RENESAS M61111FP

M61111FP
Coil-less VIF/SIF
REJ03F0014-0100Z
Rev.1.00
Aug.25.2003
Description
The M61111FP is a semiconductor integrated circuit built-in the PLL inter-carrier method VIF/SIF dedicated to NTSC.
The circuit includes the VIF amplifier, image waveform detection, APC detection, IF/RF, AGC, VCO, AFT, LOCK
DET, EQ, AF amplifier, limitter, FM waveform detector circuits, and acts as a small tuner.
Features
•
•
•
•
•
•
•
Eliminates the need for the VCO coil for intermediate frequency signal processing
AFT adjustment is not required and flat temperature characteristics is realized
Reference frequency of 3.58 MHz/4.00 MHz
Image intermediate frequency US (47.75 MHz)/JP (58 .75 MHz)
VIF/SIF mute function
SIF buffer output available
FM receivable (optional)
Recommended Operating Conditions
• Power-supply voltage range: 4.75 to 5.25 V
• Recommended power-supply voltage: 5.0 V
Application
• TV, VCR
Pin Configuration
1
24
EQ AMP F/B
TV / FM SW
2
23
IF AGC 2
Video in
3
22
IF AGC 1
Vcc
4
21
VIF in 2
Video det out
5
20
VIF in 1
19
GND
18
QIF in ( Inter / Split SW)
17
RF AGC
16
AFT (FM Carrier det)
M611 11 FP
Video out
APC
6
VCO F/B (Defeat)
7
SIF in (Delay Point)
8
Vreg
9
SIF out (US / JP SW)
10
15
Logic Vcc
Audio out
11
14
Ref Signal (3.58/4.00)
Audio Level Cont.
12
13
Logic GND
Rev.1.00, Aug.25.2003, page 1 of 19
M61111FP
Block Diagram
Ref Signal
(3.58/4.00)
Logic GND
RF AGC
AFT
(FM Carrier det)
AF
AMP
FM
De t
LIM
AMP
Logic Vcc
QIF in
(Inter / Split SW)
10
11
12
VCO F/B (Defeat)
SIF in
(Delay Point)
Vreg
SIF out
(US / JP SW)
Audio out
Audio Level Cont.
5
Video out
TV / FM SW
Video in
Vcc
Video det out
APC
9
4
GND
VIF in 1
VIF in 2
IF AGC 1
8
3
16
IF AGC 2
7
2
6
1
LPF
SIF
AMP
AFT
Co il-less
VCO
EQ
AMP
13
17
EQ AMP F/B
Rev.1.00, Aug.25.2003, page 2 of 19
APC
Video
De t
IF AGC
De t
AMP
VIF AM P
14
18
15
19
20
21
23
22
24
RF AGC
M61111FP
Absolute Maximum Ratings
(25°C, unless otherwise noted)
Parameter
Symbol
Ratings
Unit
Supply voltage
Vcc
6.0
V
Total power dissipation
Operating temperature
Storage temperature
Pd
Topr1
Tstg
728
−20 to 75
−40 to 150
mW
°C
°C
Temperature Characteristics (Maximum Ratings)
Mounting in standard circuit board
800
728
(mW)
700
600
Power Dissipation Pd
500
437
400
300
200
100
0
0
25
50
75
100
125
150
Ambient Temperature (°C)
Recommended Operating Conditions
(25°C, unless otherwise noted)
Parameter
Terminal #
Ratings
Unit
Supply voltage
4, 15
5.0
V
Functional supply voltage range
Reference Frequency
GND
4, 15
14
13, 18, 19
4.75 to 5.25
3.579545
GND
V
MHz
—
Rev.1.00, Aug.25.2003, page 3 of 19
M61111FP
Pin Function
Pin
No.
Pin Name
Function
1
Video out
Video out terminal.
Equivalent Circuit
4
200
1
1.4mA
2
3
TV/FM SW
Video in
TV/FM SW terminal
Open: TV Mode
GND: FM Mode
Connecting to GND with 100 kohm or
adding to 1/2 Vcc at this terminal select to
search mode.
