AMD RX881 Databook Technical Reference Manual Rev 1.40 P/N: 46136_rx881_ds_pub_1.40 © 2011 Advanced Micro Devices Inc Trademarks AMD, the AMD Arrow, ATI, the ATI logo, AMD Athlon, AMD OverDrive, AMD PowerNow!, Avivo, Cool’n’Quiet, Radeon, and combinations thereof are trademarks of Advanced Micro Devices, Inc. HyperTransport is a trademark of the HyperTransport Technology Consortium. Microsoft, Windows, Windows Vista, and Windows 7 are registered trademarks of Microsoft Corporation. PCI Express and PCIe are registered trademarks of PCI-SIG. WinBench is a registered trademark of Ziff Davis, Inc. Linux is a registered trademark of Linus Torvalds in the U.S. and other countries. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. Disclaimer The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel, or otherwise, to any intellectual property rights are granted by this publication. Except as set forth in AMD's Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD's products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD's product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice. © 2011 Advanced Micro Devices, Inc. All rights reserved. Table of Contents Chapter 1: Overview 1.1 Introducing the RX881........................................................................................................................................................1-1 1.2 RX881 Features...................................................................................................................................................................1-1 1.2.1 CPU HyperTransport™ Interface.........................................................................................................................1-1 1.2.2 PCI Express® Interface ........................................................................................................................................1-1 1.2.3 A-Link Express II Interface..................................................................................................................................1-2 1.2.4 System Clocks ......................................................................................................................................................1-2 1.2.5 Power Management Features ...............................................................................................................................1-2 1.2.6 PC Design Guide Compliance..............................................................................................................................1-2 1.2.7 Test Capability Features .......................................................................................................................................1-2 1.2.8 Packaging .............................................................................................................................................................1-3 1.3 Software Features................................................................................................................................................................1-3 1.4 Branding Diagram...............................................................................................................................................................1-3 1.5 Conventions and Notations .................................................................................................................................................1-4 1.5.1 Pin Names.............................................................................................................................................................1-4 1.5.2 Pin Types ..............................................................................................................................................................1-4 1.5.3 Numeric Representation .......................................................................................................................................1-4 1.5.4 Register Field........................................................................................................................................................1-4 1.5.5 Hyperlinks ............................................................................................................................................................1-4 1.5.6 Acronyms and Abbreviations ...............................................................................................................................1-4 Chapter 2: Functional Descriptions 2.1 Host Interface ......................................................................................................................................................................2-1 2.2 Clock Generation ................................................................................................................................................................2-3 Chapter 3: Pin Descriptions and Strap Options 3.1 RX881 Pin Assignment Top View......................................................................................................................................3-2 3.2 Interface Block Diagram .....................................................................................................................................................3-4 3.3 CPU HyperTransport™ Interface .......................................................................................................................................3-5 3.4 PCI Express® Interfaces .....................................................................................................................................................3-5 3.4.1 1 x 16 Lane Interface for External Graphics ........................................................................................................3-5 3.4.2 A-Link Express II Interface for Southbridge........................................................................................................3-5 3.4.3 6 x 1 Lane Interface for General Purpose External Devices ...............................................................................3-6 3.4.4 Miscellaneous PCI Express® Signals ..................................................................................................................3-6 3.5 Clock Interface ....................................................................................................................................................................3-6 3.6 Power Management Pins....................................................................................................................................................3-7 3.7 Miscellaneous Pins..............................................................................................................................................................3-7 3.8 Power Pins...........................................................................................................................................................................3-8 3.9 Ground Pins.........................................................................................................................................................................3-9 3.10 Strapping Options .............................................................................................................................................................3-9 Chapter 4: Timing Specifications 4.1 HyperTransport™ Bus Timing ...........................................................................................................................................4-1 4.2 HyperTransport™ Reference Clock Timing Parameters ....................................................................................................4-1 4.3 PCI Express® Differential Clock AC Specifications .........................................................................................................4-2 4.4 Power Rail Power-up Sequence ..........................................................................................................................................4-2 © 2011 Advanced Micro Devices, Inc. Proprietary AMD RX881 Databook 1.40 Table of Contents-1 Table of Contents Chapter 5: Electrical Characteristics and Physical Data 5.1 Electrical Characteristics.................................................................................................................................................... 5-1 5.1.1 Maximum and Minimum Ratings........................................................................................................................ 5-1 5.1.2 DC Characteristics ............................................................................................................................................... 5-1 5.2 RX881 Thermal Characteristics ......................................................................................................................................... 5-3 5.2.1 RX881 Thermal Limits........................................................................................................................................ 5-3 5.2.2 Thermal Diode Characteristics ............................................................................................................................ 5-4 5.3 Package Information .......................................................................................................................................................... 5-5 5.3.1 Physical Dimensions............................................................................................................................................ 5-5 5.3.2 Pressure Specification.......................................................................................................................................... 5-6 5.3.3 Board Solder Reflow Process Recommendations ............................................................................................... 5-7 Chapter 6: Power Management and ACPI 6.1 ACPI Power Management Implementation ....................................................................................................................... 6-1 Chapter 7: Testability 7.1 Test Capability Features..................................................................................................................................................... 7-1 7.2 Test Interface...................................................................................................................................................................... 7-1 7.3 XOR Test............................................................................................................................................................................ 7-1 7.3.1 Description of a Generic XOR Tree .................................................................................................................... 7-1 7.3.2 Description of the RX881 XOR Tree .................................................................................................................. 7-2 7.3.3 XOR Tree Activation........................................................................................................................................... 7-2 7.3.4 XOR Tree for the RX881 .................................................................................................................................... 7-2 7.4 VOH/VOL Test .................................................................................................................................................................. 7-4 7.4.1 Description of a Generic VOH/VOL Tree........................................................................................................... 7-4 7.4.2 VOH/VOL Tree Activation ................................................................................................................................. 7-5 7.4.3 VOH/VOL Pin List.............................................................................................................................................. 7-6 Appendix A: Pin Listings A.1 RX881 Pin List Sorted by Ball Reference......................................................................................................................... 