for IF AGC function. 4 100K 100 2 100 3 4 Vcc Power supply terminal for VIF and SIF. 4 5 Video det out Video detector output terminal. SIF trap and SIF BPF are connected to this terminal. It is necessary connecting external resistor for drive, because open emitter configuration. 4 APC filter terminal. 4 6 APC 50 5 3.4V 21K 6 21K 1.5K 200uA Rev.1.00, Aug.25.2003, page 4 of 19 300 300 M61111FP Pin Function (cont) Pin No. Pin Name Function 7 VCO F/B VCO Feedback terminal. The feedback control is to keep the internal VCO of the uniform free-running frequency. This terminal has dual function, connecting to gnd select mode with VIF/SIF defeat. Equivalent Circuit 4 To Defeat SW 1K 20K 10K 7 8 SIF in (Delay Point) RF AGC Delay terminal. 4.5 MHz SIF signal “LIM IN” is input at this pin which has dual function. The RF AGC Delay Point is set up of DC component of this signal. AC component is FM signal. 4 3.7V 7K 40 8 5.1K 40p 23K 160uA 9 Vreg Regulated voltage output terminal. The voltage is approximately 3 V. 17.5K 4 50 9 9.9K 6.2K 10 SIF out (US/JP SW) SIF output terminal. FM signal which is converted to 4.5 MHz is output. This pin has dual function of being VIF VCO type selection terminal. Connect to GND with 1.5 kΩ; JPN “58.75 MHz” No connect; USA “45.75 MHz” 4 600 30K 3.8V 6p 10 1.2mA 11 Audio out Sound output terminal. De-emphasis is achieved by external components. 4 200 11 0.8 mA 12 Audio Level Cont. AF Bypass terminal. It is connected to one of the input of a differential amplifier, external capacitor provides AC filtering. When resistor is connected in series with capacitor, it is possible to lower the amplitude of the audio output. when audio output terminal is not use, please connect this terminal to GND. Rev.1.00, Aug.25.2003, page 5 of 19 4 30K 12 1K 100 30K 1K 20K M61111FP Pin Function (cont) Pin No. Pin Name Function Equivalent Circuit 13 Logic GND Ground terminal for Logic and Ref amp. 13 14 Ref Signal (3.58/4.00) Reference signal input terminal. It is input external signal with sinewave. In case of 4 MHz mode, connect to GND with 4.7 kΩ. 15 4.0V 4K 14 1.3K 4.5K 8p 210uA 15 Logic Vcc Power supply terminal for Logic and Ref amp. 15 16 AFT (FM Carrier det) AFT output terminal. Because of pulse-like signal output, Smoothing capacitor is connected externally with TV mode. Under FM mode, this pin is carrier detector. Active; High Non-active; Low 4 17 RF AGC RF AGC output terminal. It is current drive type. 2p 350K 50 16 350K 4 50 17 500uA 18 QIF in (Inter/Spilt SW) QIF Input terminal with SPLIT. This pin has dual function, the other is INTER/SPLIT SW. INTER: GND SPLIT: DC Open 4 To INTER/ SPLIT SW 3.2V 1.5K 18 1.5K 180uA Rev.1.00, Aug.25.2003, page 6 of 19 M61111FP Pin Function (cont) Pin No. Pin Name Function Equivalent Circuit 19 GND Ground terminal for VIF and SIF. 19 20 21 VIF in 1 VIF in 2 IF signal after SAW filter is input. It is balance-type input. 