PRODUCT DATA SHEET PAC5250 Power Application Controller TM Multi-Mode Power ManagerTM Configurable Analog Front EndTM Application Specific Power Drivers TM ARM® CortexTM-M0 Controller Core TM www.active-semi.com Copyright © 2015 Active-Semi, Inc. PAC5250 Power Application Controller TABLE OF CONTENTS 1. General Description........................................................................................................................................... 7 2. PAC Family Applications.................................................................................................................................... 8 3. Product Selection Summary............................................................................................................................... 9 4. Ordering Information.......................................................................................................................................... 9 5. PAC5250 Features........................................................................................................................................... 10 6. Absolute Maximum Ratings.............................................................................................................................. 11 7. Architectural Block Diagram............................................................................................................................. 12 8. Pin Configuration.............................................................................................................................................. 13 8.1. PAC5250QF............................................................................................................................................. 13 9. Pin Description................................................................................................................................................. 14 10. Multi-Mode Power Manager (MMPM)............................................................................................................ 20 10.1. Features................................................................................................................................................. 20 10.2. Block Diagram........................................................................................................................................ 20 10.3. Functional Description............................................................................................................................ 20 10.3.1. Multi-Mode Switching Supply (MMSS) Controller...........................................................................20 10.3.2. Linear Regulators........................................................................................................................... 22 10.3.3. Power Up Sequence...................................................................................................................... 23 10.3.4. Hibernate Mode.............................................................................................................................. 23 10.3.5. Power and Temperature Monitor.................................................................................................... 24 10.3.6. Voltage Reference.......................................................................................................................... 24 10.4. Electrical Characteristics........................................................................................................................ 25 10.5. Typical Performance Characteristics...................................................................................................... 28 11. Configurable Analog Front End (CAFE).......................................................................................................... 29 11.1. Block Diagram........................................................................................................................................ 29 11.2. Functional Description............................................................................................................................ 30 11.2.1. Differential Programmable Gain Amplifier (DA)..............................................................................30 11.2.2. Single-Ended Programmable Gain Amplifier (AMP).......................................................................30 11.2.3. General Purpose Comparator (CMP)............................................................................................. 30 11.2.4. Phase Comparator (PHC).............................................................................................................. 30 11.2.5. Protection Comparator (PCMP)...................................................................................................... 30 11.2.6. Analog Output Buffer (BUF)............................................................................................................ 31 11.2.7. Analog Front End I/O (AIO)............................................................................................................ 31 11.2.8. Push Button (PBTN)....................................................................................................................... 31 11.2.9. HP DAC and LP DAC..................................................................................................................... 31 11.2.10. ADC Pre-Multiplexer..................................................................................................................... 31 11.2.11. Configurable Analog Signal Matrix (CASM)..................................................................................31 11.2.12. Configurable Digital Signal Matrix (CDSM)...................................................................................31 11.3. Electrical Characteristics........................................................................................................................ 33 11.4. Typical Performance Characteristics...................................................................................................... 37 12. Application Specific Power Drivers (ASPD).................................................................................................... 38 12.1. Features................................................................................................................................................. 38 12.2. Block Diagram........................................................................................................................................ 38 12.3. Functional Description............................................................................................................................ 38 12.3.1. Low-Side Gate Driver..................................................................................................................... 39 12.3.2. Ultra-High-Voltage Gate Driver....................................................................................................... 39 12.3.3. High-Side Switching Transients...................................................................................................... 39 12.3.4. Open-Drain Drivers........................................................................................................................ 40 12.3.5. Power Drivers Control.................................................................................................................... 40 12.3.6. Gate Driver Fault Protection........................................................................................................... 41 12.4. Electrical Characteristics........................................................................................................................ 42 12.5. Typical Performance Characteristics...................................................................................................... 44 -2- Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 13. ADC with Auto-Sampling Sequencer.............................................................................................................. 46 13.1. Block Diagram........................................................................................................................................ 46 13.2. Functional Description............................................................................................................................ 46 13.2.1. ADC................................................................................................................................................ 46 13.2.2. Auto-Sampling Sequencer............................................................................................................. 46 13.2.3. EMUX Control................................................................................................................................ 