AMD SR5650 Databook Technical Reference Manual Rev 2.20 P/N: 47062_sr5650_ds_pub © 2012 Advanced Micro Devices, Inc. Trademarks AMD, the AMD Arrow logo, AMD PowerNow!, AMD Virtualization, AMD-V, and combinations thereof are trademarks of Advanced Micro Devices, Inc. HyperTransport is a licensed trademark of the HyperTransport Technology Consortium. Microsoft, Windows, and Windows Server are registered trademarks of Microsoft Corporation. PCI Express and PCIe are registered trademarks of PCI-SIG. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. Disclaimer The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to this document including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD shall not be liable for any damage, loss, expense, or claim of loss of any kind or character (including without limitation direct, indirect, consequential, exemplary, punitive, special, incidental or reliance damages) arising from use of or reliance on this document. No license, whether express, implied, arising by estoppel, or otherwise, to any intellectual property rights are granted by this publication. Except for AMD product purchased pursuant to AMD's Standard Terms and Conditions of Sale, and then only as expressly set forth therein, AMD's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD's product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice. © 2012 Advanced Micro Devices, Inc. All rights reserved. Table of Contents Chapter 1: Overview 1.1 Introducing the SR5650 ......................................................................................................................................................1-1 1.2 SR5650 Features .................................................................................................................................................................1-1 1.2.1 CPU Interface .......................................................................................................................................................1-1 1.2.2 PCI Express® Interface ........................................................................................................................................1-1 1.2.3 A-Link Express II Interface..................................................................................................................................1-1 1.2.4 Multiple Processor Support ..................................................................................................................................1-2 1.2.5 Multiple Northbridge Support ..............................................................................................................................1-2 1.2.6 Power Management Features ...............................................................................................................................1-2 1.2.7 PC Design Guide Compliance..............................................................................................................................1-2 1.2.8 Test Capability Features .......................................................................................................................................1-2 1.2.9 Packaging .............................................................................................................................................................1-2 1.3 Software Features................................................................................................................................................................1-2 1.4 Device ID ............................................................................................................................................................................1-3 1.5 Branding Diagrams .............................................................................................................................................................1-3 1.6 Conventions and Notations .................................................................................................................................................1-4 1.6.1 Pin Names.............................................................................................................................................................1-4 1.6.2 Pin Types ..............................................................................................................................................................1-4 1.6.3 Numeric Representation .......................................................................................................................................1-4 1.6.4 Hyperlinks ............................................................................................................................................................1-5 1.6.5 Acronyms and Abbreviations ...............................................................................................................................1-5 Chapter 2: Functional Descriptions 2.1 HyperTransport™ Interface ................................................................................................................................................2-1 2.1.1 Overview ..............................................................................................................................................................2-1 2.1.2 HyperTransport™ Flow Control Buffers .............................................................................................................2-3 2.2 IOMMU ..............................................................................................................................................................................2-4 2.3 Multiple Northbridge Support.............................................................................................................................................2-4 2.4 Interrupt Handling...............................................................................................................................................................2-4 2.4.1 Legacy INTx Handling.........................................................................................................................................2-4 2.4.2 Non-SB IOAPIC Support .....................................................................................................................................2-4 2.4.3 Integrated IOAPIC Support..................................................................................................................................2-5 2.4.4 MSI Interrupt Handling and MSI to HT Interrupt Conversion ............................................................................2-5 2.4.5 Internally Generated Interrupts.............................................................................................................................2-5 2.4.6 IOMMU Interrupt Remapping .............................................................................................................................2-5 2.4.7 Interrupt Routing Architecture .............................................................................................................................2-5 2.5 RAS Features ......................................................................................................................................................................2-7 2.5.1 Parity Protection ...................................................................................................................................................2-7 2.5.2 SERR_FATAL# and NON_FATAL_CORR# Pins .............................................................................................2-7 2.5.3 NMI# and SYNCFLOODIN# ..............................................................................................................................2-8 2.5.4 Suggested Platform Level RAS Sideband Signal Connections............................................................................2-8 2.5.5 Error Reporting and Logging ...............................................................................................................................2-9 2.5.6 Interrupt Generation on Errors ........................................................................................................................... 2-11 2.5.7 Poisoned Data Support ....................................................................................................................................... 2-11 2.5.8 PCIe® Link Disable State .................................................................................................................................. 2-11 © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 Table of Contents-1 2.5.9 HT Syncflood Based on PCIe® Error ............................................................................................................... 2-12 2.6 PCI Express® .................................................................................................................................................................. 2-12 2.6.1 PCIe® Ports ....................................................................................................................................................... 2-12 2.6.2 PCIe® Reset Signals.......................................................................................................................................... 2-12 2.7 External Clock Chip ......................................................................................................................................................... 2-12 Chapter 3: Pin Descriptions and Strap Options 3.1 Pin Assignment Top View ................................................................................................................................................. 3-2 3.2 SR5650 Interface Block Diagram ...................................................................................................................................... 3-4 3.3 CPU HyperTransport™ Interface ...................................................................................................................................... 3-4 3.4 PCI Express® Interfaces .................................................................................................................................................... 3-5 3.4.1 PCI Express® Interface for General Purpose External Devices ......................................................................... 3-5 3.4.2 A-Link Express II Interface to Southbridge ........................................................................................................ 3-5 3.4.3 Miscellaneous PCI Express® Signals ................................................................................................................. 3-6 3.5 Clock Interface ................................................................................................................................................................... 3-6 3.6 Power Management Pins .................................................................................................................................................... 3-6 3.7 Miscellaneous Pins............................................................................................................................................................. 3-7 3.8 Power Pins.......................................................................................................................................................................... 3-8 3.9 Ground Pins........................................................................................................................................................................ 3-9 3.10 Strapping Options........................................................................................................................................................... 3-10 Chapter 4: Timing Specifications 4.1 HyperTransport™ Bus Timing .......................................................................................................................................... 4-1 4.2 PCI Express® Differential Clock AC Specifications......................................................................................................... 4-1 4.3 HyperTransport™ Reference Clock Timing Parameters ................................................................................................... 4-1 4.4 OSCIN Reference Clock Timing Parameters..................................................................................................................... 4-2 4.5 Power Rail Sequence.......................................................................................................................................................... 4-2 4.5.1 Power Up ............................................................................................................................................................. 4-3 4.5.2 Power Down ........................................................................................................................................................ 4-4 Chapter 5: Electrical Characteristics and Physical Data 5.1 Electrical Characteristics.................................................................................................................................................... 5-1 5.1.1 Maximum and Minimum Ratings........................................................................................................................ 5-1 5.1.2 DC Characteristics ............................................................................................................................................... 5-1 5.2 SR5650 Thermal Characteristics........................................................................................................................................ 5-2 5.2.1 SR5650 Thermal Limits ...................................................................................................................................... 5-2 5.2.2 Thermal Diode Characteristics ............................................................................................................................ 5-3 5.3 Package Information .......................................................................................................................................................... 5-4 5.3.1 Pressure Specification.......................................................................................................................................... 5-5 5.3.2 Board Solder Reflow Process Recommendations ............................................................................................... 5-6 Chapter 6: Power Management and ACPI 6.1 ACPI Power Management Implementation ....................................................................................................................... 6-1 Chapter 7: Testability 7.1 Test Capability Features..................................................................................................................................................... 7-1 7.2 Test Interface...................................................................................................................................................................... 7-1 7.3 XOR Tree ........................................................................................................................................................................... 7-1 47062 SR5650 Databook 2.20 Table of Contents-2 © 2012 Advanced Micro Devices, Inc. Proprietary 7.3.1 7.3.2 7.3.3 7.3.4 Brief Description of an XOR Tree .......................................................................................................................7-1 Description of the XOR Tree for the SR5650 ......................................................................................................7-2 XOR Tree Activation ...........................................................................................................................................7-2 XOR Tree for the SR5650....................................................................................................................................7-3 7.4 VOH/VOL Test...................................................................................................................................................................7-4 7.4.1 Brief Description of a VOH/VOL Tree................................................................................................................7-4 7.4.2 VOH/VOL Tree Activation..................................................................................................................................7-5 7.4.3 VOH/VOL pin list ................................................................................................................................................7-6 Appendix A: Pin Listings 7.5 SR5650 Pin Listing Sorted by Ball Reference................................................................................................................... A-2 A.1 SR5650 Pin Listing Sorted by Pin Name .......................................................................................................................... A-9 Appendix B: Revision History © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 Table of Contents-3 This page is left blank intentionally. 