1-2 A.2 RX881 Pin List Sorted by Pin Name................................................................................................................................. 1-7 Appendix B: Revision History AMD RX881 Databook 1.40 Table of Contents-2 © 2011 Advanced Micro Devices, Inc. Proprietary List of Figures Figure 1-1: Figure 2-1: Figure 2-2: Figure 2-3: Figure 3-1: Figure 3-2: Figure 3-3: Figure 4-1: Figure 5-1: Figure 5-2: Figure 5-3: Figure 5-4: Figure 6-1: Figure 7-1: Figure 7-2: RX881 ASIC A11 Production Branding ..................................................................................................................... 1-3 RX881 Internal Block Diagram .................................................................................................................................. 2-1 Host Interface Block Diagram ..................................................................................................................................... 2-2 RX881 Host Bus Interface Signals .............................................................................................................................. 2-3 RX881 Pin Assignment Top View (Left) .................................................................................................................... 3-2 RX881 Pin Assignment Top View (Right) ................................................................................................................. 3-3 RX881 Interface Block Diagram ................................................................................................................................. 3-4 RX881 Power Rail Power-up Sequence ...................................................................................................................... 4-2 RX881 528-Pin FCBGA Package Outline .................................................................................................................. 5-5 RX881 Ball Arrangement (Bottom View) .................................................................................................................. 5-6 Recommended Stencil Opening Sizes for Solder Paste Pads on PCB ........................................................................ 5-7 RoHS/Lead-Free Solder (SAC305/405 Tin-Silver-Copper) Reflow Profile .............................................................. 5-8 Linked List for Capabilities ......................................................................................................................................... 6-1 Example of a Generic XOR Tree ................................................................................................................................ 7-2 Sample of a Generic VOH/VOL Tree ......................................................................................................................... 7-5 © 2011 Advanced Micro Devices, Inc. Proprietary AMD RX881 Databook 1.40 List of Figures-1 List of Figures This page is left blank intentionally. AMD RX881 Databook 1.40 List of Figures-2 © 2011 Advanced Micro Devices, Inc. Proprietary List of Tables Table 1-1: Possible Configurations for the PCIe® General Purpose Links ....................................................................................1-2 Table 1-2: Pin Type Codes ..............................................................................................................................................................1-4 Table 1-3: Acronyms and Abbreviations ........................................................................................................................................1-5 Table 3-1: CPU HyperTransport™ Interface ..................................................................................................................................3-5 Table 3-2: 1 x 16 Lane PCI Express® Interface for External Graphics ..........................................................................................3-5 Table 3-3: 1 x 4 Lane A-Link Express II Interface for Southbridge ...............................................................................................3-5 Table 3-4: 6 x 1 Lane PCI Express® Interface for General Purpose External Devices ..................................................................3-6 Table 3-5: PCI Express® Interface for Miscellaneous PCI Express® Signals ...............................................................................3-6 Table 3-6: Clock Interface ...............................................................................................................................................................3-6 Table 3-7: Power Management Pins ...............................................................................................................................................3-7 Table 3-8: Miscellaneous Pins ........................................................................................................................................................3-7 Table 3-9: Power Pins .....................................................................................................................................................................3-8 Table 3-10: Ground Pins .................................................................................................................................................................3-9 Table 3-11: Strap Definitions for the RX881 ................................................................................................................................3-10 Table 4-1: Timing Requirements for HyperTransport™ Reference Clock (100MHz) Output by the Clock Generator ................4-1 Table 4-2: PCI Express® Differential Clock (GFX_REFCLK, GPPSB_REFCLK, 100MHz) AC Characteristics ......................4-2 Table 4-3: RX881 Power Rail Power-up Sequence ........................................................................................................................4-2 Table 5-1: Maximum and Minimum Ratings ..................................................................................................................................5-1 Table 5-2: DC Characteristics for 3.3V TTL Signals .....................................................................................................................5-1 Table 5-3: DC Characteristics for POWERGOOD .........................................................................................................................5-2 Table 5-4: DC Characteristics for HyperTransport™ and PCI-E Differential Clock (HT_REFCLK, GFX_REFCLK, GPPSB_REFCLK, 100MHz) ..........................................................................................................................................................5-2 Table 5-5: RX881 Thermal Limits ..................................................................................................................................................5-3 Table 5-6: RX881 528-Pin FCBGA Package Physical Dimensions ...............................................................................................5-5 Table 5-7: Recommended Board Solder Reflow Profile - RoHS/Lead-Free Solder ......................................................................5-8 Table 6-1: ACPI States Supported by the RX881 ...........................................................................................................................6-1 Table 6-2: ACPI Signal Definitions ................................................................................................................................................6-1 Table 7-1: Pins on the Test Interface .............................................................................................................................................7-1 Table 7-2: Example of an XOR Tree ..............................................................................................................................................7-2 Table 7-3: RX881 XOR Tree ..........................................................................................................................................................7-3 Table 7-4: Truth Table for the VOH/VOL Tree Outputs ................................................................................................................7-5 Table 7-5: RX881 VOH/VOL Tree ................................................................................................................................................7-7 © 2011 Advanced Micro Devices, Inc. Proprietary AMD RX881 Databook 1.40 List of Tables-1 List of Tables This page intentionally left blank. AMD RX881 Databook 1.40 List of Tables-2 © 2011 Advanced Micro Devices, Inc. Proprietary Chapter 1 Overview 1.1 Introducing the RX881 The RX881 is the latest system logic from AMD that supports AMD S1g3-socket CPUs, such as the Caspian-series processors. The RX881 is pin-compatible with AMD’s other mainstream 700 and 800-series products including the RS880, RS880M, RS780, RS780D, RS780M, RX780, RD780, and RX781, allowing a single design to target multiple market segments. Robust and Flexible Core Logic Features The RX881 supports a high speed HyperTransport™ interface to the AMD processor, running at a data rate of up to 4.4 GT/s and supporting both HT 1.0 and HT 3.0 protocols. The RX881 is ideally suited for 64-bit operating systems, and supports platform configurations with greater than 4GB of system memory. The rich PCI Express® (PCIe®) expansion capabilities of RX881 include support for PCI Express graphics and up to six other PCI Express peripherals, all supporting the PCI Express 2.0 standard with data rates of up to 5.0GT/s. These capabilities are complemented by the advanced I/O features of AMD’s SB700 and SB800-series Southbridges. Low Power Consumption and Industry Leading Power Management The RX881 is manufactured using the power efficient nm technology, and it supports a whole range of industry standards and power management features. It provides comprehensive support for the ACPI specification and AMD power management features such as AMD PowerNow!™. 1.2 RX881 Features 1.2.1 CPU HyperTransport™ Interface • • • • • 1.2.2 Supports 16-bit up/down HyperTransport (HT) 3.0 interface up to 4.4 GT/s. Supports 200, 400, 600, 800, and 1000 MHz HT1 frequencies. Supports 1.6, 1.8, 2.0, and 2.2 GHz HT3 frequencies. Supports AMD’s S1g3-socket CPUs, including the Caspian-series processors. Supports LDTSTOP interface and CPU link stutter mode. PCI Express® Interface • • • • • Supports PCIe Gen2 (version 2.0). • Supports six general purpose lanes, for up to six devices on specific ports. Possible configurations are listed in Table 1-1. Optimized peer-to-peer and general purpose link performance. Highly flexible PCI Express implementation to suit a variety of platform needs. Supports a x16 graphics interface. Supports programmable lane reversal for the graphics link to ease motherboard layout when the end device does not support lane reversal. © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 1-1 RX881 Features Table 1-1 Possible Configurations for the PCIe® General Purpose Links Config. B • 1.2.3 1.2.4 1.2.6 Config. K Config. L GPP1 x4 x4 x2 x2 x2 x1 GPP2 - - - - - x1 GPP3 - - x2 x1 x2 x1 GPP4 - - - x1 - x1 GPP5 x2 x1 x2 x1 x1 x1 GPP6 - x1 - x1 x1 x1 Supports x1, x2, x4, x8, x12 and x16 polarity inversion. A-Link Express II Interface • One x4 A-Link Express II interface for connection to an AMD Southbridge. The A-Link Express II is a proprietary interface developed by AMD basing on the PCI Express technology, with additional Northbridge-Southbridge messaging functionalities. • Supports programmable lane reversal to ease motherboard layout. System Clocks • 1.2.5 Config. C Config. C2 Config. E Support for an external clock chip to generate PCIe and A-Link Express II clocks. Alternatively, internal generation for these clocks, with clock input from an SB800-series Southbridge, can be used (subject to characterization with actual RX881 and SB800-series devices). Power Management Features • • • Single chip solution in 55nm, 1.1V CMOS technology. Full ACPI 2.0 and IAPC (Instantly Available PC) power management support. • Hardware controlled intelligent clock gating enables clocks only to active functional blocks, and is completely transparent to software. • • • Support for Cool'n'Quiet™ via FID/VID change. • Supports dynamic lane reduction for the PCIe graphics interface when coupled with an AMD-based graphics device, adjusting lane width according to required bandwidth. The Chip Power Management Support logic supports four device power states defined for the OnNow Architecture— On, Standby, Suspend, and Off. Each power state can be achieved by software control bits. Support for AMD PowerNow!