4 2.3V 2K 20 21 2K 14K 22 23 IF AGC 1 IF AGC 2 IF AGC filter terminal 1. External capacitor affects AGC speed. Where this terminal is grounded, the effect of VIF amp, becomes minimum gain. 4 IF AGC filter terminal 2. 23 10K 2.5 K 22 24 EQ AMP F/B Equalizer feedback terminal. It is possible to change the AC response of the video signal by attaching L, C, R to this terminal. 4 2.2K 500 24 Rev.1.00, Aug.25.2003, page 7 of 19 7K 50 M61111FP Electrical Characteristics General (Unless otherwise specified: Ta = 25°C, Vcc = 5.0 V, Ref Signal = 3.579545 MHz, Vi = 100 mVpp, SW = 1) Parameter Symbol Test circuit Test point Input point Input signal SW condition Limits No. Min Typ Max Unit 1 VIF/SIF Vcc current Icc1 1 Pin4 — — — 44 63 82 mA 2 Logic Vcc Current Icc2 1 Pin15 — — — 3.2 4.7 6.1 mA 3 VIF/SIF Vcc current@Defeat Icc3 1 Pin4 Pin15 — — SW7=2 6.3 9.0 12.0 mA 4 Video out voltage@FM Mode Vofm 1 TP1 — — SW2=2 — 0 0.5 V 5 Ref. signal input level Fref 1 Pin14 Pin14 — 50 100 600 mVpp Rev.1.00, Aug.25.2003, page 8 of 19 Note# M61111FP VIF Section 1 (Unless otherwise specified: Ta = 25°C, Vcc = 5.0 V, Ref Signal = 3.579545 MHz, Vi = 100 mVpp, SW = 1) No. Parameter Symbol Test circuit Test point Input point Input signal Min Typ Max Unit 6 Video out Vodet 1 TP1 Pin20, 21 SG1 0.95 1.20 1.45 Vpp 7 Sync Tip level Vsync 1 TP1 Pin20, 21 SG2 1.20 1.45 1.70 V 8 Video S/N VoS/N 1 TP1 Pin20, 21 SG2 48 50 — dB 1 9 Video Out Freq. response BW 1 TP1 Pin20, 21 SG3 6 7 — MHz 2 10 Input sensitivity VinMIN 1 TP1 Pin20, 21 SG4 — 45 52 dBuV 3 11 Max. IF input VinMAX 1 TP1 Pin20, 21 SG5 101 105 — dBuV 4 12 IF AGC Range GR 1 — — 49 60 — dB 5 13 IF AGC voltage @80 dBuV IFAGC 1 TP23 Pin20, 21 SG6 2.7 3.0 3.3 V 14 Capture range U CR-U 1 TP1 Pin20, 21 SG7 0.80 1.00 — MHz 6 15 Capture range L CR-L 1 TP1 Pin20, 21 SG7 1.38 1.75 — MHz 7 16 Inter modulation IM 1 TP1 Pin20, 21 SG8 32 38 — dB 8 17 D/G DG 1 TP5 Pin20, 21 SG9 — 3 5 % 18 D/P DP 1 TP5 Pin20, 21 SG9 — 3 5 deg 21 RF AGC High voltage RFagcH 1 TP17 Pin20, 21 SG10 SW8=3 4.4 4.7 5.0 V 22 RF AGC Low voltage RFagcL 1 TP17 Pin20, 21 SG11 SW8=3 0 0.3 0.6 V 23 RF AGC delay point @TV mode RFDP1 1 TP17 Pin20, 21 SG12 SW8=3 82 85 88 dBuV 9 24 RF AGC delay point @FM mode RFDP2 1 TP17 Pin20, 21 SG13 SW2=2 44 50 56 dBuV 10 Inter carrier level @FM mode VoFM Pin20, 21 SG14 88 103 118 dBuV 11 25 1 Rev.1.00, Aug.25.2003, page 9 of 19 TP5 SW condition SW12=2 Limits Note# SW8=3 SW2=2 SW8=3 M61111FP VIF Section 2 (Unless otherwise specified: Ta = 25°C, Vcc = 5.0 V, Ref Signal = 3.579545 MHz, Vi = 100 mVpp, SW = 1) No. Parameter Symbol Test circuit Test point Input point Input signal SW condition Min Typ Max Unit Note# 26 AFT sensitivity µ 1 TP16 Pin20, 21 SG15 10 26 40 mV/ kHz 12 27 AFT High voltage AFTH 1 TP16 Pin20, 21 SG16 4.3 4.7 5.0 V 12 28 AFT Low voltage AFTL 1 TP16 Pin20, 21 SG17 0 0.3 0.7 V 12 29 AFT Mute voltage AFTM 1 TP16 Pin20, 21 SG18 2.4 2.5 2.6 V 30 AFT Center voltage @US mode VaftUS 1 TP16 Pin20, 21 SG2 2.40 2.65 2.90 V 31 AFT Center voltage @JP mode VaftJP 1 TP16 Pin20, 21 SG19 2.60 2.87 3.15 V SW10=2 Limits SIF Section (Unless otherwise