4
This terminal is input the video signal from
Pin5 “Video det out” by SIF trap.
Input this terminal to DC of Video det signal
is necessary for IF AGC function.
4
100K
100
2
100
3
4
Vcc
Power supply terminal for VIF and SIF.
4
5
Video det
out
Video detector output terminal. SIF trap
and SIF BPF are connected to this
terminal.
It is necessary connecting external resistor
for drive, because open emitter
configuration.
4
APC filter terminal.
4
6
APC
50
5
3.4V
21K
6
21K
1.5K
200uA
Rev.1.00, Aug.25.2003, page 4 of 19
300
300
M61111FP
Pin Function (cont)
Pin
No.
Pin Name
Function
7
VCO F/B
VCO Feedback terminal.
The feedback control is to keep the internal
VCO of the uniform free-running frequency.
This terminal has dual function, connecting
to gnd select mode with VIF/SIF defeat.
Equivalent Circuit
4
To Defeat SW
1K
20K
10K
7
8
SIF in
(Delay
Point)
RF AGC Delay terminal. 4.5 MHz SIF
signal “LIM IN” is input at this pin which has
dual function.
The RF AGC Delay Point is set up of DC
component of this signal. AC component is
FM signal.
4
3.7V
7K
40
8
5.1K
40p
23K
160uA
9
Vreg
Regulated voltage output terminal.
The voltage is approximately 3 V.
17.5K
4
50
9
9.9K
6.2K
10
SIF out
(US/JP
SW)
SIF output terminal. FM signal which is
converted to 4.5 MHz is output. This pin
has dual function of being VIF VCO type
selection terminal. Connect to GND with
1.5 kΩ; JPN “58.75 MHz”
No connect; USA “45.75 MHz”
4
600
30K
3.8V
6p
10
1.2mA
11
Audio out
Sound output terminal.
De-emphasis is achieved by external
components.
4
200
11
0.8 mA
12
Audio
Level Cont.
AF Bypass terminal. It is connected to one
of the input of a differential amplifier,
external capacitor provides AC filtering.
When resistor is connected in series with
capacitor, it is possible to lower the
amplitude of the audio output.
when audio output terminal is not use,
please connect this terminal to GND.
Rev.1.00, Aug.25.2003, page 5 of 19
4
30K
12
1K
100
30K
1K
20K
M61111FP
Pin Function (cont)
Pin
No.
Pin Name
Function
Equivalent Circuit
13
Logic GND
Ground terminal for Logic and Ref amp.
13
14
Ref Signal
(3.58/4.00)
Reference signal input terminal. It is input
external signal with sinewave.
In case of 4 MHz mode, connect to GND
with 4.7 kΩ.
15
4.0V
4K
14
1.3K
4.5K
8p
210uA
15
Logic Vcc
Power supply terminal for Logic and Ref
amp.
15
16
AFT (FM
Carrier det)
AFT output terminal. Because of pulse-like
signal output, Smoothing capacitor is
connected externally with TV mode.
Under FM mode, this pin is carrier detector.
Active; High
Non-active; Low
4
17
RF AGC
RF AGC output terminal.
It is current drive type.
2p
350K
50
16
350K
4
50
17
500uA
18
QIF in
(Inter/Spilt
SW)
QIF Input terminal with SPLIT.
This pin has dual function, the other is
INTER/SPLIT SW.
INTER: GND
SPLIT: DC Open
4
To INTER/ SPLIT SW
3.2V
1.5K
18
1.5K
180uA
Rev.1.00, Aug.25.2003, page 6 of 19
M61111FP
Pin Function (cont)
Pin
No.
Pin Name
Function
Equivalent Circuit
19
GND
Ground terminal for VIF and SIF.
19
20
21
VIF in 1
VIF in 2
IF signal after SAW filter is input.
It is balance-type input.
4
2.3V
2K
20
21
2K
14K
22
23
IF AGC 1
IF AGC 2
IF AGC filter terminal 1.