47 13.3. Electrical Characteristics........................................................................................................................ 47 14. Memory System............................................................................................................................................. 48 14.1. Features................................................................................................................................................. 48 14.2. Block Diagram........................................................................................................................................ 48 14.3. Functional Description............................................................................................................................ 48 14.3.1. Program and Data FLASH............................................................................................................. 48 14.3.2. SRAM............................................................................................................................................. 48 14.4. Electrical Characteristics........................................................................................................................ 49 15. Clock Control System..................................................................................................................................... 50 15.1. Features................................................................................................................................................. 50 15.2. Block Diagram........................................................................................................................................ 50 15.3. Functional Description............................................................................................................................ 51 15.3.1. Free Running Clock (FRCLK)........................................................................................................ 51 15.3.2. Fast Clock (FCLK).......................................................................................................................... 51 15.3.3. High-Speed Clock (HCLK)............................................................................................................. 51 15.3.4. Auxiliary Clock (ACLK)................................................................................................................... 51 15.3.5. Clock Gating................................................................................................................................... 51 15.3.6. Ring Oscillator (ROSC).................................................................................................................. 51 15.3.7. Trimmed 4MHz RC Oscillator......................................................................................................... 51 15.3.8. Internal Slow RC Oscillator............................................................................................................ 51 15.3.9. Crystal Oscillator Driver................................................................................................................. 51 15.3.10. External Clock Input..................................................................................................................... 51 15.3.11. PLL............................................................................................................................................... 51 15.4. Electrical Characteristics........................................................................................................................ 52 16. ARM Cortex-M0 Microcontroller Core............................................................................................................ 53 16.1. Features................................................................................................................................................. 53 16.2. Block Diagram........................................................................................................................................ 53 16.3. Functional Description............................................................................................................................ 53 16.4. Electrical Characteristics........................................................................................................................ 54 16.5. Typical Performance Characteristics...................................................................................................... 54 17. I/O Controller.................................................................................................................................................. 55 17.1. Features................................................................................................................................................. 55 17.2. Block Diagram........................................................................................................................................ 55 17.3. Functional Description............................................................................................................................ 55 17.4. Electrical Characteristics........................................................................................................................ 56 18. Serial Interface............................................................................................................................................... 57 18.1. Block Diagram........................................................................................................................................ 57 18.2. Functional Description............................................................................................................................ 57 18.2.1. I2C Controller................................................................................................................................. 57 18.3. UART Controller..................................................................................................................................... 58 18.4. SPI Controller......................................................................................................................................... 58 18.5. Dynamic Characteristics........................................................................................................................ 59 19. Timers............................................................................................................................................................ 62 19.1. Block Diagram........................................................................................................................................ 62 19.2. Functional Description............................................................................................................................ 63 19.2.1. Timer A........................................................................................................................................... 63 19.2.2. Timer B........................................................................................................................................... 63 19.2.3. Timer C.......................................................................................................................................... 63 -3- Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 19.2.4. Timer D.......................................................................................................................................... 64 19.2.5. Watchdog Timer............................................................................................................................. 64 19.2.6. SOC Bus Watchdog Timer............................................................................................................. 64 19.2.7. Wake-Up Timer.............................................................................................................................. 64 19.2.8. Real-Time Clock............................................................................................................................. 64 20. Thermal Characteristics................................................................................................................................. 65 21. Application Examples..................................................................................................................................... 66 22. Package Outline and Dimensions.................................................................................................................. 68 22.1. TQFN1010-57 Package Outline and Dimensions..................................................................................68 23. Legal Information........................................................................................................................................... 