47062 SR5650 Databook 2.20 Table of Contents-4 © 2012 Advanced Micro Devices, Inc. Proprietary List of Figures Figure 1-1: Figure 1-2: Figure 1-3: Figure 2-1: Figure 2-2: Figure 2-3: Figure 2-4: Figure 2-5: Figure 2-6: Figure 2-7: Figure 3-1: Figure 4-1: Figure 5-2: Figure 5-3: Figure 5-4: Figure 7-1: Figure 7-2: SR5650 Branding Diagram for A21 Production ASIC (RoHS-compliant Part) ......................................................... 1-3 SR5650 Branding Diagram for A21 Production ASIC (Lead Free Part) .................................................................... 1-3 SR5650 Alternate Branding for A21 Production ASIC (Lead Free Part) ................................................................... 1-4 SR5650 Internal Blocks and Interfaces ....................................................................................................................... 2-1 HyperTransport™ Interface Block Diagram ............................................................................................................... 2-2 SR5650 HyperTransport™ Interface Signals .............................................................................................................. 2-3 Interrupt Routing Paths in Legacy Mode .................................................................................................................... 2-6 Interrupt Routing Paths in Legacy Mode with Integrated IOAPIC ............................................................................. 2-6 Interrupt Routing Path in MSI Mode .......................................................................................................................... 2-7 Suggested Platform Level RAS Sideband Signal Connections ................................................................................... 2-9 SR5650 Interface Block Diagram ............................................................................................................................... 3-4 SR5650 Power Rail Power Up Sequence .................................................................................................................... 4-3 SR5650 692-Pin FCBGA Package Outline ................................................................................................................. 5-4 SR5650 Ball Arrangement (Bottom View) ................................................................................................................. 5-5 RoHS/Lead-Free Solder (SAC305/405 Tin-Silver-Copper) Reflow Profile .............................................................. 5-7 XOR Tree .................................................................................................................................................................... 7-2 Sample of a Generic VOH/VOL Tree ......................................................................................................................... 7-5 © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 List of Figures-1 This page is left blank intentionally. 47062 SR5650 Databook 2.20 List of Figures-2 © 2012 Advanced Micro Devices, Inc. Proprietary List of Tables Table 1-1: Device IDs for the SR5690/5670/5650 Chipset Family ................................................................................................1-3 Table 1-2: Pin Type Codes ..............................................................................................................................................................1-4 Table 1-3: Acronyms and Abbreviations ........................................................................................................................................1-5 Table 2-1: SR5650 HyperTransport™ Flow Control Buffers .........................................................................................................2-3 Table 2-2: Types of Errors Detectable by the SR5650 AER Implementation ..............................................................................2-10 Table 2-3: Types of HyperTransport™ Errors Supported by the SR5650 ....................................................................................2-11 Table 2-4: Possible Configurations for the PCI Express® General Purpose Links ......................................................................2-12 Table 3-1: HyperTransport™ Interface ...........................................................................................................................................3-4 Table 3-2: PCI Express® Interface for General Purpose External Devices ....................................................................................3-5 Table 3-3: 1 x 4 Lane A-Link Express II Interface for Southbridge ...............................................................................................3-5 Table 3-4: Miscellaneous PCI Express® Signals ............................................................................................................................3-6 Table 3-5: Clock Interface ...............................................................................................................................................................3-6 Table 3-6: Power Management Pins ...............................................................................................................................................3-6 Table 3-7: Miscellaneous Pins ........................................................................................................................................................3-7 Table 3-8: Power Pins .....................................................................................................................................................................3-8 Table 3-9: Ground Pins ...................................................................................................................................................................3-9 Table 3-10: Strap Definitions for the SR5650 ..............................................................................................................................3-10 Table 3-11: Strap Definition for STRAP_PCIE_GPP_CFG .........................................................................................................3-10 Table 4-1: Timing Requirements for PCIe® Differential Clocks (GPP1_REFCLK, GPP2_REFCLK, and GPP3_REFCLK at 100MHz) .........................................................................................................................................................................................4-1 Table 4-2: Timing Requirements for HyperTransport™ Reference Clock (100MHz) ...................................................................4-1 Table 4-3: Timing Requirements for OSCIN Reference Clock (14.3181818MHz) .......................................................................4-2 Table 4-4: Power Rail Groupings for the SR5650 ..........................................................................................................................4-2 Table 4-5: SR5650 Power Rail Power-up Sequence .......................................................................................................................4-3 Table 5-1: Power Rail Maximum and Minimum Voltage Ratings .................................................................................................5-1 Table 5-2: Power Rail Current Ratings ...........................................................................................................................................5-1 Table 5-1: DC Characteristics for PCIe® Differential Clocks (GPP1_REFCLK, GPP2_REFCLK, and GPP3_REFCLK at 100MHz) .........................................................................................................................................................................................5-1 Table 5-3: DC Characteristics for 1.8V GPIO Pads ........................................................................................................................5-2 Table 5-4: DC Characteristics for the HyperTransport™ 100MHz Differential Clock (HT_REFCLK) .......................................5-2 Table 5-5: SR5650 Thermal Limits ................................................................................................................................................5-2 Table 5-6: SR5650 692-Pin FCBGA Package Physical Dimensions .............................................................................................5-4 Table 5-7: Recommended Board Solder Reflow Profile - RoHS/Lead-Free Solder ......................................................................5-6 Table 6-1: ACPI States Supported by the SR5650 .........................................................................................................................6-1 Table 7-1: Pins on the Test Interface ..............................................................................................................................................7-1 Table 7-2: Example of an XOR Tree ..............................................................................................................................................7-2 Table 7-3: SR5650 XOR Tree .........................................................................................................................................................7-3 Table 7-4: Truth Table for the VOH/VOL Tree Outputs ................................................................................................................7-5 Table 7-5: SR5650 VOH/VOL Tree ...............................................................................................................................................7-6 © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 List of Tables-1 This page intentionally left blank. 47062 SR5650 Databook 2.20 List of Tables-2 © 2012 Advanced Micro Devices, Inc. Proprietary Chapter 1 Overview 1.1 Introducing the SR5650 The SR5650 is the system logic of the latest server/workstation platform from AMD that enables its next generation CPUs. The SR5650 has a total of 26 PCI Express® (PCIe®) lanes: 22 lanes are dedicated for external PCIe devices, and 4 are dedicated for the A-Link Express II interface to AMD’s Southbridges such as the SP5100 (formerly SB700S). The SR5650 also comes equipped with the new HyperTransport™ 3 and PCIe Gen 2 technologies. All of these are achieved by a highly integrated, thermally efficient design in a 29mm x 29mm package. The SR5650 introduces a variety of Reliability, Availability and Serviceability (RAS) capabilities. These include parity protection for on-chip memories, PCI Express Advanced Error Reporting (AER), and advanced error handling capabilities for HyperTransport. The SR5650 also supports a revision 1.26 compliant IOMMU (Input/Output Memory Management Unit) implementation for address translation and protection services. This feature allows virtual addresses from PCI Express endpoint devices to be translated to physical memory addresses. On-chip caching of address translations is provided to improve I/O performance. The device is also compliant with revision 1.0 of the PCI Express Address Translation Services (ATS) specification to enable ATS-compliant endpoint devices to cache address translation. These features enhance memory protection and support hardware-based I/O virtualization when combined with appropriate operating system or hypervisor software. Combined with AMD Virtualization™ (AMD-V™) technology, these features are designed to provide comprehensive platform level virtualization support. 1.2 SR5650 Features 1.2.1 CPU Interface 1.2.2 1.2.3 • • • Supports 16-bit up/down HyperTransport™ (HT) 3.0 interface up to 5.2 GT/s. • Supports “Shanghai” and subsequent series of AMD server/workstation and desktop processors through sockets F, AM3, G34, and C32. • Supports LDTSTOP interface and CPU throttling. Supports 200, 400, 600, 800, and 1000 MHz HT1 frequencies. Supports 1200, 1400, 1600, 1800, 2000, 2200, 2400, and 2600 MHz HT3 frequencies (up to 2400 MHz only for the RX980) . PCI Express® Interface • • • Supports PCIe Gen 2 (version 2.0). • Supports a revision 1.26 compliant IOMMU (Input/Output Memory Management Unit) implementation for address translation and protection services. Please refer to the AMD I/O Virtualization Technology (IOMMU) Specification for more details. Optimized peer-to-peer and general purpose link performance. Supports 22 PCIe Gen 2 general purpose lanes, and up to 8 devices on specific ports (possible configurations are described in Section 2.6, “PCI Express®”). A-Link Express II Interface • One x4 A-Link Express II interface for connection to an AMD Southbridge. The A-Link Express II is a proprietary interface developed by AMD based on the PCI Express technology, with additional Northbridge-Southbridge messaging functionalities. © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 1-1 Software Features 1.2.4 Multiple Processor Support • 1.2.5 Multiple Northbridge Support • 1.2.6 1.2.7 Supports multiple-socket configurations for up to 8 processors on the same system. Supports multiple-SR5690/5670/5650 configurations on the same system. See Section 2.3, “Multiple Northbridge Support,” for details. Power Management Features • • Fully supports ACPI states S1, S3, S4, and S5. • • Support for AMD PowerNow!™ technology. • Supports dynamic lane reduction for the PCIe interfaces, adjusting to the task the number of lanes employed. The Chip Power Management Support logic supports four device power states defined for the OnNow Architecture— On, Standby, Suspend, and Off. Each power state can be achieved by software control bits. Clocks are controlled dynamically using a mechanism that is transparent to the software. The ASIC hardware detects idle blocks and turns off the clocks to those blocks in order to reduce power consumption. PC Design Guide Compliance The SR5650 complies with all relevant Windows Logo Program (WLP) requirements from Microsoft® for WHQL certification. 1.2.8 Test Capability Features The SR5650 has a variety of test modes and capabilities that provide a very high fault coverage and low DPM (Defect Per Million) ratio: • Full scan implementation on the digital core logic which provides about 97% fault coverage through ATPG (Automatic Test Pattern Generation Vectors). • • • • Dedicated test logic for the on-chip custom memory macros to provide complete coverage on these modules. • • IDDQ mode support to allow chip evaluation through current leakage measurements. A JTAG test mode in order to allow board level testing of neighboring devices. An XOR tree test mode on all the digital I/O's to allow for proper soldering verification at the board level. Access to the analog modules and PLLs in the SR5650 in order to allow full evaluation and characterization of these modules. Highly advanced signal observability through the debug port. These test modes can be accessed through the settings of the instruction register of the JTAG circuitry. 1.2.9 Packaging • • 1.3 Single chip solution in 65nm, 1.1V CMOS technology. Flip chip design in a 29mm x 29mm 692-FCBGA package. Software Features • • • • • • Supports Windows Server® 2003, Windows Server® 2008, Red Hat Enterprise Linux, SUSE Linux, and Solaris. Supports corporate manageability requirements such as DMI. ACPI support. Full write combining support for maximum performance. Comprehensive OS and API support. Extensive Power Management support. 