™. Clocks to every major functional block are controlled by a unique dynamic clock switching technique that is completely transparent to the software. By turning off the clock to the block that is idle or not used at that point, the power consumption can be significantly reduced during normal operation. PC Design Guide Compliance The RX881 complies with all relevant Windows Logo Program (WLP) requirements from Microsoft for WHQL certification. 1.2.7 Test Capability Features The RX881 has a variety of test modes and capabilities that provide a very high fault coverage and low DPM (Defect Per Million) ratio: • • Full scan implementation on the digital core logic through ATPG (Automatic Test Pattern Generation Vectors). Dedicated test logic for the on-chip custom memory macros to provide complete coverage on these modules. 46136 AMD RX881 Databook 1.40 1-2 © 2011 Advanced Micro Devices, Inc. Proprietary Software Features • • • A JTAG test mode to allow board level testing of neighboring devices. • • Access to the analog modules to allow full evaluation and characterization. An EXOR tree test mode on all the digital I/O's to allow for proper soldering verification at the board level. A VOH/VOL test mode on all digital I/O’s to allow for proper verification of output high and output low values at the board level. IDDQ mode support to allow chip evaluation through current leakage measurements. These test modes can be accessed through the settings on the instruction register of the JTAG circuitry. 1.2.8 Packaging • • 1.3 Single chip solution in 55nm, 1.1V low power CMOS technology. 528-FCBGA package, 21mmx21mm. Software Features • • • • • • • • Supports Microsoft Windows XP, Windows Vista, and Windows 7. Supports corporate manageability requirements such as DMI. ACPI support. Full Write Combining support for maximum performance of the CPU. Comprehensive OS and API support. Hot-key support (Windows ACPI 2.0 or AMD Event Handler Utility where appropriate). Extensive power management support. Supports AMD OverDrive™ utility. ***Warning*** AMD and ATI processors are intendedto be operated only within their associated specifications and factory settings. Operating the AMD or ATI processor outside of specification or in excess of factory settings, including but not limited to overclocking, may damage the processor and/or lead to other problems, including but not limited to, damage to the system components (including the motherboard and components thereon (e.g. memory)), system instabilities (e.g. data loss and corrupted images), shortened processor, system component and/or system life and in extreme cases, total system failure. AMD does not provide support or service for issues or damages related to use of an AMD or ATI processor outside of processor specifications or in excess of factory settings. 1.4 Branding Diagram Note: The branding can be in laser, ink, or mixed laser-and-ink marking. AMD Logo RADEON IGP YYWW MADE IN ZZZZ WXXXXX.XX 215-0752007 • AMD Product Type Date Code* Country of Origin Wafer Lot Number Part Number Pin A1 Position * YY - Assembly Start Year WW - Assembly Start Week Note: Branding can be in laser, ink, or mixed laser-and-ink marking. Figure 1-1 RX881 ASIC A11 Production Branding © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 1-3 Conventions and Notations 1.5 Conventions and Notations The following conventions are used throughout this manual. 1.5.1 Pin Names Pins are identified by their pin names or ball references. Multiplexed pins sometimes assume alternate “functional names” when they perform their alternate functions, and these “functional names” are given in Chapter 3, “Pin Descriptions and Strap Options.” All active-low signals are identified by the suffix ‘#’ in their names (e.g., MEM_RAS#). 1.5.2 Pin Types The pins are assigned different codes according to their operational characteristics. These codes are listed in Table 1-2. Table 1-2 Pin Type Codes Code 1.5.3 Pin Type I Digital Input O Digital Output OD Open Drain I/O Bi-Directional Digital Input or Output I/OD Digital Input or Open Drain M Multifunctional Pwr Power Gnd Ground A-O Analog Output A-I Analog Input A-I/O Analog Bi-Directional Input/Output A-Pwr Analog Power A-Gnd Analog Ground Other Pin types not included in any of the categories above Numeric Representation Hexadecimal numbers are appended with “h” (Intel assembly-style notation) whenever there is a risk of ambiguity. Other numbers are in decimal. Pins of identical functions but different running integers (e.g., “GFX_TX7P, GFX_TX6P,... GFX_TX0P”) are referred to collectively by specifying their integers in square brackets and with colons (i.e., “GFX_TX[7:0]P”). A similar short-hand notation is used to indicate bit occupation in a register. For example, NB_COMMAND[15:10] refers to the bit positions 10 through 15 of the NB_COMMAND register. 1.5.4 Register Field A field of a register is referred to by the format of [Register Name].[Register.Field]. For example, “NB_MC_CNTL.DISABLE_BYPASS” is the “DISABLE_BYPASS” field of the register “NB_MC_CNTL.” 1.5.5 Hyperlinks Phrases or sentences in blue italic font are hyperlinks to other parts of the manual. Users of the PDF version of this manual can click on the links to go directly to the referenced sections, tables, or figures. 1.5.6 Acronyms and Abbreviations The following is a list of the acronyms and abbreviations used in this manual. 46136 AMD RX881 Databook 1.40 1-4 © 2011 Advanced Micro Devices, Inc. Proprietary Conventions and Notations Table 1-3 Acronyms and Abbreviations Acronym ACPI A-Link-E Full Expression Advanced Configuration and Power Interface A-Link Express interface between the IGP and the Southbridge. BGA Ball Grid Array BIOS Basic Input Output System. Initialization code stored in a ROM or Flash RAM used to start up a system or expansion card. BIST Built In Self Test. CSP Chip Scale Package DBI Dynamic Bus Inversion DFP Digital Flat Panel. Monitor connection standard from VESA. DPM EPROM Defects per Million Erasable Programmable Read Only Memory FIFO First In, First Out GND Ground GPIO General Purpose Input/Output IDDQ Direct Drain Quiescent Current JTAG Joint Test Access Group. An IEEE standard. MB Mega Byte PCI Peripheral Component Interface PCIe PCI Express PLL Phase Locked Loop POST Power On Self Test PD Pull-down Resistor PU Pull-up Resistor SDRAM Synchronous Dynamic RAM VRM Voltage Regulation Module © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 1-5 Conventions and Notations This page is left blank intentionally. 46136 AMD RX881 Databook 1.40 1-6 © 2011 Advanced Micro Devices, Inc. Proprietary Chapter 2 Functional Descriptions This chapter describes the functional operation of the major interfaces of the RX881 system logic. Figure 2-1, “RX881 Internal Block Diagram,” illustrates the RX881 internal blocks and interfaces. Root Complex IO Controller Expansion Slots or On-board Devices PCIe® PCIe® Gfx Interface GPP Interface (1 x 16 Lanes) (6 x 1 Lanes) Graphics Controller HyperTransport™ Unit A-Link-E II Interface (1 x 4 Lanes) Southbridge CPU Interface AMD CPU Register Interface Figure 2-1 RX881 Internal Block Diagram 2.1 Host Interface The RX881 is optimized to interface with AMD processors through the HyperTransportTM interface. This section presents an overview of the HyperTransport interface. For a detailed description of the interface, please refer to the HyperTransport I/O Link Specification from the HyperTransport Consortium. Figure 2-2, “Host Interface Block Diagram,” illustrates the basic blocks of the host bus interface of the RX881. © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 2-1 Host Interface HT Interface to CPU (PHY) Configuration Registers LTA LRA SCH Data Link Layer Protocol/Transaction Layer Root Complex Figure 2-2 Host Interface Block Diagram The HyperTransport (HT) Interface, formerly known as the LDT (Lightning Data Transport) interface, is a high speed, packet-based link implemented on two unidirectional buses. It is a point-to-point interface where data can flow both upstream and downstream at the same time. The commands, addresses, and data travel in packets on the HyperTransport link. Lengths of packets are in multiples of four bytes. The HT link consists of three parts: the physical layer (PHY), the data link layer, and the protocol/transaction layer. The PHY is the physical interface between the RX881 and the CPU. The data link layer includes the initialization and configuration sequences, periodic redundancy checks, connect/disconnect sequences, and information packet flow controls. The protocol layer is responsible for maintaining strict ordering rules defined by the HT protocol. The RX881 HyperTransport bus interface consists of eighteen unidirectional differential data/control pairs and two differential clock pairs in each of the upstream and downstream direction. On power up, the HT link is 8-bit wide and runs at a default speed of 400MT/s. After negotiation, carried out by the HW and SW together, the link width can be brought up to 16-bit and the interface can run up to 4.4GT/s. The interface is illustrated in Figure 2-3, “RX881 Host Bus Interface Signals.” The signal name and direction for each signal is shown with respect to the processor. Note that the signal names may be different from those used in the pin listing of the RX881. Detailed descriptions of the signals are given in section 3.3, “CPU HyperTransport™ Interface‚’ on page 3-5. 46136 AMD RX881 Databook 1.40 2-2 © 2011 Advanced Micro Devices, Inc. Proprietary Clock Generation HT_TXCALN HT_TXCALP HT_RXCALP 2 HT_TXCLKN 2 HT_TXCTLP 2 HT_TXCTLN 2 HT_TXCADP 16 HT_TXCADN 16 HT_RXCLKP 2 CPU RX881 HT_RXCALN HT_TXCLKP HT_RXCLKN 2 HT_RXCTLP 2 HT_RXCTLN 2 HT_RXCADP 16 HT_RXCADN 16 Figure 2-3 RX881 Host Bus Interface Signals 2.2 Clock Generation The RX881 provides support for an external clock chip to generate PCIe and A-Link Express II clocks. © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 2-3 Clock Generation This page is left blank intentionally. 46136 AMD RX881 Databook 1.40 2-4 © 2011 Advanced Micro Devices, Inc. Proprietary Chapter 3 Pin Descriptions and Strap Options This chapter gives the pin descriptions and the strap options for the RX881. To jump to a topic of interest, use the following list of hyperlinked cross references: “RX881 Pin Assignment Top View” on page 3-2 “Interface Block Diagram” on page 3-4 “CPU HyperTransport™ Interface” on page 3-5 “PCI Express® Interfaces” on page 3-5: “1 x 16 Lane Interface for External Graphics” on page 3-5 “A-Link Express II Interface for Southbridge” on page 3-5 “6 x 1 Lane Interface for General Purpose External Devices” on page 3-6 “Miscellaneous PCI Express® Signals” on page 3-6 “Clock Interface” on page 3-6 “Power Management Pins” on page 3-7 “Miscellaneous Pins” on page 3-7 “Power Pins” on page 3-8 “Ground Pins” on page 3-9 “Strapping Options” on page 3-9 © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 3-1 RX881 Pin Assignment Top View 3.1 RX881 Pin Assignment Top View The figures below only represent the relative ball positions. For the actual physical layout of the balls, please refer to Figure 5-2, “RX881 Ball Arrangement (Bottom View),” on page 5- 6. 