70 -4- Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller LIST OF TABLES Table 1. Product Selection Summary..................................................................................................................... 9 Table 2. Ordering Information................................................................................................................................. 9 Table 3. Absolute Maximum Ratings.................................................................................................................... 11 Table 4. Multi-Mode Power Manager and System Pin Description.......................................................................14 Table 5. Configurable Analog Front End Pin Description......................................................................................15 Table 6. Application Specific Power Drivers Pin Description................................................................................16 Table 7. I/O Ports Pin Description........................................................................................................................ 17 Table 8. I/O Ports Pin Description (Continued)..................................................................................................... 18 Table 9. Multi-Mode Switching Supply Controller Electrical Characteristics.........................................................25 Table 10. Linear Regulators Electrical Characteristics......................................................................................... 27 Table 11. Power System Electrical Characteristics............................................................................................... 27 Table 12. Differential Programmable Gain Amplifier (DA) Electrical Characteristics............................................33 Table 13. Single-Ended Programmable Gain Amplifier (AMP) Electrical Characteristics.....................................33 Table 14. General Purpose Comparator (CMP) Electrical Characteristics...........................................................34 Table 15. Phase Comparator (PHC) Electrical Characteristics.............................................................................34 Table 16. Protection Comparator (PCMP) Electrical Characteristics....................................................................34 Table 17. Analog Output Buffer (BUF) Electrical Characteristics..........................................................................34 Table 18. Analog Front End I/O (AIO) Electrical Characteristics...........................................................................36 Table 19. Push Button (PBTN) Electrical Characteristics.....................................................................................36 Table 20. HP DAC and LP DAC Electrical Characteristics...................................................................................36 Table 21. Power Driver Resources by Part Number............................................................................................. 39 Table 22. Microcontroller Port and PWM to Power Driver Mapping......................................................................40 Table 23. Power Driver Delay Configuration......................................................................................................... 40 Table 24. Gate Drivers Electrical Characteristics................................................................................................. 42 Table 25. Open-Drain Drivers Electrical Characteristics.......................................................................................42 Table 26. Power Drivers Module Electrical Characteristics..................................................................................43 Table 27. ADC and Auto-Sampling Sequencer Electrical Characteristics.............................................................47 Table 28. Memory System Electrical Characteristics............................................................................................ 49 Table 29. Clock Control System Electrical Characteristics...................................................................................52 Table 30. Microcontroller and Clock Control System Electrical Characteristics....................................................54 Table 31. I/O Controller Electrical Characteristics................................................................................................56 Table 32. Serial Interface Dynamic Characteristics..............................................................................................59 Table 33. I2C Dynamic Characteristics................................................................................................................ 60 Table 34. Thermal Characteristics........................................................................................................................ 65 -5- Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller LIST OF FIGURES Figure 1-1. Power Application Controller................................................................................................................ 7 Figure 2-1. Simplified Application Diagram............................................................................................................ 8 Figure 7-1. Architectural Block Diagram............................................................................................................... 12 Figure 8-1. PAC5250QF Pin Configuration (TQFN1010-57 Package).................................................................13 Figure 9-1. Power Supply Bypass Capacitor Routing..........................................................................................19 Figure 10-1. Multi-Mode Power Manager............................................................................................................. 20 Figure 10-2. Buck Mode....................................................................................................................................... 21 Figure 10-3. Ultra-High-Voltage Buck Mode......................................................................................................... 21 Figure 10-4. AC/DC Flyback Mode....................................................................................................................... 22 Figure 10-5. Linear Regulators............................................................................................................................. 23 Figure 10-6. Power Up Sequence........................................................................................................................ 23 Figure 11-1. Configurable Analog Front End........................................................................................................ 29 Figure 12-1. Application Specific Power Drivers................................................................................................... 38 Figure 12-2. Typical Gate Driver Connections...................................................................................................... 39 Figure 12-3. High-Side Switching Transients and Optional Circuitry....................................................................40 Figure 13-1. ADC with Auto-Sampling Sequencer................................................................................................46 Figure 14-1. Memory System............................................................................................................................... 48 Figure 15-1. Clock Control System...................................................................................................................... 50 Figure 16-1. ARM Cortex-M0 Microcontroller Core.............................................................................................. 53 Figure 17-1. I/O controller.................................................................................................................................... 55 Figure 18-1. Serial Interface................................................................................................................................. 57 Figure 18-2. I2C Timing Diagram......................................................................................................................... 61 Figure 19-1. Timers A, B, C, and D...................................................................................................................... 62 Figure 19-2. SOC Bus Watchdog and Wake-Up Timer........................................................................................63 Figure 19-3. Real-Time Clock and Watchdog Timer.............................................................................................63 Figure 21-1. 