47062 SR5650 Databook 2.20 1-2 © 2012 Advanced Micro Devices, Inc. Proprietary Device ID 1.4 Device ID The SR5650 is a member of the AMD chipset family, which consists of different devices designed to support different platforms. Each device is identified by a device ID, which is stored in the NB_DEVICE_ID register. The device IDs for the SR5650/5690/5670 chipset family are as follows: Table 1-1 Device IDs for the SR5690/5670/5650 Chipset Family 1.5 Device Device ID SR5690 5A10h SR5670 5A12h SR5650 5A13h Branding Diagrams AMD Logo Northbridge YYWW MADE IN TAIWAN WXXXXX 215-0716032 AMD Product Type Date Code* Country of Origin Wafer Lot Number Part Number * YY - Assembly Start Year WW - Assembly Start Week Note: Branding can be in laser, ink, or mixed laser-and-ink marking. Figure 1-1 SR5650 Branding Diagram for A21 Production ASIC (RoHS-compliant Part) AMD Logo Northbridge YYWW MADE IN TAIWAN WXXXXX 215-0716042 AMD Product Type Date Code* Country of Origin Wafer Lot Number Part Number * YY - Assembly Start Year WW - Assembly Start Week Note: Branding can be in laser, ink, or mixed laser-and-ink marking. Figure 1-2 SR5650 Branding Diagram for A21 Production ASIC (Lead Free Part) © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 1-3 Conventions and Notations AMD Logo Northbridge YYWW MADE IN TAIWAN WXXXXX 215-0716054 AMD Product Type Date Code* Country of Origin Wafer Lot Number Part Number * YY - Assembly Start Year WW - Assembly Start Week Note: Branding can be in laser, ink, or mixed laser-and-ink marking. Figure 1-3 SR5650 Alternate Branding for A21 Production ASIC (Lead Free Part) 1.6 Conventions and Notations The following sections explain the conventions used throughout this manual. 1.6.1 Pin Names Pins are identified by their pin names or ball references. All active-low signals are identified by the suffix ‘#’ in their names (e.g., SYSRESET#). 1.6.2 Pin Types The pins are assigned different codes according to their operational characteristics. These codes are listed in Table 1-2. Table 1-2 Pin Type Codes Code 1.6.3 Pin Type I Digital Input O Digital Output I/O Bi-Directional Digital Input or Output M Multifunctional Pwr Power Gnd Ground A-O Analog Output A-I Analog Input A-I/O Analog Bi-Directional Input/Output A-Pwr Analog Power A-Gnd Analog Ground Other Pin types not included in any of the categories above Numeric Representation Hexadecimal numbers are appended with “h” whenever there is a risk of ambiguity. Other numbers are in decimal. Pins of identical functions but different trailing digits (e.g., DFT_GPIO0, DFT_GPIO1, ...DFT_GPIO5) are referred to collectively by specifying their digits in square brackets and with colons (i.e., “DFT_GPIO[5:0]”). A similar short-hand notation is used to indicate bit occupation in a register. For example, NB_COMMAND[15:10] refers to the bit positions 10 through 15 of the NB_COMMAND register. 47062 SR5650 Databook 2.20 1-4 © 2012 Advanced Micro Devices, Inc. Proprietary Conventions and Notations 1.6.4 Hyperlinks Phrases or sentences in blue italic font are hyperlinks to other parts of the manual. Users of the PDF version of this manual can click on the links to go directly to the referenced sections, tables, or figures. 1.6.5 Acronyms and Abbreviations The following is a list of the acronyms and abbreviations used in this manual. Table 1-3 Acronyms and Abbreviations Acronym Full Expression ACPI Advanced Configuration and Power Interface ASPM Active State Power Management A-Link-E A-Link Express interface between the Northbridge and Southbridge. BGA Ball Grid Array BIOS Basic Input Output System. Initialization code stored in a ROM or Flash RAM used to start up a system or expansion card. BIST Built In Self Test. DBI Dynamic Bus Inversion DPM Defects per Million EPROM Erasable Programmable Read Only Memory FCBGA Flip Chip Ball Grid Array FIFO First In, First Out VSS Ground GPIO General Purpose Input/Output HT HyperTransport™ interface IDDQ IOMMU JTAG Direct Drain Quiescent Current Input/Output Memory Management Unit Joint Test Access Group. An IEEE standard. MB Mega Byte NB Northbridge PCI PCIe ® Peripheral Component Interface PCI Express® PLL Phase Locked Loop POST Power On Self Test PD Pull-down Resistor PU Pull-up Resistor RAS Reliability, Availability and Serviceability SB Southbridge TBA To Be Added VRM Voltage Regulation Module © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 1-5 Conventions and Notations This page is left blank intentionally. 47062 SR5650 Databook 2.20 1-6 © 2012 Advanced Micro Devices, Inc. Proprietary Chapter 2 Functional Descriptions This chapter describes the functional operation of the major interfaces of the SR5650 system logic chip. Figure 2-1 illustrates the SR5650 internal blocks and interfaces. CPU Interface CPU IO Controller Root Complex IOMMU PCIe® GPP1 Interface (1 x 16 or 2 x 8 Lanes) (6 Lanes for 6 ports) PCIe GPP3 Interface Expansion Slots A-Link-E Interface Expansion Slots (1 x 4 Lanes) Southbridge HyperTransport™ 3 Unit Register Interface Figure 2-1 SR5650 Internal Blocks and Interfaces 2.1 HyperTransport™ Interface 2.1.1 Overview The SR5650 is optimized to interface with “Shanghai” and subsequent series of AMD server/workstation and desktop processors through sockets F, AM3, G34, and C32. The SR5650 supports HyperTransport™ 3 (HT3), as well as HyperTransport 1 (HT1) for backward compatibility and for initial boot-up. For a detailed description of the interface, please refer to the HyperTransport I/O Link Specification from the HyperTransport Consortium. Figure 2-2, “HyperTransport™ Interface Block Diagram,” illustrates the basic blocks of the host bus interface of the SR5650. © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 2-1 HyperTransport™ Interface 10.4 GB/s to CPU 10.4 GB/s from CPU Tx PHY Rx PHY Tx PHY Interface Rx PHY Interface Protocol Transmitter Protocol Receiver Response Interface Upstream Arbitration Host Interface Host read responses DMA requests IOMMU requests DMA read response data Host requests Host read responses IOMMU L2 PCIe® Cores I/O Controller Figure 2-2 HyperTransport™ Interface Block Diagram The SR5650 HyperTransport bus interface consists of 16 unidirectional differential Command/Address/Data pins, and 2 differential Control pins and 2 differential Clock pins in both the upstream and downstream directions. On power up, the link is 8-bit wide and runs at a default speed of 400MT/s in HyperTransport 1 mode. After negotiation, carried out by the HW and SW together, the link width can be brought up to the full 16-bit width and the interface can run up to 5.2GT/s in HyperTransport 3 mode. In HyperTransport 1 mode, the interface operates by clock-forwarding while in HyperTransport 3 mode, the interface operates by dynamic phase recovery, with frequency information propagated over the clock pins. The interface is illustrated below in Figure 2-3, “SR5650 HyperTransport™ Interface Signals.” The signal name and direction for each signal is shown with respect to the SR5650. Detailed descriptions of the signals are given in Section 3.3, “CPU HyperTransport™ Interface‚’ on page 3-4. 47062 SR5650 Databook 2.20 2-2 © 2012 Advanced Micro Devices, Inc. Proprietary HyperTransport™ Interface HT_TXCALN HT_TXCALP HT_RXCALP 2 HT_TXCLKN 2 HT_TXCTLP 2 HT_TXCTLN 2 HT_TXCADP 16 HT_TXCADN 16 HT_RXCLKP 2 HT_RXCLKN 2 HT_RXCTLP 2 HT_RXCTLN 2 HT_RXCADP 16 HT_RXCADN 16 CPU SR5650 HT_RXCALN HT_TXCLKP Figure 2-3 SR5650 HyperTransport™ Interface Signals The SR5650 HyperTransport interface has the following features: • • • • • • • • • • 2.1.2 HyperTransport 3.0 compliant 16-bit and 8-bit link widths supported. Width for each direction of the link is independently controlled. 400MT/s to 5.2GT/s link speeds in increments of 400MT/s (up to 2GT/s only for HyperTransport 1 mode) DC-coupled HyperTransport mode only UnitID clumping for x16 PCI Express® ports Isochronous flow-control mode for Southbridge audio and IOMMU traffic 64-bit address extension support (52-bit physical addressing) Link disconnection with tristate, LS1, and LS2 low-power modes Error retry in HyperTransport 3 mode Full HyperTransport-defined BIST support for both internal and external loopback modes HyperTransport™ Flow Control Buffers The SR5650 HTIU implements the following flow control buffers in its receiver: Table 2-1 SR5650 HyperTransport™ Flow Control Buffers Flow Control Buffer Type Posted Non-Posted Cmd 16 16 Data 16 1 Advertise 63 credits. ISOC Cmd 0 0 Advertise 63 credits. ISOC Data 0 0 Advertise 63 credits. © 2012 Advanced Micro Devices, Inc. Proprietary Response Advertise 63 credits. 47062 SR5650 Databook 2.20 2-3 IOMMU 2.2 IOMMU The SR5650’s IOMMU (Input/Output Memory Management Unit) block provides address translation and protection services as described in version 1.26 of the AMD I/O Virtualization Technology (IOMMU) Specification. The SR5650 also supports the PCI Express Address Translation Services 1.0 Specification, which allows the supporting of endpoint devices to request and cache address translations. When DMA requests containing virtual addresses are received, the IOMMU looks up the page translation tables located in the system memory in order to convert the virtual addresses into physical addresses and to verify access privileges. On-chip caching is provided in order to speed up translation and reduce or eliminate the number of system memory accesses required. Every PCIe core contains a local translation cache, and the SR5650 also contains a shared global translation cache. The SR5650 supports up to 216 domains, each of which can utilize a separate 64-bit virtual address space. It supports a 52-bit physical address space. 2.3 Multiple Northbridge Support Multiple SR5690/5670/5650 (referred to as “SR56x0”below) Northbridges may be implemented in the same system given enough free HyperTransport links from the processor complex. However, only a single Southbridge may be used. The SR56x0 attached to the Southbridge is called the primary SR56x0, and any other instance of SR56x0 is called a secondary SR56x0. The A-Link Express interface on any secondary SR56x0 must be left unconnected, and it cannot be used to support any PCI Express endpoint devices. The PWM_GPIO5 pin-strap is used to indicate whether an SR56x0 is a primary or a secondary Northbridge. If no pull-down resistor is attached on the pin, the internal pull-up resistor on it will set the strap value to “1,” indicating the device to be a primary Northbridge. On any secondary SR56x0, the PWM_GPIO5 pin-strap must be pulled low. In the multi-NB mode, special PCI Express messages for functions such as PME may be passed from a secondary SR56x0 to the primary SR56x0 or the Southbridge over the HyperTransport bus. If the SR56x0’s internal IOAPIC is not used, INTx messages may also be forwarded over the HyperTransport bus to the Southbridge IOAPIC. Peer-to-peer writes between PCI Express endpoints are also allowed between any SR56x0 and another by routing peer-to-peer requests over the HyperTransport bus. Note: As it is possible to mix-and-match SR5650, SR5670, and SR5690 on the same system, whenever a multiple-SR5650 configuration is being referred to in this document, it actually represents any combination of SR5650, SR5670, and SR5690 possible under that situation. Some constrains may apply. 2.4 Interrupt Handling 2.4.1 Legacy INTx Handling In legacy interrupt mode, all INTx messages must be routed to the Southbridge IOAPIC. The primary NB directs all INTx messages directly down to the Southbridge IOAPIC. Secondary NBs direct INTx messages up to the processor complex, where they are broadcast down to all HT devices. See Section 2.3, “Multiple Northbridge Support‚’ on page 2-4 for details. The 4 legacy interrupts sent by endpoint devices (INT A/B/C/D) may undergo a 2-stage programmable swizzling process that maps them onto the 8 possible internal INTx messages (INT A/B/C/D/E/F/G/H). The first swizzling stage is performed by rotating the interrupt message number based upon the bridge device number. The second stage is register controllable on a per-bridge basis and maps the rotated INT A/B/C/D onto INT E/F/G/H. INT A to H messages sent to the Southbridge are mapped onto the SB IOAPIC interrupt redirection table entries 16 to 23. 2.4.2 Non-SB IOAPIC Support The SR5650 supports routing legacy IOAPIC memory-mapped I/O addresses (0xFECx_xxxx) to any PCI Express port to support endpoint devices with integrated IOAPIC. 47062 SR5650 Databook 2.20 2-4 © 2012 Advanced Micro Devices, Inc. Proprietary Interrupt Handling 2.4.3 Integrated IOAPIC Support The SR5650 supports routing local INTx messages to its integrated IOAPIC. The integrated IOAPIC contains a 32-entry redirection table. INTx messages from endpoint devices, bridges, HTIU, and IOMMU can be mapped onto different redirection entries under register control. 2.4.4 MSI Interrupt Handling and MSI to HT Interrupt Conversion In MSI interrupt mode, all interrupts are sent directly from the endpoint devices through the SR5650 up to the processor complex. All MSI interrupts are converted into HT-formatted interrupts. For MSIs from PCI Express endpoint devices and internally generated PCI Express interrupts, the conversion occurs in the associated IOMMU L1 block. For IOMMU interrupts and, optionally, HT error interrupts and internal parity error interrupts, the conversion occurs in the HTIU block. HT error interrupts and internal parity error interrupts may be optionally redirected to an MSI generation block underneath the SB VC1 IOMMU L1 so that they can be remapped by IOMMU. IOMMU internal MSI interrupts are never remapped. The PCI configuration spaces of each on-board device contains a fixed HT MSI mapping capability (except for Device 1, which is unused). This implies that all MSI interrupts with address 0xFEEx_xxxx have to be converted to HT interrupts. Because of this, software is required to program all MSI address registers with an 0xFEEx_xxxx address. 2.4.5 Internally Generated Interrupts The SR5650 may internally generate interrupts for the following purposes: • • • • • • PCI Express error PCI Express PME HT error Internal parity error IOMMU command handler IOMMU event logger Internally generated interrupts may be in either legacy INTx or MSI format. Internal MSI interrupt sources do not support per-vector masking. 2.4.6 IOMMU Interrupt Remapping When the IOMMU is enabled, interrupts generated downstream of the IOMMU are remapped based upon the IOMMU tables. The following classes of interrupts are not remapped by the IOMMU because they are generated upstream of the IOMMU: • • • 2.4.7 HT error (optional) Internal parity error (optional) IOMMU command handler and event logger Interrupt Routing Architecture 2.4.7.1 Legacy Mode Primary SR5650: Legacy INTx messages are routed directly to the SB IOAPIC. The SB IOAPIC generates upstream interrupt requests, which are translated by the IOMMU before they are delivered up to the processor complex. Secondary SR5650: Legacy INTx messages are routed over HyperTransport through the processor complex to the primary SR5650, which forwards them to the SB IOAPIC. The SB IOAPIC generates upstream interrupt requests, which are translated by the IOMMU before being delivered up to the processor complex. The routing paths are illustrated in Figure 2-4 below. © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 2-5 Interrupt Handling PCI-E Endpoint Device CPU CPU SR5650 SR5650 PCI-E Endpoint Device INTx Message from device attached to primary SR5650 INTx Message from device attached to secondary SR5650 Interrupts from SB IOAPIC SB Figure 2-4 Interrupt Routing Paths in Legacy Mode 2.4.7.2 Legacy Mode with Integrated IOAPIC For both the primary and secondary SR5650s, legacy INTx messages are routed to the integrated IOAPICs of the SR5650s, which generates interrupt requests. These requests are remapped by the IOMMU before being delivered up to the processor complex. If an INTx message gets directed to an IOAPIC table entry that is not enabled, the IOAPIC sends the INTx message back to the IOC to go to the SB PIC/IOAPIC. The routing paths are illustrated in Figure 2-5 below. PCI-E Endpoint Device SR5650 CPU CPU HT IOMMU PCI-E Endpoint Device PCIExpress IOAPIC SR5650 INTx Message from PCI-Express device attached to SR5650 Internal interrupt Remapped HT Interrupt SB Figure 2-5 Interrupt Routing Paths in Legacy Mode with Integrated IOAPIC 47062 SR5650 Databook 2.20 2-6 © 2012 Advanced Micro Devices, Inc. Proprietary RAS Features 2.4.7.3 MSI Mode For both the primary and secondary SR5650s: MSI interrupt requests are remapped by the IOMMU and sent up to the processor complex. The routing path is illustrated in Figure 2-6 below. PCI-E Endpoint Device SR5650 CPU CPU HT IOMMU PCI-E Endpoint Device PCIExpress SR5650 MSI Interrupt from PCI-Express device attached to SR5650 Remapped HT Interrupt SB Figure 2-6 Interrupt Routing Path in MSI Mode 2.5 RAS Features 2.5.1 Parity Protection All memories in SR5650 are parity protected to reduce the possibility of silent data corruption. Multiple parity words are interleaved to convert burst errors (multiple physically adjacent bits corrupted) into multiple single-bit detectable errors to increase robustness. The minimum number of interleaved parity words in any on-board memory is 4. All macros contain test circuitry for software to generate false errors on either the read or write side of the memory for verification of error handling routines. Error injection circuitry only corrupts parity bits rather than real data bits to avoid data corruption. 