External capacitor affects AGC speed.
Where this terminal is grounded, the effect
of VIF amp, becomes minimum gain.
4
IF AGC filter terminal 2.
23
10K
2.5 K
22
24
EQ AMP
F/B
Equalizer feedback terminal.
It is possible to change the AC response of
the video signal by attaching L, C, R to this
terminal.
4
2.2K
500
24
Rev.1.00, Aug.25.2003, page 7 of 19
7K
50
M61111FP
Electrical Characteristics
General
(Unless otherwise specified: Ta = 25°C, Vcc = 5.0 V, Ref Signal = 3.579545 MHz, Vi = 100 mVpp, SW = 1)
Parameter
Symbol
Test
circuit
Test
point
Input
point
Input
signal
SW
condition
Limits
No.
Min
Typ
Max
Unit
1
VIF/SIF Vcc
current
Icc1
1
Pin4
—
—
—
44
63
82
mA
2
Logic Vcc
Current
Icc2
1
Pin15
—
—
—
3.2
4.7
6.1
mA
3
VIF/SIF Vcc
current@Defeat
Icc3
1
Pin4
Pin15
—
—
SW7=2
6.3
9.0
12.0
mA
4
Video out
voltage@FM
Mode
Vofm
1
TP1
—
—
SW2=2
—
0
0.5
V
5
Ref. signal
input level
Fref
1
Pin14
Pin14
—
50
100
600
mVpp
Rev.1.00, Aug.25.2003, page 8 of 19
Note#
M61111FP
VIF Section 1
(Unless otherwise specified: Ta = 25°C, Vcc = 5.0 V, Ref Signal = 3.579545 MHz, Vi = 100 mVpp, SW = 1)
No.
Parameter
Symbol
Test
circuit
Test
point
Input
point
Input
signal
Min
Typ
Max
Unit
6
Video out
Vodet
1
TP1
Pin20,
21
SG1
0.95
1.20
1.45
Vpp
7
Sync Tip level
Vsync
1
TP1
Pin20,
21
SG2
1.20
1.45
1.70
V
8
Video S/N
VoS/N
1
TP1
Pin20,
21
SG2
48
50
—
dB
1
9
Video Out Freq.
response
BW
1
TP1
Pin20,
21
SG3
6
7
—
MHz
2
10
Input sensitivity
VinMIN
1
TP1
Pin20,
21
SG4
—
45
52
dBuV
3
11
Max. IF input
VinMAX
1
TP1
Pin20,
21
SG5
101
105
—
dBuV
4
12
IF AGC Range
GR
1
—
—
49
60
—
dB
5
13
IF AGC voltage
@80 dBuV
IFAGC
1
TP23
Pin20,
21
SG6
2.7
3.0
3.3
V
14
Capture
range U
CR-U
1
TP1
Pin20,
21
SG7
0.80
1.00
—
MHz
6
15
Capture
range L
CR-L
1
TP1
Pin20,
21
SG7
1.38
1.75
—
MHz
7
16
Inter
modulation
IM
1
TP1
Pin20,
21
SG8
32
38
—
dB
8
17
D/G
DG
1
TP5
Pin20,
21
SG9
—
3
5
%
18
D/P
DP
1
TP5
Pin20,
21
SG9
—
3
5
deg
21
RF AGC High
voltage
RFagcH
1
TP17
Pin20,
21
SG10
SW8=3
4.4
4.7
5.0
V
22
RF AGC Low
voltage
RFagcL
1
TP17
Pin20,
21
SG11
SW8=3
0
0.3
0.6
V
23
RF AGC delay
point @TV
mode
RFDP1
1
TP17
Pin20,
21
SG12
SW8=3
82
85
88
dBuV
9
24
RF AGC delay
point @FM
mode
RFDP2
1
TP17
Pin20,
21
SG13
SW2=2
44
50
56
dBuV
10
Inter carrier
level @FM
mode
VoFM
Pin20,
21
SG14
88
103
118
dBuV
11
25
1
Rev.1.00, Aug.25.2003, page 9 of 19
TP5
SW
condition
SW12=2
Limits
Note#
SW8=3
SW2=2
SW8=3
M61111FP
VIF Section 2
(Unless otherwise specified: Ta = 25°C, Vcc = 5.0 V, Ref Signal = 3.579545 MHz, Vi = 100 mVpp, SW = 1)
No.