specified: Ta = 25°C, Vcc = 5.0 V, Ref Signal = 3.579545 MHz, Vi = 100 mVpp, SW = 1) Parameter Symbol Test circuit Test point Input point Input signal SW condition Limits No. Min Typ Max Unit 32 AF output level @TV mode VoAF1 1 TP11 Pin8 SG20 SW8=2 400 700 1000 mVrms 33 AF output level @FM mode VoAF2 1 TP11 Pin8 SG21 SW2=2 455 800 1140 mVrms 34 AF output THD @TV mode THDAF1 1 TP11 Pin8 SG20 SW8=2 — 0.4 0.9 % 35 AF output THD @FM mode THDAF2 1 TP11 Pin8 SG21 SW2=2 — 0.4 0.9 % Audio S/N @TV mode AF S/N1 50 55 — dB 13 Audio S/N @FM mode AF A/N2 55 60 — dB 14 38 Limiting sensitivity LIM 1 TP11 Pin8 SG23 SW8=2 — 50 55 dBuV 15 39 SIF output level @TV mode SIFG1 1 TP10 Pin8 SG22 SW8=2 90 96 102 dBuV 40 SIF output level @FM mode SIFG2 1 TP10 Pin8 SG22 SW2=2 79 85 91 dBuV 36 37 Note# SW8=2 SW8=2 1 TP11 Pin8 SG22 SW8=2 SW23=2 1 TP11 Pin8 SG22 SW2,8=2 SW23=2 SW8=2 VCO Section (Unless otherwise specified: Ta = 25°C, Vcc = 5.0 V, Ref Signal = 3.579545 MHz, Vi = 100 mVpp, SW = 1) Parameter Symbol Test circuit Test point Input point Input signal SW condition Limits No. Min Typ Max Unit Note# 41 VIF VCO freerun @US mode FvcofUS 1 TP16 — — SW2=3 -500 0 +500 kHz 16 VIF VCO freerun @JP mode FvcofJP -500 0 +500 kHz 16 42 SW12=2 SW16,23=2 1 Rev.1.00, Aug.25.2003, page 10 of 19 TP16 — — SW2=3 SW10,12=2 SW16,23=2 M61111FP Test Circuit SW23 TP23 TP22 1 2 4.00 3.58 SW14 0.01u 2 1 TP17 4.7K 51 0.1uH 0.1u 2 0.1u 1 0.22u 0.01u 0.01u 5V 0.01u 51 Ref. Signal IF Signal 1:1 TP16 20 17 16 RF AGC 47u 15 14 VIF AM P AMP Video Det APC SW7 SW10 1 US SW8 1K 3 7.5K TP12 TP11 SW12 JP 1 SIF Defea t 2 2 LIM IN Signal 51 TP5 1 2 12 0.47u 15u 330 TP10 Defeat 2 0.1u 2.5V TP9 11 0.01u NonDefeat 1 TP7 10 1K 0.47u 1000p 240 200 0.01u 33u 5V TP1 9 Audi o Level C ont. 2 8 AF AMP Audi o out 3 7 FM Det SIF out (US / JP SW) FM 1 TP6 Vreg TV 6 SIF in (Delay Poi nt) 5 LIM AMP VCO F/B (Def eat) 4 APC SW2 LPF Video det out Video in 3 Vcc TV / FM SW Video out 2 1 SIF AMP AFT Coil-less VCO EQ AMP 0.01u IF AGC Det 13 Logic GND AFT (FM Carrier det) 18 RF AGC VIF in 1 VIF in 2 IF AGC 1 IF AGC 2 EQ AMP F/B 19 Ref Signal (3.58/ 4. 00) 21 Logic Vcc 22 QIF in (Inter / Split SW) 23 GND 24 Note: This test circuit is based on RENESAS board for evaluation. Rev.1.00, Aug.25.2003, page 11 of 19 M61111FP Input Signal SG Termination with 50 ohm 1 2 3 fm = 20 kHz CW CW CW fm = 20 kHz fm = 20 kHz CW fm = 20 kHz CW CW CW 10 f0 = 45.75 MHz Vi = 90 dBuV f0 = 45.75 MHz Vi = 90 dBuV f1 = 45.75 MHz Vi = 90 dBuV f2 = Freq. Variable Vi = 70 dBuV f0 = 45.75 MHz Vi = Variable f0 = 45.75 MHz Vi = Variable f0 = 45.75 MHz Vi = 80 dBuV f0 = Freq. Variable Vi = 90 dBuV f1 = 45.75 MHz Vi = 90 dBuV f2 = 42.17 MHz Vi = 80 dBuV f3 = 41.25 MHz Vi = 80 dBuV f0 = 45.75 MHz Sync Tip Level = 90 dBuV 87.5% TV modulation 10 step waveform f0 = 45.75 MHz Vi = 70 dBuV 11 12 13 14 15 16 17 18 19 20 21 22 23 24 f0 = 45.75 MHz f0 = 45.75 MHz f0 = 42.341 MHz f0 = 42.341 MHz f0 = Freq. Variable f0 = 45.75-0.5 MHz f0 = 45.75+0.5 MHz f0 = 45.75+/-0.5 MHz f0 = 58.75 