1 A 2 3 4 5 6 7 8 9 10 11 12 13 VSSAPCIE GFX_RX1P GFX_TX1P GFX_TX0P VDDPCIE NC NC NC POWERGOOD DAC_HSYNC PLLVDD VDDLTP18 GFX_TX0N VDDPCIE NC NC NC STRP_DATA DAC_VSYNC PLLVSS VSSLTP18 B VSSAPCIE GFX_TX2N GFX_RX1N GFX_TX1N C GFX_RX2N GFX_RX2P GFX_TX2P GFX_RX0N D GFX_TX3P GFX_TX3N VSSAPCIE GFX_RX0P VSSAPCIE VDDPCIE VDDA18PCIEP LL SYSRESET# NC E GFX_TX4N GFX_TX4P VSSAPCIE GFX_RX3P VDDPCIE VDDA18PCIEP LL NC GPIO3 F GFX_TX6P GFX_TX6N GFX_TX5P GFX_RX3N VDDPCIE GPIO2 NC VDD18 REFCLK_N AVDD G VSSAPCIE VSSAPCIE VSSAPCIE GFX_RX4P GFX_RX4N VDDPCIE VSS VDD18 RESERVED GPIO4 H GFX_TX8P GFX_TX8N GFX_TX7P GFX_RX5P GFX_RX5N VSSAPCIE VDDPCIE VDDA18PCIE VDD33 VDD33 J GFX_TX9N GFX_TX9P VSSAPCIE GFX_RX6N GFX_RX6P GFX_RX7P GFX_RX7N VDDPCIE VDDA18PCIE VDDC VSS K GFX_TX11P GFX_TX11N VDDPCIE VDDA18PCIE VSS VDDC L VSSAPCIE VSSAPCIE M GFX_TX13P GFX_TX13N N GFX_TX14N GFX_TX14P P GFX_TX15P GFX_TX15N R VSSAPCIE VSSAPCIE T GFX_REFCLK N GFX_REFCLK P U GPP_REFCLK P GPP_REFCLK N GFX_TX5N GFX_TX7N VDDPCIE NC ALLOW_LDTSTO P LDTSTOP# NC VSS SUS_STAT# REFCLK_P AVDD GFX_TX10N GFX_TX10P VSSAPCIE GFX_RX8P GFX_RX8N VSSAPCIE GFX_RX9N VDDPCIE VDDA18PCIE VDDC VSS GFX_TX12N GFX_TX12P GFX_RX11N VSSAPCIE GFX_RX10N GFX_RX9P VDDPCIE VDDA18PCIE VSS VDDC VSSAPCIE VSS VDDC VSS VDDC VDDC GFX_RX14P GFX_RX11P VSSAPCIE GFX_RX10P GFX_RX12N VDDPCIE VDDA18PCIE VSSAPCIE GFX_RX13N GFX_RX13P VSSAPCIE GFX_RX12P VDDPCIE VDDA18PCIE VSS GFX_RX15N GFX_RX15P VDDPCIE VDDA18PCIE VDDC VSS VDDPCIE VDDA18PCIE VSS VDDC VSS GPP_RX4P GPPSB_REFC LKP VSSAPCIE GPP_TX4N GPP_TX4P GPPSB_REFC LKN VDDC VDDC GFX_RX14N VSSAPCIE TESTMODE GPP_RX4N GPP_RX5N GPP_RX5P GPP_RX3P VSSAPCIE VSSAPCIE VSSAPCIE VDDPCIE NC SB_RX3P GPP_RX3N VSSAPCIE VSSAPCIE VDDA18PCIE VSS NC SB_RX3N VSSAPCIE SB_RX1N SB_RX0N VDDA18PCIE VDD_MEM NC VDD_MEM NC V GPP_TX5P GPP_TX5N W VSSAPCIE VSSAPCIE Y GPP_TX3P GPP_TX3N AA GPP_TX2N GPP_TX2P VSSAPCIE SB_RX2P SB_RX2N SB_RX1P SB_RX0P VDDA18PCIE AB VSSAPCIE VSSAPCIE GPP_TX1N GPP_TX1P VSSAPCIE SB_TX2P VSSAPCIE PCE_CALRN VDDA18PCIE AC GPP_TX0P GPP_TX0N VSSAPCIE VSSAPCIE AD GPP_RX2P GPP_RX2N GPP_RX1N GPP_RX0N SB_TX3P SB_TX1N SB_TX0P THERMALDIO DE_N VDDA18PCIE VDD_MEM VDD18_MEM NC NC AE VSSAPCIE GPP_RX1P GPP_RX0P VSSAPCIE SB_TX3N SB_TX1P SB_TX0N THERMALDIO DE_P VDDA18PCIE VDD_MEM VDD18_MEM NC NC 1 2 3 4 5 6 7 8 9 10 11 12 13 SB_TX2N PCE_CALRP VDD_MEM VSS VDD_MEM NC NC VSS CPU Interface A-Link Express II Interface Clock Interface External graphics Interface General Purpose External Device Interface Power Management Interface Powers Grounds Others Figure 3-1 RX881 Pin Assignment Top View (Left) 46136 AMD RX881 Databook 1.40 3-2 © 2011 Advanced Micro Devices, Inc. Proprietary RX881 Pin Assignment Top View 14 15 16 17 18 19 20 21 22 23 24 25 VDDLT33 VDDLT18 NC NC NC NC NC NC NC VDDHTRX HT_RXCALN VSSAHT A VDDLT33 VDDLT18 NC NC NC NC NC NC NC VDDHTRX HT_TXCALP HT_TXCALN B VSSLT VSSLT VSSLT HT_RXCALP HT_REFCLKN HT_REFCLKP C NC NC NC NC NC VDDHTRX VSSAHT HT_TXCAD0P HT_TXCAD0N D VSS NC NC NC VSSLT VDDHTRX VSSAHT HT_TXCAD1P HT_TXCAD1N E AVDDDI NC NC VSS VSS VDDHTRX HT_TXCAD8P HT_TXCAD3N HT_TXCAD2P HT_TXCAD2N F NC AVSSDI VSS NC VDDHTRX HT_TXCAD9P HT_TXCAD8N VSSAHT VSSAHT VSSAHT G AVSSQ AVDDQ VDDA18HTPLL VDDHTRX VSSAHT VSSAHT HT_TXCAD9N HT_TXCAD4N H VDDC VSS VDDC VDDHT HT_TXCAD11P HT_TXCAD12N HT_TXCAD10P HT_TXCAD10N VSSAHT VSS VDDC VDDHT HT_TXCAD11N VDDC VSS VDDHT VSSAHT HT_TXCAD13N HT_TXCAD12P HT_TXCLK1N HT_TXCLK1P VSSAHT VSS VDDC VDDHT VDDHTTX HT_TXCAD15N HT_TXCAD13P VSSAHT HT_TXCAD14P HT_RXCTL0P VDDC VSS VDDHT VDDHTTX HT_TXCAD15P HT_TXCTL1P VSSAHT HT_TXCAD14N HT_RXCAD5P VSS VDDC VDDHT VDDHTTX HT_TXCTL1N VSSAHT HT_RXCTL1N HT_RXCTL1P VSSAHT VDDC VDDC VDDHT VDDHTTX VSS VSS VDDC VDDHTTX HT_RXCAD15 HT_RXCAD15 HT_RXCAD14 HT_RXCAD14 VSSAHT PLLVDD18 VSSLT VSS NC VSSLT VSSLT HT_TXCAD7N VDDC HT_TXCAD3P HT_TXCAD4P HT_TXCLK0P HT_TXCLK0N HT_TXCAD5N HT_TXCAD5P J HT_TXCAD7P HT_TXCAD6P HT_TXCAD6N K VSSAHT VSSAHT L HT_RXCTL0N HT_TXCTL0P HT_TXCTL0N M HT_RXCAD7P HT_RXCAD7N N HT_RXCAD5N HT_RXCAD6N HT_RXCAD6P P VSSAHT VSSAHT R VSSAHT HT_RXCLK0P NC NC NC VDDHTTX VSSAHT HT_RXCAD13 HT_RXCAD13 HT_RXCAD1P NC VSS NC NC VDDHTTX HT_RXCAD12 HT_RXCAD12 VSSAHT HT_RXCLK0N HT_RXCAD1N HT_RXCAD11 HT_RXCAD4N HT_RXCAD4P T HT_RXCAD3P HT_RXCAD3N U HT_RXCAD2N HT_RXCAD2P V VSSAHT VSSAHT W HT_RXCAD0N HT_RXCAD0P Y HT_RXCAD10 HT_RXCAD10 AA NC NC NC VSS NC VDDHTTX VSSAHT HT_RXCAD11P VSS NC NC NC NC NC VDDHTTX HT_RXCLK1N NC VSS NC VSS NC VSS VDDHTTX HT_RXCLK1P HT_RXCAD9N HT_RXCAD9P AB NC VDDHTTX HT_RXCAD8P HT_RXCAD8N AC NC NC VSS NC NC NC NC NC NC NC NC NC NC NC NC IOPLLVSS VDDHTTX VSSAHT AD VSS NC NC NC MEM_VREF NC VSS NC NC IOPLLVDD18 IOPLLVDD VDDHTTX AE 14 15 16 17 18 19 20 21 22 23 24 25 CPU Interface A-Link Express II Interface Clock Interface External graphics Interface General Purpose External Device Interface Power Management Interface Powers Grounds Others Figure 3-2 RX881 Pin Assignment Top View (Right) © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 3-3 Interface Block Diagram 3.2 Interface Block Diagram Figure 3-3 shows the different interfaces on the RX881. Interface names in blue are hyperlinks to the corresponding sections in this chapter. HT_RXCAD[15:0]P, HT_RXCAD[15:0]N HT_RXCLK[1:0]P, HT_RXCLK[1:0]N HT_RXCTL[1:0]P, HT_RXCTL[1:0]N HT_TXCAD[15:0]P, HT_TXCAD[15:0]N HT_TXCLK[1:0]P, HT_TXCLK[1:0]N HT_TXCTL[1:0]P, HT_TXCTL[1:0]N HT_RXCALP, HT_RXCALN HT_TXCALP, HT_TXCALN SB_TX[3:0]P, SB_TX[3:0]N SB_RX[3:0]P, SB_RX[3:0]N SYSRESET# POWERGOOD LDTSTOP# HyperTransport™ Interface A-Link Express II Interface Power Management Interface ALLOW_LDTSTOP PCIe® External Graphics or TMDS Interface GFX_TX[15:0]P, GFX_TX[15:0]N GFX_RX[15:0]P, GFX_RX[15:0]N PCIe Interface for General Purpose External Devices GPP_TX[5:0]P, GPP_TX[5:0]N GPP_RX[5:0]P, GPP_RX[5:0]N Misc. PCIe Signals PCE_CALRP PCE_CALRN DAC_HSYNC DAC_VSYNC GPIO[4:2] STRP_DATA TESTMODE THERMALDIDOE_N, THERMALDIODE_P SUS_STAT# REFCLK_N, REFCLK_P GFX_REFCLKP, GFX_REFCLKN GPPSB_REFCLKP, GPPSB_REFCLKN GPP_REFCLKP, GPP_REFCLKN Clock Interface Misc. Signals HT_REFCLKP, HT_REFCLKN AVDD AVDDDI AVDDQ VDD_MEM VDD18_MEM VDDLT33 MEM_VREF AVSSQ AVSSDI VSSLT VSSLTP18 IOPLLVSS PLLVSS VSSAPCIE VSSAHT VSS VDDLTP18 VDDLT18 Power IOPLLVDD IOPLLVDD18 PLLVDD PLLVDD18 VDDA18HTPLL VDDHTTX VDD18 VDD33 VDDHTRX VDDHT VDDA18PCIEPLL VDDA18PCIE VDDC Grounds Figure 3-3 RX881 Interface Block Diagram 46136 AMD RX881 Databook 1.40 3-4 © 2011 Advanced Micro Devices, Inc. Proprietary CPU HyperTransport™ Interface 3.3 CPU HyperTransport™ Interface Table 3-1 CPU HyperTransport™ Interface Pin Name 3.4 3.4.1 Type Power Domain Ground Domain Functional Description HT_RXCAD[15:0]P, HT_RXCAD[15:0]N I VDDHTRX VSS Receiver Command, Address, and Data Differential Pairs HT_RXCLK[1:0]P, HT_RXCLK[1:0]N I VDDHTRX VSS Receiver Clock Signal Differential Pairs. Forwarded clock signal. Each byte of RXCAD uses a different clock signal. Data is transferred on each clock edge. HT_RXCTL[1:0]P, HT_RXCTL[1:0]N I VDDHTRX VSS Receiver Control Differential Pairs. For distinguishing control packets from data packets. HT_TXCAD[15:0]P, HT_TXCAD[15:0]N O VDDHTTX VSS Transmitter Command, Address, and Data Differential Pairs HT_TXCLK[1:0]P, HT_TXCLK[1:0]N O VDDHTTX VSS Transmitter Clock Signal Differential Pairs. Each byte of TXCAD uses a different clock signal. Data is transferred on each clock edge. HT_TXCTL[1:0]P, HT_TXCTL[1:0]N O VDDHTTX VSS Transmitter Control Differential Pairs. Forwarded clock signal. For distinguishing control packets from data packets. HT_RXCALN Other VDDHTRX VSS Receiver Calibration Resistor to VDD_HT power rail. HT_RXCALP Other VDDHTRX VSS Receiver Calibration Resistor to Ground HT_TXCALP Other VDDHTTX VSS Transmitter Calibration Resistor to HTTX_CALN HT_TXCALN Other VDDHTTX VSS Transmitter Calibration Resistor to HTTX_CALP PCI Express® Interfaces 1 x 16 Lane Interface for External Graphics Table 3-2 1 x 16 Lane PCI Express® Interface for External Graphics Type Power Domain Ground Domain GFX_TX[15:0]P, GFX_TX[15:0]N O VDDPCIE VSSAPCIE 50 between complements Transmit Data Differential Pairs. Connect to external connector for an external graphics card on the motherboard (if implemented). GFX_RX[15:0]P, GFX_RX[15:0]N I VDDPCIE VSSAPCIE 50 between complements Receive Data Differential Pairs. Connect to external connector for an external graphics card on the motherboard (if implemented). Pin Name 3.4.2 Integrated Termination Functional Description A-Link Express II Interface for Southbridge Note: The widths of the A-Link Express II interface and the general purpose links for external devices are configured through the programmable strap GPPSB_LINK_CONFIG, which is programmed through RX881’s registers. See the RS880 ASIC Family Register Reference Guide, order# 46142, and the RS880 ASIC Family Register Programming Requirements, order# 46141, for details. Table 3-3 1 x 4 Lane A-Link Express II Interface for Southbridge Pin Name Type Power Domain Ground Domain SB_TX[3:0]P, SB_TX[3:0]N O VDDPCIE VSSAPCIE 50 between Transmit Data Differential Pairs. Connect to the corresponding complements Receive Data Differential pairs on the Southbridge. SB_RX[3:0]P, SB_RX[3:0]N I VDDPCIE VSSAPCIE 50 between Receive Data Differential Pairs. Connect to the corresponding complements Transmit Data Differential pairs on the Southbridge. © 2011 Advanced Micro Devices, Inc. Proprietary Integrated Termination Functional Description 46136 AMD RX881 Databook 1.40 3-5 Clock Interface 3.4.3 6 x 1 Lane Interface for General Purpose External Devices Note: The widths of the A-Link Express II interface and the general purpose links for external devices are configured through the programmable strap GPPSB_LINK_CONFIG, which is programmed through RX881’s registers. See the RS880 ASIC Family Register Reference Guide, order# 46412, and the RS880 ASIC Family Register Programming Requirements, order# 46141, for details. Table 3-4 6 x 1 Lane PCI Express® Interface for General Purpose External Devices Type Power Domain Ground Domain GPP_TX[5:0]P, GPP_TX[5:0]N O VDDPCIE VSSAPCIE 50 between Transmit Data Differential Pairs. Connect to external connectors on complements the motherboard for add-in card or ExpressCard support. GPP_RX[5:0]P, GPP_RX[5:0]N I VDDPCIE VSSAPCIE 50 between Receive Data Differential Pairs. Connect to external connectors on complements the motherboard for add-in card or ExpressCard support. Pin Name 3.4.4 Integrated Termination Functional Description Miscellaneous PCI Express® Signals Table 3-5 PCI Express® Interface for Miscellaneous PCI Express® Signals 3.5 Pin Name Type Power Domain Ground Domain PCE_CALRN Other VDDPCIE VSSAPCIE RX Impedance Calibration. Connect to VDDPCIE on the motherboard with an external resistor of an appropriate value. PCE_CALRP Other VDDPCIE VSSAPCIE TX Impedance Calibration. Connect to GND on the motherboard with an external resistor of an appropriate value. Power Domain Ground Integrated Domain Termination Functional Description Functional Description Clock Interface Table 3-6 Clock Interface Pin Name HT_REFCLKP, HT_REFCLKN GFX_REFCLKP, GFX_REFCLKN GPPSB_REFCLKP, GPPSB_REFCLKN Type I I/O I GPP_REFCLKP, GPP_REFCLKN O REFCLK_P, REFCLK_N I VDDA18H TPLL VSSAHT VDDPCIE VSSAPCIE VDDPCIE VSSAPCIE VDDPCIE VSSAPCIE VDD33 VSS – HyperTransport™ 100MHz reference clock differential pair External clock mode: Input from external clock source, as a reference clock for the HyperTransport interface. Internal clock mode*: Input from the SB8xx Southbridge, as a reference clock for the HyperTransport interface. 50 between complements Clock Differential Pair for external graphics. External clock mode: Input from the external clock generator, as a reference clock for external graphics. Internal clock mode*: Not used. Pull down following instructions in the RS880-Series IGP Motherboard Schematic Review Checklist. 50 between complements Clock Differential Pair for Southbridge and general purpose PCIe® devices. External clock mode: Input from the external clock generator, as a reference clock for A-Link Express II and general purpose PCIe. Internal clock mode*: Input from the SB8xx Southbridge, as a reference clock for A-Link II and general purpose PCIe. 50 between complements Clock Differential Pair for general purpose PCIe devices. External clock mode: Not used. Can be left unconnected, or connected to the external clock generator for maintaining system compatibility with the RX881. Internal clock mode*: Output to a GPP device slot as a GPP clock. – Do not connect. *Note: Internal clock mode is only available when using an SB8xx Southbridge. Use of the internal clock generator function is subject to characterization with actual RX881 and SB8xx devices 46136 AMD RX881 Databook 1.40 3-6 © 2011 Advanced Micro Devices, Inc. Proprietary Power Management Pins 3.6 Power Management Pins Table 3-7 Power Management Pins Pin Name Type Power Domain Ground Domain LDTSTOP# I VDD33 VSS Functional Description HyperTransport™ Stop. Used for systems requiring power management. It is a single-ended signal for input from the Southbridge to enable and disable the HyperTransport link during system state transitions. Note: For platforms supporting DDR2 system memory, 1.8V signalling can be used on the signal. For platforms supporting DDR3 system memory, follow recommendations in the RS880-Series IGP Motherboard Schematic Review Checklist. ALLOW_LDTSTOP OD VDD33 VSS Allow LDTSTOP. The signal is used for controlling LDTSTOP assertions. It is an output to the SB. 1 = LDTSTOP# can be asserted 0 = LDTSTOP# has to be de-asserted Note: For platforms supporting DDR2 system memory, 1.8V signalling can be used on the signal. For platforms supporting DDR3 system memory, follow recommendations in the RS880-Series IGP Motherboard Schematic Review Checklist. 