Parameter
Symbol
Test
circuit
Test
point
Input
point
Input
signal
SW
condition
Min
Typ
Max
Unit
Note#
26
AFT sensitivity
µ
1
TP16
Pin20,
21
SG15
10
26
40
mV/
kHz
12
27
AFT High
voltage
AFTH
1
TP16
Pin20,
21
SG16
4.3
4.7
5.0
V
12
28
AFT Low
voltage
AFTL
1
TP16
Pin20,
21
SG17
0
0.3
0.7
V
12
29
AFT Mute
voltage
AFTM
1
TP16
Pin20,
21
SG18
2.4
2.5
2.6
V
30
AFT Center
voltage @US
mode
VaftUS
1
TP16
Pin20,
21
SG2
2.40
2.65
2.90
V
31
AFT Center
voltage @JP
mode
VaftJP
1
TP16
Pin20,
21
SG19
2.60
2.87
3.15
V
SW10=2
Limits
SIF Section
(Unless otherwise specified: Ta = 25°C, Vcc = 5.0 V, Ref Signal = 3.579545 MHz, Vi = 100 mVpp, SW = 1)
Parameter
Symbol
Test
circuit
Test
point
Input
point
Input
signal
SW
condition
Limits
No.
Min
Typ
Max
Unit
32
AF output level
@TV mode
VoAF1
1
TP11
Pin8
SG20
SW8=2
400
700
1000
mVrms
33
AF output level
@FM mode
VoAF2
1
TP11
Pin8
SG21
SW2=2
455
800
1140
mVrms
34
AF output THD
@TV mode
THDAF1
1
TP11
Pin8
SG20
SW8=2
—
0.4
0.9
%
35
AF output THD
@FM mode
THDAF2
1
TP11
Pin8
SG21
SW2=2
—
0.4
0.9
%
Audio S/N
@TV mode
AF S/N1
50
55
—
dB
13
Audio S/N
@FM mode
AF A/N2
55
60
—
dB
14
38
Limiting
sensitivity
LIM
1
TP11
Pin8
SG23
SW8=2
—
50
55
dBuV
15
39
SIF output level
@TV mode
SIFG1
1
TP10
Pin8
SG22
SW8=2
90
96
102
dBuV
40
SIF output level
@FM mode
SIFG2
1
TP10
Pin8
SG22
SW2=2
79
85
91
dBuV
36
37
Note#
SW8=2
SW8=2
1
TP11
Pin8
SG22
SW8=2
SW23=2
1
TP11
Pin8
SG22
SW2,8=2
SW23=2
SW8=2
VCO Section
(Unless otherwise specified: Ta = 25°C, Vcc = 5.0 V, Ref Signal = 3.579545 MHz, Vi = 100 mVpp, SW = 1)
Parameter
Symbol
Test
circuit
Test
point
Input
point
Input
signal
SW
condition
Limits
No.
Min
Typ
Max
Unit
Note#
41
VIF VCO
freerun @US
mode
FvcofUS
1
TP16
—
—
SW2=3
-500
0
+500
kHz
16
VIF VCO
freerun @JP
mode
FvcofJP
-500
0
+500
kHz
16
42
SW12=2
SW16,23=2
1
Rev.1.00, Aug.25.2003, page 10 of 19
TP16
—
—
SW2=3
SW10,12=2
SW16,23=2
M61111FP
Test Circuit
SW23
TP23
TP22
1
2
4.00
3.58
SW14
0.01u
2
1
TP17
4.7K
51
0.1uH
0.1u
2
0.1u
1
0.22u
0.01u
0.01u
5V
0.01u
51
Ref. Signal
IF Signal
1:1
TP16
20
17
16
RF AGC
47u
15
14
VIF AM P
AMP
Video
Det
APC
SW7
SW10
1
US
SW8
1K
3
7.5K
TP12
TP11
SW12
JP
1
SIF Defea t
2
2
LIM IN Signal
51
TP5
1
2
12
0.47u
15u
330
TP10
Defeat
2
0.1u
2.5V
TP9
11
0.01u
NonDefeat
1
TP7
10
1K
0.47u
1000p
240
200
0.01u
33u
5V
TP1
9
Audi o Level C ont.