2.5.1.1 Parity Protection for IOMMU Cache Memories All IOMMU cache memories are parity protected. When a parity error is detected, the access from the associated bank is marked as an automatic miss. The cache line is marked as invalid and may later be overwritten with data from system memory (which is ECC protected). The error is logged in a status bit and an optional interrupt is generated (either fatal, non-fatal, or correctable parity error). 2.5.1.2 Parity Protection for Normal Memories All normal memories are also parity protected. When a parity error is detected, the failure is likely to be fatal as there is no automatic recovery mechanism and no way for hardware to tag a specific request or operation with the error. The error is logged in a status bit for later diagnosis and an optional interrupt is generated (either fatal or non-fatal parity error). 2.5.2 SERR_FATAL# and NON_FATAL_CORR# Pins The SR5650 implements a dedicated pin, DBG_GPIO0/SERR_FATAL#, to signal either a system or a fatal error, which can be used to signal a BMC for further actions. SERR_FATAL# may be asserted on various error conditions like HT © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 2-7 RAS Features syncflood, as well as internal parity errors or fatal errors for which signalling by SERR_FATAL# is enabled. Fatal errors are identified via the fatal error status bits. Non-fatal or correctable errors may be likewise signalled via DBG_GPIO3/NON_FATAL_CORR#. The SERR_FATAL# and NON_FATAL_CORR# pin functionalities are disabled on warm reset. 2.5.3 NMI# and SYNCFLOODIN# The SR5650 may configure the DFT_GPIO0/NMI# pin as an input pin for triggering an upstream NMI packet to the processor complex. The pin should be driven by a BMC. An internal sticky status bit records the use of the NMI# pin. Also, the SR5650 may configure the DFT_GPIO5/SYNCFLOODIN# pin as an input pin for triggering a HyperTransport syncflood event. The pin should driven by a BMC. An internal sticky status bit records the use of the SYNCFLOODIN# pin. 2.5.4 Suggested Platform Level RAS Sideband Signal Connections Figure 2-7 is a logical diagram showing suggestions for RAS sideband signal connections at the platform level . 47062 SR5650 Databook 2.20 2-8 © 2012 Advanced Micro Devices, Inc. Proprietary RAS Features Separate connections to debug pins and GPIO expander for each SR5650 in the system DBG_GPIO0/ SERR_FATAL# DBG_GPIO3/ NON_FATAL_CORR# NMI# only needs to be connected on the primary SR5650 BMC, SuperIO or other GPIO source Enable signals should default to logic 0 on reset/ powergood DFT_GPIO0/NMI# Enable only after reset. This is a pinstrap sampled shortly after powergood Add option to drive SYNCFLOODIN# pins on all SR5650s in the system SCL/SDA Interrupt line to Sys_SMBUS_IO_EXP_INTR_L OPMA pin SR5650 DFT_GPIO5/ SYNCFLOODIN# GPIO Expander attached to OPMA SMBus (either private 0 or private 1 SMBus segments). Alternately, this can connect directly to a BMC S/W path to trigger NMI# pin From NMI button and MCARD_NMIBTN_L OPMA pin To SYS_NMIBTN_L OPMA pin Enable only after reset. This is a pinstrap sampled shortly after powergood PCIe® SP5100 Attach to a pin that can generate SMI# like USB_OC5#/IR_TX0/ GPM5# SERR_FATAL# and NON_FATAL_CORR# from other SR5650s. These are buffered to help isolate the failing device. Figure 2-7 Suggested Platform Level RAS Sideband Signal Connections 2.5.5 Error Reporting and Logging 2.5.5.1 PCI Error Logging The SR5650 implements all PCI standard error logging bits for all on-board devices and functions including the host bridge device, IOMMU, and PCI Express bridges. 2.5.5.2 PCIe® Advanced Error Reporting The SR5650 PCIe® cores implement the optional Advanced Error Reporting (AER) feature mechanism in the PCI Express 2.0 Base Specification. Errors are logged for received packet errors such as poisoned data, malformed TLP, and etc. within the PCIe core and are accessible via the bridge configuration spaces. © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 2-9 RAS Features The ACS violations for ACS Source Validation and ACS Translation Blocking are recorded in the AER error log. Errors due to IOMMU translation failures are not logged as ACS violations, but are logged as UR or CA depending on the error type. IOC may abort a non-posted request with UR status if it determines that the request will not hit system memory. Such errors are pushed back into the PCIe core for logging. The IOC must abort potential peer-to-peer non-posted requests to avoid a deadlock condition. For posted requests, the IOC can be configured to forward all non-decoded (non system memory and non-peer-to-peer) posted requests up to the processor, which may abort the request and generate an MCA error log. For downstream completions with abort status coming back from the processor, error status is propagated to the endpoint but no AER header information is logged in the chipset. For upstream completions, error status is propagated up to the processor and AER information may be logged. Table 2-2 lists the types of errors that are detectable by the SR5650 AER implementation. For details, see the PCI Express 2.0 Base Specification. Table 2-2 Types of Errors Detectable by the SR5650 AER Implementation Error Type Error Class ACS Violation Uncorrectable – Fatal or Non-fatal Unsupported Request Uncorrectable – Fatal or Non-fatal Malformed TLP Uncorrectable – Fatal or Non-fatal Unexpected Completion Uncorrectable – Fatal or Non-fatal Completer Abort Uncorrectable – Fatal or Non-fatal Completion Timeout Uncorrectable – Fatal or Non-fatal Poisoned TLP Received Uncorrectable – Fatal or Non-fatal Data Link Layer Protocol Error Uncorrectable – Fatal or Non-fatal ECRC Error Uncorrectable – Fatal or Non-fatal Replay Timeout Correctable REPLAY_NUM Rollover Correctable Bad DLLP Correctable Bad TLP Correctable The following error classes are NOT supported: • • • • Receiver Overflow Error Flow Control Error Surprise Down Error Receiver Error 2.5.5.3 IOMMU Error Reporting The IOMMU specification defines a standard error logging facility that logs error events in system memory with register status bits or interrupt notification to system software. The SR5650 fully supports the generation of logging events following this standard. 2.5.5.4 HyperTransport™ Error Reporting The HyperTransport specification defines various levels of error handling for link-related errors. The SR5650 supports the detection of most error classes including protocol error, overflow error, and response error. The SR5650 also supports notification of error conditions via fatal interrupts, non-fatal interrupts, or syncflood. Table 2-3 lists the types of errors supported by the error handling capabilities of the SR5650 for HyperTransport. 47062 SR5650 Databook 2.20 2-10 © 2012 Advanced Micro Devices, Inc. Proprietary RAS Features Table 2-3 Types of HyperTransport™ Errors Supported by the SR5650 Error Type Description Response Error Received incorrect response type such as tgtdone for read request, read response for flush, or size of received data did not match size of requested data. Overflow Error Flow-control buffer overflow in the receiver. This is only mapped to a fatal or non-fatal error in HT1 mode. In HT3 mode, this maps onto a retry in the hope that when the packet is subsequently received, there is space in the FCB. No interrupt will be generated in HT3 mode. CRC Error Periodic CRC error Retry Error Per-packet CRC error received Retry Count Rollover Per-packet CRC error counter overflowed. Non-fatal interrupt only. Protocol Error Protocol conditions detected in HT1 mode: • Data count not matching header • Invalid command encoding • Invalid CTL encoding • Incomplete header • Unexpected data Protocol conditions detected in HT3 mode • Data count not matching header • Invalid command encoding • Invalid CTL encoding • Incomplete header • Unexpected data • Unexpected CRC • Missing CRC • Non-NOP inserted command • Inserted command without inserted command CTL encoding End of chain error is not supported, since the end of the chain is on PCI Express instead HyperTransport. 2.5.5.5 Internal Parity Error Reporting One register bit per memory macro is used to log parity errors. Values for those bits are persistent across a warm reset for diagnostic purposes. 2.5.6 Interrupt Generation on Errors Internal interrupts may be generated on the following error conditions: • • • • • 2.5.7 PCI Express errors (fatal, non-fatal, or correctable) HT errors (fatal or non-fatal) IOMMU events Internal parity error (fatal or non-fatal) Internal parity error in the IOMMU cache (fatal, non-fatal, or correctable) Poisoned Data Support The SR5650 supports the propagation of poisoned data attributes (EP in PCIe and Data Error in HT) between PCI Express endpoints and the processor for both host and DMA requests or responses. The SR5650 cannot actively mark a transaction with a poisoned data attribute even if the transaction encounters an internal parity error. Received packets containing ECRC errors are not marked as poisoned. 2.5.8 PCIe® Link Disable State The SR5650 has the ability to put PCIe links into the disabled state as an error response in order to help stop data movement within the system. Links which received fatal errors may be disabled. Also, a HyperTransport syncflood event may be used to trigger all links to enter the disabled state. © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 2-11 PCI Express® 2.5.9 HT Syncflood Based on PCIe® Error The SR5650 has the ability to put the HyperTransport link into the syncflood state when a fatal or non-fatal error is received on the PCIe interface. This is done in order to help stop data movement within the system. 2.6 PCI Express® 2.6.1 PCIe® Ports In total, there are 9 PCIe® ports on the SR5650, divided into 3 groups and implemented in hardware as 3 separate cores: • PCIE-GPP1: 2 general purpose ports, 16 lanes in total. Width of each port is x8. In the default configuration, the 2 ports are combined to provide a 1 x16 port. • PCIE-GPP3: 6 general purpose ports, with 6 lanes in total. They support 6 different configurations with respect to link widths: 4:2, 4:1:1, 2:2:2, 2:2:1:1, 2:1:1:1:1, and 1:1:1:1:1:1 (default configuration). For details on the possible configurations for the GPP3 lanes, see Table 2-4 below and . Table 2-4 Possible Configurations for the PCI Express® General Purpose Links PCIe Core Physical Lane Config. B Config. C Config. C2 Config. E Config. K x2 x2 GPP3 lane 0 GPP3 lane 1 GPP3 GPP3 lane 2 x4 x2 GPP3 lane 3 GPP3 lane 4 GPP3 lane 5 • x4 x2 x1 x1 x2 x2 x1 x1 x2 Config. L x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 PCIE-SB: The Southbridge port provides a dedicated x4 link to the Southbridge (also referred to as the “A-Link Express II interface”). Each port supports the following PCIe functions: • • • • • • • • • 2.6.2 PCIe Gen 1 link speeds ASPM L0s and L1 states ACPI power management Endpoint and root complex initiated dynamic link degradation Lane reversal Alternative Routing-ID Interpretation (ARI) Access Control Services (ACS) Advanced Error Reporting (AER) Address Translation Services (ATS) PCIe® Reset Signals Reset signals to PCIe slots, as well as embedded PCIe devices, must be controlled through one or more software-controllable GPIO pins instead of the global system reset. It is recommended that unique GPIO pins be used for each slot or device. The SR5650 has four GPIO pins that may be used for the purpose of driving reset signals (PCIE_GPIO_RESET[5:4] and PCIE_GPIO_RESET[2:1]). Additional reset GPIO pins may be driven by platform-specific means such as a super I/O or an I/O expander. 2.7 External Clock Chip On the SR5650 platform, an external clock chip provides the CPU, PCI Express, and A-Link Express II reference clocks. For requirements on the clock chip, please refer to the 800-Series IGP Express AMD Platform External Clock Generator Requirements Specification for Server Platforms. 47062 SR5650 Databook 2.20 2-12 © 2012 Advanced Micro Devices, Inc. Proprietary Chapter 3 Pin Descriptions and Strap Options This chapter gives the pin descriptions and the strap options for the SR5650. To jump to a topic of interest, use the following list of hyperlinked cross references: “Pin Assignment Top View” on page 3-2 “SR5650 Interface Block Diagram” on page 3-4 “CPU HyperTransport™ Interface” on page 3-4 “PCI Express® Interfaces” on page 3-5: “PCI Express® Interface for General Purpose External Devices” on page 3-5 “A-Link Express II Interface to Southbridge” on page 3-5 “Miscellaneous PCI Express® Signals” on page 3-6 “Clock Interface” on page 3-6 “Power Management Pins” on page 3-6 “Miscellaneous Pins” on page 3-7 “Power Pins” on page 3-8 “Ground Pins” on page 3-9 “Strapping Options” on page 3-10 © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 3-1 Pin Assignment Top View 3.1 Pin Assignment Top View 1 2 A B 3 4 5 6 7 8 9 10 11 12 13 14 VDDPCIE GPP1_TX6P VSS GPP1_TX5P VSS GPP1_TX3P VSS GPP1_TX1P VSS VDDA18PCIE VDDA18PCIE VSS VDDPCIE VSS GPP1_TX6N GPP1_RX6P GPP1_TX5N GPP1_TX4P GPP1_TX3N GPP1_TX2P GPP1_TX1N GPP1_TX0P VDDA18PCIE VDDA18PCIE VSS C VDDPCIE VSS VDDPCIE VSS GPP1_RX6N VSS GPP1_TX4N VSS GPP1_TX2N VSS GPP1_TX0N VDDA18PCIE VDDA18PCIE VSS D GPP1_RX7N GPP1_RX7P VSS VDDPCIE VSS GPP1_RX5P VSS GPP1_RX3P VSS GPP1_RX1P VSS VDDA18PCIE VDDA18PCIE VSS E VSS GPP1_TX7N GPP1_TX7P VSS VDDPCIE GPP1_RX5N GPP1_RX4P GPP1_RX3N GPP1_RX2P GPP1_RX1N GPP1_RX0P VDDA18PCIE VDDA18PCIE PCE_TCALRN F GPP1_TX8N GPP1_TX8P VSS GPP1_RX8N GPP1_RX8P VDDPCIE GPP1_RX4N VSS GPP1_RX2N VSS GPP1_RX0N VDDA18PCIE VDDA18PCIE PCE_TCALRP G VSS GPP1_TX9N GPP1_TX9P VSS GPP1_RX9N GPP1_RX9P VDDPCIE VDDPCIE VSS VDDPCIE VSS VDDA18PCIE VDDA18PCIE VDDA18PCIE H GPP1_TX10N GPP1_TX10P VSS GPP1_RX10N GPP1_RX10P VSS VDDPCIE GPP1_REFCL KN VDDPCIE VSS VDDPCIE VDDA18PCIE VDDA18PCIE VDDA18PCIE GPP1_REFCL KP J VSS GPP1_TX11N GPP1_TX11P VSS GPP1_RX11N GPP1_RX11P VSS K GPP1_TX12N GPP1_TX12P VSS GPP1_RX12N GPP1_RX12P VSS VDDPCIE VSS L VSS GPP1_TX13N GPP1_TX13P VSS GPP1_RX13N GPP1_RX13P VSS VDDPCIE VDDA18PCIE VSS VSS VDDC M GPP1_TX14N GPP1_TX14P VSS GPP1_RX14N GPP1_RX14P VSS VDDPCIE VSS VSS VSS VDDC VSS N VSS GPP1_TX15N GPP1_TX15P VSS GPP1_RX15N GPP1_RX15P VSS VDDPCIE VSS VDDC VSS VDDC P NC NC VSS NC NC VSS VDDPCIE VSS VSS VSS VDDC VSS R VSS NC NC VSS NC NC VSS VDDPCIE VSS VDDC VSS VDDC T NC NC VSS NC NC VSS VDDPCIE VSS VSS VSS VDDC VSS VSS VSS VSS VDDC VDDA18PCIE VSS VSS VSS U VSS NC NC VSS NC NC VSS GPP2_REFCL KN V NC NC VSS NC NC VSS VDDPCIE GPP2_REFCL KP W VSS NC NC VSS NC NC VSS VDDPCIE Y NC NC VSS NC NC VSS VDDPCIE VSS AA VSS NC NC VSS NC NC VSS VDDPCIE VSS VDDPCIE VSS VDDPCIE VSS GPP3_REFCL KN AB NC NC VSS NC NC VSS VDDPCIE VSS VDDPCIE VSS VDDPCIE VSS VDDPCIE VSS AC VSS NC NC VSS VSS VDDPCIE NC VSS NC VSS NC VSS NC VSS AD NC NC VSS VSS VDDPCIE NC NC NC NC PCE_RCALRN NC NC NC NC AE VSS NC NC VDDPCIE VSS NC VSS NC VSS PCE_RCALRP VSS NC VSS NC AF NC NC VDDPCIE VSS NC VSS NC VSS NC VSS NC VSS NC VSS VDDPCIE VSS NC NC NC NC NC NC NC NC NC NC GPP3_TX5N VSS NC VSS NC VSS NC VSS NC VSS NC VSS GPP3_TX5P 3 4 5 6 7 8 9 10 11 12 13 14 AG AH 1 2 CPU Interface A-Link Express II Interface Clock Interface PCIe® GPP1 General Purpose Interface PCIe GPP3 General Purpose Interface Power Management Interface Core Power PCIe Main I/O Power PCIe 1.8V I/O Power and PLL Power GPIO 1.8V I/O Power HyperTransport™ Interface Power Grounds Other 47062 SR5650 Databook 2.20 3-2 © 2012 Advanced Micro Devices, Inc. Proprietary Pin Assignment Top View 15 16 17 PWM_GPIO4 VSS POWERGOO D 18 VDD18 PWM_GPIO2 PWM_GPIO6 OSCIN VDD18 VSS PWM_GPIO5 VSS VDD18 SYSRESET# VSS PCIE_RESET_ GPIO2 LDTSTOP# PWM_GPIO1 VSS VSS VSS 19 20 21 22 23 24 25 TESTMODE VSS DBG_GPIO3/ NON_FATAL_CO RR# VSS DFT_GPIO5/ SYNCFLOODIN # 26 27 28 VSS DFT_GPIO1 VSS PCIE_RESET_ GPIO1 I2C_CLK DBG_GPIO2 DBG_GPIO1 DFT_GPIO4 DFT_GPIO2 DFT_GPIO3 DFT_GPIO0/ NMI# VSS I2C_DATA VSS DBG_GPIO0/S ERR_FATAL# VSS VDDHTTX VDDHTTX VDDHTTX VDDHTTX VDDHTTX C VDD18 PCIE_RESET_ GPIO3 VSS ALLOW_LDTS TOP VDDHTTX VDDHTTX HT_RXCALN HT_RXCALP VSS HT_TXCALN HT_TXCALP D PCIE_RESET_ GPIO5 VDD18 PCIE_RESET_ GPIO4 VSS STRP_DATA VDDHTTX HT_TXCAD8P HT_TXCAD8N VSS HT_TXCAD0P HT_TXCAD0N VSS E PWM_GPIO3 VSS VSS VSS VSS VSS VDDHTTX VSS HT_TXCAD9P HT_TXCAD9N VSS HT_TXCAD1P HT_TXCAD1N F VSS VSS VSS VSS VSS VDDA18HTPL L VDDHTTX HT_TXCAD10 P HT_TXCAD10 N VSS HT_TXCAD2P HT_TXCAD2N VSS G VSS VSS VSS VSS VSS VSS VDDHTTX VSS HT_TXCAD11 P HT_TXCAD11 N VSS HT_TXCAD3P HT_TXCAD3N H HT_REFCLKN VSS HT_TXCLK1P HT_TXCLK1N VSS HT_TXCLK0P HT_TXCLK0N VSS J HT_TXCAD12 N K A VSS B HT_REFCLKP VDDHT VSS HT_TXCAD12 P VSS HT_TXCAD4P HT_TXCAD4N VSS VDDC VSS