3-Phase Motor Using PAC5250 (Simplified Diagram)......................................................................66 Figure 21-2. Solar Micro-Inverter Using PAC5250 (Simplified Diagram)..............................................................66 Figure 21-3. Motor with LED Lighting Using PAC5250 (Simplified Diagram).......................................................67 Figure 22-1. TQFN1010-57.................................................................................................................................. 68 Table 22-1. Dimensions........................................................................................................................................ 68 -6- Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 1. GENERAL DESCRIPTION The PAC5250 belongs to Active-Semi's broad portfolio of full-featured Power Application Controller TM (PAC) products that are highly optimized for controlling and powering next generation smart energy appliances, devices, and equipment. These application controllers integrate a 50MHz ARM ® CortexTM-M0 32-bit microcontroller core with Active-Semi's proprietary and patent-pending Multi-Mode Power Manager TM, Configurable Analog Front EndTM, and Application Specific Power DriversTM to form the most compact microcontroller-based power and general purpose application systems ranging from digital power supply to motor control. The PAC52xx microcontroller features up to 32kB of embedded FLASH and 8kB of SRAM memory, a high-speed 10-bit 1µs analog-to-digital converter (ADC) with dual auto-sampling sequencers, 5V/3.3V I/Os, flexible clock sources, timers, a versatile 14-channel PWM engine, and several serial interfaces. The Multi-Mode Power Manager (MMPM) provides “all-in-one” efficient power management solution for multiple types of power sources. It features a configurable multi-mode switching supply controller capable of operating in buck, flyback, or boost mode, and up to four linear regulated voltage supplies. The Application Specific Power Drivers (ASPD) are highvoltage and ultra-high-voltage power drivers designed for each target set of control applications, including half bridge, Hbridge, 3-phase, intelligent power module (IPM), and general purpose driving. The Configurable Analog Front End (CAFE) comprises differential programmable gain amplifiers, single-ended programmable gain amplifiers, comparators, digital-toanalog converters, and I/Os for programmable and inter-connectible signal sampling, feedback amplification, and sensor monitoring of multiple analog input signals. Together, these modules and microcontroller enable a wide range of compact applications with highly integrated power management, driving, feedback, and control for DC supply up to 52V and for line AC supply. Figure 1-1. Power Application Controller SERIAL INTERFACE SPI, I22C, UART PWM ENGINE 16-bit timers, HW dead-time control, 10ns resolution control 50MHz ARM CORTEX-M0 MICROCONTROLLER CORE & MEMORY 1-cycle 32-bit multiplier, 24-bit RTC, 24-bit WDT, 24-bit SysTick, NVIC, FLASH & SRAM DATA ACQUISITION & SEQUENCER MULTI-MODE POWER MANAGER AC/DC, DC/DC, linear regulators APPLICATION SPECIFIC POWER DRIVERS ultra-high voltage highside gate drivers, low-side gate drivers, MV open-drain drivers CONFIGURABLE ANALOG FRONT END 3 differential PGAs, 4 single-ended PGAs, 10 Comparators, 2 DACs (10-bit & 8-bit), Temperature monitor 10-bit 1µs ADC, dual auto-sampling sequencer The PAC5250 is available in a 57-pin 10x10 TQFN package. The PAC family includes a range of part numbers optimized to work with different targeted primary applications. -7- Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 2. PAC FAMILY APPLICATIONS General purpose high-voltage system controllers Home appliances Power tools Motor controllers LED lighting controllers Uninterruptible power supply (UPS) Solar micro-inverters Wireless power controllers Digital power controllers Industrial applications Figure 2-1. Simplified Application Diagram PAC52xx SPI/I2C/UART PWM ENGINE MULTI-MODE POWER MANAGER 50MHz ARM CORTEX-M0 MICROCONTROLLER CORE & MEMORY APPLICATION SPECIFIC POWER DRIVERS SERIAL INTERFACE BUCK/ BOOST/ FLYBACK M MONITORING SIGNALS DATA ACQUISITION & SEQUENCER °C CONFIGURABLE ANALOG FRONT END -8- Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 3. PRODUCT SELECTION SUMMARY Table 1. Product Selection Summary Int + Ext 50 32 8 25 SPI I2C UART SWD PRIMARY APPLICATIO N XTAL 9 6 LS (1A/1A) 3 HS (0.25A/0.5A) 2 OD (23V/40mA) INTERFACE 9 GPIO 2 SRAM (kB) 10 FLASH (kB) 4 MICROCONTROLLER SPEED (MHz) 3 PROTECTFAULT ADC CHANNEL Y PWM CHANNEL DAC 5.252V POWER DRIVER COMPARATOR 57-pin 10x10 TQFN PGA PAC5250 DIFF-PGA PIN PKG APPLICATION SPECIFIC POWER DRIVERS SWMULTI-MODE PART NUMBER CONFIGURABLE ANALOG FRONT END INPUT VOLTAGE POWER MANAGER Y UHV 3 half bridge, 3-phase control Notes: DIFF-PGA = differential programmable gain amplifier, GD = gate driver, HS = high-side , LS = low-side, OD = open-drain driver, PGA = programmable gain amplifier, UHV = ultra-high-voltage. 4. ORDERING INFORMATION Table 2. Ordering Information (1) PART NUMBER(1) TEMPERATURE RANGE PACKAGE PINS PACKING PAC5250QF -40°C to 105°C TQFN1010-57 57 + Exposed Pad Tray See Product Selection Summary for product features for each part number. -9- Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 5. PAC5250 FEATURES Proprietary Multi-Mode Power Manager Multi-mode switching supply controller configurable as high-voltage or ultra-high-voltage buck, AC/DC or flyback DC supply up to 52V or line AC input 4 linear regulators with power and hibernate management Power and temperature monitor, warning, and fault detection Proprietary Configurable Analog Front End 10 analog front end I/O pins 3 differential programmable gain amplifiers 4 single-ended programmable gain amplifiers 10 comparators 2 DACs (10-bit and 8-bit) Proprietary Application Specific Power Drivers 6 low-side and 3 600V high-side gate drivers 1A/1A low-side, 0.25A/0.5A high-side, gate driving capability 2 23V/40mA open-drain drivers Configurable delays and fast fault protection 50MHz ARM Cortex-M0 32-bit microcontroller core Fast single cycle 32-bit x 32-bit multiplier 24-bit SysTick timer Nested vectored interrupt controller (NVIC) with 20 external interrupts Wake-up interrupt controller allowing power-saving sleep modes Clock-gating allowing low power operation 32kB FLASH and 8kB SRAM memory 10-bit 1µs ADC with multi-input/multi-sample control engine 9 ADC inputs including input from configurable analog front end 3.3V I/Os 2 general purpose I/Os with tri-state, and dedicated analog input to ADC True 5V I/Os 13 general purpose I/Os with tri-state, pull-up and pull-down and dedicated I/O supply Configurable between true 5V and 3.3V I/Os Flexible clock and PLL from internal 2% oscillator, ring oscillator, external clock, or crystal 9 timing generators Four 16-bit timers with up to 16 PWM/CC blocks and 7 independent dead-time controllers 24-bit watchdog timer 4s or 8s watchdog timer 24-bit real time clock 24-bit SysTick timer Wake-up timer for sleep modes from 0.125s to 8s SPI, I2C, and UART communication interfaces SWD debug interface with interface disable function - 10 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 6. ABSOLUTE MAXIMUM RATINGS Table 3. Absolute Maximum Ratings (Do not exceed these limits to prevent damage to the device. Exposure to absolute maximum rating conditions for long periods may affect device reliability.) VALUE UNIT VHM, DRM to VSSP PARAMETER -0.3 to 54 V VP to VSS -0.3 to 17 V -0.3 to VP + 0.3 V -0.3 to 6 V VCC33 to VSS -0.3 to 4.1 V VCC18 to VSS -0.3 to 2.5 V AIOx/.. (except AIO6/..), VCCIO, ENHS2 to VSS -0.3 to VSYS + 0.3 V PDx/.., PEx/.. to VSS -0.3 to VCCIO + 0.3 V XIN, XOUT to VSS -0.3 to VCC18 + 0.3 V PCx/.. to VSSA -0.3 to VCC33 + 0.3 V DRLx to VSSP -0.3 to VP + 0.3 V DXBx to VSSP -0.3 to 630 V DXSx to VSSP -11 to 610 V DXSx allowable offset slew rate (dVDXSx/dt) -50 to 50 V/ns DXBx, DXHx to respective DXSx -0.3 to 22 V OMx to VSSP -0.3 to 24 V -0.3 to 0.3 V 0.2 ARMS 0.4 ARMS CSM, REGO to VSS VSYS, AIO6/.. to VSS VSSP, VSSA to VSS VSS, VSYS, DRM, DRLx, DXHx, REGO, OMx RMS current VSSP RMS current VP RMS current (1) (1) (1) 0.6 ARMS -40 to 105 °C Human body model (JEDEC) 2 kV Charge device model (JEDEC) 800 V Machine model (JEDEC) 200 V Operating temperature range Electrostatic discharge (ESD) (1) Peak current can be 10 times higher than RMS value for pulses shorter than 10µs. - 11 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 7. ARCHITECTURAL BLOCK DIAGRAM Figure 7-1. Architectural Block Diagram PAC5250 Power Application Controller MULTI-MODE POWER MANAGER MULTIMODE SWITCHING SUPPLY SWDIO, SWDCL VHM DRM VP CSM VSSP, VSS, VSSA DEBUG 32kB/16kB FLASH AHB/APB XIN, XOUT PAC SOC BUS ARM CORTEX-M0 CORE 8kB/4kB SRAM CLOCK CONTROL LINEAR REGULATORS (4) APPLICATION SPECIFIC POWER DRIVERS OD (2) OM0 OM2 PWM ENGINE TIMERS (4) DXBx HSGD (3) PWMAx, PWMBx, PWMCx, PWMDx REGO VSYS VCCIO VCC33 VCC18 DXHx DXSx PWM / CC (14) ENHS2 RTC LSGD (6) DEAD TIME (7) PCx, PDx, PEx DRLx GPIO (15) CONFIGURABLE