2
8
AF
AMP
Audi o out
3
7
FM
Det
SIF out
(US / JP SW)
FM
1
TP6
Vreg
TV
6
SIF in
(Delay Poi nt)
5
LIM
AMP
VCO F/B (Def eat)
4
APC
SW2
LPF
Video det out
Video in
3
Vcc
TV / FM SW
Video out
2
1
SIF
AMP
AFT
Coil-less
VCO
EQ
AMP
0.01u
IF AGC
Det
13
Logic GND
AFT
(FM Carrier det)
18
RF AGC
VIF in 1
VIF in 2
IF AGC 1
IF AGC 2
EQ AMP F/B
19
Ref Signal
(3.58/ 4. 00)
21
Logic Vcc
22
QIF in
(Inter / Split SW)
23
GND
24
Note: This test circuit is based on RENESAS board for evaluation.
Rev.1.00, Aug.25.2003, page 11 of 19
M61111FP
Input Signal
SG
Termination with 50 ohm
1
2
3
fm = 20 kHz
CW
CW
CW
fm = 20 kHz
fm = 20 kHz
CW
fm = 20 kHz
CW
CW
CW
10
f0 = 45.75 MHz
Vi = 90 dBuV
f0 = 45.75 MHz
Vi = 90 dBuV
f1 = 45.75 MHz
Vi = 90 dBuV
f2 = Freq. Variable
Vi = 70 dBuV
f0 = 45.75 MHz
Vi = Variable
f0 = 45.75 MHz
Vi = Variable
f0 = 45.75 MHz
Vi = 80 dBuV
f0 = Freq. Variable
Vi = 90 dBuV
f1 = 45.75 MHz
Vi = 90 dBuV
f2 = 42.17 MHz
Vi = 80 dBuV
f3 = 41.25 MHz
Vi = 80 dBuV
f0 = 45.75 MHz
Sync Tip Level = 90 dBuV
87.5% TV modulation 10 step waveform
f0 = 45.75 MHz
Vi = 70 dBuV
11
12
13
14
15
16
17
18
19
20
21
22
23
24
f0 = 45.75 MHz
f0 = 45.75 MHz
f0 = 42.341 MHz
f0 = 42.341 MHz
f0 = Freq. Variable
f0 = 45.75-0.5 MHz
f0 = 45.75+0.5 MHz
f0 = 45.75+/-0.5 MHz
f0 = 58.75 MHz
f0 = 4.5 MHz
f0 = 4.5 MHz
f0 = 4.5 MHz
f0 = 4.5 MHz
f0 = 4.5 MHz
CW
CW
CW
CW
CW
CW
CW
CW
CW
fm = 1 kHz +/- 25 kHz dev
fm = 1 kHz +/- 75 kHz dev
CW
fm = 1 kHz +/- 25 kHz dev
CW
4
5
6
7
8
9
Rev.1.00, Aug.25.2003, page 12 of 19
Vi = 100 dBuV
Vi = Variable
Vi = Variable
Vi = 90 dBuV
Vi = 90 dBuV
Vi = 90 dBuV
Vi = 90 dBuV
Vi = 90 dBuV
Vi = 90 dBuV
Vi = 90 dBuV
Vi = 90 dBuV
Vi = 90 dBuV
Vi = Variable
Vi = Variable
AM = 77.8%
Mixed signal
AM = 77.8%
AM = 16.0%
AM = 77.8%
Mixed signal
CW
M61111FP
Mode Select
Recommended Condition: Ta = 25°C, Vcc = 5.0 V
TV/FM select
2 pin condition
Recommendation
TV
DC Open
Open
Search (#1)
FM
2.2-2.8 V
within 1.0 V
1/2 Vcc
GND
#1:
Search mode use for shipping test only.