VSS VDDHT VSS HT_TXCAD13 P HT_TXCAD13 N VSS HT_TXCAD5P HT_TXCAD5N VSS L VDDC VSS VSS VSS VSS VDDHT VSS HT_TXCAD14 P HT_TXCAD14 N VSS HT_TXCAD6P HT_TXCAD6N M VSS VDDC VSS VSS VDDHT VSS HT_TXCAD15 P HT_TXCAD15 N VSS HT_TXCAD7P HT_TXCAD7N VSS N VDDC VSS VDDC VSS VSS VDDHT VSS HT_TXCTL1P HT_TXCTL1N VSS HT_TXCTL0P HT_TXCTL0N P VSS VDDC VSS VSS VDDHT VSS HT_RXCTL1N HT_RXCTL1P VSS HT_RXCTL0N HT_RXCTL0P VSS R VDDC VSS VDDC VSS VSS VDDHT VSS HT_RXCAD15 N HT_RXCAD15 P VSS HT_RXCAD7N HT_RXCAD7P T VSS VDDC VSS VSS VDDHT VSS HT_RXCAD14 N HT_RXCAD14 P VSS HT_RXCAD6N HT_RXCAD6P VSS U VSS VSS VSS VDDA18PCIE VSS VDDHT VSS HT_RXCAD13 N HT_RXCAD13 P VSS HT_RXCAD5N HT_RXCAD5P V VDDHT VSS HT_RXCAD12 N HT_RXCAD12 P VSS HT_RXCAD4N HT_RXCAD4P VSS W THERMALDIO DE_P VDDHT VSS HT_RXCLK1N HT_RXCLK1P VSS HT_RXCLK0N HT_RXCLK0P Y GPP3_REFCL KP VDDPCIE VSS VDDPCIE VSS VSS THERMALDIO DE_N VDDHT HT_RXCAD11 N HT_RXCAD11 P VSS HT_RXCAD3N HT_RXCAD3P VSS AA VDDPCIE VSS VDDPCIE VSS VDDPCIE VSS VSS VDDHT VSS HT_RXCAD10 N HT_RXCAD10 P VSS HT_RXCAD2N HT_RXCAD2P AB GPP3_RX5N VSS GPP3_RX3N VSS GPP3_RX1N VSS SB_RX3P VDDHT HT_RXCAD9N HT_RXCAD9P VSS HT_RXCAD1N HT_RXCAD1P VSS AC GPP3_RX5P GPP3_RX4N GPP3_RX3P GPP3_RX2N GPP3_RX1P PCE_BCALRN SB_RX3N SB_RX2P VDDHT HT_RXCAD8N HT_RXCAD8P VSS HT_RXCAD0N HT_RXCAD0P AD VSS GPP3_RX4P VSS GPP3_RX2P VSS PCE_BCALRP VSS SB_RX2N VSS VDDHT VDDHT VDDHT VDDHT VDDHT AE GPP3_TX4N VSS GPP3_TX2N VSS GPP3_TX0N VSS SB_TX2P VSS SB_TX1P VSS SB_RX1P VSS VDDHT VSS GPP3_TX4P GPP3_TX3N GPP3_TX2P GPP3_TX1N GPP3_TX0P GPP3_RX0N SB_TX2N SB_TX3P SB_TX1N SB_TX0P SB_RX1N SB_RX0P VSS VSS GPP3_TX3P VSS GPP3_TX1P VSS GPP3_RX0P VSS SB_TX3N VSS SB_TX0N VSS SB_RX0N 15 16 17 18 19 20 21 22 23 24 25 26 AF AG AH 27 28 CPU Interface A-Link Express II Interface Clock Interface PCIe GPP1 General Purpose Interface PCIe GPP3 General Purpose Interface Power Management Interface Core Power PCIe Main I/O Power PCIe 1.8V I/O Power and PLL Power GPIO 1.8V I/O Power HyperTransport Interface Power Grounds Other © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 3-3 SR5650 Interface Block Diagram 3.2 SR5650 Interface Block Diagram Figure 3-1 shows the different interfaces on the SR5650. Interface names in blue are hyperlinks to the corresponding sections in this chapter. HT_RXCAD[15:0]P, HT_RXCAD[15:0]N HT_RXCLK[1:0]P, HT_RXCLK[1:0]N HT_RXCTL[1:0]P, HT_RXCTL[1:0]N HT_TXCAD[15:0]P, HT_TXCAD[15:0]N HT_TXCLK[1:0]P, HT_TXCLK[1:0]N HT_TXCTL[1:0]P, HT_TXCTL[1:0]N HT_RXCALP, HT_RXCALN HT_TXCALP, HT_TXCALN HyperTransport™ Interface PCIe® Interface for General Purpose External Devices GPP1_TX[15:0]P, GPP1_TX[15:0]N GPP1_RX[15:0]P, GPP1_RX[15:0]N GPP3_TX[5:0]P, GPP3_TX[5:0]N GPP3_RX[5:0]P, GPP3_RX[5:0]N A-Link Express II Interface SB_TX[3:0]P, SB_TX[3:0]N SB_RX[3:0]P, SB_RX[3:0]N Power Management Interface SYSRESET# POWERGOOD LDTSTOP# ALLOW_LDTSTOP Misc. PCIe Signals PCE_BCALRP, PCE_BCALRN PCE_RCALRP, PCE_RCALRN PCE_TCALRP, PCE_TCALRN PCIE_RESET_GPIO[5:1] OSCIN HT_REFCLKP, HT_REFCLKN DBG_GPIO3/NON_FATAL_CORR# DBG_GPIO[2:1] DBG_GPIO0/SERR_FATAL# I2C_CLK I2C_DATA STRP_DATA DFT_GPIO5/SYNCFLOODIN# DFT_GPIO[4:1] DFT_GPIO0/NMI# TESTMODE THERMALDIODE_P THERMALDIODE_N PWM_GPIO[6:1] Clock Interface GPP1_REFCLKP, GPP1_REFCLKN GPP2_REFCLKP, GPP2_REFCLKN GPP3_REFCLKP, GPP3_REFCLKN Misc. Signals Power VDDHT VDDHTTX VDDA18HTPLL Grounds VSS VDD18 VDDPCIE VDDA18PCIE VDDC Figure 3-1 SR5650 Interface Block Diagram 3.3 CPU HyperTransport™ Interface Table 3-1 HyperTransport™ Interface Pin Name Type Power Domain Ground Domain Functional Description HT_RXCAD[15:0]P, HT_RXCAD[15:0]N I VDDHT VSS Receiver Command, Address, and Data Differential Pairs HT_RXCLK[1:0]P, HT_RXCLK[1:0]N I VDDHT VSS Receiver Clock Signal Differential Pair. Forwarded clock signal. Each byte of RXCAD uses a separate clock signal. Data is transferred on each clock edge. HT_RXCTL[1:0]P, HT_RXCTL[1:0]N I VDDHT VSS Receiver Control Differential Pair. The pair is for distinguishing control packets from data packets. Each byte of RXCAD uses a separate control signal. HT_TXCAD[15:0]P, HT_TXCAD[15:0]N O VDDHT VSS Transmitter Command, Address, and Data Differential Pairs 47062 SR5650 Databook 2.20 3-4 © 2012 Advanced Micro Devices, Inc. Proprietary PCI Express® Interfaces Table 3-1 HyperTransport™ Interface Pin Name 3.4.1 Power Domain Ground Domain Functional Description HT_TXCLK[1:0]P, HT_TXCLK[1:0]N O VDDHT VSS Transmitter Clock Signal Differential Pair. Forwarded clock signal. Each byte of TXCAD uses a separate clock signal. Data is transferred on each clock edge. HT_TXCTL[1:0]P, HT_TXCTL[1:0]N O VDDHT VSS Transmitter Control Differential Pair. The pair is for distinguishing control packets from data packets. Each byte of TXCAD uses a separate control signal. Other VDDHT VSS Receiver Calibration Resistor to HT_RXCALP HT_RXCALN 3.4 Type (Continued) HT_RXCALP Other VDDHT VSS Receiver Calibration Resistor to HT_RXCALN HT_TXCALP Other VDDHT VSS Transmitter Calibration Resistor to HTTX_CALN HT_TXCALN Other VDDHT VSS Transmitter Calibration Resistor to HTTX_CALP PCI Express® Interfaces PCI Express® Interface for General Purpose External Devices Table 3-2 PCI Express® Interface for General Purpose External Devices Type Power Domain Ground Domain GPP1_TX[15:0]P, GPP1_TX[15:0]N O VDDA18PCIE VSSA_PCIE General Purpose 1 Transmit Data Differential Pairs. 50 between Connect to connector[s] for general purpose external complements device[s] on the motherboard. GPP1_RX[15:0]P, GPP1_RX[15:0]N I VDDA18PCIE VSSA_PCIE General Purpose 1 Receive Data Differential Pairs. 50 between Connect to connector[s] for general purpose external complements device[s] on the motherboard. GPP3_TX[5:0]P, GPP3_TX[5:0]N O VDDA18PCIE VSSA_PCIE General Purpose 3 Transmit Data Differential Pairs. 50 between Connect to connector[s] for general purpose external complements device[s] on the motherboard. GPP3_RX[5:0]P, GPP3_RX[5:0]N I VDDA18PCIE VSSA_PCIE General Purpose 3 Receive Data Differential Pairs. 50 between Connect to connector[s] for general purpose external complements device[s] on the motherboard. Pin Name 3.4.2 Integrated Termination Functional Description A-Link Express II Interface to Southbridge Table 3-3 1 x 4 Lane A-Link Express II Interface for Southbridge Pin Name Type Power Domain Ground Domain SB_TX[3:0]P, SB_TX[3:0]N O VDDA18PCIE VSSA_PCIE Southbridge Transmit Data Differential Pairs. Connect to the 50 between corresponding Receive Data Differential Pairs on the complements Southbridge. SB_RX[3:0]P, SB_RX[3:0]N I VDDA18PCIE VSSA_PCIE Southbridge Receive Data Differential Pairs. Connect to the 50 between corresponding Transmit Data Differential Pairs on the complements Southbridge. © 2012 Advanced Micro Devices, Inc. Proprietary Integrated Termination Functional Description 47062 SR5650 Databook 2.20 3-5 Clock Interface 3.4.3 Miscellaneous PCI Express® Signals Table 3-4 Miscellaneous PCI Express® Signals Type Power Domain Ground Domain PCE_BCALRN I VDDA18PCIE VSSA_PCIE N Channel Driver Compensation Calibration for Rx and Tx Channels on Bottom Side. PCE_BCALRP I VDDA18PCIE VSSA_PCIE P Channel Driver Compensation Calibration for Rx and Tx Channels on Bottom Side PCE_TCALRN I VDDA18PCIE VSSA_PCIE N Channel Driver Compensation Calibration for Rx and Tx Channels on Top Side. PCE_TCALRP I VDDA18PCIE VSSA_PCIE P Channel Driver Compensation Calibration for Rx and Tx Channels on Top Side PCE_RCALRN I VDDA18PCIE VSSA_PCIE N Channel Driver Compensation Calibration for Rx and Tx Channels on Right Side. PCE_RCALRP I VDDA18PCIE VSSA_PCIE P Channel Driver Compensation Calibration for Rx and Tx Channels on Right Side I/O VDDA18PCIE VSS Pin Name PCIE_RESET_GP IO[5:1] 3.5 Functional Description PCIe Resets. Except for PCIE_RESET_GPIO3, they can also be used as GPIOs. There are internal pull-downs of 1.7 k on these pins. Clock Interface Table 3-5 Clock Interface Pin Name HT_REFCLKP, HT_REFCLKN GPP1_REFCLKP, GPP1_REFCLKN GPP2_REFCLKP, GPP2_REFCLKN 3.6 Type Power Domain Ground Domain I VDDA18HTPLL VSSA_HT I VDDA18PCIE I VDDA18PCIE VSSA_PCIE VSSA_PCIE Integrated Termination Functional Description Disabled HyperTransport™ 100 MHz Clock Differential Pair from external clock source – General Purpose 1 Clock Differential Pair. The pair has to be connected to an external clock generator on the motherboard whether any of the General Purpose Links is used or not. – General Purpose 2 Clock Differential Pair. The pair has to be connected to an external clock generator on the motherboard whether any of the General Purpose Links is used or not. GPP3_REFCLKP, GPP3_REFCLKN I VDDA18PCIE VSSA_PCIE – General Purpose 3 Clock Differential Pair. The pair has to be connected to an external clock generator on the motherboard whether any of the General Purpose Links is used or not. OSCIN I VDD18 VSS Disabled 14.318MHz Reference clock input from the external clock chip (1.8 volt signaling) Power Management Pins Table 3-6 Power Management Pins Pin Name ALLOW_LDTSTOP LDTSTOP# Type Power Domain OD VDD18 VSS Allow LDTSTOP. This signal is used by the SR5650 to communicate with the Southbridge and tell it when it can assert the LDTSTOP# signal. 1 = LDTSTOP# can be asserted 0 = LDTSTOP# has to be de-asserted I VDD18 VSS HyperTransport™ Stop. This signal is generated by the Southbridge and is used to determine when the HyperTransport link should be disconnected and go into a low-power state. It is a single-ended signal. 47062 SR5650 Databook 2.20 3-6 Ground Domain Functional Description © 2012 Advanced Micro Devices, Inc. Proprietary Miscellaneous Pins Table 3-6 Power Management Pins (Continued) Pin Name 3.7 Type Power Domain Ground Domain Functional Description POWERGOOD I VDD18 VSS Input from the motherboard signifying that the power to the SR5650 is up and ready. Signal High means all power planes are valid. It is not observed internally until it has been high for more than 6 consecutive REFCLK cycles. The rising edge of this signal is deglitched. SYSRESET# I VDD18 VSS Global Hardware Reset. This signal comes from the Southbridge. Miscellaneous Pins Table 3-7 Miscellaneous Pins Pin Name Type Power Ground Integrated Domain Domain Termination Functional Description I2C_CLK I/O VDD18 VSS – I2C interface clock signal. Can also be used as GPIO. I2C_DATA I/O VDD18 VSS – I2C interface data signal. Can also be used as GPIO. STRP_DATA I/O VDD18 VSS – I2C interface data signal for external EEPROM based strap loading. See the SR5650 Strap Document for details on the operation. TESTMODE I VDD18 VSS – When High, puts the SR5650 in test mode and disables the SR5650 from operating normally. DFT_GPIO5/ SYNCFLOODIN# I/O VDD18 VSS Pull Up Output for DFT TESTMODE, or Syncflood input for triggering a HyperTransport™ syncflood event. Because the pin is used as a pin strap during the power-on of the SR5650, an external device must not drive the pin until after SYSRESET# is deasserted. Also, the pin is not 3.3V tolerant and needs a level shifter when interfacing to a 3.3V line. The pin cannot be used for general GPIO functions. DFT_GPIO[4:1], I/O VDD18 VSS Pull Up Outputs for DFT TESTMODE. These pins cannot be used for general GPIO functions. Pull Up Output for DFT TESTMODE, or NMI input for triggering an upstream NMI packet to the processor complex. Because the pin is used as a pin strap during the power-on of the SR5650, an external device must not drive the pin until after SYSRESET# is deasserted. Also, the pin is not 3.3V tolerant and needs a level shifter when interfacing to a 3.3V line. The pin cannot be used for general GPIO functions. Pull Up Output for Debug Bus, or Non-Fatal or Correctable Error signal to BMC. The pin is not 3.3V tolerant and needs a level shifter when interfacing to a 3.3V line. When used as a debug bus output, the pin’s NON_FATAL_CORR# function is overridden. The pin cannot be used for general GPIO functions. Output for Debug Bus, or System Error or Fatal Error signal to BMC. The pin is not 3.3V tolerant and needs a level shifter when interfacing to a 3.3V line. When used as a debug bus output, the pin’s SERR_FATAL# function is overridden. The pin cannot be used for general GPIO functions. DFT_GPIO0/NMI# DBG_GPIO3/ NON_FATAL_CORR# I/O I/O VDD18 VDD18 VSS VSS DBG_GPIO0/ SERR_FATAL# I/O VDD18 VSS Pull Up THERMALDIODE_P, THERMALDIODE_N A-O – – – © 2012 Advanced Micro Devices, Inc. Proprietary Diode connections to external SM Bus microcontroller for monitoring IC thermal characteristics. 47062 SR5650 Databook 2.20 3-7 Power Pins 3.8 Power Pins Table 3-8 Power Pins Pin Name Voltage Pin Count Ball Reference Comments VDDC 1.1V 18 L14, L16, M13, M15, N12, N14, N16, P13, P15, P17, R12, R14, R16, T13, T15, T17, U14, U16 VDD18 1.8V 5 A18, B18, C18, D18, E18 39 A3, B2, C1, C3, D4, E5, F6, G8, G10, H7, H9, H11, K7, L8, M7, N8, P7, R8, T7, V7, W8, Y7, AA8, AA10, AA12, PCI Express interface main I/O and PLL power AA16, AA18, AB7, AB9, AB11, AB13, AB15, AB17, AB19, AC6, AD5, AE4, AF3, AG2 21 A12, A1, B12, B13, C12, C13, D12, D13, E12, E13, F12, F13, G12, G13, G14, H12, H13, H14, L11, V11, V18 PCI Express interface 1.8V I/O power HyperTransport™ Interface digital I/O power VDDPCIE VDDA18PCIE 1.1 V 1.8 V Core power I/O Power for GPIO pads VDDHT 1.1V 21 AA22, AB22, AC22, K22, AD23, AE24, AE25, AE26, AE27, AE28, AF27, L21, M22, N21, P22, R21, T22, U21, V22, W21, Y22 VDDHTTX 1.2V 11 C24, C25, C26, C27, C28, D22, D23, E22, F22, G22, H22 HyperTransport Transmit Interface I/O power VDDA18HTPLL 1.8V 1 G21 HyperTransport interface 1.8V PLL Power Total Power Pin Count 47062 SR5650 Databook 2.20 3-8 116 © 2012 Advanced Micro Devices, Inc. Proprietary Ground Pins 3.9 Ground Pins Table 3-9 Ground Pins Pin Name VSS Pin Count 261 © 2012 Advanced Micro Devices, Inc. Proprietary Ball Reference Comments A11, A14, A16, A20, A22, A24, A26, A5, A7, A9, AA1, AA11, AA13, AA17, AA19, AA20, AA25, AA28, AA4, AA7, AA9, AB10, AB12, AB14, AB16, AB18, AB20, AB21, AB23, AB26, AB3, AB6, AB8, AC1, AC10, AC12, AC14, AC16, AC18, AC20, AC25, AC28, AC4, AC5, AC8, AD26, AD3, AD4, AE1, AE11, AE13, AE15, AE17, AE19, AE21, AE23, AE5, AE7, AE9, AF10, AF12, AF14, AF16, AF18, AF20, AF22, AF24, AF26, AF28, AF4, AF6, AF8, AG27, AG3, AH11, AH13, AH15, AH17, AH19, AH21, AH23, AH25, AH3, AH5, AH7, AH9, B14, B27, B3, C10, C14, C15, C17, C19, C2, C21, C23, C4, C6, C8, D11, D14, D16, D20, D26, D3, D5, D7, D9, E1, E20, E25, E28, E4, F10, F15, Common Ground F17, F18, F19, F20, F21, F23, F26, F3, F8, G1, G11, G15, G16, G17, G18, G19, G20, G25, G28, G4, G9, H10, H15, H16, H17, H18, H19, H20, H21, H23, H26, H3, H6, J1, J22, J25, J28, J4, J7, K23, K26, K3, K6, K8, L1, L12, L13, L15, L17, L18, L22, L25, L28, L4, L7, M11, M12, M14, M16, M17, M18, M21, M23, M26, M3, M6, M8,N1 N11, N13, N15, N17, N18, N22, N25, N28, N4, N7, P11, P12, P14, P16, P18, P21, P23, P26, P3, P6, P8, R1, R11, R13, R15, R17, R18, R22, 25, R28, R4, R7, T11, T12, T14, T16, T18, T21, T23, T26, T3, T6, T8, U1, U11, U12, U13, U15, U17, U18, U22, U25, U28, U4, U7, V12, V13, V14, V15, V16, V17, V21, V23, V26, V3, V6, W1, W22, W25, W28, W4, W7, Y23, Y26, Y3, Y6, Y8 47062 SR5650 Databook 2.20 3-9 Strapping Options 3.10 Strapping Options The SR5650 provides strapping options to define specific operating parameters. The strap values are latched into internal registers after the assertion of the POWERGOOD signal to the SR5650. Table 3-10, “Strap Definitions for the SR5650,” shows the definitions of all the strap functions. These straps are set by one of the following four methods: • • • • Allowing the internal pull-up resistors to set all strap values “1”’s automatically. Attaching pull-down resistors to specific strap pins listed in Table 3-10 to set their values to “0”’s. Downloading the strap values from an I2C serial EEPROM (for debug purpose only; contact your AMD FAE representative for details). Setting through an external debug port, if implemented (contact your AMD FAE representative for details). Table 3-10 Strap Definitions for the SR5650 Strap Function Strap Pin Description PRIMARY_NB PWM_GPIO5 Indicates whether the device is a primary or a secondary Northbridge on a multiple-Northbridge platform. See section 2.3, “Multiple Northbridge Support,” on page 2- 4 for details. Do not install a resistor for single-Northbridge platforms. 