ANALOG FRONT END BRIDGE SPICSx, SPIMISO, SPIMOSI, SPICLK PGA/ CMP (4) SPI AMPx/CMPx/PHCx WATCHDOG I2CSDA, I2CSCL DAC (2) I2C UARTRX, UARTTX UART 10-BIT ADC MUX DATA ACQUISITION & SEQUENCER DIFF-PGA/ PCMP (3) DAxP/PCMPx DAxN ADx nRESET1 SYSTEM CONTROL AUTO SAMPLING - 12 - AIO CONTROL (10) AIOx BUF6 PBTN Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 8. PIN CONFIGURATION 8.1. PAC5250QF 43 PD6/PWMA7/PWMB1 44 PD5/PWMA5/PWMC1 45 PD4/PWMD1 46 PD3/PWMA5/PWMA7/PWMB1 47 PD2/PWMA3/PWMA4/PWMB0 48 PD1/SWDCL/EXTCLK 49 PD0/SWDIO 50 PE0/SPICLK 51 PE1/SPIMOSI/UARTTX 52 PE2/SPIMISO/UARTRX 53 PE3/SPICS0/nRESET1 54 PE4/SPICS1/I2CSCL 55 PE5/SPICS2/I2CSDA 56 VCCIO 57 XIN Figure 8-1. PAC5250QF Pin Configuration (TQFN1010-57 Package) XOUT 1 VCC18 2 PC3/AD3 3 42 DXB2 PC2/AD2 4 41 DXH2 VCC33 5 40 DXS2 VSSA 6 VSS 7 AIO0/DA0N 8 AIO1/DA0P/PCMP0 9 AIO2/DA1N 10 PAC5250QF 39 DXB1 TQFN1010-57 38 DXH1 AIO3/DA1P/PCMP1 11 37 DXS1 EP (VSS) AIO4/DA2N 12 AIO5/DA2P/PCMP2 13 AIO6/AMP6/CMP6/BUF6/PBTN 14 AIO7/AMP7/CMP7/PHC7 15 36 DXB0 AIO8/AMP8/CMP8/PHC8 16 35 DXH0 AIO9/AMP9/CMP9/PHC9 17 34 DXS0 - 13 - DRL5 33 OM2 31 DRL4 32 DRL3 29 CLKOUT/ENHS2 30 OM0 28 DRL2 27 DRL1 26 VSSP 24 DRL0 25 DRM 23 VHM 22 VP 21 CSM 20 REGO 19 VSYS 18 Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 9. PIN DESCRIPTION Table 4. Multi-Mode Power Manager and System Pin Description PIN NAME PIN NUMBER TYPE CSM 20 Analog Switching supply current sense input. Connect to the positive side of the current sense resistor. DRM 23 Analog Switching supply driver output. Connect to the base or gate of the external power NPN or n-channel MOSFET. See PAC User Guide and application notes. EP (VSS) EP Power Exposed pad. Must be connected to VSS in a star ground configuration. Connect to a large PCB copper area for power dissipation heat sinking. REGO 19 Power System regulator output. Connect to VSYS directly or through an external power-dissipating resistor. VCC18 2 Power Internally generated 1.8V core power supply. Connect a 2.2μF or higher value ceramic capacitor from VCC18 to VSSA. See Figure 9-1. Power Supply Bypass Capacitor Routing below. VCC33 5 Power Internally generated 3.3V power supply. Connect a 2.2μF or higher value ceramic capacitor from VCC33 to VSSA. See PCB layout note below. VCCIO 56 Power Internally generated digital I/O power supply. Connect a 4.7μF or higher value ceramic capacitor from VCCIO to VSSA. See Figure 9-1. Power Supply Bypass Capacitor Routing below. Power Switching supply controller supply input. Connect a 1μF or higher value ceramic capacitor, or a 0.1μF ceramic capacitor in parallel with a 10μF or higher electrolytic capacitor from VHM to VSSP. This pin requires good capacitive bypassing to VSSP, so the ceramic capacitor must be connected with a shorter than 10mm trace from the pin. See Figure 9-1. Power Supply Bypass Capacitor Routing below. VHM 22 DESCRIPTION VP 21 Power Main power supply. Provides power to the power drivers as well as voltage feedback path for the switching supply. Connect a properly sized supply bypass capacitor in parallel with a 0.1μF ceramic capacitor from VP pin to VSS for voltage loop stabilization. This pin requires good capacitive bypassing to VSS, so the ceramic capacitor must be connected with a shorter than 10mm trace from the pin. See See Figure 9-1. Power Supply Bypass Capacitor Routing below. VSS 7 Power Ground. VSSA 6 Power Analog ground. Connect to VSS in a star ground configuration. VSSP 24 Power Power ground. Connect to VSS in a star ground configuration. VSYS 18 Power 5V system power supply. Connect a 4.7μF or higher value ceramic capacitor from V SYS to VSSP. See Figure 9-1. Power Supply Bypass Capacitor Routing below. XIN 57 Analog Crystal oscillator driver input. Leave floating if unused. XOUT 1 Analog Crystal oscillator driver output. Leave floating if unused. - 14 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Table 5. Configurable Analog Front End Pin Description PIN NAME AIO0/DA0N AIO1/DA0P/PCMP0 AIO2/DA1N AIO3/DA1P/PCMP1 AIO4/DA2N AIO5/DA2P/PCMP2 AIO6/AMP6/CMP6/BUF6/PBTN AIO7AMP7/CMP7/PHC7 AIO8/AMP8/CMP8/PHC8 AIO9/AMP9/CMP9/PHC9 PIN NUMBER FUNCTION TYPE DESCRIPTION AIO0 I/O DA0N Analog AIO1 I/O DA0P Analog Differential PGA 0 positive input. PCMP0 Analog Protection comparator input 0. 8 9 Analog front end I/O 0. Differential PGA 0 negative input. Analog front end I/O 1. AIO2 I/O DA1N Analog AIO3 I/O DA1P Analog Differential PGA 1 positive input. PCMP1 Analog Protection comparator input 1. 10 11 Analog front end I/O 2. Differential PGA 1 negative input. Analog front end I/O 3. AIO4 I/O DA2N Analog AIO5 I/O DA2P Analog Differential PGA 2 positive input. PCMP2 Analog Protection comparator input 2. 12 13 14 15 16 17 - 15 - Analog front end I/O 4. Differential PGA 2 negative input. Analog front end I/O 5. AIO6 I/O AMP6 Analog Analog front end I/O 6. PGA input 6. CMP6 Analog Comparator input 6. BUF6 Analog Buffer output 6. PBTN Analog Push button input. AIO7 I/O AMP7 Analog Analog front end I/O 7. PGA input 7. CMP7 Analog Comparator input 7. PHC7 Analog Phase comparator input 7. AIO8 I/O AMP8 Analog PGA input 8. CMP8 Analog Comparator input 8. PHC8 Analog Phase comparator input 8. AIO9 I/O AMP9 Analog PGA input 9. CMP9 Analog Comparator input 9. PHC9 Analog Phase comparator input 9. Analog front end I/O 8. Analog front end I/O 9. Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Table 6. Application Specific Power Drivers Pin Description PIN NAME PIN NUMBER TYPE DESCRIPTION DRL0 25 Analog Low-side gate driver 0. DRL1 26 Analog Low-side gate driver 1. DRL2 27 Analog Low-side gate driver 2. DRL3 29 Analog Low-side gate driver 3. DRL4 32 Analog Low-side gate driver 4. DRL5 33 Analog Low-side gate driver 5. DXB0 36 Analog Ultra-high-voltage high-side gate driver bootstrap 0. DXB1 39 Analog Ultra-high-voltage high-side gate driver bootstrap 1. DXB2 42 Analog Ultra-high-voltage high-side gate driver bootstrap 2. DXH0 35 Analog Ultra-high-voltage high-side gate driver 0. DXH1 38 Analog Ultra-high-voltage high-side gate driver 1. DXH2 41 Analog Ultra-high-voltage high-side gate driver 2. DXS0 34 Analog Ultra-high-voltage high-side gate driver source 0. DXS1 37 Analog Ultra-high-voltage high-side gate driver source 1. DXS2 40 Analog Ultra-high-voltage high-side gate driver source 2. ENHS2 30 O OM0 28 OD Medium-voltage open-drain driver 0. OM2 31 OD Medium-voltage open-drain driver 2. High-side driver group 2 control enable output. - 16 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Table 7. I/O Ports Pin Description PIN NAME PIN NUMBER PC2/AD2 4 PC3/AD3 3 PD0/SWDIO 49 PD1/SWDCL/EXTCLK PD2/PWMA3/PWMA4/PWMB0 PD3/PWMA5/PWMA7/PWMB1 PD4/PWMD1 PD5/PWMA5/PWMC1 PD6/PWMA7/PWMB1 PE0/SPICLK PE1/SPIMOSI/UARTTX PE2/SPIMISO/UARTRX FUNCTION 46 45 44 43 PC2 I/O I/O port C2. Analog ADC input 2. PC3 I/O I/O port C3. AD3 Analog ADC input 3. PD0 I/O I/O port D0. SWDIO I/O Serial wire debug I/O. PD1 I/O I/O port D1. SWDCL I Serial wire debug clock. EXTCLK I External clock. PD2 I/O I/O port D2. PWMA3 I/O Timer A PWM/capture 3. PWMA4 I/O Timer A PWM/capture 4. PWMB0 I/O Timer B PWM/capture 0. PD3 I/O I/O port D3. PWMA5 I/O Timer A PWM/capture 5. PWMA7 I/O Timer A PWM/capture 7. PWMB1 I/O Timer B PWM/capture 1. PD4 I/O I/O port D4. PWMD1 I/O Timer D PWM/capture 1. PD5 I/O I/O port D5. PWMA5 I/O Timer A PWM/capture 5. PWMC1 I/O Timer C PWM/capture 1. PD6 I/O I/O port D6. PWMA7 I/O Timer A PWM/capture 7. PWMB1 I/O Timer B PWM/capture 1. PE0 I/O I/O port E0. SPICLK I/O SPI clock. PE1 I/O I/O port E1. SPIMOSI I/O SPI master out slave in (MOSI). UARTTX O 50 51 52 DESCRIPTION AD2 48 47 TYPE UART transmit output. PE2 I/O I/O port E2. SPIMISO I/O SPI master in slave out (MISO). UARTRX I - 17 - UART receive input. Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Table 8. I/O Ports Pin Description (Continued) PIN NAME PE3/SPICS0/nRESET1 PE4/SPICS1/I2CSCL PE5/SPICS2/I2CSDA PIN NUMBER FUNCTION TYPE PE3 I/O SPICS0 O SPI chip select 0. nRESET1 I Reset input 1 (active low). 53 54 55 - 18 - DESCRIPTION I/O port E3. PE4 I/O SPICS1 O I/O port E4. I2CSCL I/O I2C clock. PE5 I/O I/O port E5. SPICS2 O I2CSDA I/O SPI chip select 1. SPI chip select 2. I2C data. Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Figure 9-1. Power Supply Bypass Capacitor Routing - 19 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 10. MULTI-MODE POWER MANAGER (MMPM) 10.1. Features Multi-mode switching supply controller configurable as high voltage or ultra-high-voltage buck, flyback AC/DC DC supply up to 52V or line AC input 4 linear regulators with power and hibernate management Power and temperature monitor, warning, and fault detection 10.2. Block Diagram Figure 10-1. Multi-Mode Power Manager MULTI-MODE POWER MANAGER MULTI-MODE SWITCHING SUPPLY CONTROLLER COMP & CURR LIMIT START UP & MODE CTRL CLAMP POWER OK & OVP ERROR COMP IMOD DAC PWM LOGIC CURR SENSE DRM DRIVER VSSP MUX VOLTAGE SETTING VP VHM ERROR AMP MUX 1.2V REGO SYSTEM SUPPLY REG TIMERS LINEAR REG LINEAR REG LINEAR REG VSYS VCCIO VCC33 HIBERNATE 2.5V VREF VTHREF POWER & TEMP MON MUX CSM VSSA VMON VTEMP VSS VCC18 10.3. Functional Description The Multi-Mode Power Manager (Figure 10-1) is optimized to efficiently provide "all-in-one" power management required by the PAC and associated application circuitry from a wide range of input power sources. It incorporates a dedicated multimode switching supply (MMSS) controller operable as a buck, flyback, or boost converter to efficiently convert power from a DC or AC input source to generate a main supply output V P. Four linear regulators provide VSYS, VCCIO, VCC33, and VCC18 supplies for 5V system, 5V or 3.3V I/O, 3.3V mixed signal, and 1.8V microcontroller core circuitry. The power manager also handles system functions including internal reference generation, timers, hibernate mode management, and power and temperature monitoring. 10.3.1. Multi-Mode Switching Supply (MMSS) Controller The MMSS controller drives an external power transistor for pulse-width modulation switching of an inductor or transformer for power conversion. The DRM output drives the gate of the n-channel MOSFET or the base of the NPN between the VHM on state and VSSP off state at proper duty cycle and switching frequency to ensure that the main supply voltage VP is regulated. The VP regulation voltage is initially set to 12V during start up, and can be reconfigured to be 5V, - 20 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 9V, or 15V by the microcontroller after initialization. When V P is lower than the target regulation voltage, the internal feedback control circuitry causes the inductor current to increase to raise V P. Conversely, when VP is higher than the regulation voltage, the feedback loop control causes the inductor current to decrease to lower V P. The feedback loop is internally stabilized. The output current capability of the switching supply is determined by the external current sense resistor. In the high-side current sense buck mode, the inductor current signal is sensed differentially between the CSM pin and VP, and has a peak current limit threshold of 0.26V. In the low-side current sense flyback or boost mode, the inductor current signal is sensed differentially between the CSM pin and V SSP, and has a peak current limit threshold of 1V. The MMSS controller is flexible and configurable as a buck, flyback, or boost converter. Input sources include battery supply for buck mode (Figure 10-2), and AC line supply voltage range for ultra-high-voltage buck mode (Figure 10-3), AC/DC flyback mode (Figure 10-4). The MMSS controller operational mode is determined by external configuration and register setting from the microcontroller after power up. It can operate in either high-side or low-side current sense mode, and does not require external feedback loop compensation circuitry. For optional extended application range, the MMSS also incorporates additional digital control by the microcontroller to add accurate computations for outer feedback loop control such as power factor correction and accurate current control. Figure 10-2. Buck Mode VHM VIN PAC52xx PAC5250 DRM VP (12V default) CSM VP Figure 10-3. Ultra-High-Voltage Buck Mode VHM VAC (120V/230V) PAC5250 DRM VP (12V default) CSM VP - 21 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Figure 10-4. AC/DC Flyback Mode VHM VAC (120V/230V) PAC5250 VP DRM CSM VP (12V default) The MMSS detects and selects between high-side and low-side mode during start up based on the placement of the current sense resistor and the CSM pin voltage. It employs a safe start up mode with 9.5kHz switching frequency until V P exceeds 4.3V under-voltage-lockout threshold, then transitions to the 45kHz default switching frequency for at least 6ms to bring V P close to the target voltage, before enabling the linear regulators. Any extra load should only be applied after the supplies are available and the microprocessor has initialized. The switching frequency can be reconfigured by the microprocessor to be 181kHz to 500kHz in the high switching frequency mode for battery-based applications, and to be 45kHz to 125kHz in the low switching frequency mode for AC applications. Upon initialization, the microcontroller must reconfigure the MMSS to the desired settings for V P regulation voltage, switching mode, switching frequency, and V HM clamp. Refer to the PAC application notes and user guide for MMSS controller design and programming. If a stable external 5V to 15V power source is available, it can power the V P main supply and all the linear regulators directly without requiring the MMSS controller to operate. In such applications, V HM can be connected directly to VP and the microcontroller should disable the MMSS upon initialization to reduce power loss. 10.3.2. Linear Regulators The MMPM includes up to four linear regulators. The system supply regulator is a medium voltage regulator that takes the VP supply and sources up to 200mA at REGO until V SYS, externally coupled to REGO, reaches 5V. This allows a properly rated external resistor to be connected from REGO to V SYS to close the current loop and offload power dissipation between VP and VSYS. Once VSYS is above 4V, the three additional 40mA linear regulators for V CCIO, VCC33, and VCC18 supplies sequentially power up. Figure 10-5 shows typical circuit connections for the linear regulators. For 5V I/O systems, short the VCCIO pin to VSYS to bypass the VCCIO regulator. For 3.3V I/O systems, the VCCIO regulator generates 3.3V. The VCC33 and VCC18 regulators generate 3.3V and 1.8V, respectively. When V SYS, VCCIO, VCC33, and VCC18 are all above their respective power good threshold, and the configurable power on reset duration has expired, the microcontroller is initialized. - 22 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Figure 10-5. Linear Regulators VP VP (12V typical) PAC5250 VSYS & VCCIO (5V) REGO VSYS VCCIO 4.7µF (1) VCC33 VCC18 VSS VSSA 1µF 1µF (1) 5V I/O connection shown. Connect instead to a 4.7µF capacitor for 3.3V I/O. 10.3.3. Power Up Sequence The MMPM follows a typical power up sequence as in the Figure 10-6 below. A typical sequence begins with input power supply being applied, followed by the safe start up and start up durations to bring the switching supply output V P to 12V, before the linear regulators are enabled. When all the supplies are ready, the internal clocks become available, and the microcontroller starts executing from the program memory. During initialization, the microcontroller can reconfigure the switching supply to a different VP regulation voltage such as 15V and to an appropriate switching frequency and switching mode. The total loading on the switching supply must be kept below 25% of the maximum output current until after the reconfiguration of the switching supply is complete. For AC input supply applications, the start up sequence includes an additional charging time for VHM depending on the start-up resistor and capacitor values. Figure 10-6. Power Up Sequence Safe start up Start up Regulators enabled Power-onreset delay Reconfiguration by firmware System operation SOC.PWRCFG.TRESET + 10.5 ms (default: 32ms + 10.5ms = 42.5ms) 6ms VIN or VHM VIN or VHM 14.8V VP (5V/12V/15V) VP (start up default) VP VSYS and VCCIO 4.3V VSYS and VCCIO (5V) 4V VCC33 (3.3V) VCC33 VCC18 VCC18 (1.8V) 76% Internal clocks Power on reset Microcontroller reset Microcontroller initializing Microcontroller executing 10.3.4. Hibernate Mode The IC can go into an ultra-low power hibernate mode via the microcontroller firmware or via the optional push button (PBTN, see Push Button description in Configurable Analog Front End). In hibernate mode, only a minimal amount (typically 18µA) of current is used by VHM, and the MMSS controller and all internal regulators are shut down to eliminate power drain from the output supplies. The system exits hibernate mode after a wake-up timer duration (configurable from 125ms to 8s or infinite) has expired or, if push button enabled, after an additional push button event has been detected. When exiting the hibernate mode, the power manager goes through the start up cycle and the microcontroller is - 23 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller reinitialized. Only the persistent power manager status bits (resets and faults) are retained during hibernation. 