IF Defeat select
7 pin condition
Recommendation
Un defeat
Defeat
DC Open
within 0.5 V
DC open
GND
US/JP select
10 pin condition
Recommendation
US
No resistance
No resistance
JP
Pull down 1.0 kΩ +/–10%
1 kΩ to GND
Ref signal select
14 pin condition
Recommendation
3.58 M
4.00 M
No resistance
Pull down 4.7 kΩ +/–10%
No resistance
4.7 kΩ to GND
SIF defeat select
12 pin condition
Recommendation
Un defeat
Defeat
DC Open
within 0.3 V
DC Open
GND
FM Mode IF Frequency (INTER)
INTER
Ref signal
IF Frequency
US
3.58 MHz
42.341 MHz
JP
4.00 MHz
3.58 MHz
4.00 MHz
42.500 MHz
55.330 MHz
55.357 MHz
Rev.1.00, Aug.25.2003, page 13 of 19
M61111FP
Notes
Note 1 Video S/N: VoS/N
Input SG2 to VIF IN (Pin 20, 21) and measure the video out (TP1) noise in r.m.s. through a 5 MHz (–3 dB) L.P.F..
S/N = 20log
0.7 × Vodet (Vpp)
(rms)
NOISE
(dB)
Note 2 Video Band Width: BW
1. Measure the 1 MHz component level of Video output TP1 with a spectrum analyzer when SG3 (f2 = 44.75 MHz) is
input to VIF IN (Pin 20, 21). At that time, measure the voltage at TP23, and them fix TP23 at that voltage.
2. Reduce f2 and measure the value of (f2-f1) when the (f2-f1) component level reaches –3 dB from the 1 MHz
component level as shown below.
TP5
Note 3 Input Sensitivity: VIN MIN
Input SG4 (Vi = 90 dBu) to VIF IN (Pin 20, 21) and then gradually reduce Vi and measure the input level when the 20
kHz component of Video output TP1 reaches –3 dB from Vo det level.
Note 4 Maximum Allowable Input: VIN MAX
1. Input SG5 (Vi = 90 dBu) to VIF IN (Pin 20, 21), and measure the level of the 20 kHz component of Video output
(TP1).
2. Gradually increase the Vi of SG and measure the input level when the output reaches –3 dB.
Note 5 AGC Control Range: GR
GR = VinMAX – VinMIN
(dB)
Note 6 Capture Range: CR-U
1. Increase the frequency of SG7 until the VCO is out of locked-oscillation.
2. And decrease the frequency of SG7 and measure the frequency fU when the VCO is locked.
CR – U = fU – 45.75
(MHz)
Note 7 Capture Range: CR-L
1. Decrease the frequency of SG7 until the VCO is out of locked-oscillation.
2. And increase the frequency of SG7 and measure the frequency fL when the VCO is locked.
CR – L = fU – 45.75 – fL
Rev.1.00, Aug.25.2003, page 14 of 19
(MHz)
M61111FP
Note 8 Inter Modulation: IM
1. Input SG8 to VIF IN (Pin 20, 21), and measure video output TP1 with an oscilloscope.
2. Adjust AGC filter voltage TP23 so that the minimum DC level of the output waveform is Vsync.
3. At that time, measure TP1 with a spectrum analyzer. The inter modulation is defined as a difference between 0.92
MHz and 3.58 MHz frequency components.
Note 9 RF AGC Delay Point (TV Mode): RFDP1
1. Input SG12 to VIF IN (Pin 20, 21) and gradually reduce level and then measure the input level when RF AGC
output (TP17) reaches 1/2Vcc, as shown below.
2. At that time, the state of Pin 8 is DC open.
TP17
Volt.