0: Device is a secondary Northbridge 1: Device is the primary Northbridge (Default) Reserved PWM_GPIO[4:2] Reserved. Make provision for an external pull-down resistor on each of the pins, but do not install a resistor. Reserved DFT_GPIO0/NMI# Reserved. Make provision for an external pull-down resistor on this pin, but do not install a resistor. LOAD_ROM_STRAPS# DFT_GPIO1 Selects loading of strap values from EEPROM 0: I2C master can load strap values from EEPROM if connected, or use hardware default values if not connected 1: Use hardware default values (Default) STRAP_PCIE_GPP_CFG DFT_GPIO[4:2] General Purpose Link 3 Configuration. See Table 3-11 below for details. Reserved DFT_GPIO5/ SYNCFLOODIN# Reserved. Make provision for an external pull-down resistor on this pin, but do not install a resistor. Table 3-11 Strap Definition for STRAP_PCIE_GPP_CFG Strap Pin Value Link Width GPP3 GPP3 GPP3 GPP3 GPP3 GPP3 DFT_GPIO4 DFT_GPIO3 DFT_GPIO2 Lane Lane Lane Lane Lane Lane 0 1 2 3 4 5 Mode 1 1 1 Hardware default (Mode L) or EEPROM strap values (Default) - 1 1 0 Hardware default (Mode L) or EEPROM strap values - 1 0 1 x2 x2 1 0 0 x2 x2 0 1 1 x2 x1 x1 0 1 0 x1 x1 0 0 1 x4 0 0 0 x4 x2 x1 x1 C2 x1 x1 x1 x1 E x1 x1 L (Hardware Default) x1 x1 C x2 K B Note: If the pin straps instead of strap values from EEPROM are used, the GPP3 configuration will then be determined according to this table and cannot be changed after the system has been powered up. 47062 SR5650 Databook 2.20 3-10 © 2012 Advanced Micro Devices, Inc. Proprietary Chapter 4 Timing Specifications 4.1 HyperTransport™ Bus Timing For HyperTransport™ bus timing information, please refer to specifications by AMD. 4.2 PCI Express® Differential Clock AC Specifications Table 4-1 Timing Requirements for PCIe® Differential Clocks (GPP1_REFCLK, GPP2_REFCLK, and GPP3_REFCLK at 100MHz) Symbol 4.3 Description Rising Edge Rate Rising Edge Rate Falling Edge Rate Falling Edge Rate TPERIOD AVG Average Clock Period Accuracy TPERIOD ABS Absolute Period (including jitter and spread spectrum modulation) TCCJITTER Cycle to Cycle Jitter Duty Cycle Duty Cycle Rise-Fall Matching Rising edge rate (REFCLK+) to falling edge rate (REFCLK-) matching Minimum Maximum Unit 0.6 4.0 V/ns 0.6 4.0 V/ns -100 +100 ppm 9.847 10.203 ns - 150 ps 40 60 % - 20 % Minimum Maximum Unit Note - 140 mV 1 HyperTransport™ Reference Clock Timing Parameters Table 4-2 Timing Requirements for HyperTransport™ Reference Clock (100MHz) Symbol VCROSS Parameter Change in Crossing point voltage over all edges F Frequency 99.5 100 MHz 2 ppm Long Term Accuracy -100 +100 Ppm 3 SFALL Output falling edge slew rate -10 -0.5 V/ns 4, 5 SRISE Output rising edge slew rate 0.5 10 V/ns 4,5 Tjc max Jitter, cycle to cycle - 150 ps 6 Tj-accumulated Accumulated jitter over a 10 s period -1 1 ns 7 VD(PK-PK) Peak to Peak Differential Voltage 400 2400 mV 8 VD Differential Voltage 200 1200 mV 9 VD Change in VDDC cycle to cycle -75 75 mV 10 © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 4-1 OSCIN Reference Clock Timing Parameters Table 4-2 Timing Requirements for HyperTransport™ Reference Clock (100MHz) (Continued) Symbol DC Parameter Minimum Maximum Unit Note 45 55 % 11 Duty Cycle Notes: More details are available in AMD HyperTransport 3.0 Reference Clock Specification and AMD Family 10h Processor Reference Clock Parameters, document # 34864 1 Single-ended measurement at crossing point. Value is maximum-minimum over all time. DC Value of common mode is not important due to blocking cap. 2 Minimum frequency is a consequence of 0.5% down spread spectrum. 3 Measured with spread spectrum turned off. 4 Only simulated at the receive die pad. This parameter is intended to give guidance for simulation. It cannot be tested on a tester but is guaranteed by design. 5 Differential measurement through the range of ±100mV, differential signal must remain monotonic and within slew rate specification when crossing through this region. 6 Tjc max is the maximum difference of tCYCLE between any two adjacent cycles. 7 Accumulated Tjc over a 10s time period, measured with JIT2 TIE at 50ps interval. 8 VD(PK-PK) is the overall magnitude of the differential signal. 9 VD(min) is the amplitude of the ring-back differential measurement, guaranteed by design that the ring-back will not cross 0V VD. VD(max) is the largest amplitude allowed. 10 The difference in magnitude of two adjacent VDDC measurements. VDDC is the stable post overshoot and ring-back part of the signal. 11 Defined as tHIGH/tCYCLE 4.4 OSCIN Reference Clock Timing Parameters Table 4-3 Timing Requirements for OSCIN Reference Clock (14.3181818MHz) Symbol Parameter Min Typical Max Unit 0.037 – 1.1 s 1 REFCLK Frequency 0.9 – 27 MHz 2 TIH REFCLK High Time 2.0 – – ns TIL REFCLK Low Time 2.0 – – ns TIR REFCLK Rise Time – – 1.5 ns TIF REFCLK Fall Time – – 1.5 ns TIJCC REFCLK Cycle-to-Cycle Jitter Requirement – – 200 ps TIJPP REFCLK Peak-to-Peak Jitter Requirement – – 200 ps TIJLT REFCLK Long Term Jitter Requirement (1s after scope trigger) – – 500 ps TIP REFCLK Period FIP Note 1 Notes: 1 Time intervals measured at 50% threshold point. 2 FIP is the reciprocal of TIP. 4.5 Power Rail Sequence For the purpose of power rail sequencing, the power rails of the SR5650 are divided into groupings described in Table 4-4 below. Table 4-4 Power Rail Groupings for the SR5650 Voltage ACPI STATE VDDC 1.1V S0-S2 Core power VDDPCIE VDDPCIE 1.1V S0-S2 PCI Express® main IO power VDDHTTX VDDHTTX 1.2V S0-S2 HyperTransport™ transmit interface IO power HT_1.1V VDDHT 1.1V S0-S2 HyperTransport interface digital IO power Group Name Power rail name VDDC 47062 SR5650 Databook 2.20 4-2 Description © 2012 Advanced Micro Devices, Inc. Proprietary Power Rail Sequence Table 4-4 Power Rail Groupings for the SR5650 Voltage ACPI STATE VDD18 1.8V S0-S2 I/O power for GPIO pads VDDA18PCIE 1.8V S0-S2 PCI Express interface 1.8V IO and PLL power VDDA18HTPLL 1.8V S0-S2 HyperTransport interface 1.8V PLL power Group Name Power rail name 1.8V Description Note: 1. Power rails from the same group are assumed to be generated by the same voltage regulator. 2. Power rails from different groups but at the same voltage can either be generated by separate regulators or by the same regulators as long as they comply with the requirements specified in the SR5690 Motherboard Design Guide. 4.5.1 Power Up Figure 4-1 below illustrates the power up sequencing for the various power groups, and Table 4-5 explains the symbols in the figure, as well as the associated requirements. 1.8V T10 VDDHTTX T11 VDDPCIE T12 HT_1.1V T13 VDDC Figure 4-1 SR5650 Power Rail Power Up Sequence Table 4-5 SR5650 Power Rail Power-up Sequence Symbol Parameter Requirement Comment T10 1.8V rails to VDDHTTX (1.2V) VDDHTTX ramps after 1.8V rails. See Note 1. T11 VDDHTTX (1.2V) to VDDPCIE (1.1V) VDDPCIE ramps together with or after VDDHTTX See Note 1 and 2. T12 VDDHTTX(1.2V) to HT_1.1V rails HT_1.1V rails ramp together with or after VDDHTTX See Note 1 and 2. T13 VDDHTTX(1.2V) to VDDC (1.1V) VDDC ramps together with or after VDDHTTX See Note 1 and 2. Notes: 1. Power rail A ramps after power rail B means that the voltage of rail A does not exceed that of rail B at any time. 2. Power rail A ramps together with power rail B means that the two rails are controlled by the same enable signal and the difference in their ramping rates is only due to the differences in the loadings. © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 4-3 Power Rail Sequence 4.5.2 Power Down For power down, the rails should either be turned off simultaneously or in the reversed order of the power up sequence. Variations in speeds of decay due to different capacitor discharge rates can be safely ignored. 47062 SR5650 Databook 2.20 4-4 © 2012 Advanced Micro Devices, Inc. Proprietary Chapter 5 Electrical Characteristics and Physical Data 5.1 5.1.1 Electrical Characteristics Maximum and Minimum Ratings Table 5-1 Power Rail Maximum and Minimum Voltage Ratings Pin Typical DC Limit* Min. AC Limit* Max. Min. Max. Unit Comments VDDC 1.1 1.067 1.133 1.045 1.155 V Core power VDD18 1.8 1.746 1.854 1.71 1.89 V 1.8V I/O Powers 1.1 1.067 1.133 1.045 1.155 V PCI Express® Interface Main I/O Power 1.8 1.746 1.854 1.71 1.89 V PCI Express interface 1.8V I/O and PLL power 1.1 1.067 1.133 1.045 1.155 V HyperTransport™ Interface digital I/O power 1.2 1.164 1.236 1.14 1.26 V HyperTransport Transmit Interface I/O power 1.8 1.746 1.854 1.71 1.89 V HyperTransport interface 1.8V PLL power VDDPCIE VDDA18PCIE VDDHT VDDHTTX VDDA18HTPLL * Note: The voltage set-point must be contained within the DC specification in order to ensure proper operation. Voltage ripple and transient events outside the DC specification must remain within the AC specification at all times. Transients must return to within the DC specification within 20s. Table 5-2 Power Rail Current Ratings Min. Load Average Current (A) Power Rail 5.1.2 Max. Load Average Current (A) Max. Average Power-on Current (A) Max. Step Load Size (A) Max. Slew Rate (A/µs) VDDC 0.62 4.59 4.59 3.97 201 VDD18 0.00048 0.00051 0.00051 0.00003 - VDDPCIE 0.31 2.54 3.17 2.86 22 VDDA18PCIE 0.02 0.78 0.91 0.89 16 VDDHT 0.23 1.94 1.94 1.71 26 VDDHTTX 0.08 0.51 0.51 0.43 7.3 VDDA18HTPLL 0.007 0.013 0.013 0.006 - DC Characteristics Table 5-1 DC Characteristics for PCIe® Differential Clocks (GPP1_REFCLK, GPP2_REFCLK, and GPP3_REFCLK at 100MHz) Minimum Maximum Unit VIL Symbol Differential Input Low Voltage Description - -150 mV VIH Differential Input High Voltage +150 - mV VCROSS Absolute Crossing Point Voltage +250 +550 mV VCROSS DELTA Variation of VCROSS over all rising clock edges - +140 mV © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 5-1 SR5650 Thermal Characteristics Symbol Description Minimum Maximum Unit -100 +100 mV VRB Ring-back Voltage Margin VIMAX Absolute Max Input Voltage - +1.15 V VIMIN Absolute Min Input Voltage - -0.15 V Table 5-3 DC Characteristics for 1.8V GPIO Pads Symbol Description Minimum Maximum VIH-DC Input High Voltage VIL-DC Input Low Voltage VOH Minimum Output High Voltage @ I=8mA VOL Maximum Output Low Voltage @ I=8mA IOL Minimum Output Low Current @ V=0.1V IOH Minimum Output High Current @ V=VDDR-0.1V Unit Notes 1 1.1 - V - 0.7 V 1 1.4 - V 2, 3 - 0.4 V 2, 3 2.0 - mA 2, 3 2.0 - mA 2, 3 Notes: 1) Measured with edge rate of 1us at PAD pin. 2) For detailed current/voltage characteristics please refer to IBIS model. 3) Measurement taken with SP/SN set to default values, PVT=Noml Case Table 5-4 DC Characteristics for the HyperTransport™ 100MHz Differential Clock (HT_REFCLK) 5.2 Symbol Description VIL Input Low Voltage Minimum – Typical 0V VIH Input High Voltage 1.4V VIMAX Maximum Input Voltage – Maximum Comments 0.2V – 1.8V – – – 2.1V – SR5650 Thermal Characteristics This section describes some key thermal parameters of the SR5650. For a detailed discussion on these parameters and other thermal design descriptions, including package level thermal data and analysis, please consult the Thermal Design and Analysis Guidelines for SR5650/5670/5690, order# 44382. 5.2.1 SR5650 Thermal Limits Table 5-5 SR5650 Thermal Limits Parameter Minimum Nominal Maximum Operating Case Temperature 0 — 95 Unit ° 1 Absolute Rated Junction Temperature — — 115 ° 2 Storage Temperature -40 — 60 ° Ambient Temperature 0 — 55 °C 3 Thermal Design Power — 12.6 — W 4 C C Note C Notes: 1 - The maximum operating case temperature is the die top-center temperature measured via a thermocouple based on the methodology given in the document Thermal Design and Analysis Guidelines for SR5650/5670/5690 (Chapter 12). This is the temperature at which the functionality of the chip is qualified. 2 - The maximum absolute rated junction temperature is the junction temperature at which the device can operate without causing damage to the ASIC. 3 - The ambient temperature is defined as the temperature of the local intake air at the inlet to the thermal management device. The maximum ambient temperature is dependent on the heat sink design, and the value given here is based on AMD’s reference heat sink solution for the SR5650. Refer to Chapter 6 in Thermal Design and Analysis Guidelines for SR5650/5670/5690 for heatsink and thermal design guidelines. Refer to Chapter 7 for details of ambient conditions. 4 - Thermal Design Power (TDP) is defined as the highest power dissipated while running currently available worst case applications at nominal voltages. The core voltage was raised to 5% above its nominal value for measuring the ASIC power. Since the core power of modern ASICs using 65nm and smaller process technology can vary significantly, parts specifically screened for higher core power were used for TDP measurement. The TDP is intended only as a design reference, and the value given here is preliminary. 47062 SR5650 Databook 2.20 5-2 © 2012 Advanced Micro Devices, Inc. Proprietary SR5650 Thermal Characteristics 5.2.2 Thermal Diode Characteristics The SR5650 has an on-die thermal diode, with its positive and negative terminals connected to the THERMALDIODE_P and THERMALDIODE_N pins respectively. Combined with a thermal sensor circuit, the diode temperature, and hence the ASIC junction temperature, can be derived from a differential voltage reading (V). The equation relating the temperature to V is given below. K T ln N V = -------------------------------------------q where: V = Difference of two base-to-emitter voltage readings, one using current = I and the other using current = N x I N = Ratio of the two thermal diode currents (=10 when using an ADI thermal sensor, e.g.: ADM 1020, 1030) = Ideality factor of the diode K = Boltzman’s Constant T = Temperature in Kelvin q = Electron charge The series resistance of the thermal diode (RT) must be taken into account as it introduces an error in the reading (for every 1.0, approximately 0.8oC is added to the reading). The sensor circuit should be calibrated to offset the RT induced, plus any other known fixed errors. Measured values of diode ideality factor and series resistance for the diode circuit are defined in Thermal Design and Analysis Guidelines for SR5650/5670/5690. © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 5-3 Package Information 5.3 Package Information Figure 5-2 and Table 5-6 describe the physical dimensions of the SR5650 package. Figure 5-3 shows the detailed ball arrangement for the SR5650. MOD-00094-03 Figure 5-2 SR5650 692-Pin FCBGA Package Outline Table 5-6 SR5650 692-Pin FCBGA Package Physical Dimensions Ref. Min. (mm) Typical (mm) Max. (mm) c 0.56 0.66 0.76 A 1.87 2.02 2.17 A1 0.40 0.50 0.60 A2 0.81 0.86 0.91 b 0.50 0.60 0.70 D1 28.80 29.00 29.20 D2 - 5.62 - D3 2.00 - - D4 1.00 - - E1 28.80 29.00 29.20 E2 - 7.39 - E3 2.00 - - E4 1.00 - - F1 - 27.00 - F2 - 27.00 - e - 1.00 - 47062 SR5650 Databook 2.20 5-4 © 2012 Advanced Micro Devices, Inc. Proprietary Package Information Table 5-6 SR5650 692-Pin FCBGA Package Physical Dimensions Ref. Min. (mm) Typical (mm) Max. (mm) ddd - - 0.20 Note: Maximum height of SMT components is 0.650 mm. Figure 5-3 SR5650 Ball Arrangement (Bottom View) 5.3.1 Pressure Specification To avoid damages to the ASIC (die or solder ball joint cracks) caused by improper mechanical assembly of the cooling device, follow the recommendations below: • It is recommended that the maximum load that is evenly applied across the contact area between the thermal management device and the die does not exceed 6 lbf. Note that a total load of 4-6 lbf is adequate to secure the thermal management device and achieve the lowest thermal contact resistance with a temperature drop across the thermal interface material of no more than 3°C. Also, the surface flatness of the metal spreader should be 0.001 inch/1 inch. • Pre-test the assembly fixture with a strain gauge to make sure that the flexing of the final assembled board and the pressure applying around the ASIC package will not exceed 600 micron strain under any circumstances. © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 5-5 Package Information • 5.3.2 Ensure that any distortion (bow or twist) of the board after SMT and cooling device assembly is within industry guidelines (IPC/EIA J-STD-001). For measurement method, refer to the industry approved technique described in the manual IPC-TM-650, section 2.4.22. Board Solder Reflow Process Recommendations 5.3.2.1 Stencil Opening Size for Solderball Pads on PCB Warpage of the PCB and the package may cause solderjoint quality issues at the surface mount. Therefore, it is recommended that the stencil opening sizes be adjusted to compensate for the warpage. The recommendation is for the stencil aperture of the solderballs to be kept at the same size as the pads. 5.3.2.2 Reflow Profile A reference reflow profile is given below. Please note the following when using RoHS/lead-free solder (SAC105/305/405 Tin-Silver-Cu): • The final reflow temperature profile will depend on the type of solder paste and chemistry of flux used in the SMT process. Modifications to the reference reflow profile may be required in order to accommodate the requirements of the other components in the application. • • An oven with 10 heating zones or above is recommended. • • • Mechanical stiffening can be used to minimize board warpage during reflow. • To ensure that the reflow profile meets the target specification on both sides of the board, a different profile and oven recipe for the first and second reflow may be required. It is suggested to decrease temperature cooling rate to minimize board warpage. This reflow profile applies only to RoHS/lead-free (high temperature) soldering process and it should not be used for Eutectic solder packages. Damage may result if this condition is violated. Maximum 3 reflows are allowed on the same part. Table 5-7 Recommended Board Solder Reflow Profile - RoHS/Lead-Free Solder Profiling Stage Temperature Process Range Overall Preheat Room temp to 220C 2 mins to 4 mins Soaking Time 130C to 170C Typical 60 – 80 seconds Liquidus 220C Typical 60 – 80 seconds Ramp Rate Ramp up and Cooling <2C / second Peak Max. 245C 235C +/-5C Temperature at peak within 5C 240C to 245C 10 – 30 seconds 47062 SR5650 Databook 2.20 5-6 © 2012 Advanced Micro Devices, Inc. Proprietary Package Information o Solder/Part Surface Temp. ( C ) Peak Temp. (235 oC+/-5% typ., 245 oC max.) 250 220 deg.C <2.0oC / Sec. 200 170 oC 150 Soaking Zone 130 oC 100 50 Soldering Zone 60 – 120 sec. max 60 – 80 sec. typical 45 - 90 sec. Max. 60 - 80 sec. typical <2.0o.C / Sec. Pre-heating Zone 2 min to 4 min Max. Heating Time Figure 5-4 RoHS/Lead-Free Solder (SAC305/405 Tin-Silver-Copper) Reflow Profile © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 5-7 Package Information This page is left blank intentionally. 