MHz f0 = 4.5 MHz f0 = 4.5 MHz f0 = 4.5 MHz f0 = 4.5 MHz f0 = 4.5 MHz CW CW CW CW CW CW CW CW CW fm = 1 kHz +/- 25 kHz dev fm = 1 kHz +/- 75 kHz dev CW fm = 1 kHz +/- 25 kHz dev CW 4 5 6 7 8 9 Rev.1.00, Aug.25.2003, page 12 of 19 Vi = 100 dBuV Vi = Variable Vi = Variable Vi = 90 dBuV Vi = 90 dBuV Vi = 90 dBuV Vi = 90 dBuV Vi = 90 dBuV Vi = 90 dBuV Vi = 90 dBuV Vi = 90 dBuV Vi = 90 dBuV Vi = Variable Vi = Variable AM = 77.8% Mixed signal AM = 77.8% AM = 16.0% AM = 77.8% Mixed signal CW M61111FP Mode Select Recommended Condition: Ta = 25°C, Vcc = 5.0 V TV/FM select 2 pin condition Recommendation TV DC Open Open Search (#1) FM 2.2-2.8 V within 1.0 V 1/2 Vcc GND #1: Search mode use for shipping test only. IF Defeat select 7 pin condition Recommendation Un defeat Defeat DC Open within 0.5 V DC open GND US/JP select 10 pin condition Recommendation US No resistance No resistance JP Pull down 1.0 kΩ +/–10% 1 kΩ to GND Ref signal select 14 pin condition Recommendation 3.58 M 4.00 M No resistance Pull down 4.7 kΩ +/–10% No resistance 4.7 kΩ to GND SIF defeat select 12 pin condition Recommendation Un defeat Defeat DC Open within 0.3 V DC Open GND FM Mode IF Frequency (INTER) INTER Ref signal IF Frequency US 3.58 MHz 42.341 MHz JP 4.00 MHz 3.58 MHz 4.00 MHz 42.500 MHz 55.330 MHz 55.357 MHz Rev.1.00, Aug.25.2003, page 13 of 19 M61111FP Notes Note 1 Video S/N: VoS/N Input SG2 to VIF IN (Pin 20, 21) and measure the video out (TP1) noise in r.m.s. through a 5 MHz (–3 dB) L.P.F.. S/N = 20log 0.7 × Vodet (Vpp) (rms) NOISE (dB) Note 2 Video Band Width: BW 1. Measure the 1 MHz component level of Video output TP1 with a spectrum analyzer when SG3 (f2 = 44.75 MHz) is input to VIF IN (Pin 20, 21). At that time, measure the voltage at TP23, and them fix TP23 at that voltage. 2. Reduce f2 and measure the value of (f2-f1) when the (f2-f1) component level reaches –3 dB from the 1 MHz component level as shown below. TP5 Note 3 Input Sensitivity: VIN MIN Input SG4 (Vi = 90 dBu) to VIF IN (Pin 20, 21) and then gradually reduce Vi and measure the input level when the 20 kHz component of Video output TP1 reaches –3 dB from Vo det level. Note 4 Maximum Allowable Input: VIN MAX 1. Input SG5 (Vi = 90 dBu) to VIF IN (Pin 20, 21), and measure the level of the 20 kHz component of Video output (TP1). 2. Gradually increase the Vi of SG and measure the input level when the output reaches –3 dB. Note 5 AGC Control Range: GR GR = VinMAX – VinMIN (dB) Note 6 Capture Range: CR-U 1. Increase the frequency of SG7 until the VCO is out of locked-oscillation. 2. And decrease the frequency of SG7 and measure the frequency fU when the VCO is locked. CR – U = fU – 45.75 (MHz) Note 7 Capture Range: CR-L 1. Decrease the frequency of SG7 until the VCO is out of locked-oscillation. 2. And increase the frequency of SG7 and measure the frequency fL when the VCO is locked. CR – L = fU – 45.75 – fL Rev.1.00, Aug.25.2003, page 14 of 19 (MHz) M61111FP Note 8 Inter Modulation: IM 1. Input SG8 to VIF IN (Pin 20, 21), and measure video output TP1 with an oscilloscope. 