3.7 SYSRESET# I VDD33 VSS Global Hardware Reset. This signal comes from the Southbridge. POWERGOOD I VDD18 VSS Input from the motherboard signifying that the power to the RX881 is up and ready. Signal High means all power planes are valid. It is not observed internally until it has been high for more than six consecutive REFCLK cycles. The rising edge of this signal is deglitched. Miscellaneous Pins Table 3-8 Miscellaneous Pins Power Ground Integrated Domain Domain Termination Functional Description Pin Name Type DAC_HSYNC Other VDD33 VSS This is a strap pin for a reserved strap function. See Table 50k programmable: “Strap Definitions for the RX881,” for details. PU/PD/none DAC_VSYNC Other VDD33 VSS This is a strap pin for the STRAP_DEBUG_BUS_GPIO _ENABLE# 50k programmable: strap function. See Table 3-11, “Strap Definitions for the PU/PD/none RX881,” for details. I/O VDDR3 VSS General Purpose I/O. These pins can also be used as outputs to 50k programmable: the voltage regulator for pulse-width modulation of various voltages PU/PD/none on the motherboard. Other – VSS None – – – – STRP_DATA I/O VDD33 VSS I2C interface data signal for external EEPROM based strap loading. 50k programmable: Can also be used as GPIO, or as output to the voltage regulator for PU/PD/none pulse-width modulation of RX881’s core voltage. SUS_STAT# Other VDD33 VSS This is a strap pin for the LOAD_EEPROM_STRAPS# strap 50k programmable: function. See Table 3-11, “Strap Definitions for the PU/PD/none RX881,” for details. TESTMODE I VDD33 VSS GPIO[4:2] MEM_VREF NC © 2011 Advanced Micro Devices, Inc. Proprietary – 3-11, Connect the pin to ground No connect. These pins should be left unconnected to anything. When High, puts the RX881 in test mode and disables the RX881 from operating normally. 46136 AMD RX881 Databook 1.40 3-7 Power Pins Table 3-8 Miscellaneous Pins (Continued) Pin Name THERMALDIODE_P, THERMALDIODE_N VDDLT33 3.8 Type Power Ground Integrated Domain Domain Termination Functional Description A-O – – – Diode connections to external SMBus microcontroller for monitoring IC thermal characteristics. Other – – – These balls are only for maintaining pin-compatibility with earlier generations of AMD IGPs or chipsets. They can either be connected to a 3.3V rail or left unconnected on RX881 systems. Power Pins Table 3-9 Power Pins Pin Name Voltage Pin Count Ball Reference Pin Description AVDD 3.3V 2 E12, F12 Connect these pins to ground. AVDDDI 1.8V 1 F14 Connect the pin to ground. AVDDQ 1.8V 1 H15 Connect the pin to ground. IOPLLVDD 1.1V 1 AE24 Connect the pin to a 1.1V power rail. IOPLLVDD18 1.8V 1 AE23 Connect the pin to the VDD18 power rail. PLLVDD 1.V 1 A12 Connect the pin to ground. PLLVDD18 1.8V 1 D14 Connect the pin to ground. VDD_MEM 1.5/1.8V 6 AA11, AB10, AC10, AD10, AE10, Y11 Connect these pins to ground. VDD18_MEM 1.8V 2 AD11, AE11 Connect these pins ground. VDDA18HTPLL 1.8V 1 H17 I/O power for HyperTransport PLL VDDA18PCIE 1.8V 15 AA9, AB9, AD9, AE9, H9, J10, K10, L10, M10, P10, R10, T10, U10, W9, Y9 1.8V I/O power for PCIe graphics, SB, and GPP interfaces VDDA18PCIEPLL 1.8V 2 D7, E7 1.8V I/O power for PCIe PLLs VDDC 1.1V 22 J11, J14, J16, K12, K15, L11, L14, M12, M13, M15, N12, N14, P11, P13, P14, R12, R15, T11, T14, T15, U12, U16 Core power VDD18 1.8V 2 F9, G9 1.8V I/O transform power VDD33 3.3V 2 H11, H12 3.3V I/O power VDDHT 1.1V 7 J17, K16, L16, M16, P16, R16, T16 Digital I/O power for HyperTransport interface VDDHTRX 1.1V 7 A23 ,B23, D22, E21, F20, G19, H18 I/O power for HyperTransport receive interface VDDHTTX 1.2V 13 AA21, AB22, AC23, AD24, I/O power for HyperTransport transmit interface AE25, M17, P17, R17, T17, U17, V18, W19, Y20 VDDLT18 1.8V 2 A15, B15 Connect these pins to ground Connect the pin to ground VDDLTP18 1.8V 1 A13 VDDPCIE 1.1V 17 A6, B6, C6, D6, E6, F6, G7, Main I/O power for PCIe graphics, SB, and GPP interfaces H8, J9, K9, L9, M9, P9, R9, T9, U9, V9 Total Power Pin Count 46136 AMD RX881 Databook 1.40 3-8 107 © 2011 Advanced Micro Devices, Inc. Proprietary Ground Pins 3.9 Ground Pins Table 3-10 Ground Pins Pin Name AVSSDI 1 Ball Reference Comments G15 Connect the pin to common ground. AVSSQ 1 H14 Connect the pin to common ground. IOPLLVSS 1 AD23 Connect the pin to common ground. PLLVSS 1 B12 Connect the pin to common ground. VSS 37 Common Ground AA14, AB11, AB15, AB17, AB19, AB21, AC12, AE14, AE20, D11, E14, E15, F18, F19, G17, G8, J12, J15, K11, K14, L12, L15, M11, M14, N13, P12, P15, R11, R14, T12, U11, U14, U15, V12, W11, W15, Y18 VSSAHT 27 A25, AD25, D23, E22, G22, Ground pin for HyperTransport interface PLL G24, G25, H19, H20, J22, L17, L22, L24, L25, M20, N22, P20, R19, R22, R24, R25, U22, V19, W22, W24, W25, Y21 VSSAPCIE 40 A2, AA4, AB1, AB2, AB5, AB7, Ground for PCI Express Interface AC3, AC4, AE1, AE4, B1, D3, D5, E4, G1, G2, G4, H7, J4, L1, L2, L4, L7, M6, N4, P6, R1, R2, R4, R7, U4, V6, V7, V8, W1, W2, W4, W7, W8, Y6 VSSLT 7 C14, C16, C18, C20, C22, D15, E20 Connect these pins to common ground VSSLTP18 1 B13 Connect the pin to common ground Total Ground Pin Count 3.10 Pin Count 116 Strapping Options The RX881 provides strapping options to define specific operating parameters. The strap values are latched into internal registers after the assertion of the POWERGOOD signal to the RX881. Table 3-11, “Strap Definitions for the RX881,” shows the definitions of all the strap functions. These straps are set by one of the following four methods: • • • • Attaching pull-up resistors to specific strap pins listed in Table 3-11 to set their values to “1”. Attaching pull-down resistors to specific strap pins listed in Table 3-11 to set their values to “0”. Downloading the strap values from an I2C serial EEPROM (for debug purpose only; contact your AMD CSS representative for details). Setting through an external debug port, if implemented (contact your AMD CSS representative for details). All of the straps listed in Table 3-11 are defined active low. To select “1”, the strap pins must be pulled up to VDD33 through resistors. To select “0”, the strap pins must be pulled down to VSS through resistors. During reset, the strap pins are undriven, allowing the external pull-up or pull-down to pull a pin to “0” or “1.” The values on the strap pins are then latched into the device and used as operational parameters. However, for debug purposes, those latched values may be overridden through an external debug strap port or by a bit-stream downloaded from a serial EEPROM. © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 3-9 Strapping Options Table 3-11 Strap Definitions for the RX881 Strap Function Strap Pin STRAP_DEBUG_BUS_GPIO DAC_VSYNC _ENABLE# RESERVED DAC_HSYNC LOAD_EEPROM_STRAPS# SUS_STAT# Description Enables debug bus access through memory I/O pads and GPIOs. 0: Enable 1: Disable (See debug bus specification documents for more details.) 0: Reserved 1: Required setting. Select with a pull-up resistor on the strap. Selects loading of strap values from EEPROM. 0: I2C master can load strap values from EEPROM if connected, or use default values if EEPROM is not connected. Please refer to RX881's reference schematics for system level implementation details. 1: Use default values Note: On the RX881, the widths of the A-Link Express II interface and the general purpose PCIe links are configured through the programmable strap GPPSB_LINK_CONFIG, which is programmed through RX881’s registers. See the RS880 ASIC Family Register Reference Guide, order# 46142, and the RS880 ASIC Family Register Programming Requirements, order# 46141, for details. 46136 AMD RX881 Databook 1.40 3-10 © 2011 Advanced Micro Devices, Inc. Proprietary Chapter 4 Timing Specifications 4.1 HyperTransport™ Bus Timing For HyperTransport™ bus timing information, please refer to CPU specifications. 4.2 HyperTransport™ Reference Clock Timing Parameters Table 4-1 Timing Requirements for HyperTransport™ Reference Clock (100MHz) Output by the Clock Generator Symbol Parameter Minimum Maximum Unit Note VCROSS Change in Crossing point voltage over all edges - 140 mV 1 F Frequency 99.9 100 MHz 2 ppm Long Term Accuracy -300 +300 Ppm 3 SFALL Output falling edge slew rate -10 -0.5 V/ns 4, 5 SRISE Output rising edge slew rate 0.5 10 V/ns 4, 5 Tjc max Jitter, cycle to cycle - 150 ps 6 Tj-accumulated Accumulated jitter over a 10 s period -1 1 ns 7 VD(PK-PK) Peak to Peak Differential Voltage 400 2400 mV 8 VD Differential Voltage 200 1200 mV 9 VD Change in VDDC cycle to cycle -75 75 mV 10 DC Duty Cycle 45 55 % 11 Notes: More details are available in AMD HyperTransport 3.0 Reference Clock Specification and AMD Family 10h Processor Reference Clock Parameters, order # 34864. 1 Single-ended measurement at crossing point. Value is maximum-minimum over all time. DC value of common mode is not important due to blocking cap. 2 Minimum frequency is a consequence of 0.5% down spread spectrum. 3 Measured with spread spectrum turned off. 4 Only simulated at the receive die pad. This parameter is intended to give guidance for simulation. It cannot be tested on a tester but is guaranteed by design. 5 Differential measurement through the range of ±100mV, differential signal must remain monotonic and within slew rate specification when crossing through this region. 6 Tjc max is the maximum difference of tCYCLE between any two adjacent cycles. 7 Accumulated Tjc over a 10s time period, measured with JIT2 TIE at 50ps interval. 8 VD(PK-PK) is the overall magnitude of the differential signal. 9 VD(min) is the amplitude of the ring-back differential measurement, guaranteed by design that the ring-back will not cross 0V VD. VD(max) is the largest amplitude allowed. 10 The difference in magnitude of two adjacent VDDC measurements. VDDC is the stable post overshoot and ring-back part of the signal. 11 Defined as tHIGH/tCYCLE. © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 4-1 PCI Express® Differential Clock AC Specifications 4.3 PCI Express® Differential Clock AC Specifications Table 4-2 PCI Express® Differential Clock (GFX_REFCLK, GPPSB_REFCLK, 100MHz) AC Characteristics Symbol Description Rising Edge Rate 4.4 Rising Edge Rate Minimum Maximum Unit 0.6 4.0 V/ns Falling Edge Rate Falling Edge Rate 0.6 4.0 V/ns TPERIOD AVG Average Clock Period Aquaria -300 +2800 ppm TPERIOD ABS Absolute Period (including jitter and spread spectrum modulation) 9.847 10.203 ns TCCJITTER Cycle to Cycle Jitter Duty Cycle Duty Cycle Rise-Fall Matching Rising edge rate (REFCLK+) to falling edge rate (REFCLK-) matching - 150 Ps 40 60 % - 20 % Power Rail Power-up Sequence 3.3V Rail (AVDD, VDD33) T11 1.8V PLL and IO Transform Rail (PLLVDD18, IOPLLVDD18, VDDA18HTPLL, VDDA18PCIEPLL, AVDDDI, AVDDQ, VDD18) T12 1.1V Rail (PLLVDD, IOPLLVDD) T13 1.1V VDDC Note: There are no specific requirements for the following 1.1V or 1.2V rails: VDDHT, VDDHTRX, VDDHTTX, VDDPCIE Figure 4-1 RX881 Power Rail Power-up Sequence Table 4-3 RX881 Power Rail Power-up Sequence Symbol Parameter Voltage Difference During Ramping Minimum (V) Maximum (V) T11 3.3-V rail ramps high relative to 1.8-V PLL and IO transform rails 0 2.1 T12 1.8-V PLL and IO transform rails ramp high relative to 1.1-V rail (PLLVDD, IOPLLVDD) 0 No restrictions T13 1.1-V rail (PLLVDD, IOPLLVDD) ramps high relative to VDDC (1.1V) 0 No restrictions 46136 AMD RX881 Databook 1.40 4-2 © 2011 Advanced Micro Devices, Inc. Proprietary Chapter 5 Electrical Characteristics and Physical Data 5.1 Electrical Characteristics 5.1.1 Maximum and Minimum Ratings Table 5-1 Maximum and Minimum Ratings Pin Minimum Typical Maximum Unit VDDA18HTPLL 1.71 1.8 1.89 V I/O power for HyperTransport™ PLL VDDA18PCIE 1.71 1.8 1.89 V 1.8V I/O power for PCIe® graphics, SB, and GPP interfaces VDDA18PCIEPLL 1.71 1.8 1.89 V 1.8V I/O power for PCIe PLLs VDDC 1.045 1.1 1.155 V Core power VDD18 1.71 1.8 1.89 V 1.8V I/O transform power VDD33 3.135 3.3 3.465 V 3.3V I/O power VDDHT 1.045 1.1 1.155 V I/O power for HyperTransport interface VDDHTRX 1.045 1.1 1.155 V I/O power for HyperTransport receive interface VDDHTTX 1.14 1.2 1.26 V I/O power for HyperTransport transmit interface VDDPCIE 1.045 1.1 1.155 V Comments Main I/O power for PCIe graphics, SB, and GPP interfaces Note: Numbers in this table are to be qualified. 