47062 SR5650 Databook 2.20 5-8 © 2012 Advanced Micro Devices, Inc. Proprietary Chapter 6 Power Management and ACPI 6.1 ACPI Power Management Implementation This chapter describes the support for ACPI power management provided by the SR5650. The SR5650 system controller supports ACPI Revision 2.0. The hardware, system BIOS, and drivers of the SR5650 have the logic required for meeting the power management specifications of PC2001, OnNow, and the Windows Logo Program and Device Requirements version 2.1. Table 6-1, “ACPI States Supported by the SR5650,” describes the ACPI states supported by the SR5650 system controller. Table 6-1 ACPI States Supported by the SR5650 ACPI State Description Processor States: S0/C0: Working State Working State. The processor is executing instructions. S0/C1: Halt CPU Halt state. No instructions are executed. This state has the lowest latency on resume and contributes minimum power savings. S0/C2: Stop Grant Caches Snoopable Stop Grant or Cache Snoopable CPU state. This state offers more power savings but has a higher latency on resume than the C1 state. S0/C3: Stop Grant Caches Snoopable Processor is put into the Stop Grant state. Caches are still snoopable. The HyperTransport™ link may be disconnected and put into a low power state. System memory may be put into self-refresh. System States: S1: Standby Powered On Suspend System is in Standby mode. This state has low wakeup latency on resume. OEM support of this state is optional. S3: Standby Suspend to RAM System is off but context is saved to RAM. System memory is put into self-refresh. S4: Hibernate Suspend to Disk System is off but context is saved to disk. When the system transitions to the working state, the OS is resumed without a system re-boot. S5: Soft Off System is off. OS re-boots when the system transitions to the working state. G3: Mechanical Off Occurs when system power (AC or battery) is not present or is unable to keep the system in one of the other states. © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 6-1 ACPI Power Management Implementation This page intentionally left blank. 47062 SR5650 Databook 2.20 6-2 © 2012 Advanced Micro Devices, Inc. Proprietary Chapter 7 Testability 7.1 Test Capability Features The SR5650 system controller has integrated test modes and capabilities. These test features cover both the ASIC and board level testing. The ASIC tests provide a very high fault coverage and low DPM (Defect Per Million) ratio of the part. The board level tests modes can be used for motherboard manufacturing and debug purposes. The following are the test modes of the SR5650 system controller: • Full scan implementation on the digital core logic that provides about 97% fault coverage through ATPG (Automatic Test Pattern Generation Vectors). • Dedicated test logic for the on-chip custom memory macros to provide complete coverage on these modules. • Improved access to the analog modules and PLLs in the SR5650 system controller in order to allow full evaluation and characterization of these modules. • A JTAG test mode (which is not entirely compliant to the IEEE 1149.1 standard) in order to allow board level testing of neighboring devices. • An XOR TREE test mode on all the digital I/O’s to allow for proper soldering verification at the board level. • A VOH/VOL test mode on all digital I/O’s to allow for proper verification of output high and output low voltages at the board level. These test modes can be accessed through the settings on the instruction register of the JTAG circuitry. 7.2 Test Interface Table 7-1 Pins on the Test Interface Pin Name 7.3 7.3.1 Ball number Type Description TESTMODE A19 I TEST_EN: Test Enable (IEEE 1149.1 test port reset) PCIE_RESET_GPIO3 D19 I TMS: Test Mode Select (IEEE 1149.1 test mode select) I2C_DATA C20 I TDI: Test Mode Data In (IEEE 1149.1 data in) I2C_CLK B20 I TCLK: Test Mode Clock (IEEE 1149.1 clock) PWM_GPIO6 B16 O TDO: Test Mode Data Out (IEEE 1149.1 data out) PWM_GPIO4 A15 I TEST_ODD: Control ODD output in VOH/VOL test PWM_GPIO3 F16 I TEST_EVEN: Control EVEN output in VOH/VOL test POWERGOOD A17 I I/O Reset XOR Tree Brief Description of an XOR Tree A sample of a generic XOR tree is shown in the figure below. © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 7-1 XOR Tree XOR Start Signal G F A E D C B Figure 7-1 XOR Tree Pin A is assigned to the output direction, and pins B through F are assigned to the input direction. It can be seen that after all pins B to F are assigned to logic 0 or 1, a logic change in any one of these pins will toggle the output pin A. The following is the truth table for the XOR tree shown in Figure 7-1 The XOR start signal is assumed to be logic 1. Table 7-2 Example of an XOR Tree Test Vector number 7.3.2 Input Pin G Input Pin F Input Pin E Input Pin D Input Pin C Input Pin B Output Pin A 1 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 3 1 1 0 0 0 0 1 4 1 1 1 0 0 0 0 5 1 1 1 1 0 0 1 6 1 1 1 1 1 0 0 7 1 1 1 1 1 1 1 Description of the XOR Tree for the SR5650 The XOR start signal is applied at the TDI Pin of the JTAG circuitry and the output of the XOR tree is obtained at the TDO Pin. Refer to Section 7.3.4 for the list of the signals included on the XOR tree. There is no specific order to these signals in the tree. A toggle of any of these balls in the XOR tree will cause the output to toggle. 7.3.3 XOR Tree Activation To activate the XOR tree and run a XOR test, perform the sequence below: 1. Supply a 10MHz clock to I2C_CLK (Test Mode Clock) and a differential clock pair to the HT_REFCLKP/N, GPP1_REFCLKP/N, GPP2_REFCLKP/N, and GPP3_REFCLKP/N pins. 2. Set POWERGOOD to 0. 3. Set TESTMODE to 1. 4. Set PCIE_RESET_GPIO2 to 0. 5. Wait 5 or more I2C_CLK cycles. 6. Load JTAG instruction register with the instruction 0001 1111. 7. Load JTAG instruction register with the instruction 0010 0000. 8. Load JTAG instruction register with the instruction 0000 1000. 9. Go to Run-Test_Idle state. 10. Set POWERGOOD to 1. 47062 SR5650 Databook 2.20 7-2 © 2012 Advanced Micro Devices, Inc. Proprietary XOR Tree 7.3.4 XOR Tree for the SR5650 The XOR start signal is applied at the TDI Pin of the JTAG circuitry and the output of the XOR tree is obtained at the TDO Pin. Refer to Table 7-3 for the list of the signals included on the XOR tree. There is no specific order to these signals in the tree. A toggle of any of these balls in the XOR tree will cause the output to toggle. When the XOR tree is activated, any pin on the XOR tree must be either pulled down or pulled up to the I/O voltage of the pin. Only pins that are not on the XOR tree can be left floating. When differential signal pairs are listed as single entries on the XOR tree, opposite input values should be applied to the two signals in each pair (e.g., for entry no. 1 on the tree, when “1” is applied to HT_RXCAD0P, “0” should be applied to HT_RXCAD0N). Table 7-3 SR5650 XOR Tree No. Pin Name Ball Ref. No. Pin Name Ball Ref. 1 HT_RXCAD0P/N AD28/AD27 29 GPP1_RX10P/N H5/H4 2 HT_RXCAD1P/N AC27/AC26 30 GPP1_RX11P/N J6/J5 3 HT_RXCAD2P/N AB28/AB27 31 GPP1_RX12P/N K5/K4 4 HT_RXCAD3P/N AA27/AA26 32 GPP1_RX13P/N L6/L5 5 HT_RXCAD4P/N W27/W26 33 GPP1_RX14P/N M5/M4 6 HT_RXCAD5P/N V28/V27 34 GPP1_RX15P/N N6/N5 7 HT_RXCAD6P/N U27/U26 35 NC/NC P5/P4 8 HT_RXCAD7P/N T28/T27 36 NC/NC R6/R5 9 HT_RXCTL0P/N R27/R26 37 NC/NC T5/T4 10 HT_RXCAD8P/N AD25/AD24 38 NC/NC U6/U5 11 HT_RXCAD9P/N AC24/AC23 39 NC/NC V5/V4 12 HT_RXCAD10P/N AB25/AB24 40 NC/NC W6/W5 13 HT_RXCAD11P/N AA24/AA23 41 NC/NC Y5/Y4 14 HT_RXCAD12P/N W24/W23 42 NC/NC AA6/AA5 15 HT_RXCAD13P/N V25/V24 43 NC/NC AB5/AB4 16 HT_RXCAD14P/N U24/U23 44 NC/NC AD2/AD1 17 HT_RXCAD15P/N T25/T24 45 NC/NC AF2/AF1 18 HT_RXCTL1P/N R24/R23 46 NC/NC AF5/AG5 19 GPP1_RX0P/N E11/F11 47 NC/NC AD6/AE6 20 GPP1_RX1P/N D10/E10 48 NC/NC AC7/AD7 21 GPP1_RX2P/N E9/F9 49 NC/NC AD8/AE8 22 GPP1_RX3P/N D8/E8 50 NC/NC AC9/AD9 23 GPP1_RX4P/N E7/F7 51 GPP3_RX0P/N AH20/AG20 24 GPP1_RX5P/N D6/E6 52 GPP3_RX1P/N AD19/AC19 25 GPP1_RX6P/N B5/C5 53 GPP3_RX2P/N AE18/AD18 26 GPP1_RX7P/N D2/D1 54 GPP3_RX3P/N AD17/AC17 27 GPP1_RX8P/N F5/F4 55 GPP3_RX4P/N AE16/AD16 28 GPP1_RX9P/N G6/G5 56 GPP3_RX5P/N AD15/AC15 © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 7-3 VOH/VOL Test 7.4 7.4.1 No. Pin Name Ball Ref. 57 SB_RX0P/N AG26/AH26 58 SB_RX1P/N AF25/AG25 59 SB_RX2P/N AD22/AE22 60 SB_RX3P/N AC21/AD21 61 NC/NC AE14/AD14 62 NC/NC AD13/AC13 63 NC/NC AE12/AD12 64 NC/NC AD11/AC11 65 PWM_GPIO1 E16 66 PWM_GPIO2 B15 67 PWM_GPIO3 F16 68 PWM_GPIO4 A15 69 PWM_GPIO5 C16 70 PCIE_RESET_GPIO1 B19 71 PCIE_RESET_GPIO4 E19 72 PCIE_RESET_GPIO5 E17 73 DFT_GPIO0 B26 74 DFT_GPIO1 A25 75 DFT_GPIO2 B24 76 DFT_GPIO3 B25 77 DFT_GPIO4 B23 78 DFT_GPIO5 A23 79 DBG_GPIO0 C22 80 DBG_GPIO1 B22 81 DBG_GPIO2 B21 82 DBG_GPIO3 A21 83 ALLOW_LDTSTOP D21 84 LDTSTOP# E15 VOH/VOL Test Brief Description of a VOH/VOL Tree The VOH/VOL logic provides signal output on I/O’s when test patterns are applied to the TEST_ODD and TEST_EVEN pins. A sample of a generic VOH/VOL tree is shown in the figure below. 47062 SR5650 Databook 2.20 7-4 © 2012 Advanced Micro Devices, Inc. Proprietary VOH/VOL Test TEST_ODD TEST_EVEN VOH/VOL mode 1 2 3 4 5 6 Figure 7-2 Sample of a Generic VOH/VOL Tree The following is the truth table for the above VOH/VOL tree. Table 7-4 Truth Table for the VOH/VOL Tree Outputs Test Vector Number TEST_ODD Input TEST_EVEN Input Output Pin 1 Output Pin 2 Output Pin 3 Output Pin 4 Output Pin 5 Output Pin 6 1 0 0 0 0 0 0 0 0 2 0 1 0 1 0 1 0 1 3 1 0 1 0 1 0 1 0 4 1 1 1 1 1 1 1 1 Refer to Table 7-5 below for the list of pins that are on the VOH/VOL tree. 7.4.2 VOH/VOL Tree Activation To activate the VOH/VOL tree and run a VOH/VOL test, perform the sequence below: 1. Supply a 10MHz clock to I2C_CLK (Test Mode Clock) and a differential clock pair to the HT_REFCLKP/N, GPP1_REFCLKP/N, GPP2_REFCLKP/N, and GPP3_REFCLKP/N pins. 2. Set POWERGOOD to 0. 3. Set TESTMODE to 1. 4. Set PCIE_RESET_GPIO2 to 0. 5. Wait 5 or more I2C_CLK cycles. 6. Load JTAG instruction register with the instruction 0001 1111. 7. Load JTAG instruction register with the instruction 0010 0000. 8. Load JTAG instruction register with the instruction 0101 1101. 9. Go to Run-Test_Idle state. 10. Set POWERGOOD to 1. © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 7-5 VOH/VOL Test 7.4.3 VOH/VOL pin list Table 7-5 below shows the SR5650 VOH/VOL Tree. There is no specific order of connection. Under the Control column, an “Odd” or “Even” indicates that the logical output of the pin is same as the input to the “TEST_ODD” or the “TEST_EVEN” pin respectively. When a differential signal pair appear in the table as a single entry, the output of the positive (“P”) pin is indicated in the Control column (see last paragraph for explanations) and the output of the negative pin (“N”) will be of the opposite value. E.g., for entry no. 1 on the tree, when TEST_EVEN is 1, HT_TXCAD0P will give a value of 1 and HT_TXCAD0N will give a value of 0. Table 7-5 SR5650 VOH/VOL Tree No. Pin Name Ball Ref. Control 1 HT_TXCAD0P/N E26/E27 Even 2 HT_TXCAD1P/N F27/F28 Odd 3 HT_TXCAD2P/N G26/G27 Even 4 HT_TXCAD3P/N H27/H28 Odd 5 HT_TXCAD4P/N K27/K28 Even 6 HT_TXCAD5P/N L26/L27 Odd 7 HT_TXCAD6P/N M27/M28 Even 8 HT_TXCAD7P/N N26/N27 Odd 9 HT_TXCTL0P/N P27/P28 Even 10 HT_TXCAD8P/N E23/E24 Odd 11 HT_TXCAD9P/N F24/F25 Even 12 HT_TXCAD10P/N G23/G24 Odd 13 HT_TXCAD11P/N H24/H25 Even 14 HT_TXCAD12P/N K24/K25 Odd 15 HT_TXCAD13P/N L23/L24 Even 16 HT_TXCAD14P/N M24/M25 Odd 17 HT_TXCAD15P/N N23/N24 Even 18 HT_TXCTL1P/N P24/P25 Odd 19 GPP1_TX0P/N B11/C11 Even 20 GPP1_TX1P/N A10/B10 Odd 21 GPP1_TX2P/N B9/C9 Even 22 GPP1_TX3P/N A8/B8 Odd 23 GPP1_TX4P/N B7/C7 Even 24 GPP1_TX5P/N A6/B6 Odd 25 GPP1_TX6P/N A4/B4 Even 26 GPP1_TX7P/N E3/E2 Odd 27 GPP1_TX8P/N F2/F1 Even 28 GPP1_TX9P/N G3/G2 Odd 29 GPP1_TX10P/N H2/H1 Even 47062 SR5650 Databook 2.20 7-6 No. Pin Name Ball Ref. Control 30 GPP1_TX11P/N J3/J2 Odd 31 GPP1_TX12P/N K2/K1 Even 32 GPP1_TX13P/N L3/L2 Odd 33 GPP1_TX14P/N M2/M1 Even 34 GPP1_TX15P/N N3/N2 Odd 35 NC/NC P2/P1 Even 36 NC/NC R3/R2 Odd 37 NC/NC T2/T1 Even 38 NC/NC U3/U2 Odd 39 NC/NC V2/V1 Even 40 NC/NC W3/W2 Odd 41 NC/NC Y2/Y1 Even 42 NC/NC AA3/AA2 Odd 43 NC/NC AB2/AB1 Even 44 NC/NC AC3/AC2 Odd 45 NC/NC AE3/AE2 Even 46 NC/NC AG4/AH4 Odd 47 NC/NC AG6/AH6 Even 48 NC/NC AF7/AG7 Odd 49 NC/NC AG8/AH8 Even 50 NC/NC AF9/AG9 Odd 51 GPP3_TX0P/N AG19/AF19 Even 52 GPP3_TX1P/N AH18/AG18 Odd 53 GPP3_TX2P/N AG17/AF17 Even 54 GPP3_TX3P/N AH16/AG16 Odd 55 GPP3_TX4P/N AG15/AF15 Even 56 GPP3_TX5P/N AH14/AG14 Odd 57 SB_TX0P/N AG24/AH24 Even 58 SB_TX1P/N AF23/AG23 Odd © 2012 Advanced Micro Devices, Inc. Proprietary VOH/VOL Test No. Pin Name Ball Ref. Control 59 SB_TX2P/N AF21/AG21 Even 60 SB_TX3P/N AG22/AH22 Odd 61 NC/NC AG13/AF13 Even 62 NC/NC AH12/AG12 Odd 63 NC/NC AG11/AF11 Even 64 NC/NC AH10/AG10 Odd 65 PWM_GPIO1 E16 Even 66 PWM_GPIO2 B15 Odd 67 PWM_GPIO5 C16 Even 68 PCIE_RESET_GPIO1 B19 Odd 69 PCIE_RESET_GPIO4 E19 Even 70 PCIE_RESET_GPIO5 E17 Odd 71 DFT_GPIO0 B26 Even 72 DFT_GPIO1 A25 Odd 73 DFT_GPIO2 B24 Even 74 DFT_GPIO3 B25 Odd 75 DFT_GPIO4 B23 Even 76 DFT_GPIO5 A23 Odd 77 DBG_GPIO0 C22 Even 78 DBG_GPIO1 B22 Odd 79 DBG_GPIO2 B21 Even 80 DBG_GPIO3 A21 Odd 81 ALLOW_LDTSTOP D21 Even 82 LDTSTOP# E15 Odd © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 7-7 VOH/VOL Test This page intentionally left blank. 