RFagcH
1/ 2Vcc
RFagcL
RFDP1
SG12 Level
(dBuV)
Note 10 RF AGC Delay Point (FM Mode): RFDP2
1. Input SG13 to VIF IN (Pin 20, 21) and gradually reduce level and then measure the input level when RF AGC
output (TP17) reaches 1/2Vcc, as shown below.
2. At that time, the state of Pin 8 is DC open, and Pin 2 should be connected to GND.
TP17
Volt.
1/ 2Vcc
RFDP2
SG13 Level
(dBuV)
Note 11 Inter Carrier Level: VoFM
Input SG14 to VIF IN (Pin 20,21), and measure the 4.5 MHz component level of Video det out (TP5) with connecting
Pin 2 to GND.
Rev.1.00, Aug.25.2003, page 15 of 19
M61111FP
Note 12 AFT sensitivity: µ, Maximum AFT Voltage: AFTH, Minimum AFT Voltage: AFTL
1. Input SG15 to VIF IN (Pin 20, 21) and set the frequency of SG15 so that the voltage of AFT output TP16 is 3 V.
The frequency is named f(3).
2. Set the frequency of SG15 so that the AFT output voltage is 2 V. This frequency is named f(2).
3. In the graph shown below, maximum and minimum DC voltage are AFTH and AFTL, respectively.
µ =
1000
f(2) - f(3)
(mV)
(KHz)
(mV/KHz)
TP16
Volt.
AFTH
3V
2V
AFTL
f(3)
f(2)
f(MHz)
Note 13 Audio S/N (TV Mode): AFS/N1
Input SG22 to SIF IN (Pin 8), and measure the output noise level of Audio output (TP11) with FLAT-r.m.s.. This level
is named Vn1.
AF S/N1 = 20log
VoAF1 (mVrms)
Vn1 (mVrms)
(dB)
Note 14 Audio S/N (FM Mode): AFS/N2
Input SG22 to SIF IN (Pin 8), and measure the output noise level of Audio output (TP11) with FLAT-r.m.s.. This level
is named Vn1. At this time Pin 2 should be connected to GND.
AF S/N2 = 20log
VoAF2 (mVrms)
Vn2 (mVrms)
Rev.1.00, Aug.25.2003, page 16 of 19
(dB)
M61111FP
Note 15 Limiting Sensitivity: LIM
1. Input SG23 to LIM IN, and measure the 1 kHz component level of AF output TP11 with FLAT-r.m.s..
2. Input SG24 to LIM IN, and measure the noise level of AF output TP11 with FLAT-r.m.s..
3. The input limiting sensitivity is defined as the input level when the difference between each 1 kHz components of
audio output (TP11) is 30 dB, as shown below.
TP11
(rms)
TP11 while SG23 is input
30dB
TP11 while SG24 is input
(dBuV)
LIM
SIF IN
Note 16 VIF VCO Freerun Frequency: FvcofUS/FvcofJP
Input 3.579545 MHz to Ref IN (Pin 14), and set up SW as shown following.
SW No.
2
10
12
14
16
23
US Mode
Setting
3
1
2
1
2
2
Condition
Add to 2.5 V
No-Connecting R
GND
No-Connecting R
No-Connecting C
GND
JP Mode
Setting
3
2
2
1
2
2
Condition
Add to 2.5 V
Connecting 1 kohm
GND
No-Connecting R
No-Connecting C
GND
*VCO SW: US/JP
#Fref SW
1. Measure the frequency of output signal at AFT out (TP16) each when be selected US or JP by SW10.
2. Measured frequency’s are defined FaftUS (US Mode), FaftJP (JP Mode). The VCO freerun frequency is calculated
by following.
<Fref = 3.579545 MHz>
• US Mode
FvcofUS = 52.915 (MHz) – 2 × FaftUS (MHz) – 45.75 (MHz)
[MHz]
• JP Mode
FvcofJP = 65.925 (MHz) – 2 × FaftJP (MHz) – 58.75 (MHz)
[MHz]
# Case of Fref frequency is 4.00 MHz, SW14 should be set up 2 (Pin 14 is connected 4.7 kΩ to GND).
Other Condition’s are same as case of 3.58 MHz mode, and the VCO freerun frequency is calculated by following.