5.1.2 DC Characteristics Table 5-2 DC Characteristics for 3.3V TTL Signals Pins All pins belonging to the VDD33 domain (refer to pin description tables in this chapter). Symbol Description VILdc DC voltage at the pad that will produce a stable low input to the chip VIHdc DC voltage at pad that will produce a stable high input to the chip VILac Minimum Maximum Unit – 0.7 V 1.4 – V AC input low voltage – 0.15 V VIHac AC input high voltage 2.5 – V VOLdc Output low voltage** – 0.53 V VOHdc Output high voltage** 2.46 – V IOLdc Output low current at V=0.1V** 2.8 – mA IOHdc Output high current at V=VDD33-0.1V** 2.6 – mA Note: * Measured with edge rate of 1s at PAD pin. ** For detailed current/voltage characteristics, please refer to the IBIS model. © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 5-1 Electrical Characteristics Table 5-3 DC Characteristics for POWERGOOD Symbol Minimum Typical Maximum VIL Input Low Voltage Description 0 0V 300mV VIH Input High Voltage 1.62V 1.8V 1.98V Table 5-4 DC Characteristics for HyperTransport™ and PCI-E Differential Clock (HT_REFCLK, GFX_REFCLK, GPPSB_REFCLK, 100MHz) Symbol Description Minimum Maximum Unit VIL Differential Input Low Voltage - -150 mV VIH Differential Input High Voltage +150 - mV VCROSS Absolute Crossing Point Voltage +250 +550 mV VCROSS DELTA Variation of VCROSS over all rising clock edges - +140 mV VRB Ring-back Voltage Margin -100 +100 mV VIMAX Absolute Max Input Voltage - +1.15 V VIMIN Absolute Min Input Voltage - -0.15 V 46136 AMD RX881 Databook 1.40 5-2 © 2011 Advanced Micro Devices, Inc. Proprietary RX881 Thermal Characteristics 5.2 RX881 Thermal Characteristics This section describes some key thermal parameters of the RX881. For a detailed discussion on these parameters and other thermal design descriptions including package level thermal data and analysis, please consult the Thermal Design and Analysis Guidelines for the RS880 Product Family, order# 46139. 5.2.1 RX881 Thermal Limits Table 5-5 RX881 Thermal Limits Parameter Minimum Nominal Maximum Unit Note 1 2 Operating Case Temperature 0 — 95 °C Absolute Rated Junction Temperature — — 115 °C Storage Temperature -40 — 60 ° 3 4 C Ambient Temperature 0 — 45 °C Thermal Design Power — 11.4 — W Notes: 1 - The maximum operating case temperature is the die geometric top-center temperature measured via a thermocouple based on the methodology given in the document Thermal Design and Analysis Guidelines for the RS880 Product Family, order# 46139 (Chapter 12). This is the temperature at which the functionality of the chip is qualified. 2 - The maximum absolute rated junction temperature is the junction temperature at which the device can operate without causing damage to the ASIC. This temperature can be measured via the integrated thermal diode described in the next section. 3 - The ambient temperature is defined as the temperature of the local intake air to the thermal management device. The maximum ambient temperature is dependent on the heat sink's local ambient conditions as well as the chassis' external ambient, and the value given here is based on AMD’s reference heat sink solution for the RX881. Refer to Chapter 6 in the Thermal Design and Analysis Guidelines for the RS880 Product Family, order# 46139 for heatsink and thermal design guidelines. Refer to Chapter 7 of the above mentioned document for details of ambient conditions. 4 - Thermal Design Power (TDP) is defined as the highest power dissipated while running currently available worst case applications at nominal voltages. Since the core power of modern ASICs using 65nm and smaller process technology can vary significantly, parts specifically screened for higher core power were used for TDP measurement. The TDP is intended only as a design reference. © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 5-3 RX881 Thermal Characteristics 5.2.2 Thermal Diode Characteristics The RX881 has an on-die thermal diode, with its positive and negative terminals connected to the THERMALDIODE_P and THERMALDIODE_N pins respectively. Combined with a thermal sensor circuit, the diode temperature, and hence the ASIC temperature, can be derived from a differential voltage reading (V). The equation relating T to V is given below: K T ln N V = -------------------------------------------q where: V = Difference of two base-to-emitter voltage readings, one using current = I and the other using current = N x I N = Ratio of the two thermal diode currents (=10 when using an ADI thermal sensor, e.g. ADM 1020, 1030) = Ideality factor of the diode K = Boltzman’s Constant T = Temperature in Kelvin q = Electron charge The series resistance of the thermal diode (RT) must be taken into account as it introduces an error in the reading (for every 1.0, approximately 0.8oC is added to the reading). The sensor circuit should be calibrated to offset the RT induced, plus any other known fixed error. Measured values of diode ideality factor and series resistance for the diode circuit are defined in the Thermal Design and Analysis Guidelines for the RS880 Product Family, order# 46139. 46136 AMD RX881 Databook 1.40 5-4 © 2011 Advanced Micro Devices, Inc. Proprietary Package Information 5.3 Package Information 5.3.1 Physical Dimensions Figure 5-1 and Table 5-6 describe the physical dimensions of the RX881 package. Figure 5-2 shows the detailed ball arrangement for the RX881. Mo d- 00 08 5- Rev -0 3 Figure 5-1 RX881 528-Pin FCBGA Package Outline Table 5-6 RX881 528-Pin FCBGA Package Physical Dimensions Ref. Min(mm) Typical (mm) Max. (mm) c 0.48 0.58 0.68 A 1.69 1.84 1.99 A1 0.30 0.40 0.50 A2 0.81 0.86 0.91 b 0.40 0.50 0.60 D1 20.85 21.00 21.15 D2 - 8.58 - D3 2.00 - - D4 1.00 - - E1 20.85 21.00 21.15 E2 - 7.70 - E3 2.00 - - E4 1.00 - - F1 - 19.20 - F2 - 19.20 - e1 - 0.80 (min. pitch) - ddd - - 0.20 Note: Maximum height of SMT components is 0.650 mm. © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 5-5 Package Information Figure 5-2 RX881 Ball Arrangement (Bottom View) 5.3.2 Pressure Specification To avoid damages to the ASIC (die or solder ball joint cracks) caused by improper mechanical assembly of the cooling device, follow the recommendations below: • It is recommended that the maximum load that is evenly applied across the contact area between the thermal management device and the die does not exceed 6 lbf. Note that a total load of 4-6 lbf is adequate to secure the thermal management device and achieve the lowest thermal contact resistance with a temperature drop across the thermal interface material of no more than 3°C. Also, the surface flatness of the metal spreader should be 0.001 inch/1 inch. • Pre-test the assembly fixture with a strain gauge to make sure that the flexing of the final assembled board and the pressure applying around the ASIC package will not exceed 600 micron strain under any circumstances. • Ensure that any distortion (bow or twist) of the board after SMT and cooling device assembly is within industry 46136 AMD RX881 Databook 1.40 5-6 © 2011 Advanced Micro Devices, Inc. Proprietary Package Information guidelines (IPC/EIA J-STD-001). For measurement method, refer to the industry approved technique described in the manual IPC-TM-650, section 2.4.22. 5.3.3 Board Solder Reflow Process Recommendations 5.3.3.1 Stencil Opening Size for Solder Paste Pads on PCB It is recommended that the stencil aperture for solder paste be kept at the same size as that of the land pads. However, for the nine (or eight) pads at each corner of the ASIC package, the size of the openings should not exceed 400µm (see Figure 5-3 below). This recommendation is based on AMD’s sample land pattern design for the RX881, which is available from your AMD CSS representative. 1:1 ratio to pad, or 400µm max for the eight corner balls’ openings 1:1 ratio to pad, or 400µm max for the nine corner balls’ openings 1:1 ratio to pad, with special requirement for corner balls 1:1 ratio to pad, or 400µm max for the nine corner balls’ openings 1:1 ratio to pad, or 400µm max for the nine corner balls’ openings Figure 5-3 Recommended Stencil Opening Sizes for Solder Paste Pads on PCB 5.3.3.2 Reflow Profile A reference reflow profile is given below. Please note the following when using RoHS/lead-free solder (SAC105/305/405 Tin-Silver-Cu): • The final reflow temperature profile will depend on the type of solder paste and chemistry of flux used in the SMT process. Modifications to the reference reflow profile may be required in order to accommodate the requirements of the other components in the application. • An oven with 10 heating zones or above is recommended. • To ensure that the reflow profile meets the target specification on both sides of the board, a different profile and oven recipe for the first and second reflow may be required. © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 5-7 Package Information • Mechanical stiffening can be used to minimize board warpage during reflow. • • It is suggested to decrease temperature cooling rate to minimize board warpage. This reflow profile applies only to RoHS/lead-free (high temperature) soldering process and it should not be used for Eutectic solder packages. Damage may result if this condition is violated. Maximum 3 reflows are allowed on the same part. • Table 5-7 Recommended Board Solder Reflow Profile - RoHS/Lead-Free Solder Profiling Stage Temperature Process Range Overall Preheat Room temp to 220C 2 mins to 4 mins Soaking Time 130C to 170C Typical 60 – 80 seconds Liquidus 220C Typical 60 – 80 seconds Ramp Rate Ramp up and Cooling <2C / second Peak Max. 245C 235C +/-5C Temperature at peak within 5C 240C to 245C 10 – 30 seconds Solder/Part Surface Temperature ( C) Peak 245 C max. 250 220 C Ramp Rate < 2 oC / sec 200 170 C 150 Ramp Rate < 2 C / sec 130 C Soaking Zone 100 60 – 120 sec max 60 – 80 sec typical Soldering Zone 45 – 90 sec max 60 – 80 sec typical Pre–heating Zone 50 120 - 240 sec max Heating Time Figure 5-4 RoHS/Lead-Free Solder (SAC305/405 Tin-Silver-Copper) Reflow Profile 46136 AMD RX881 Databook 1.40 5-8 © 2011 Advanced Micro Devices, Inc. Proprietary Chapter 6 Power Management and ACPI 6.1 ACPI Power Management Implementation This chapter describes the support for ACPI power management provided by the RX881. The RX881 Northbridge supports ACPI Revision 2.0. The hardware, system BIOS, video BIOS, and drivers of the RX881 have all the logic required for meeting the power management specifications of PC2001, OnNow, and the Windows Logo Program and Device Requirements version 2.1. Table 6-1, “ACPI States Supported by the RX881,” describes the ACPI states supported by the RX881. Table 6-2, “ACPI Signal Definitions,” describes the signals used in the ACPI power management scheme of the RX881. Table 6-1 ACPI States Supported by the RX881 ACPI State Description Processor States: S0/C0: Working State Working State. The processor is executing instructions. S0/C1: Halt CPU Halt state. No instructions are executed. This state has the lowest latency on resume and contributes minimum power savings. S0/C2: Stop Grant Caches Snoopable Stop Grant or Cache Snoopable CPU state. This state offers more power savings but has a higher latency on resume than the C1 state. S0/C3/C1e: Stop Grant Caches Snoopable Processor is put into Stop Grant state. Caches are still snoopable. The HyperTransport™ link may be disconnected and put into a low power state. System memory may be put into self-refresh. System States: S3: Standby Suspend to RAM System is off but context is saved to RAM. OEM support of this state is optional. System memory is put into self-refresh. S4: Hibernate Suspend to Disk System is off but context is saved to disk. When the system transitions to the working state, the OS is resumed without a system re-boot. S5: Soft Off System is off. OS re-boots when the system transitions to the working state. G3: Mechanical Off Occurs when system power (AC or battery) is not present or is unable to keep the system in one of the other states. Note: Also supported are additional processor power states that are not part of the ACPI specification, e.g. C1E (C1 Enhanced) and C3 pop-up. Please refer to the and the RS880 ASIC Family Register Programming Requirements, order# 46141, for more information. Table 6-2 ACPI Signal Definitions Signal Name Description Source ALLOW_LDTSTOP Output to the Southbridge to allow LDTSTOP# assertion. Northbridge LDTSTOP# HyperTransport™ Technology Stop: Enables and disables links during system state transitions. Southbridge POWERON# Power On Power switch RESET# Global Reset Southbridge Figure 6-1 Linked List for Capabilities © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 6-1 ACPI Power Management Implementation This page is left blank intentionally. 