47062 SR5650 Databook 2.20 7-8 © 2012 Advanced Micro Devices, Inc. Proprietary Appendix A Pin Listings This appendix contains pin listings for the SR5650 sorted in different ways. To go to the listing of interest, use the linked cross-references below: “SR5650 Pin Listing Sorted by Ball Reference” on page A-2 “SR5650 Pin Listing Sorted by Pin Name” on page A-9 © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 Appendix A-1 SR5650 Pin Listing Sorted by Ball Reference A.1 SR5650 Pin Listing Sorted by Ball Reference Table A-1 SR5650 Pin Listing Sorted by Ball Reference Ball # Ball Name Ball # Ball Name Ball # Ball Name A10 GPP1_TX1P AA18 VDDPCIE AB23 VSS A11 VSS AA19 VSS AB24 HT_RXCAD10N A12 VDDA18PCIE AA2 NC AB25 HT_RXCAD10P A13 VDDA18PCIE AA20 VSS AB26 VSS A14 VSS AA21 THERMALDIODE_N AB27 HT_RXCAD2N A15 PWM_GPIO4 AA22 VDDHT AB28 HT_RXCAD2P A16 VSS AA23 HT_RXCAD11N AB3 VSS A17 POWERGOOD AA24 HT_RXCAD11P AB4 NC A18 VDD18 AA25 VSS AB5 NC A19 TESTMODE AA26 HT_RXCAD3N AB6 VSS A20 VSS AA27 HT_RXCAD3P AB7 VDDPCIE A21 DBG_GPIO3/ NON_FATAL_CORR# AA28 VSS AB8 VSS AA3 NC AB9 VDDPCIE A22 VSS AA4 VSS AC1 VSS A23 DFT_GPIO5/ SYNCFLOODIN# AA5 NC AC10 VSS A24 VSS AA6 NC AC11 NC A25 DFT_GPIO1 AA7 VSS AC12 VSS A26 VSS AA8 VDDPCIE AC13 NC A3 VDDPCIE AA9 VSS AC14 VSS A4 GPP1_TX6P AB1 NC AC15 GPP3_RX5N A5 VSS AB10 VSS AC16 VSS A6 GPP1_TX5P AB11 VDDPCIE AC17 GPP3_RX3N A7 VSS AB12 VSS AC18 VSS A8 GPP1_TX3P AB13 VDDPCIE AC19 GPP3_RX1N A9 VSS AB14 VSS AC2 NC AA1 VSS AB15 VDDPCIE AC20 VSS AA10 VDDPCIE AB16 VSS AC21 SB_RX3P AA11 VSS AB17 VDDPCIE AC22 VDDHT AA12 VDDPCIE AB18 VSS AC23 HT_RXCAD9N AA13 VSS AB19 VDDPCIE AC24 HT_RXCAD9P AA14 GPP3_REFCLKN AB2 NC AC25 VSS AA15 GPP3_REFCLKP AB20 VSS AC26 HT_RXCAD1N AA16 VDDPCIE AB21 VSS AC27 HT_RXCAD1P AA17 VSS AB22 VDDHT AC28 VSS 47062 SR5650 Databook 2.20 Appendix A-2 © 2012 Advanced Micro Devices, Inc. Proprietary SR5650 Pin Listing Sorted by Ball Reference Ball # Ball Name Ball # Ball Name Ball # Ball Name AC3 NC AE11 VSS AF2 NC AC4 VSS AE12 NC AF20 VSS AC5 VSS AE13 VSS AF21 SB_TX2P AC6 VDDPCIE AE14 NC AF22 VSS AC7 NC AE15 VSS AF23 SB_TX1P AC8 VSS AE16 GPP3_RX4P AF24 VSS AC9 NC AE17 VSS AF25 SB_RX1P AD1 NC AE18 GPP3_RX2P AF26 VSS AD10 PCE_RCALRN AE19 VSS AF27 VDDHT AD11 NC AE2 NC AF28 VSS AD12 NC AE20 PCE_BCALRP AF3 VDDPCIE AD13 NC AE21 VSS AF4 VSS AD14 NC AE22 SB_RX2N AF5 NC AD15 GPP3_RX5P AE23 VSS AF6 VSS AD16 GPP3_RX4N AE24 VDDHT AF7 NC AD17 GPP3_RX3P AE25 VDDHT AF8 VSS AD18 GPP3_RX2N AE26 VDDHT AF9 NC AD19 GPP3_RX1P AE27 VDDHT AG10 NC AD2 NC AE28 VDDHT AG11 NC AD20 PCE_BCALRN AE3 NC AG12 NC AD21 SB_RX3N AE4 VDDPCIE AG13 NC AD22 SB_RX2P AE5 VSS AG14 GPP3_TX5N AD23 VDDHT AE6 NC AG15 GPP3_TX4P AD24 HT_RXCAD8N AE7 VSS AG16 GPP3_TX3N AD25 HT_RXCAD8P AE8 NC AG17 GPP3_TX2P AD26 VSS AE9 VSS AG18 GPP3_TX1N AD27 HT_RXCAD0N AF1 NC AG19 GPP3_TX0P AD28 HT_RXCAD0P AF10 VSS AG2 VDDPCIE AD3 VSS AF11 NC AG20 GPP3_RX0N AD4 VSS AF12 VSS AG21 SB_TX2N AD5 VDDPCIE AF13 NC AG22 SB_TX3P AD6 NC AF14 VSS AG23 SB_TX1N AD7 NC AF15 GPP3_TX4N AG24 SB_TX0P AD8 NC AF16 VSS AG25 SB_RX1N AD9 NC AF17 GPP3_TX2N AG26 SB_RX0P AE1 VSS AF18 VSS AG27 VSS AE10 PCE_RCALRP AF19 GPP3_TX0N AG3 VSS © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 Appendix A-3 SR5650 Pin Listing Sorted by Ball Reference Ball # Ball Name Ball # Ball Name Ball # Ball Name AG4 NC B16 PWM_GPIO6 C23 VSS AG5 NC B17 OSCIN C24 VDDHTTX AG6 NC B18 VDD18 C25 VDDHTTX AG7 NC B19 PCIE_RESET_GPIO1 C26 VDDHTTX AG8 NC B2 VDDPCIE C27 VDDHTTX AG9 NC B20 I2C_CLK C28 VDDHTTX AH10 NC B21 DBG_GPIO2 C3 VDDPCIE AH11 VSS B22 DBG_GPIO1 C4 VSS AH12 NC B23 DFT_GPIO4 C5 GPP1_RX6N AH13 VSS B24 DFT_GPIO2 C6 VSS AH14 GPP3_TX5P B25 DFT_GPIO3 C7 GPP1_TX4N AH15 VSS B26 DFT_GPIO0/NMI# C8 VSS AH16 GPP3_TX3P B27 VSS C9 GPP1_TX2N AH17 VSS B3 VSS D1 GPP1_RX7N AH18 GPP3_TX1P B4 GPP1_TX6N D10 GPP1_RX1P AH19 VSS B5 GPP1_RX6P D11 VSS AH20 GPP3_RX0P B6 GPP1_TX5N D12 VDDA18PCIE AH21 VSS B7 GPP1_TX4P D13 VDDA18PCIE AH22 SB_TX3N B8 GPP1_TX3N D14 VSS AH23 VSS B9 GPP1_TX2P D15 SYSRESET# AH24 SB_TX0N C1 VDDPCIE D16 VSS AH25 VSS C10 VSS D17 PCIE_RESET_GPIO2 AH26 SB_RX0N C11 GPP1_TX0N D18 VDD18 AH3 VSS C12 VDDA18PCIE D19 PCIE_RESET_GPIO3 AH4 NC C13 VDDA18PCIE D2 GPP1_RX7P AH5 VSS C14 VSS D20 VSS AH6 NC C15 VSS D21 ALLOW_LDTSTOP AH7 VSS C16 PWM_GPIO5 D22 VDDHTTX AH8 NC C17 VSS D23 VDDHTTX AH9 VSS C18 VDD18 D24 HT_RXCALN B10 GPP1_TX1N C19 VSS D25 HT_RXCALP B11 GPP1_TX0P C2 VSS D26 VSS B12 VDDA18PCIE C20 I2C_DATA D27 HT_TXCALN B13 VDDA18PCIE C21 VSS D28 HT_TXCALP B14 VSS C22 D3 VSS B15 PWM_GPIO2 DBG_GPIO0/SERR_F ATAL# D4 VDDPCIE 47062 SR5650 Databook 2.20 Appendix A-4 © 2012 Advanced Micro Devices, Inc. Proprietary SR5650 Pin Listing Sorted by Ball Reference Ball # Ball Name Ball # Ball Name Ball # Ball Name D5 VSS F12 VDDA18PCIE G2 GPP1_TX9N D6 GPP1_RX5P F13 VDDA18PCIE G20 VSS D7 VSS F14 PCE_TCALRP G21 VDDA18HTPLL D8 GPP1_RX3P F15 VSS G22 VDDHTTX D9 VSS F16 PWM_GPIO3 G23 HT_TXCAD10P E1 VSS F17 VSS G24 HT_TXCAD10N E10 GPP1_RX1N F18 VSS G25 VSS E11 GPP1_RX0P F19 VSS G26 HT_TXCAD2P E12 VDDA18PCIE F2 GPP1_TX8P G27 HT_TXCAD2N E13 VDDA18PCIE F20 VSS G28 VSS E14 PCE_TCALRN F21 VSS G3 GPP1_TX9P E15 LDTSTOP# F22 VDDHTTX G4 VSS E16 PWM_GPIO1 F23 VSS G5 GPP1_RX9N E17 PCIE_RESET_GPIO5 F24 HT_TXCAD9P G6 GPP1_RX9P E18 VDD18 F25 HT_TXCAD9N G7 VDDPCIE E19 PCIE_RESET_GPIO4 F26 VSS G8 VDDPCIE E2 GPP1_TX7N F27 HT_TXCAD1P G9 VSS E20 VSS F28 HT_TXCAD1N H1 GPP1_TX10N E21 STRP_DATA F3 VSS H10 VSS E22 VDDHTTX F4 GPP1_RX8N H11 VDDPCIE E23 HT_TXCAD8P F5 GPP1_RX8P H12 VDDA18PCIE E24 HT_TXCAD8N F6 VDDPCIE H13 VDDA18PCIE E25 VSS F7 GPP1_RX4N H14 VDDA18PCIE E26 HT_TXCAD0P F8 VSS H15 VSS E27 HT_TXCAD0N F9 GPP1_RX2N H16 VSS E28 VSS G1 VSS H17 VSS E3 GPP1_TX7P G10 VDDPCIE H18 VSS E4 VSS G11 VSS H19 VSS E5 VDDPCIE G12 VDDA18PCIE H2 GPP1_TX10P E6 GPP1_RX5N G13 VDDA18PCIE H20 VSS E7 GPP1_RX4P G14 VDDA18PCIE H21 VSS E8 GPP1_RX3N G15 VSS H22 VDDHTTX E9 GPP1_RX2P G16 VSS H23 VSS F1 GPP1_TX8N G17 VSS H24 HT_TXCAD11P F10 VSS G18 VSS H25 HT_TXCAD11N F11 GPP1_RX0N G19 VSS H26 VSS © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 Appendix A-5 SR5650 Pin Listing Sorted by Ball Reference Ball # Ball Name Ball # Ball Name Ball # Ball Name H27 HT_TXCAD3P K4 GPP1_RX12N M17 VSS H28 HT_TXCAD3N K5 GPP1_RX12P M18 VSS H3 VSS K6 VSS M2 GPP1_TX14P H4 GPP1_RX10N K7 VDDPCIE M21 VSS H5 GPP1_RX10P K8 VSS M22 VDDHT H6 VSS L1 VSS M23 VSS H7 VDDPCIE L11 VDDA18PCIE M24 HT_TXCAD14P H8 GPP1_REFCLKN L12 VSS M25 HT_TXCAD14N H9 VDDPCIE L13 VSS M26 VSS J1 VSS L14 VDDC M27 HT_TXCAD6P J2 GPP1_TX11N L15 VSS M28 HT_TXCAD6N J21 HT_REFCLKN L16 VDDC M3 VSS J22 VSS L17 VSS M4 GPP1_RX14N J23 HT_TXCLK1P L18 VSS M5 GPP1_RX14P J24 HT_TXCLK1N L2 GPP1_TX13N M6 VSS J25 VSS L21 VDDHT M7 VDDPCIE J26 HT_TXCLK0P L22 VSS M8 VSS J27 HT_TXCLK0N L23 HT_TXCAD13P N1 VSS J28 VSS L24 HT_TXCAD13N N11 VSS J3 GPP1_TX11P L25 VSS N12 VDDC J4 VSS L26 HT_TXCAD5P N13 VSS J5 GPP1_RX11N L27 HT_TXCAD5N N14 VDDC J6 GPP1_RX11P L28 VSS N15 VSS J7 VSS L3 GPP1_TX13P N16 VDDC J8 GPP1_REFCLKP L4 VSS N17 VSS K1 GPP1_TX12N L5 GPP1_RX13N N18 VSS K2 GPP1_TX12P L6 GPP1_RX13P N2 GPP1_TX15N K21 HT_REFCLKP L7 VSS N21 VDDHT K22 VDDHT L8 VDDPCIE N22 VSS K23 VSS M1 GPP1_TX14N N23 HT_TXCAD15P K24 HT_TXCAD12P M11 VSS N24 HT_TXCAD15N K25 HT_TXCAD12N M12 VSS N25 VSS K26 VSS M13 VDDC N26 HT_TXCAD7P K27 HT_TXCAD4P M14 VSS N27 HT_TXCAD7N K28 HT_TXCAD4N M15 VDDC N28 VSS K3 VSS M16 VSS N3 GPP1_TX15P 47062 SR5650 Databook 2.20 Appendix A-6 © 2012 Advanced Micro Devices, Inc. Proprietary SR5650 Pin Listing Sorted by Ball Reference Ball # Ball Name Ball # Ball Name Ball # Ball Name N4 VSS R17 VSS T4 NC N5 GPP1_RX15N R18 VSS T5 NC N6 GPP1_RX15P R2 NC T6 VSS N7 VSS R21 VDDHT T7 VDDPCIE N8 VDDPCIE R22 VSS T8 VSS P1 NC R23 HT_RXCTL1N U1 VSS P11 VSS R24 HT_RXCTL1P U11 VSS P12 VSS R25 VSS U12 VSS P13 VDDC R26 HT_RXCTL0N U13 VSS P14 VSS R27 HT_RXCTL0P U14 VDDC P15 VDDC R28 VSS U15 VSS P16 VSS R3 NC U16 VDDC P17 VDDC R4 VSS U17 VSS P18 VSS R5 NC U18 VSS P2 NC R6 NC U2 NC P21 VSS R7 VSS U21 VDDHT P22 VDDHT R8 VDDPCIE U22 VSS P23 VSS T1 NC U23 HT_RXCAD14N P24 HT_TXCTL1P T11 VSS U24 HT_RXCAD14P P25 HT_TXCTL1N T12 VSS U25 VSS P26 VSS T13 VDDC U26 HT_RXCAD6N P27 HT_TXCTL0P T14 VSS U27 HT_RXCAD6P P28 HT_TXCTL0N T15 VDDC U28 VSS P3 VSS T16 VSS U3 NC P4 NC T17 VDDC U4 VSS P5 NC T18 VSS U5 NC P6 VSS T2 NC U6 NC P7 VDDPCIE T21 VSS U7 VSS P8 VSS T22 VDDHT U8 GPP2_REFCLKN R1 VSS T23 VSS V1 NC R11 VSS T24 HT_RXCAD15N V11 VDDA18PCIE R12 VDDC T25 HT_RXCAD15P V12 VSS R13 VSS T26 VSS V13 VSS R14 VDDC T27 HT_RXCAD7N V14 VSS R15 VSS T28 HT_RXCAD7P V15 VSS R16 VDDC T3 VSS V16 VSS © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 Appendix A-7 SR5650 Pin Listing Sorted by Ball Reference Ball # Ball Name Ball # Ball Name V17 VSS Y22 VDDHT V18 VDDA18PCIE Y23 VSS V2 NC Y24 HT_RXCLK1N V21 VSS Y25 HT_RXCLK1P V22 VDDHT Y26 VSS V23 VSS Y27 HT_RXCLK0N V24 HT_RXCAD13N Y28 HT_RXCLK0P V25 HT_RXCAD13P Y3 VSS V26 VSS Y4 NC V27 HT_RXCAD5N Y5 NC V28 HT_RXCAD5P Y6 VSS V3 VSS Y7 VDDPCIE V4 NC Y8 VSS V5 NC V6 VSS V7 VDDPCIE V8 GPP2_REFCLKP W1 VSS W2 NC W21 VDDHT W22 VSS W23 HT_RXCAD12N W24 HT_RXCAD12P W25 VSS W26 HT_RXCAD4N W27 HT_RXCAD4P W28 VSS W3 NC W4 VSS W5 NC W6 NC W7 VSS W8 VDDPCIE Y1 NC Y2 NC Y21 THERMALDIODE_P 47062 SR5650 Databook 2.20 Appendix A-8 © 2012 Advanced Micro Devices, Inc. Proprietary SR5650 Pin Listing Sorted by Ball Reference A.2 SR5650 Pin Listing Sorted by Pin Name Ball Name Ball # Ball Name Ball # Ball Name Ball # ALLOW_LDTSTOP D21 GPP1_RX4N F7 GPP1_TX5P A6 DBG_GPIO0/SERR_F ATAL# C22 GPP1_RX4P E7 GPP1_TX6N B4 GPP1_RX5N E6 GPP1_TX6P A4 DBG_GPIO1 B22 GPP1_RX5P D6 GPP1_TX7N E2 DBG_GPIO2 B21 GPP1_RX6N C5 GPP1_TX7P E3 DBG_GPIO3/ NON_FATAL_CORR# A21 GPP1_RX6P B5 GPP1_TX8N F1 DFT_GPIO0/NMI# B26 GPP1_RX7N D1 GPP1_TX8P F2 DFT_GPIO1 A25 GPP1_RX7P D2 GPP1_TX9N G2 DFT_GPIO2 B24 GPP1_RX8N F4 GPP1_TX9P G3 DFT_GPIO3 B25 GPP1_RX8P F5 GPP2_REFCLKN U8 DFT_GPIO4 B23 GPP1_RX9N G5 GPP2_REFCLKP V8 DFT_GPIO5/ SYNCFLOODIN# GPP1_RX9P G6 GPP3_REFCLKN AA14 A23 GPP1_TX0N C11 GPP3_REFCLKP AA15 GPP1_REFCLKN H8 GPP1_TX0P B11 GPP3_RX0N AG20 GPP1_REFCLKP J8 GPP1_TX10N H1 GPP3_RX0P AH20 GPP1_RX0N F11 GPP1_TX10P H2 GPP3_RX1N AC19 GPP1_RX0P E11 GPP1_TX11N J2 GPP3_RX1P AD19 GPP1_RX10N H4 GPP1_TX11P J3 GPP3_RX2N AD18 GPP1_RX10P H5 GPP1_TX12N K1 GPP3_RX2P AE18 GPP1_RX11N J5 GPP1_TX12P K2 GPP3_RX3N AC17 GPP1_RX11P J6 GPP1_TX13N L2 GPP3_RX3P AD17 GPP1_RX12N K4 GPP1_TX13P L3 GPP3_RX4N AD16 GPP1_RX12P K5 GPP1_TX14N M1 GPP3_RX4P AE16 GPP1_RX13N L5 GPP1_TX14P M2 GPP3_RX5N AC15 GPP1_RX13P L6 GPP1_TX15N N2 GPP3_RX5P AD15 GPP1_RX14N M4 GPP1_TX15P N3 GPP3_TX0N AF19 GPP1_RX14P M5 GPP1_TX1N B10 GPP3_TX0P AG19 GPP1_RX15N N5 GPP1_TX1P A10 GPP3_TX1N AG18 GPP1_RX15P N6 GPP1_TX2N C9 GPP3_TX1P AH18 GPP1_RX1N E10 GPP1_TX2P B9 GPP3_TX2N AF17 GPP1_RX1P D10 GPP1_TX3N B8 GPP3_TX2P AG17 GPP1_RX2N F9 GPP1_TX3P A8 GPP3_TX3N AG16 GPP1_RX2P E9 GPP1_TX4N C7 GPP3_TX3P AH16 GPP1_RX3N E8 GPP1_TX4P B7 GPP3_TX4N AF15 GPP1_RX3P D8 GPP1_TX5N B6 GPP3_TX4P AG15 © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 Appendix A-9 SR5650 Pin Listing Sorted by Ball Reference Ball Name Ball # Ball Name Ball # Ball Name Ball # GPP3_TX5N AG14 HT_RXCALN D24 HT_TXCAD7N N27 GPP3_TX5P AH14 HT_RXCALP D25 HT_TXCAD7P N26 HT_REFCLKN J21 HT_RXCLK0N Y27 HT_TXCAD8N E24 HT_REFCLKP K21 HT_RXCLK0P Y28 HT_TXCAD8P E23 HT_RXCAD0N AD27 HT_RXCLK1N Y24 HT_TXCAD9N F25 HT_RXCAD0P AD28 HT_RXCLK1P Y25 HT_TXCAD9P F24 HT_RXCAD10N AB24 HT_RXCTL0N R26 HT_TXCALN D27 HT_RXCAD10P AB25 HT_RXCTL0P R27 HT_TXCALP D28 HT_RXCAD11N AA23 HT_RXCTL1N R23 HT_TXCLK0N J27 HT_RXCAD11P AA24 HT_RXCTL1P R24 HT_TXCLK0P J26 HT_RXCAD12N W23 HT_TXCAD0N E27 HT_TXCLK1N J24 HT_RXCAD12P W24 HT_TXCAD0P E26 HT_TXCLK1P J23 HT_RXCAD13N V24 HT_TXCAD10N G24 HT_TXCTL0N P28 HT_RXCAD13P V25 HT_TXCAD10P G23 HT_TXCTL0P P27 HT_RXCAD14N U23 HT_TXCAD11N H25 HT_TXCTL1N P25 HT_RXCAD14P U24 HT_TXCAD11P H24 HT_TXCTL1P P24 HT_RXCAD15N T24 HT_TXCAD12N K25 I2C_CLK B20 HT_RXCAD15P T25 HT_TXCAD12P K24 I2C_DATA C20 HT_RXCAD1N AC26 HT_TXCAD13N L24 LDTSTOP# E15 HT_RXCAD1P AC27 HT_TXCAD13P L23 NC AA2 HT_RXCAD2N AB27 HT_TXCAD14N M25 NC AA3 HT_RXCAD2P AB28 HT_TXCAD14P M24 NC AA5 HT_RXCAD3N AA26 HT_TXCAD15N N24 NC AA6 HT_RXCAD3P AA27 HT_TXCAD15P N23 NC AB1 HT_RXCAD4N W26 HT_TXCAD1N F28 NC AB2 HT_RXCAD4P W27 HT_TXCAD1P F27 NC AB4 HT_RXCAD5N V27 HT_TXCAD2N G27 NC AB5 HT_RXCAD5P V28 HT_TXCAD2P G26 NC AC11 HT_RXCAD6N U26 HT_TXCAD3N H28 NC AC13 HT_RXCAD6P U27 HT_TXCAD3P H27 NC AC2 HT_RXCAD7N T27 HT_TXCAD4N K28 NC AC3 HT_RXCAD7P T28 HT_TXCAD4P K27 NC AC7 HT_RXCAD8N AD24 HT_TXCAD5N L27 NC AC9 HT_RXCAD8P AD25 HT_TXCAD5P L26 NC AD1 HT_RXCAD9N AC23 HT_TXCAD6N M28 NC AD11 HT_RXCAD9P AC24 HT_TXCAD6P M27 NC AD12 47062 SR5650 Databook 2.20 Appendix A-10 © 2012 Advanced Micro Devices, Inc. Proprietary SR5650 Pin Listing Sorted by Ball Reference Ball Name Ball # Ball Name Ball # Ball Name Ball # NC AD13 NC P2 PCIE_RESET_GPIO3 D19 NC AD14 NC P4 PCIE_RESET_GPIO4 E19 NC AD2 NC P5 PCIE_RESET_GPIO5 E17 NC AD6 NC R2 POWERGOOD A17 NC AD7 NC R3 PWM_GPIO1 E16 NC AD8 NC R5 PWM_GPIO2 B15 NC AD9 NC R6 PWM_GPIO3 F16 NC AE12 NC T1 PWM_GPIO4 A15 NC AE14 NC T2 PWM_GPIO5 C16 NC AE2 NC T4 PWM_GPIO6 B16 NC AE3 NC T5 SB_RX0N AH26 NC AE6 NC U2 SB_RX0P AG26 NC AE8 NC U3 SB_RX1N AG25 NC AF1 NC U5 SB_RX1P AF25 NC AF11 NC U6 SB_RX2N AE22 NC AF13 NC V1 SB_RX2P AD22 NC AF2 NC V2 SB_RX3N AD21 NC AF5 NC V4 SB_RX3P AC21 NC AF7 NC V5 SB_TX0N AH24 NC AF9 NC W2 SB_TX0P AG24 NC AG10 NC W3 SB_TX1N AG23 NC AG11 NC W5 SB_TX1P AF23 NC AG12 NC W6 SB_TX2N AG21 NC AG13 NC Y1 SB_TX2P AF21 NC AG4 NC Y2 SB_TX3N AH22 NC AG5 NC Y4 SB_TX3P AG22 NC AG6 NC Y5 STRP_DATA E21 NC AG7 OSCIN B17 SYSRESET# D15 NC AG8 PCE_BCALRN AD20 TESTMODE A19 NC AG9 PCE_BCALRP AE20 THERMALDIODE_N AA21 NC AH10 PCE_RCALRN AD10 THERMALDIODE_P Y21 NC AH12 PCE_RCALRP AE10 VDD18 A18 NC AH4 PCE_TCALRN E14 VDD18 B18 NC AH6 PCE_TCALRP F14 VDD18 C18 NC AH8 PCIE_RESET_GPIO1 B19 VDD18 D18 NC P1 PCIE_RESET_GPIO2 D17 VDD18 E18 © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 Appendix A-11 SR5650 Pin Listing Sorted by Ball Reference Ball Name Ball # Ball Name Ball # Ball Name Ball # VDDA18HTPLL G21 VDDC T15 VDDPCIE A3 VDDA18PCIE A12 VDDC T17 VDDPCIE AA10 VDDA18PCIE A13 VDDC U14 VDDPCIE AA12 VDDA18PCIE B12 VDDC U16 VDDPCIE AA16 VDDA18PCIE B13 VDDHT AA22 VDDPCIE AA18 VDDA18PCIE C12 VDDHT AB22 VDDPCIE AA8 VDDA18PCIE C13 VDDHT AC22 VDDPCIE AB11 VDDA18PCIE D12 VDDHT AD23 VDDPCIE AB13 VDDA18PCIE D13 VDDHT AE24 VDDPCIE AB15 VDDA18PCIE E12 VDDHT AE25 VDDPCIE AB17 VDDA18PCIE E13 VDDHT AE26 VDDPCIE AB19 VDDA18PCIE F12 VDDHT AE27 VDDPCIE AB7 VDDA18PCIE F13 VDDHT AE28 VDDPCIE AB9 VDDA18PCIE G12 VDDHT AF27 VDDPCIE AC6 VDDA18PCIE G13 VDDHT K22 VDDPCIE AD5 VDDA18PCIE G14 VDDHT L21 VDDPCIE AE4 VDDA18PCIE H12 VDDHT M22 VDDPCIE AF3 VDDA18PCIE H13 VDDHT N21 VDDPCIE AG2 VDDA18PCIE H14 VDDHT P22 VDDPCIE B2 VDDA18PCIE L11 VDDHT R21 VDDPCIE C1 VDDA18PCIE V11 VDDHT T22 VDDPCIE C3 VDDA18PCIE V18 VDDHT U21 VDDPCIE D4 VDDC L14 VDDHT V22 VDDPCIE E5 VDDC L16 VDDHT W21 VDDPCIE F6 VDDC M13 VDDHT Y22 VDDPCIE G10 VDDC M15 VDDHTTX C24 VDDPCIE G7 VDDC N12 VDDHTTX C25 VDDPCIE G8 VDDC N14 VDDHTTX C26 VDDPCIE H11 VDDC N16 VDDHTTX C27 VDDPCIE H7 VDDC P13 VDDHTTX C28 VDDPCIE H9 VDDC P15 VDDHTTX D22 VDDPCIE K7 VDDC P17 VDDHTTX D23 VDDPCIE L8 VDDC R12 VDDHTTX E22 VDDPCIE M7 VDDC R14 VDDHTTX F22 VDDPCIE N8 VDDC R16 VDDHTTX G22 VDDPCIE P7 VDDC T13 VDDHTTX H22 VDDPCIE R8 47062 SR5650 Databook 2.20 Appendix A-12 © 2012 Advanced Micro Devices, Inc. Proprietary SR5650 Pin Listing Sorted by Ball Reference Ball Name Ball # Ball Name Ball # Ball Name Ball # VDDPCIE T7 VSS AB8 VSS AF28 VDDPCIE V7 VSS AC1 VSS AF4 VDDPCIE W8 VSS AC10 VSS AF6 VDDPCIE Y7 VSS AC12 VSS AF8 VSS A11 VSS AC14 VSS AG27 VSS A14 VSS AC16 VSS AG3 VSS A16 VSS AC18 VSS AH11 VSS A20 VSS AC20 VSS AH13 VSS A22 VSS AC25 VSS AH15 VSS A24 VSS AC28 VSS AH17 VSS A26 VSS AC4 VSS AH19 VSS A5 VSS AC5 VSS AH21 VSS A7 VSS AC8 VSS AH23 VSS A9 VSS AD26 VSS AH25 VSS AA1 VSS AD3 VSS AH3 VSS AA11 VSS AD4 VSS AH5 VSS AA13 VSS AE1 VSS AH7 VSS AA17 VSS AE11 VSS AH9 VSS AA19 VSS AE13 VSS B14 VSS AA20 VSS AE15 VSS B27 VSS AA25 VSS AE17 VSS B3 VSS AA28 VSS AE19 VSS C10 VSS AA4 VSS AE21 VSS C14 VSS AA7 VSS AE23 VSS C15 VSS AA9 VSS AE5 VSS C17 VSS AB10 VSS AE7 VSS C19 VSS AB12 VSS AE9 VSS C2 VSS AB14 VSS AF10 VSS C21 VSS AB16 VSS AF12 VSS C23 VSS AB18 VSS AF14 VSS C4 VSS AB20 VSS AF16 VSS C6 VSS AB21 VSS AF18 VSS C8 VSS AB23 VSS AF20 VSS D11 VSS AB26 VSS AF22 VSS D14 VSS AB3 VSS AF24 VSS D16 VSS AB6 VSS AF26 VSS D20 © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 Appendix A-13 SR5650 Pin Listing Sorted by Ball Reference Ball Name Ball # Ball Name Ball # Ball Name Ball # VSS D26 VSS H17 VSS M18 VSS D3 VSS H18 VSS M21 VSS D5 VSS H19 VSS M23 VSS D7 VSS H20 VSS M26 VSS D9 VSS H21 VSS M3 VSS E1 VSS H23 VSS M6 VSS E20 VSS H26 VSS M8 VSS E25 VSS H3 VSS N1 VSS E28 VSS H6 VSS N11 VSS E4 VSS J1 VSS N13 VSS F10 VSS J22 VSS N15 VSS F15 VSS J25 VSS N17 VSS F17 VSS J28 VSS N18 VSS F18 VSS J4 VSS N22 VSS F19 VSS J7 VSS N25 VSS F20 VSS K23 VSS N28 VSS F21 VSS K26 VSS N4 VSS F23 VSS K3 VSS N7 VSS F26 VSS K6 VSS P11 VSS F3 VSS K8 VSS P12 VSS F8 VSS L1 VSS P14 VSS G1 VSS L12 VSS P16 VSS G11 VSS L13 VSS P18 VSS G15 VSS L15 VSS P21 VSS G16 VSS L17 VSS P23 VSS G17 VSS L18 VSS P26 VSS G18 VSS L22 VSS P3 VSS G19 VSS L25 VSS P6 VSS G20 VSS L28 VSS P8 VSS G25 VSS L4 VSS R1 VSS G28 VSS L7 VSS R11 VSS G4 VSS M11 VSS R13 VSS G9 VSS M12 VSS R15 VSS H10 VSS M14 VSS R17 VSS H15 VSS M16 VSS R18 VSS H16 VSS M17 VSS R22 47062 SR5650 Databook 2.20 Appendix A-14 © 2012 Advanced Micro Devices, Inc. Proprietary SR5650 Pin Listing Sorted by Ball Reference Ball Name Ball # Ball Name Ball # VSS R25 VSS V3 VSS R28 VSS V6 VSS R4 VSS W1 VSS R7 VSS W22 VSS T11 VSS W25 VSS T12 VSS W28 VSS T14 VSS W4 VSS T16 VSS W7 VSS T18 VSS Y23 VSS T21 VSS Y26 VSS T23 VSS Y3 VSS T26 VSS Y6 VSS T3 VSS Y8 VSS T6 VSS T8 VSS U1 VSS U11 VSS U12 VSS U13 VSS U15 VSS U17 VSS U18 VSS U22 VSS U25 VSS U28 VSS U4 VSS U7 VSS V12 VSS V13 VSS V14 VSS V15 VSS V16 VSS V17 VSS V21 VSS V23 VSS V26 © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 Appendix A-15 SR5650 Pin Listing Sorted by Ball Reference This page is left blank intentionally. 47062 SR5650 Databook 2.20 Appendix A-16 © 2012 Advanced Micro Devices, Inc. Proprietary Appendix B Revision History Rev. 2.00 (Dec 2010) • First release of the public version. Rev. 2.10 (June 2011) • Added alternate branding for ASIC A21 in Section 1.5, “Branding Diagrams.” Rev. 2.20 (Jan 2012) • Updated title of Figure 1-1, “SR5650 Branding Diagram for A21 Production ASIC (RoHS-compliant Part).” • Updated pin assignments for the following pins: • • U8 to GPP2_REFCLKN • V8 to GPP2_REFCLKP Updated Table 3-5, “Clock Interface”: Made connections of GPP[3:1]_REFCLKP/N mandatory. © 2012 Advanced Micro Devices, Inc. Proprietary 47062 SR5650 Databook 2.20 Appendix B-1 This page intentionally left blank. 47062 SR5650 Databook 2.20 Appendix B-2 © 2012 Advanced Micro Devices, Inc. Proprietary