2. Adjust AGC filter voltage TP23 so that the minimum DC level of the output waveform is Vsync. 3. At that time, measure TP1 with a spectrum analyzer. The inter modulation is defined as a difference between 0.92 MHz and 3.58 MHz frequency components. Note 9 RF AGC Delay Point (TV Mode): RFDP1 1. Input SG12 to VIF IN (Pin 20, 21) and gradually reduce level and then measure the input level when RF AGC output (TP17) reaches 1/2Vcc, as shown below. 2. At that time, the state of Pin 8 is DC open. TP17 Volt. RFagcH 1/ 2Vcc RFagcL RFDP1 SG12 Level (dBuV) Note 10 RF AGC Delay Point (FM Mode): RFDP2 1. Input SG13 to VIF IN (Pin 20, 21) and gradually reduce level and then measure the input level when RF AGC output (TP17) reaches 1/2Vcc, as shown below. 2. At that time, the state of Pin 8 is DC open, and Pin 2 should be connected to GND. TP17 Volt. 1/ 2Vcc RFDP2 SG13 Level (dBuV) Note 11 Inter Carrier Level: VoFM Input SG14 to VIF IN (Pin 20,21), and measure the 4.5 MHz component level of Video det out (TP5) with connecting Pin 2 to GND. Rev.1.00, Aug.25.2003, page 15 of 19 M61111FP Note 12 AFT sensitivity: µ, Maximum AFT Voltage: AFTH, Minimum AFT Voltage: AFTL 1. Input SG15 to VIF IN (Pin 20, 21) and set the frequency of SG15 so that the voltage of AFT output TP16 is 3 V. The frequency is named f(3). 2. Set the frequency of SG15 so that the AFT output voltage is 2 V. This frequency is named f(2). 3. In the graph shown below, maximum and minimum DC voltage are AFTH and AFTL, respectively. µ = 1000 f(2) - f(3) (mV) (KHz) (mV/KHz) TP16 Volt. AFTH 3V 2V AFTL f(3) f(2) f(MHz) Note 13 Audio S/N (TV Mode): AFS/N1 Input SG22 to SIF IN (Pin 8), and measure the output noise level of Audio output (TP11) with FLAT-r.m.s.. This level is named Vn1. AF S/N1 = 20log VoAF1 (mVrms) Vn1 (mVrms) (dB) Note 14 Audio S/N (FM Mode): AFS/N2 Input SG22 to SIF IN (Pin 8), and measure the output noise level of Audio output (TP11) with FLAT-r.m.s.. This level is named Vn1. At this time Pin 2 should be connected to GND. AF S/N2 = 20log VoAF2 (mVrms) Vn2 (mVrms) Rev.1.00, Aug.25.2003, page 16 of 19 (dB) M61111FP Note 15 Limiting Sensitivity: LIM 1. Input SG23 to LIM IN, and measure the 1 kHz component level of AF output TP11 with FLAT-r.m.s.. 2. Input SG24 to LIM IN, and measure the noise level of AF output TP11 with FLAT-r.m.s.. 3. The input limiting sensitivity is defined as the input level when the difference between each 1 kHz components of audio output (TP11) is 30 dB, as shown below. TP11 (rms) TP11 while SG23 is input 30dB TP11 while SG24 is input (dBuV) LIM SIF IN Note 16 VIF VCO Freerun Frequency: FvcofUS/FvcofJP Input 3.579545 MHz to Ref IN (Pin 14), and set up SW as shown following. SW No. 2 10 12 14 16 23 US Mode Setting 3 1 2 1 2 2 Condition Add to 2.5 V No-Connecting R GND No-Connecting R No-Connecting C GND JP Mode Setting 3 2 2 1 2 2 Condition Add to 2.5 V Connecting 1 kohm GND No-Connecting R No-Connecting C GND *VCO SW: US/JP #Fref SW 1. Measure the frequency of output signal at AFT out (TP16) each when be selected US or JP by SW10. 