46136 AMD RX881 Databook 1.40 6-2 © 2011 Advanced Micro Devices, Inc. Proprietary Chapter 7 Testability 7.1 Test Capability Features The RX881 has integrated test modes and capabilities. These test features cover both the ASIC and board level testing. The ASIC tests provide a very high fault coverage and low DPM (Defect Per Million) ratio of the part. The board level tests modes can be used for motherboard manufacturing and debug purposes. The following are the test modes of the RX881: • Full scan implementation on the digital core logic that provides about 99% fault coverage through ATPG (Automatic Test Pattern Generation Vectors). Dedicated test logic for the on-chip custom memory macros to provide complete coverage on these modules. Improved access to the analog modules and PLLs in the RX881 to allow full evaluation and characterization of these modules. A JTAG test mode (which is not entirely compliant to the IEEE 1149.1 standard) to allow board level testing of neighboring devices. An XOR TREE test mode on all the digital I/O’s to allow for proper soldering verification at the board level. A VOH/VOL test mode on all digital I/O’s to allow for proper verification of output high and output low voltages at the board level. • • • • • These test modes can be accessed through the settings on the instruction register of the JTAG circuitry. 7.2 Test Interface Table 7-1 Pins on the Test Interface Pin Name Ball number Type D13 I IEEE 1149.1 test port reset NC B8 I TMS: Test Mode Select (IEEE 1149.1 test mode select) NC A9 I TDI: Test Mode Data In (IEEE 1149.1 data in) TESTMODE Description NC B9 I TCLK: Test Mode Clock (IEEE 1149.1 clock) NC D9 O TDO: Test Mode Data Out (IEEE 1149.1 data out) POWERGOOD A10 I I/O Reset 7.3 XOR Test 7.3.1 Description of a Generic XOR Tree An example of a generic XOR tree is shown in the Figure 7-1. © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 7-1 XOR Test XOR Start Signal 1 2 A 3 4 5 6 Figure 7-1 Example of a Generic XOR Tree Pin A is assigned to the output direction, and pins 1 through 6 are assigned to the input direction. It can be seen that after all pins 1 to 6 are assigned to logic 0 or 1, a logic change in any one of these pins will toggle the output pin A. The following is the truth table for the XOR tree shown in Figure 7-1 The XOR start signal is assumed to be logic 1. Table 7-2 Example of an XOR Tree Test Vector number Input Pin 1 Input Pin 2 Input Pin 3 Input Pin 4 Input Pin 5 Input Pin 6 Output Pin A 1 0 0 0 0 0 0 1 2 1 0 0 0 0 0 0 3 1 1 0 0 0 0 1 4 1 1 1 0 0 0 0 5 1 1 1 1 0 0 1 6 1 1 1 1 1 0 0 7 1 1 1 1 1 1 1 7.3.2 Description of the RX881 XOR Tree 7.3.3 XOR Tree Activation The RX881 chip enters the XOR tree test mode by means of the JTAG. First, the 8-bit instruction register of the JTAG is loaded with the XOR instruction (“00001000”). This instruction assigns the input direction to all the pins except pin TDO, which is assigned the output direction to serve as the output of the XOR tree. After loading, the JTAG is taken to the Run-Test state for completion of the XOR tree initialization. A 10MHz clock frequency for the Test Mode Clock (I2C_CLK) is recommended for the XOR TREE test mode. A pair of differential clock at 10MHz should also be supplied to HT_REFCLKP/N to enable I/Os for testing. 7.3.4 XOR Tree for the RX881 The XOR start signal is applied at the TDI Pin of the JTAG circuitry and the output of the XOR tree is obtained at the TDO Pin. Refer to Table 7-3 for the list of the signals included on the XOR tree. A toggle of any of these balls in the XOR tree will cause the output to toggle. There is no specific connection order to the signals on the tree. When the XOR tree is activated, any pin on the XOR tree must be either pulled down or pulled up to the I/O voltage of the pin. Only pins that are not on the XOR tree can be left floating. When differential signal pairs are listed as single entries on the XOR tree, opposite input values should be applied to the two signals in each pair (e.g., for entry no. 1 on the tree, when “1” is applied to HT_RXCAD0P, “0” should be applied to HT_RXCAD0N). 46136 AMD RX881 Databook 1.40 7-2 © 2011 Advanced Micro Devices, Inc. Proprietary XOR Test Table 7-3 RX881 XOR Tree No. Pin Name Ball Reference No. Pin Name Ball Reference 1 HT_RXCAD0P/N Y25/Y24 36 NC AD13 2 HT_RXCAD1P/N V22/V23 37 NC AD15 3 HT_RXCAD2P/N V25/V24 38 NC AC16 4 HT_RXCAD3P/N U24/U25 39 NC AE13 5 HT_RXCAD4P/N T25/T24 40 NC AC14 6 HT_RXCAD5P/N P22/P23 41 NC Y14 7 HT_RXCAD6P/N P25/P24 42 NC AA18 8 HT_RXCAD7P/N N24/N25 43 NC AA20 9 HT_RXCAD8P/N AC24/AC25 44 NC AA19 10 HT_RXCAD9P/N AB25/AB24 45 NC Y19 11 HT_RXCAD10P/N AA24/AA25 46 NC V17 12 HT_RXCAD11P/N Y22/Y23 47 NC AA17 13 HT_RXCAD12P/N W21/W20 48 NC AA15 14 HT_RXCAD13P/N V21/V20 49 NC Y15 15 HT_RXCAD14P/N U20/U21 50 NC AC20 16 HT_RXCAD15P/N U19/U18 51 NC AD19 17 HT_RXCTL0P/N M22/M23 52 NC AE22 18 HT_RXCTL1P/N R21/R20 53 NC AC18 19 NC AB18 54 NC AB20 20 NC AB13 55 NC AD22 21 NC V14 56 NC AC22 22 NC AD18 57 NC AD21 23 NC W12 58 NC W17 24 NC Y12 59 NC AE19 25 NC AD16 60 NC/NC Y17/W18 26 NC AE17 61 NC/NC AD20/AE21 27 NC AD17 62 NC/NC V15/W14 28 NC AB12 63 GFX_RX0P/N D4/C4 29 NC AE16 64 GFX_RX1P/N A3/B3 30 NC V11 65 GFX_RX2P/N C2/C1 31 NC AE15 66 GFX_RX3P/N E5/F5 32 NC AA12 67 GFX_RX4P/N G5/G6 33 NC AB16 68 GFX_RX5P/N H5/H6 34 NC AB14 69 GFX_RX6P/N J6/J5 35 NC AD14 70 GFX_RX7P/N J7/J8 © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 7-3 VOH/VOL Test No. Pin Name Ball Reference 71 GFX_RX8P/N L5/L6 72 GFX_RX9P/N M8/L8 73 GFX_RX10P/N P7/M7 74 GFX_RX11P/N P5/M5 75 GFX_RX12P/N R8/P8 76 GFX_RX13P/N R6/R5 77 GFX_RX14P/N P4/P3 78 GFX_RX15P/N T4/T3 79 GPP_RX0P/N AE3/AD4 80 GPP_RX1P/N AE2/AD3 81 GPP_RX2P/N AD1/AD2 82 GPP_RX3P/N V5/W6 83 GPP_RX4P/N U5/U6 84 GPP_RX5P/N U8/U7 85 SB_RX0P/N AA8/Y8 86 SB_RX1P/N AA7/Y7 87 SB_RX2P/N AA5/AA6 88 SB_RX3P/N W5/Y5 89 GPIO3 E9 90 GPIO4 G12 91 GPIO2 F7 92 DAC_HSYNC A11 93 DAC_VSYNC B11 94 NC F8 95 NC A8 96 NC D10 97 NC A7 98 NC B7 7.4 VOH/VOL Test 7.4.1 Description of a Generic VOH/VOL Tree The VOH/VOL logic gives signal output on I/O’s when test patterns are applied through the TEST_ODD and TEST_EVEN inputs. Sample of a generic VOH/VOL tree is shown in Figure 7-2. 46136 AMD RX881 Databook 1.40 7-4 © 2011 Advanced Micro Devices, Inc. Proprietary VOH/VOL Test TEST_ODD TEST_EVEN VOH/VOL mode 1 2 3 4 5 6 Figure 7-2 Sample of a Generic VOH/VOL Tree The following is the truth table for the above VOH/VOL tree. Table 7-4 Truth Table for the VOH/VOL Tree Outputs Test Vector Number TEST_ODD TEST_EVEN Input Input Output Pin 1 Output Pin 2 Output Pin 3 Output Pin 4 Output Pin 5 Output Pin 6 1 0 0 0 0 0 0 0 0 2 0 1 0 1 0 1 0 1 3 1 0 1 0 1 0 1 0 4 1 1 1 1 1 1 1 1 Refer to Section 7.4.3 for the list of pins that are on the VOH/VOL tree. VOH/VOL Tree Activation 7.4.2 VOH/VOL Tree Activation To activate the VOH/VOL tree and run a VOH/VOL test, perform the sequence below: 1. Supply a 10MHz clock to the REFCLK_P pin and a 10MHz differential clock pair to the HT_REFCLKP/N pins to enable I/Os for testing. 2. Set POWERGOOD to 0. 3. Set TESTMODE to 1. 4. Set NC (ball E8) to 0. 5. Load JTAG instruction register with the instruction 0110 0011. 6. Load JTAG instruction register with the instruction 0010 0111. 7. Set POWERGOOD to 1. © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 7-5 VOH/VOL Test 8. Load JTAG instruction register with the instruction 1001 1001. 9. Run test by loading JTAG data register with data 0000 0000 0000 00xy, where bit x is the input value for TEST_ODD and bit y that for TEST_EVEN (see Table 7-4 above). 10. To end test, load JTAG instruction register with the instruction 0101 1101. 7.4.3 VOH/VOL Pin List Table 7-5 shows the RX881 VOH/VOL tree. There is no specific order for connection. Under the Control column, an “ODD” or “EVEN” indicates that the logical output of the pin is same as the “TEST_ODD” or “TEST_EVEN” input respectively. When a differential pair appear in the table as a single entry, the output of the positive (“P”) pin is indicated in the Control column (see last paragraph for explanations), and the output of the negative pin (“N”) will be of the opposite value. For example, for entry no. 1 on the tree, when TEST_EVEN is 1, HT_TXCAD0P will give a value of 1 and HT_TXCAD0N will give a value of 0. 46136 AMD RX881 Databook 1.40 7-6 © 2011 Advanced Micro Devices, Inc. Proprietary VOH/VOL Test Table 7-5 RX881 VOH/VOL Tree No. Pin Name Ball Reference Control No. Pin Name Ball Reference Control 1 HT_TXCAD0P/N D24/D25 Even 36 NC AE19 Odd 2 HT_TXCAD1P/N E24/E25 Odd 37 NC/NC Y17/W18 Even 3 HT_TXCAD2P/N F24/F25 Even 38 NC/NC AD20/AE21 Odd 4 HT_TXCAD3P/N F23/F22 Odd 39 NC AB18 Even 5 HT_TXCAD4P/N H23/H22 Even 40 NC AB13 Odd 6 HT_TXCAD5P/N J25/J24 Odd 41 NC V14 Even 7 HT_TXCAD6P/N K24/K25 Even 42 NC AD18 Odd 8 HT_TXCAD7P/N K23/K22 Odd 43 NC W12 Even 9 HT_TXCAD8P/N F21/G21 Even 44 NC Y12 Odd 10 HT_TXCAD9P/N G20/H21 Odd 45 NC AD16 Even 11 HT_TXCAD10P/N J20/J21 Even 46 NC AE17 Odd 12 HT_TXCAD11P/N J18/K17 Odd 47 NC AD17 Even 13 HT_TXCAD12P/N L19/J19 Even 48 NC AB12 Odd 14 HT_TXCAD13P/N M19/L18 Odd 49 NC AE16 Even 15 HT_TXCAD14P/N M21/P21 Even 50 NC V11 Odd 16 HT_TXCAD15P/N P18/M18 Odd 51 NC AE15 Even 17 HT_TXCTL0P/N M24/M25 Even 52 NC AA12 Odd 18 HT_TXCTL1P/N P19/R18 Odd 53 NC AB16 Even 19 NC AA18 Even 54 NC AB14 Odd 20 NC AA20 Odd 55 NC AD14 Even 21 NC AA19 Even 56 NC AD13 Odd 22 NC Y19 Odd 57 NC AD15 Even 23 NC V17 Even 58 NC AC16 Odd 24 NC AA17 Odd 59 NC AE13 Even 25 NC AA15 Even 60 NC AC14 Odd 26 NC Y15 Odd 61 NC Y14 Even 27 NC AC20 Even 62 NC/NC V15/W14 Odd 28 NC AD19 Odd 63 GFX_TX0P/N A5/B5 Even 29 NC AE22 Even 64 GFX_TX1P/N A4/B4 Odd 30 NC AC18 Odd 65 GFX_TX2P/N C3/B2 Even 31 NC AB20 Even 66 GFX_TX3P/N D1/D2 Odd 32 NC AD22 Odd 67 GFX_TX4P/N E2/E1 Even 33 NC AC22 Even 68 GFX_TX5P/N F4/F3 Odd 34 NC AD21 Odd 69 GFX_TX6P/N F1/F2 Even 35 NC W17 Even 70 GFX_TX7P/N H4/H3 Odd © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 7-7 VOH/VOL Test No. Pin Name Ball Reference Control 71 GFX_TX8P/N H1/H2 Even 72 GFX_TX9P/N J2/J1 Odd 73 GFX_TX10P/N K4/K3 Even 74 GFX_TX11P/N K1/K2 Odd 75 GFX_TX12P/N M4/M3 Even 76 GFX_TX13P/N M1/M2 Odd 77 GFX_TX14P/N N2/N1 Even 78 GFX_TX15P/N P1/P2 Odd 79 GPP_TX0P/N AC1/AC2 Even 80 GPP_TX1P/N AB4/AB3 Odd 81 GPP_TX2P/N AA2/AA1 Even 82 GPP_TX3P/N Y1/Y2 Odd 83 GPP_TX4P/N Y4/Y3 Even 84 GPP_TX5P/N V1/V2 Odd 85 SB_TX0P/N AD7/AE7 Even 86 SB_TX1P/N AE6/AD6 Odd 87 SB_TX2P/N AB6/AC6 Even 88 SB_TX3P/N AD5/AE5 Odd 89 GPIO2 F7 Even 90 GPIO4 G12 Odd 91 GPIO3 E9 Even 92 DAC_VSYNC B11 Odd 93 DAC_HSYNC A11 Even 94 NC D10 Odd 46136 AMD RX881 Databook 1.40 7-8 © 2011 Advanced Micro Devices, Inc. Proprietary Appendix A Pin Listings This appendix contains pin listings for the RX881 sorted in different ways. To go to the listing of interest, use the linked cross-references below: “RX881 Pin List Sorted by Ball Reference” on page A-2 “RX881 Pin List Sorted by Pin Name” on page A-7 © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 A-1 Pin Listings A.1 RX881 Pin List Sorted by Ball Reference Table A-1 RX881 Pin List Sorted by Ball Reference Ball Ref Pin Name A10 POWERGOOD A11 DAC_HSYNC A12 PLLVDD A13 VDDLTP18 A14 VDDLT33 A15 VDDLT18 A16 NC A17 NC A18 NC A19 NC A2 VSSAPCIE A20 NC A21 NC A22 NC A23 VDDHTRX A24 HT_RXCALN A25 VSSAHT A3 GFX_RX1P A4 GFX_TX1P A5 GFX_TX0P A6 VDDPCIE A7 NC A8 NC A9 NC AA1 GPP_TX2N AA11 VDD_MEM AA12 NC AA14 VSS AA15 NC AA17 NC AA18 NC AA19 NC AA2 GPP_TX2P AA20 NC AA21 VDDHTTX AA22 HT_RXCLK1N AA24 HT_RXCAD10P AA25 HT_RXCAD10N AA4 VSSAPCIE AA5 SB_RX2P AA6 SB_RX2N AA7 SB_RX1P 46136 AMD RX881 Databook 1.40 A-2 Ball Ref Pin Name Ball Ref Pin Name AA8 SB_RX0P AC8 PCE_CALRP AA9 VDDA18PCIE AD1 GPP_RX2P AB1 VSSAPCIE AD10 VDD_MEM AB10 VDD_MEM AD11 VDD18_MEM AB11 VSS AD12 NC AB12 NC AD13 NC AB13 NC AD14 NC AB14 NC AD15 NC AB15 VSS AD16 NC AB16 NC AD17 NC AB17 VSS AD18 NC AB18 NC AD19 NC AB19 VSS AD2 GPP_RX2N AB2 VSSAPCIE AD20 NC AB20 NC AD21 NC AB21 VSS AD22 NC AB22 VDDHTTX AD23 IOPLLVSS AB23 HT_RXCLK1P AD24 VDDHTTX AB24 HT_RXCAD9N AD25 VSSAHT AB25 HT_RXCAD9P AD3 GPP_RX1N AB3 GPP_TX1N AD4 GPP_RX0N AB4 GPP_TX1P AD5 SB_TX3P AB5 VSSAPCIE AD6 SB_TX1N AB6 SB_TX2P AD7 SB_TX0P AB7 VSSAPCIE AD8 THERMALDIODE_N AB8 PCE_CALRN AD9 VDDA18PCIE AB9 VDDA18PCIE AE1 VSSAPCIE AC1 GPP_TX0P AE10 VDD_MEM AC10 VDD_MEM AE11 VDD18_MEM AC12 VSS AE12 NC AC14 NC AE13 NC AC16 NC AE14 VSS AC18 NC AE15 NC AC2 GPP_TX0N AE16 NC AC20 NC AE17 NC AC22 NC AE18 MEM_VREF AC23 VDDHTTX AE19 NC AC24 HT_RXCAD8P AE2 GPP_RX1P AC25 HT_RXCAD8N AE20 VSS AC3 VSSAPCIE AE21 NC AC4 VSSAPCIE AE22 NC AC6 SB_TX2N AE23 IOPLLVDD18 © 2011 Advanced Micro Devices, Inc. Proprietary Pin Listings Ball Ref Pin Name Ball Ref