<Fref = 4.00 MHz>
• US Mode
FvcofUS = 52.952 (MHz) – 9 × FaftUS (MHz) – 45.75 (MHz)
[MHz]
• JP Mode
FvcofJP = 65.951 (MHz) – 9 × FaftJP (MHz) – 58.75 (MHz)
Rev.1.00, Aug.25.2003, page 17 of 19
[MHz]
M61111FP
Application
IF Signal
Ref. Signal
4.7K
4.00
SAW
0.01u
0.01u
0.1u
0.22u
3.58
0.1u
0.01u
47u
EQ
AMP
9
5V
10
7.5K
0.01u
JP
1.0K
0.01u
0.1u
0.47u
200
15u
1000p
27K
240
47p
2
12
11
US
FM
Audi o Level C ont.
8
AF
AMP
Audi o out
7
FM
Det
SIF out
(US / JP SW)
Vreg
6
SIF in
(Delay Poi nt)
TV
1
5
LIM
AMP
VCO F/B (Def eat)
Vcc
4
LPF
APC
Video in
3
SIF
AMP
AFT
Video det out
TV / FM SW
Video out
2
SW2
13
APC
Coil-les s
VCO
1
14
AMP
Video
Det
IF AGC
Det
15
Logic GND
VIF AM P
AFT
(FM Carrier det)
RF AGC
RF AGC
16
Ref Signal
(3.58/4. 00)
17
Logic Vcc
18
QIF in
(Inter / Split SW)
VIF in 1
VIF in 2
IF AGC 1
IF AGC 2
EQ AMP F/B
19
GND
20
21
22
23
24
0.47u
Defeat
330
56p 22u
Non-Defeat
Recommendation
* By pass capacitance for Logic Vcc(Pin15) should be mounted close hard by Logic GND(Pin13)
* In order to mitigate the surroundings lump by the VIF input, the balanced connection from a SAW filter
to the VIF input pin of 20,21 recommends a putter which serves as a 1t coil by Tip C or the jumper.
Special components
SAW:SAF45MA210Z
TRP:TPSRA4M50B00
BPF:SFSH4.5MEB2
Rev.1.00, Aug.25.2003, page 18 of 19
HE
G
Z1
e
1
24
z
y
Detail G
D
JEDEC Code
—
MMP
b
12
13
x
Weight(g)
0.12
M
Detail F
A2
A
Lead Material
Alloy 42
L1
EIAJ Package Code
SSOP24-P-275-0.65
E
Rev.1.00, Aug.25.2003, page 19 of 19
A1
F
c
L
b2
e1
b2
e1
I2
A
A1
A2
b
c
D
E
e
HE
L
L1
z
Z1
x
y
Symbol
Dimension in Millimeters
Min
Nom
Max
1.45
—
—
0.2
0.1
0
—
1.15
—
0.32
0.22
0.17
0.2
0.15
0.13
7.9
7.8
7.7
5.7
5.6
5.5
—
0.65
—
7
.8
7.6
7.4
0.7
0.5
0.3
—
1.0
—
—
0.325
—
—
—
0.475
—
—
0.13
0.1
—
—
10°
0°
—
—
0.35
—
—
7.0
—
—
1.0
—
Recommended Mount Pad
e
Plastic 24pin 275mil SSOP
I2
24P2E-A
M61111FP
Package Dimensions
Sales Strategic Planning Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary
circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of
publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is
therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product
information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to
evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes
no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life
is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a
product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater
use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and
cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com
RENESAS SALES OFFICES
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501
Renesas Technology Europe Limited.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900
Renesas Technology Europe GmbH
Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
© 2003. Renesas Technology Corp., All rights reserved. Printed in Japan.
Colophon 1.0