10.3.5. Power and Temperature Monitor Whenever any of the VSYS, VCCIO, VCC33, or VCC18 power supplies falls below their respective power good threshold voltage, a fault event is detected and the microcontroller is reset. The microcontroller stays in the reset state until V SYS, VCCIO, VCC33, and VCC18 supply rails are all good again and the reset time has expired. A microcontroller reset can also be initiated by a maskable temperature fault event that occurs when the IC temperature reaches 170°C. The fault status bits are persistent during reset, and can be read by the microcontroller upon re-initialization to determine the cause of previous reset. A power monitoring signal VMON is provided onto the ADC pre-multiplexer for monitoring various internal power supplies. VMON can be set to be V CC18, 0.4•VCC33, 0.4•VCCIO, 0.4•VSYS, 0.1•VREGO, 0.1•VP, 0.0333•VHM, or the internal compensation voltage VCOMP for switching supply power monitoring. For power and temperature warning, a VP low event at 77% of the regulation voltage and an IC temperature warning event at 140°C are provided as maskable interrupts to the microcontroller. These warnings allow the microcontroller to safely power down the system. In addition to the temperature warning interrupt and fault reset, a temperature monitor signal VTEMP = 1.5 + 5.04e-3 • (T 25°C) (V) is provided onto the ADC pre-multiplexer for IC temperature measurement. 10.3.6. Voltage Reference The reference block includes a 2.5V high precision reference voltage that provides the 2.5V reference voltage for the ADC, the DACs, and the 4-level programmable threshold voltage VTHREF (0.1V, 0.2V, 0.5V, and 1.25V). - 24 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 10.4. Electrical Characteristics Table 9. Multi-Mode Switching Supply Controller Electrical Characteristics (VHM = 24V, VP = 12V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNIT Input Supply (VHM) IHIB;VHM VHM hibernate mode supply current VHM, hibernate mode 18 36 µA ISU;VHM VHM start up supply current VHM < VUVLOR;VHM 75 120 µA IOP;VHM VHM operating supply current DRM floating 0.3 0.5 mA VOP:VHM VHM operating voltage range 5.2 52 V VUVLOR;VHM VHM under-voltage lockout rising 13.5 14.5 16 V 6.8 7.5 8.1 V 23 26.6 V VUVLOF;VHM VHM under-voltage lockout falling VCLAMP;VHM VHM clamp voltage Clamp enabled, sink current = 100µA ICLAMP;VHM VHM clamp sink current limit Clamp enabled 0.72 1.2 mA Output Supply and Feedback (VP) VREG;VP VP output regulation voltage Programmable to 5V, 9V, 12V, or 15V Load = 0 to 500mA -7 -1 5 % kPOK;VP VP power OK threshold VP rising, hysteresis = 10% 82 87 92 % kOVP;VP VP over voltage protection threshold VP rising, hysteresis = 15% MMPM Controller Enabled 136 % Switching Control fSWMACC;DRM Switching frequency accuracy -10 10 High frequency mode, 8 settings 181 500 Low frequency mode, 8 settings 45 125 % fSWM;DRM Switching frequency programmable range fSSU;DRM Safe start up switching frequency 9.5 kHz Minimum on time 440 nS Low duty-cycle & Low-frequency mode 25 % Low duty-cycle & High-frequency mode 440 nS High duty-cycle mode 820 nS tONMIN;DRM tOFFMIN;DRM Minimum off time - 25 - kHz Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNIT Current Sense (CSM Pin) VDET;CSM CSM mode detection threshold Rising, hysteresis = 50mV 0.40 0.55 0.69 V VHSLIM;CSM High-side current limit threshold 181kHz, duty = 25%, relative to VP 0.17 0.26 0.35 V VLSLIM;CSM Low-side current limit threshold 45kHz, duty = 25% 0.7 1 1.48 V tBLANK;CSM Current sense blanking time VPROT;CSM Low-side abnormal current sense protection threshold 200 VP < 4.3V 0.8 VP > 4.3V 1.9 ns V Gate Driver Output (DRM Pin) VHM−1.4 VOH;DRM High-level output voltage IDRM = -20mA V VOL;DRM Low-level output voltage IDRM = 20mA IOH;DRM High-level output source current VDRM = VHM - 5V -0.1 A IOL;DRM Low-level output sink current VDRM = 5V 0.25 A tPD;DRM Strong pull down pulse width High-side current sense mode 240 ns 0.6 - 26 - V Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Table 10. Linear Regulators Electrical Characteristics (VP = 12V and TA = -40°C to 105°C unless otherwise specified.) SYMBOL VOP;VP VUVLO;VP PARAMETER CONDITIONS VP operating voltage range MIN TYP MAX UNI T 16 V 4.3 4.5 V 4.5 VP under-voltage-lockout threshold VP rising, hysteresis = 0.2V VP quiescent supply current Power manager only, including IQ;VSYS 400 750 µA IQ;VSYS VSYS quiescent supply current VCCIO, VCC33, and VCC18 regulators only 350 600 µA VSYS VSYS output voltage Load = 10µA to 200mA 5 5.18 V VCCIO VCCIO output voltage Load = 10mA VCC33 VCC33 output voltage VCC18 VCC18 output voltage IQ;VP 4 4.8 VCCIO shorted to VSYS VCCIO from regulator VSYS V 3.152 3.3 3.398 Load = 10mA 3.185 3.3 3.415 V Load = 10mA 1.834 1.9 1.979 V ILIM;VSYS VSYS regulator current limit 220 330 mA ILIM;VCCIO VCCIO regulator current limit 45 80 mA ILIM;VCC33 VCC33 regulator current limit 45 80 mA ILIM;VCC18 VCC18 regulator current limit 45 80 mA 50 % kSCFB VDO;VSYS VUVLO;VSYS Short circuit current fold back VSYS dropout voltage VP=5V, ISYS =100mA 350 680 mV VSYS under-voltage-lockout threshold VSYS rising, hysteresis = 0.2V 3.5 4 4.4 V kPOKIO VCCIO Power OK threshold VCCIO rising, hysteresis = 10% 75 82 89 % kPOK33 VCC33 Power OK threshold VCC33 rising, hysteresis = 10% 71 78 85 % kPOK18 VCC18 Power OK threshold VCC18 falling, hysteresis = 10% 58 66 74 % MIN TYP MAX UNI T TA = 25°C 2.487 2.5 2.513 TA = -40°C to 105°C 2.463 2.5 2.537 Table 11. Power System Electrical Characteristics (VSYS = VCCIO = 5V, VCC33 = 3.3V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL VREF PARAMETER Reference voltage CONDITIONS VCC18 V 1 VSYS, VCCIO, VCC33 0.4 VP, VREGO 0.1 kMON Power monitoring voltage (VMON) coefficient VTEMP Temperature monitor voltage at 25°C TA = 25°C, at ADC kTEMP Temperature monitor coefficient At ADC 5.04 mV/K TWARN Over-temperature warning threshold Hysteresis = 10°C 140 °C TFAULT Over-temperature fault threshold Hysteresis = 10°C 170 °C VHM V/V 0.0333 - 27 - 1.475 1.5 1.540 V Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 10.5. Typical Performance Characteristics (VP = 12V and TA = 25°C unless otherwise specified.) Buck Mode Efficiency vs. Output Current 50 70 VIN = 48V 60 50 40 30 20 0 0 100 0.1 0.2 0.3 0.4 40 50 60 0.30 0.5 1 1.5 2 0.20 0.15 RSTARTUP = 1MΩ 0.10 0.05 VP = 12V, fSW;DRM = 45kHz 10 PACMMPM-004 PACMMPM-003 30 20 VP = 12V, all regulators on 0.25 40 0 30 AC/DC Flyback Mode Standby Power vs. Input Voltage 50 0 20 AC/DC Flyback Mode Efficiency vs. Output Current VAC = 230V 60 0 0.5 Input Voltage (V) 80 70 20 Output Current (A) VAC = 120V 90 30 10 VP = 12V, fSW;DRM = 181kHz 10 Efficiency (%) 40 Input Power (W) Efficiency (%) 80 PACMMPM-002 PACMMPM-001 VIN = 24V 90 Input Current (µA) 100 Buck Mode Hibernate Input Current vs. Input Voltage RSTARTUP = 2MΩ 0 2.5 90 135 180 225 270 Input Voltage (VAC) Output Current (A) DRM Driver Output On Resistance vs. Temperature PACMMPM-005 80 On Resistance (Ω) 70 60 50 40 Pull up 30 20 Pull down 10 0 -40 0 40 80 120 Temperature (°C) - 28 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 11. CONFIGURABLE ANALOG FRONT END (CAFE) 11.1. Block Diagram Figure 11-1. Configurable Analog Front End CONFIGURABLE ANALOG FRONT END LP DAC DIFF-PGA & PCOMP INT1 PROTECT HP DAC ADC PRE-MUX DAxN MUX S/H DAxP/PCMPx MUX MUX AMPx BUF6 COMPARATOR MUX VTHREF MUX CMPx DINx VTEMP, VMON, VREF/2 VSYS VSYS AFE I/O I/O CONTROL AIOx MUX (except AIO6) ADC MUX CONFIGURABLE DIGITAL SIGNAL MATRIX PGA CONFIGURABLE ANALOG SIGNAL MATRIX OFFSET CAL PR1, PR2 DINx PHASE COMPARATOR PHCx DINx PBTN PUSH BUTTON MUX PHASE REF MUX 3V - 29 - PHASE POS INT2/POS Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 11.2. Functional Description The device includes a Configurable Analog Front End (CAFE, Figure 11-1) accessible through up to 10 analog and I/O pins. These pins can be configured to form flexible interconnected circuitry made up of up to 3 differential programmable gain amplifiers, 4 single-ended programmable gain amplifiers, 4 general purpose comparators, 3 phase comparators, 10 protection comparators, and one buffer output. These pins can also be programmed as analog feed-through pins, or as analog front end I/O pins that can function as digital inputs or digital open-drain outputs. The PAC proprietary configurable analog signal matrix (CASM) and configurable digital signal matrix (CDSM) allow real time asynchronous analog and digital signals to be routed in flexible circuit connections for different applications. A push button function is provided for optional push button on, hibernate, and off power management function. 11.2.1. Differential Programmable Gain Amplifier (DA) The DAxP and DAxN pin pair are positive and negative inputs, respectively, to a differential programmable gain amplifier. The differential gain can be programmable to be 1x, 2x, 4x, 8x, 16x, 32x, and 48x for zero ohm signal source impedance. The differential programmable gain amplifier has -0.3V to 3.5V input common mode range, and its output can be configured for routing directly to the ADC pre-multiplexer, or through a sample-and-hold circuit synchronized with the ADC auto-sampling mechanism. Each differential amplifier is accompanied by offset calibration circuitry, and two protection comparators for protection event monitoring. The programmable gain differential amplifier is optimized for use with signal source impedance lower than 500Ω and with matched source impedance on both positive and negative inputs for minimal offset. The effective gain is scaled by 13.5k / (13.5k + RSOURCE), where RSOURCE is the matched source impedance of each input. 