Pin Name Ball Ref Pin Name AE24 IOPLLVDD C24 HT_REFCLKN E25 HT_TXCAD1N AE25 VDDHTTX C25 HT_REFCLKP E4 VSSAPCIE AE3 GPP_RX0P C3 GFX_TX2P E5 GFX_RX3P AE4 VSSAPCIE C4 GFX_RX0N E6 VDDPCIE AE5 SB_TX3N C6 VDDPCIE E7 VDDA18PCIEPLL AE6 SB_TX1P C8 NC E8 NC AE7 SB_TX0N D1 GFX_TX3P E9 GPIO3 AE8 THERMALDIODE_P D10 NC F1 GFX_TX6P AE9 VDDA18PCIE D11 VSS F11 REFCLK_N B1 VSSAPCIE D12 SUS_STAT# F12 AVDD B10 STRP_DATA D13 TESTMODE F14 AVDDDI B11 DAC_VSYNC D14 PLLVDD18 F15 NC B12 PLLVSS D15 VSSLT F17 NC B13 VSSLTP18 D16 NC F18 VSS B14 VDDLT33 D17 NC F19 VSS B15 VDDLT18 D18 NC F2 GFX_TX6N B16 NC D19 NC F20 VDDHTRX B17 NC D2 GFX_TX3N F21 HT_TXCAD8P B18 NC D20 NC F22 HT_TXCAD3N B19 NC D21 NC F23 HT_TXCAD3P B2 GFX_TX2N D22 VDDHTRX F24 HT_TXCAD2P B20 NC D23 VSSAHT F25 HT_TXCAD2N B21 NC D24 HT_TXCAD0P F3 GFX_TX5N B22 NC D25 HT_TXCAD0N F4 GFX_TX5P B23 VDDHTRX D3 VSSAPCIE F5 GFX_RX3N B24 HT_TXCALP D4 GFX_RX0P F6 VDDPCIE B25 HT_TXCALN D5 VSSAPCIE F7 GPIO2 B3 GFX_RX1N D6 VDDPCIE F8 NC B4 GFX_TX1N D7 VDDA18PCIEPLL F9 VDD18 B5 GFX_TX0N D8 SYSRESET# G1 VSSAPCIE B6 VDDPCIE D9 NC G11 RESERVED B7 NC E1 GFX_TX4N G12 GPIO4 B8 NC E11 REFCLK_P G14 NC B9 NC E12 AVDD G15 AVSSDI C1 GFX_RX2N E14 VSS G17 VSS C10 LDTSTOP# E15 VSS G18 NC C12 ALLOW_LDTSTOP E17 NC G19 VDDHTRX C14 VSSLT E18 NC G2 VSSAPCIE C16 VSSLT E19 NC G20 HT_TXCAD9P C18 VSSLT E2 GFX_TX4P G21 HT_TXCAD8N C2 GFX_RX2P E20 VSSLT G22 VSSAHT C20 VSSLT E21 VDDHTRX G24 VSSAHT C22 VSSLT E22 VSSAHT G25 VSSAHT C23 HT_RXCALP E24 HT_TXCAD1P G4 VSSAPCIE © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 A-3 Pin Listings Ball Ref Pin Name Ball Ref Pin Name Ball Ref Pin Name G5 GFX_RX4P J5 GFX_RX6N M10 VDDA18PCIE G6 GFX_RX4N J6 GFX_RX6P M11 VSS G7 VDDPCIE J7 GFX_RX7P M12 VDDC G8 VSS J8 GFX_RX7N M13 VDDC G9 VDD18 J9 VDDPCIE M14 VSS H1 GFX_TX8P K1 GFX_TX11P M15 VDDC H11 VDD33 K10 VDDA18PCIE M16 VDDHT H12 VDD33 K11 VSS M17 VDDHTTX H14 AVSSQ K12 VDDC M18 HT_TXCAD15N H15 AVDDQ K14 VSS M19 HT_TXCAD13P H17 VDDA18HTPLL K15 VDDC M2 GFX_TX13N H18 VDDHTRX K16 VDDHT M20 VSSAHT H19 VSSAHT K17 HT_TXCAD11N M21 HT_TXCAD14P H2 GFX_TX8N K2 GFX_TX11N M22 HT_RXCTL0P H20 VSSAHT K22 HT_TXCAD7N M23 HT_RXCTL0N H21 HT_TXCAD9N K23 HT_TXCAD7P M24 HT_TXCTL0P H22 HT_TXCAD4N K24 HT_TXCAD6P M25 HT_TXCTL0N H23 HT_TXCAD4P K25 HT_TXCAD6N M3 GFX_TX12N H24 HT_TXCLK0P K3 GFX_TX10N M4 GFX_TX12P H25 HT_TXCLK0N K4 GFX_TX10P M5 GFX_RX11N H3 GFX_TX7N K9 VDDPCIE M6 VSSAPCIE H4 GFX_TX7P L1 VSSAPCIE M7 GFX_RX10N H5 GFX_RX5P L10 VDDA18PCIE M8 GFX_RX9P H6 GFX_RX5N L11 VDDC M9 VDDPCIE H7 VSSAPCIE L12 VSS N1 GFX_TX14N H8 VDDPCIE L14 VDDC N12 VDDC H9 VDDA18PCIE L15 VSS N13 VSS J1 GFX_TX9N L16 VDDHT N14 VDDC J10 VDDA18PCIE L17 VSSAHT N2 GFX_TX14P J11 VDDC L18 HT_TXCAD13N N22 VSSAHT J12 VSS L19 HT_TXCAD12P N24 HT_RXCAD7P J14 VDDC L2 VSSAPCIE N25 HT_RXCAD7N J15 VSS L20 HT_TXCLK1N N4 VSSAPCIE J16 VDDC L21 HT_TXCLK1P P1 GFX_TX15P J17 VDDHT L22 VSSAHT P10 VDDA18PCIE J18 HT_TXCAD11P L24 VSSAHT P11 VDDC J19 HT_TXCAD12N L25 VSSAHT P12 VSS J2 GFX_TX9P L4 VSSAPCIE P13 VDDC J20 HT_TXCAD10P L5 GFX_RX8P P14 VDDC J21 HT_TXCAD10N L6 GFX_RX8N P15 VSS J22 VSSAHT L7 VSSAPCIE P16 VDDHT J24 HT_TXCAD5N L8 GFX_RX9N P17 VDDHTTX J25 HT_TXCAD5P L9 VDDPCIE P18 HT_TXCAD15P J4 VSSAPCIE M1 GFX_TX13P P19 HT_TXCTL1P 46136 AMD RX881 Databook 1.40 A-4 © 2011 Advanced Micro Devices, Inc. Proprietary Pin Listings Ball Ref Pin Name Ball Ref Pin Name Ball Ref Pin Name P2 GFX_TX15N T2 GFX_REFCLKP V25 HT_RXCAD2P P20 VSSAHT T22 HT_RXCLK0P V3 GPPSB_REFCLKN P21 HT_TXCAD14N T23 HT_RXCLK0N V4 GPPSB_REFCLKP P22 HT_RXCAD5P T24 HT_RXCAD4N V5 GPP_RX3P P23 HT_RXCAD5N T25 HT_RXCAD4P V6 VSSAPCIE P24 HT_RXCAD6N T3 GFX_RX15N V7 VSSAPCIE P25 HT_RXCAD6P T4 GFX_RX15P V8 VSSAPCIE P3 GFX_RX14N T9 VDDPCIE V9 VDDPCIE P4 GFX_RX14P U1 GPP_REFCLKP W1 VSSAPCIE P5 GFX_RX11P U10 VDDA18PCIE W11 VSS P6 VSSAPCIE U11 VSS W12 NC P7 GFX_RX10P U12 VDDC W14 NC P8 GFX_RX12N U14 VSS W15 VSS P9 VDDPCIE U15 VSS W17 NC R1 VSSAPCIE U16 VDDC W18 NC R10 VDDA18PCIE U17 VDDHTTX W19 VDDHTTX R11 VSS U18 HT_RXCAD15N W2 VSSAPCIE R12 VDDC U19 HT_RXCAD15P W20 HT_RXCAD12N R14 VSS U2 GPP_REFCLKN W21 HT_RXCAD12P R15 VDDC U20 HT_RXCAD14P W22 VSSAHT R16 VDDHT U21 HT_RXCAD14N W24 VSSAHT R17 VDDHTTX U22 VSSAHT W25 VSSAHT R18 HT_TXCTL1N U24 HT_RXCAD3P W4 VSSAPCIE R19 VSSAHT U25 HT_RXCAD3N W5 SB_RX3P R2 VSSAPCIE U4 VSSAPCIE W6 GPP_RX3N R20 HT_RXCTL1N U5 GPP_RX4P W7 VSSAPCIE R21 HT_RXCTL1P U6 GPP_RX4N W8 VSSAPCIE R22 VSSAHT U7 GPP_RX5N W9 VDDA18PCIE R24 VSSAHT U8 GPP_RX5P Y1 GPP_TX3P R25 VSSAHT U9 VDDPCIE Y11 VDD_MEM R4 VSSAPCIE V1 GPP_TX5P Y12 NC R5 GFX_RX13N V11 NC Y14 NC R6 GFX_RX13P V12 VSS Y15 NC R7 VSSAPCIE V14 NC Y17 NC R8 GFX_RX12P V15 NC Y18 VSS R9 VDDPCIE V17 NC Y19 NC T1 GFX_REFCLKN V18 VDDHTTX Y2 GPP_TX3N T10 VDDA18PCIE V19 VSSAHT Y20 VDDHTTX T11 VDDC V2 GPP_TX5N Y21 VSSAHT T12 VSS V20 HT_RXCAD13N Y22 HT_RXCAD11P T14 VDDC V21 HT_RXCAD13P Y23 HT_RXCAD11N T15 VDDC V22 HT_RXCAD1P Y24 HT_RXCAD0N T16 VDDHT V23 HT_RXCAD1N Y25 HT_RXCAD0P T17 VDDHTTX V24 HT_RXCAD2N Y3 GPP_TX4N © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 A-5 Pin Listings Ball Ref Pin Name Y4 GPP_TX4P Y5 SB_RX3N Y6 VSSAPCIE Y7 SB_RX1N Y8 SB_RX0N Y9 VDDA18PCIE 46136 AMD RX881 Databook 1.40 A-6 © 2011 Advanced Micro Devices, Inc. Proprietary Pin Listings A.2 RX881 Pin List Sorted by Pin Name Table A-2 RX881 Pin List Sorted by Pin Name Pin Name Ball Ref Pin Name Ball Ref Pin Name ALLOW_LDTSTOP C12 GFX_RX9N L8 GPP_RX1P AE2 AVDD E12 GFX_RX9P M8 GPP_RX2N AD2 AVDD F12 GFX_TX0N B5 GPP_RX2P AD1 AVDDDI F14 GFX_TX0P A5 GPP_RX3N W6 AVDDQ H15 GFX_TX10N K3 GPP_RX3P V5 AVSSDI G15 GFX_TX10P K4 GPP_RX4N U6 AVSSQ H14 GFX_TX11N K2 GPP_RX4P U5 DAC_HSYNC A11 GFX_TX11P K1 GPP_RX5N U7 DAC_VSYNC B11 GFX_TX12N M3 GPP_RX5P U8 GFX_REFCLKN T1 GFX_TX12P M4 GPP_TX0N AC2 GFX_REFCLKP T2 GFX_TX13N M2 GPP_TX0P AC1 GFX_RX0N C4 GFX_TX13P M1 GPP_TX1N AB3 GFX_RX0P D4 GFX_TX14N N1 GPP_TX1P AB4 GFX_RX10N M7 GFX_TX14P N2 GPP_TX2N AA1 GFX_RX10P P7 GFX_TX15N P2 GPP_TX2P AA2 GFX_RX11N M5 GFX_TX15P P1 GPP_TX3N Y2 GFX_RX11P P5 GFX_TX1N B4 GPP_TX3P Y1 GFX_RX12N P8 GFX_TX1P A4 GPP_TX4N Y3 GFX_RX12P R8 GFX_TX2N B2 GPP_TX4P Y4 GFX_RX13N R5 GFX_TX2P C3 GPP_TX5N V2 GFX_RX13P R6 GFX_TX3N D2 GPP_TX5P V1 GFX_RX14N P3 GFX_TX3P D1 GPPSB_REFCLKN V3 GFX_RX14P P4 GFX_TX4N E1 GPPSB_REFCLKP V4 GFX_RX15N T3 GFX_TX4P E2 HT_REFCLKN C24 GFX_RX15P T4 GFX_TX5N F3 HT_REFCLKP C25 GFX_RX1N B3 GFX_TX5P F4 HT_RXCAD0N Y24 GFX_RX1P A3 GFX_TX6N F2 HT_RXCAD0P Y25 GFX_RX2N C1 GFX_TX6P F1 HT_RXCAD10N AA25 GFX_RX2P C2 GFX_TX7N H3 HT_RXCAD10P AA24 GFX_RX3N F5 GFX_TX7P H4 HT_RXCAD11N Y23 GFX_RX3P E5 GFX_TX8N H2 HT_RXCAD11P Y22 GFX_RX4N G6 GFX_TX8P H1 HT_RXCAD12N W20 GFX_RX4P G5 GFX_TX9N J1 HT_RXCAD12P W21 GFX_RX5N H6 GFX_TX9P J2 HT_RXCAD13N V20 GFX_RX5P H5 GPIO2 F7 HT_RXCAD13P V21 GFX_RX6N J5 GPIO3 E9 HT_RXCAD14N U21 GFX_RX6P J6 GPIO4 G12 HT_RXCAD14P U20 GFX_RX7N J8 GPP_REFCLKN U2 HT_RXCAD15N U18 GFX_RX7P J7 GPP_REFCLKP U1 HT_RXCAD15P U19 GFX_RX8N L6 GPP_RX0N AD4 HT_RXCAD1N V23 GFX_RX8P L5 GPP_RX0P AE3 HT_RXCAD1P V22 GPP_RX1N AD3 HT_RXCAD2N V24 © 2011 Advanced Micro Devices, Inc. Proprietary Ball Ref 46136 AMD RX881 Databook 1.40 A-7 Pin Listings Pin Name Ball Ref Pin Name Ball Ref Pin Name Ball Ref HT_RXCAD2P V25 HT_TXCAD3P F23 NC AB12 HT_RXCAD3N U25 HT_TXCAD4N H22 NC AB13 HT_RXCAD3P U24 HT_TXCAD4P H23 NC AB14 HT_RXCAD4N T24 HT_TXCAD5N J24 NC AB16 HT_RXCAD4P T25 HT_TXCAD5P J25 NC AB18 HT_RXCAD5N P23 HT_TXCAD6N K25 NC AB20 HT_RXCAD5P P22 HT_TXCAD6P K24 NC AC14 HT_RXCAD6N P24 HT_TXCAD7N K22 NC AC16 HT_RXCAD6P P25 HT_TXCAD7P K23 NC AC18 HT_RXCAD7N N25 HT_TXCAD8N G21 NC AC20 HT_RXCAD7P N24 HT_TXCAD8P F21 NC AC22 HT_RXCAD8N AC25 HT_TXCAD9N H21 NC AD12 HT_RXCAD8P AC24 HT_TXCAD9P G20 NC AD13 HT_RXCAD9N AB24 HT_TXCALN B25 NC AD14 HT_RXCAD9P AB25 HT_TXCALP B24 NC AD15 HT_RXCALN A24 HT_TXCLK0N H25 NC AD16 HT_RXCALP C23 HT_TXCLK0P H24 NC AD17 HT_RXCLK0N T23 HT_TXCLK1N L20 NC AD18 HT_RXCLK0P T22 HT_TXCLK1P L21 NC AD19 HT_RXCLK1N AA22 HT_TXCTL0N M25 NC AD20 HT_RXCLK1P AB23 HT_TXCTL0P M24 NC AD21 HT_RXCTL0N M23 HT_TXCTL1N R18 NC AD22 HT_RXCTL0P M22 HT_TXCTL1P P19 NC AE12 HT_RXCTL1N R20 IOPLLVDD AE24 NC AE13 HT_RXCTL1P R21 IOPLLVDD18 AE23 NC AE15 HT_TXCAD0N D25 IOPLLVSS AD23 NC AE16 HT_TXCAD0P D24 LDTSTOP# C10 NC AE17 HT_TXCAD10N J21 MEM_VREF AE18 NC AE19 HT_TXCAD10P J20 NC A16 NC AE21 HT_TXCAD11N K17 NC A17 NC AE22 HT_TXCAD11P J18 NC A18 NC B16 HT_TXCAD12N J19 NC A19 NC B17 HT_TXCAD12P L19 NC A20 NC B18 HT_TXCAD13N L18 NC A21 NC B19 HT_TXCAD13P M19 NC A22 NC B20 HT_TXCAD14N P21 NC A7 NC B21 HT_TXCAD14P M21 NC A8 NC B22 HT_TXCAD15N M18 NC A9 NC B7 HT_TXCAD15P P18 NC AA12 NC B8 HT_TXCAD1N E25 NC AA15 NC B9 HT_TXCAD1P E24 NC AA17 NC C8 HT_TXCAD2N F25 NC AA18 NC D10 HT_TXCAD2P F24 NC AA19 NC D16 HT_TXCAD3N F22 NC AA20 NC D17 46136 AMD RX881 Databook 1.40 A-8 © 2011 Advanced Micro Devices, Inc. Proprietary Pin Listings Pin Name Ball Ref Pin Name Ball Ref Pin Name Ball Ref NC D18 SB_TX0N AE7 VDDC J11 NC D19 SB_TX0P AD7 VDDC J14 NC D20 SB_TX1N AD6 VDDC J16 NC D21 SB_TX1P AE6 VDDC K12 NC D9 SB_TX2N AC6 VDDC K15 NC E17 SB_TX2P AB6 VDDC L11 NC E18 SB_TX3N AE5 VDDC L14 NC E19 SB_TX3P AD5 VDDC M12 NC E8 STRP_DATA B10 VDDC M13 NC F15 SUS_STAT# D12 VDDC M15 NC F17 SYSRESET# D8 VDDC N12 NC F8 TESTMODE D13 VDDC N14 NC G14 THERMALDIODE_N AD8 VDDC P11 NC G18 THERMALDIODE_P AE8 VDDC P13 NC V11 VDD_MEM AA11 VDDC P14 NC V14 VDD_MEM AB10 VDDC R12 NC V15 VDD_MEM AC10 VDDC R15 NC V17 VDD_MEM AD10 VDDC T11 NC W12 VDD_MEM AE10 VDDC T14 NC W14 VDD_MEM Y11 VDDC T15 NC W17 VDD18 F9 VDDC U12 NC W18 VDD18 G9 VDDC U16 NC Y12 VDD18_MEM AD11 VDDHT J17 NC Y14 VDD18_MEM AE11 VDDHT K16 NC Y15 VDD33 H11 VDDHT L16 NC Y17 VDD33 H12 VDDHT M16 NC Y19 VDDA18HTPLL H17 VDDHT P16 PCE_CALRN AB8 VDDA18PCIE AA9 VDDHT R16 PCE_CALRP AC8 VDDA18PCIE AB9 VDDHT T16 PLLVDD A12 VDDA18PCIE AD9 VDDHTRX A23 PLLVDD18 D14 VDDA18PCIE AE9 VDDHTRX B23 PLLVSS B12 VDDA18PCIE H9 VDDHTRX D22 POWERGOOD A10 VDDA18PCIE J10 VDDHTRX E21 REFCLK_N F11 VDDA18PCIE K10 VDDHTRX F20 REFCLK_P E11 VDDA18PCIE L10 VDDHTRX G19 RESERVED G11 VDDA18PCIE M10 VDDHTRX H18 SB_RX0N Y8 VDDA18PCIE P10 VDDHTTX AA21 SB_RX0P AA8 VDDA18PCIE R10 VDDHTTX AB22 SB_RX1N Y7 VDDA18PCIE T10 VDDHTTX AC23 SB_RX1P AA7 VDDA18PCIE U10 VDDHTTX AD24 SB_RX2N AA6 VDDA18PCIE W9 VDDHTTX AE25 SB_RX2P AA5 VDDA18PCIE Y9 VDDHTTX M17 SB_RX3N Y5 VDDA18PCIEPLL D7 VDDHTTX P17 SB_RX3P W5 VDDA18PCIEPLL E7 VDDHTTX R17 © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 A-9 Pin Listings Pin Name Ball Ref Pin Name Ball Ref Pin Name Ball Ref VDDHTTX T17 VSS J15 VSSAHT W24 VDDHTTX U17 VSS K11 VSSAHT W25 VDDHTTX V18 VSS K14 VSSAHT Y21 VDDHTTX W19 VSS L12 VSSAPCIE A2 VDDHTTX Y20 VSS L15 VSSAPCIE AA4 VDDLT18 A15 VSS M11 VSSAPCIE AB1 VDDLT18 B15 VSS M14 VSSAPCIE AB2 VDDLT33 A14 VSS N13 VSSAPCIE AB5 VDDLT33 B14 VSS P12 VSSAPCIE AB7 VDDLTP18 A13 VSS P15 VSSAPCIE AC3 VDDPCIE A6 VSS R11 VSSAPCIE AC4 VDDPCIE B6 VSS R14 VSSAPCIE AE1 VDDPCIE C6 VSS T12 VSSAPCIE AE4 VDDPCIE D6 VSS U11 VSSAPCIE B1 VDDPCIE E6 VSS U14 VSSAPCIE D3 VDDPCIE F6 VSS U15 VSSAPCIE D5 VDDPCIE G7 VSS V12 VSSAPCIE E4 VDDPCIE H8 VSS W11 VSSAPCIE G1 VDDPCIE J9 VSS W15 VSSAPCIE G2 VDDPCIE K9 VSS Y18 VSSAPCIE G4 VDDPCIE L9 VSSAHT A25 VSSAPCIE H7 VDDPCIE M9 VSSAHT AD25 VSSAPCIE J4 VDDPCIE P9 VSSAHT D23 VSSAPCIE L1 VDDPCIE R9 VSSAHT E22 VSSAPCIE L2 VDDPCIE T9 VSSAHT G22 VSSAPCIE L4 VDDPCIE U9 VSSAHT G24 VSSAPCIE L7 VDDPCIE V9 VSSAHT G25 VSSAPCIE M6 VSS AA14 VSSAHT H19 VSSAPCIE N4 VSS AB11 VSSAHT H20 VSSAPCIE P6 VSS AB15 VSSAHT J22 VSSAPCIE R1 VSS AB17 VSSAHT L17 VSSAPCIE R2 VSS AB19 VSSAHT L22 VSSAPCIE R4 VSS AB21 VSSAHT L24 VSSAPCIE R7 VSS AC12 VSSAHT L25 VSSAPCIE U4 VSS AE14 VSSAHT M20 VSSAPCIE V6 VSS AE20 VSSAHT N22 VSSAPCIE V7 VSS D11 VSSAHT P20 VSSAPCIE V8 VSS E14 VSSAHT R19 VSSAPCIE W1 VSS E15 VSSAHT R22 VSSAPCIE W2 VSS F18 VSSAHT R24 VSSAPCIE W4 VSS F19 VSSAHT R25 VSSAPCIE W7 VSS G17 VSSAHT U22 VSSAPCIE W8 VSS G8 VSSAHT V19 VSSAPCIE Y6 VSS J12 VSSAHT W22 VSSLT C14 46136 AMD RX881 Databook 1.40 A-10 © 2011 Advanced Micro Devices, Inc. Proprietary Pin Listings Pin Name Ball Ref VSSLT C16 VSSLT C18 VSSLT C20 VSSLT C22 VSSLT D15 VSSLT E20 VSSLTP18 B13 © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 A-11 Pin Listings This page is left blank intentionally. 46136 AMD RX881 Databook 1.40 A-12 © 2011 Advanced Micro Devices, Inc. Proprietary Appendix B Revision History Rev. 1.30 (Nov 2010) • First release of the public version. Rev. 1.40 (Aug 2011) • Updated Figure 1-1, “RX881 ASIC A11 Production Branding.” © 2011 Advanced Micro Devices, Inc. Proprietary 46136 AMD RX881 Databook 1.40 B-1 Revision History This page intentionally left blank. 46136 AMD RX881 Databook 1.40 B-2 © 2011 Advanced Micro Devices, Inc. Proprietary