2. Measured frequency’s are defined FaftUS (US Mode), FaftJP (JP Mode). The VCO freerun frequency is calculated by following. <Fref = 3.579545 MHz> • US Mode FvcofUS = 52.915 (MHz) – 2 × FaftUS (MHz) – 45.75 (MHz) [MHz] • JP Mode FvcofJP = 65.925 (MHz) – 2 × FaftJP (MHz) – 58.75 (MHz) [MHz] # Case of Fref frequency is 4.00 MHz, SW14 should be set up 2 (Pin 14 is connected 4.7 kΩ to GND). Other Condition’s are same as case of 3.58 MHz mode, and the VCO freerun frequency is calculated by following. <Fref = 4.00 MHz> • US Mode FvcofUS = 52.952 (MHz) – 9 × FaftUS (MHz) – 45.75 (MHz) [MHz] • JP Mode FvcofJP = 65.951 (MHz) – 9 × FaftJP (MHz) – 58.75 (MHz) Rev.1.00, Aug.25.2003, page 17 of 19 [MHz] M61111FP Application IF Signal Ref. Signal 4.7K 4.00 SAW 0.01u 0.01u 0.1u 0.22u 3.58 0.1u 0.01u 47u EQ AMP 9 5V 10 7.5K 0.01u JP 1.0K 0.01u 0.1u 0.47u 200 15u 1000p 27K 240 47p 2 12 11 US FM Audi o Level C ont. 8 AF AMP Audi o out 7 FM Det SIF out (US / JP SW) Vreg 6 SIF in (Delay Poi nt) TV 1 5 LIM AMP VCO F/B (Def eat) Vcc 4 LPF APC Video in 3 SIF AMP AFT Video det out TV / FM SW Video out 2 SW2 13 APC Coil-les s VCO 1 14 AMP Video Det IF AGC Det 15 Logic GND VIF AM P AFT (FM Carrier det) RF AGC RF AGC 16 Ref Signal (3.58/4. 00) 17 Logic Vcc 18 QIF in (Inter / Split SW) VIF in 1 VIF in 2 IF AGC 1 IF AGC 2 EQ AMP F/B 19 GND 20 21 22 23 24 0.47u Defeat 330 56p 22u Non-Defeat Recommendation * By pass capacitance for Logic Vcc(Pin15) should be mounted close hard by Logic GND(Pin13) * In order to mitigate the surroundings lump by the VIF input, the balanced connection from a SAW filter to the VIF input pin of 20,21 recommends a putter which serves as a 1t coil by Tip C or the jumper. Special components SAW:SAF45MA210Z TRP:TPSRA4M50B00 BPF:SFSH4.5MEB2 Rev.1.00, Aug.25.2003, page 18 of 19 HE G Z1 e 1 24 z y Detail G D JEDEC Code — MMP b 12 13 x Weight(g) 0.12 M Detail F A2 A Lead Material Alloy 42 L1 EIAJ Package Code SSOP24-P-275-0.65 E Rev.1.00, Aug.25.2003, page 19 of 19 A1 F c L b2 e1 b2 e1 I2 A A1 A2 b c D E e HE L L1 z Z1 x y Symbol Dimension in Millimeters Min Nom Max 1.45 — — 0.2 0.1 0 — 1.15 — 0.32 0.22 0.17 0.2 0.15 0.13 7.9 7.8 7.7 5.7 5.6 5.5 — 0.65 — 7 .8 7.6 7.4 0.7 0.5 0.3 — 1.0 — — 0.325 — — — 0.475 — — 0.13 0.1 — — 10° 0° — — 0.35 — — 7.0 — — 1.0 — Recommended Mount Pad e Plastic 24pin 275mil SSOP I2 24P2E-A M61111FP Package Dimensions Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein. http://www.renesas.com RENESAS SALES OFFICES Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501 Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900 Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11 Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836 Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952 Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001 © 2003. Renesas Technology Corp., All rights reserved. Printed in Japan. Colophon 1.0