11.2.2. Single-Ended Programmable Gain Amplifier (AMP) Each AMPx input goes to a single-ended programmable gain amplifier with signal relative to V SSA. The amplifier gain can be programmed to be 1x, 2x, 4x, 8x, 16x, 32x, and 48x, or as analog feed-through. The programmable gain amplifier output is routed via a multiplexer to the configurable analog signal matrix CASM. 11.2.3. General Purpose Comparator (CMP) The general purpose comparator takes the CMPx input and compares it to either the programmable threshold voltage (VTHREF) or a signal from the configurable analog signal matrix CASM. The comparator has 0V to V SYS input common mode range, and its polarity-selectable output is routed via a multiplexer to either a data input bit or the configurable digital signal matrix CDSM. Each general purpose comparator has two mask bits to prevent or allow rising or falling edge of its output to trigger second microcontroller interrupt INT2, where INT2 can be configured to activate protection event PR1. Each comparator output, routed via CASM and with 500ns de-glitch time, can also be configured to activate protection event PR1. 11.2.4. Phase Comparator (PHC) The phase comparator takes the PHCx input and compares it to either the programmable threshold voltage (V THREF) or a signal from the configurable analog signal matrix CASM. The comparison signal can be set to a phase reference signal generated by averaging the PHCx input voltages. In a three-phase motor control application, the phase reference signal acts as a virtual center tap for BEMF detection. The PHCx inputs are optionally fed through to the CASM. The phase comparator has 0V to VSYS input common mode range, and its polarity-selectable output is routed to a data input bit and to the phase/position multiplexer synchronized with the auto-sampling sequencers. 11.2.5. Protection Comparator (PCMP) Two protection comparators are provided in association with each differential programmable gain amplifier, with outputs available to trigger protection events and accessible as read-back output bits. The high-speed protection (HP) comparator compares the PCMPx pin to the 8-bit HP DAC output voltage, with full scale voltage of 2.5V. The limit protection (LP) comparator compares the differential programmable gain amplifier output to the 10-bit LP DAC output voltage, with full scale voltage of 2.5V. Each protection comparator has a mask bit to prevent or allow it to trigger the main microcontroller interrupt INT1. Each protection comparator also has one mask bit to prevent or allow it to activate protection event PR1, and another mask bit to - 30 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller prevent or allow it to activate protection event PR2. These two protection events can be used directly by protection circuitry in the Application Specific Power Drivers (ASPD) to protect devices being driven. 11.2.6. Analog Output Buffer (BUF) A subset of the signals from the configurable analog signal matrix CASM can be multiplexed to the BUF6 pin for external use. The buffer offset voltage can be minimized with the built-in swap function. 11.2.7. Analog Front End I/O (AIO) Up to 10 AIOx pins are available in the device. In the analog front end I/O mode, the pin can be configured to be a digital input or digital open-drain output. The AIOx input or output signal can be set to a data input or output register bit, or multiplexed to one of the signals in the configurable digital signal matrix CDSM. The signal can be set to active high (default) or active low, with V SYS supply rail. Where AIO 6,7,8,9 supports microcontroller interrupt for external signals. Each has two mask bits to prevent or allow rising or falling edge of its corresponding digital input to trigger second microcontroller interrupt INT2. 11.2.8. Push Button (PBTN) The push button PBTN, when enabled, can be used by the microcontroller to detect a user active-low push button event and to put the system into an ultra-low-power hibernate mode. Once the system is in hibernate mode, PBTN can be used to wake up the system. In addition, PBTN can also be used as a hardware reset for the microcontroller when it is held low for longer than 8s during normal operation. The PBTN input is active low and has a 55kΩ pull-up resistor to 3V. 11.2.9. HP DAC and LP DAC The 8-bit HP DAC can be used as the comparison voltage for the high-speed protection (HP) comparators, or routed for general purpose use via the AB2 signal in the CASM. The HP DAC output full scale voltage is 2.5V. The 10-bit LP DAC can be used as the comparison voltage for the limit protection (LP) comparators, or routed for general purpose use via the AB3 signal in the CASM. The LP DAC output full scale voltage is 2.5V. 11.2.10. ADC Pre-Multiplexer The ADC pre-multiplexer is a 16-to-1 multiplexer that selects between the 3 differential programmable gain amplifier outputs, AB1 through AB9, temperature monitor signal (V TEMP), power monitor signal (V MON), and offset calibration reference (VREF / 2). The ADC pre-multiplexer can be directly controlled or automatically scanned by the auto-sampling sequencer. When the ADC pre-multiplexer is automatically scanned, the unbuffered or sensitive signals should be masked by setting appropriate register bits. 11.2.11. Configurable Analog Signal Matrix (CASM) The CASM has 9 general purpose analog signals labeled AB1 through AB9 that can be used for: Routing the single-ended programmable gain amplifier or analog feed-through output to AB1 through AB9 Routing an analog signal via AB1, AB2, or AB3 to the negative input of a general purpose comparator or phase comparator Routing the 8-bit HP DAC output to AB2 Routing the 10-bit LP DAC output to AB3 Routing analog signals via AB1 through AB12 to the ADC pre-multiplexer Routing phase comparator feed-through signals to AB7, AB8, and AB9, and averaged voltage to AB1 11.2.12. Configurable Digital Signal Matrix (CDSM) The CDSM has 7 general purpose bi-directional digital signals labeled DB1 through DB7 that can be used for: Routing the AIOx input to or output signals from DB1 through DB7 Routing the general purpose comparator output signals to DB1 through DB7 - 31 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller - 32 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 11.3. Electrical Characteristics Table 12. Differential Programmable Gain Amplifier (DA) Electrical Characteristics (VSYS = VCCIO = 5V, VCC33 = 3.3V, and TA = -40°C to 105°C unless otherwise specified.) PARAMETER ICC;DA Operating supply current MIN TYP MAX UNI T 150 300 µA Each enabled amplifier VICMR;DA Input common mode range -0.3 3.5 V VOLR;DA Output linear range 0.1 3.5 V VOS;DA Input offset voltage 8 mV AVZI;DA Differential amplifier gain (zero ohm source impedance) kCMRR;DA Common mode rejection ratio RINDIF;DA Differential input impedance Slew rate tST;DA (1) CONDITIONS (1) Settling time Gain = 48x, VDAxP= VDAxN = 0V, TA = 25°C 1 Gain = 2x 2 Gain = 4x 4 Gain = 8x, VDAxP = 125mV, VDAxN = 0V, TA = 25°C -2% 8 2% Gain = 16x 16 Gain = 32x 32 Gain = 48x 48 Gain = 8x, VDAxP= VDAxN = 0V, TA = 25°C 55 dB 27 kΩ 10 V/µs Gain = 8x (1) -8 Gain = 1x 7 To 1% of final value 200 400 ns TYP MAX UNI T 80 Guaranteed by design. Table 13. Single-Ended Programmable Gain Amplifier (AMP) Electrical Characteristics (VSYS = VCCIO = 5V, VCC33 = 3.3V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL ICC;AMP PARAMETER Operating supply current VOLR;AMP Output linear range VOS;AMP Input offset voltage CONDITIONS MIN Each enabled amplifier Gain = 1x, TA = 25°C, VAMPX = 2.5V 140 µA 0.1 3.5 V -10 10 mV Gain = 1x 1 Gain = 2x 2 Gain = 4x AV;AMP IIN;AMP tST;AMP (1) Amplifier gain 4 Gain = 8x, VAMPx = 125mV, TA = 25°C -2% 8 Gain = 16x 16 Gain = 32x 32 Gain = 48x 48 Input current 0 Slew rate (1) Gain = 8x Settling time (1) To 1% of final value 8 2% 1 12 150 µA V/µs 300 ns Guaranteed by design. - 33 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Table 14. General Purpose Comparator (CMP) Electrical Characteristics (VSYS = VCCIO = 5V, VCC33 = 3.3V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL ICC;CMP VICMR;CMP Operating supply current Input offset voltage VHYS;CMP Hysteresis tDEL;CMP CONDITIONS MIN Each enabled comparator Input common mode range VOS;CMP IIN;CMP (1) PARAMETER VCMPx = 2.5V, TA = 25°C TYP 35 MAX UNI T 110 µA 0 VSYS V -10 10 mV 23 mV 1 µA 0.1 µs TYP MAX UNI T 35 110 µA 0 VSYS V -10 10 mV Input current 0 Comparator delay (1) Guaranteed by design. Table 15. Phase Comparator (PHC) Electrical Characteristics (VSYS = VCCIO = 5V, VCC33 = 3.3V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL ICC;PHC VICMR;PHC (1) PARAMETER Operating supply current CONDITIONS MIN Each enabled comparator Input common mode range VOS;PHC Input offset voltage VPHCx = 2.5V, TA = 25°C VHYS;PHC Hysteresis 23 IIN;PHC Input current 0 tDEL;PHC Comparator delay (1) mV 1 µA 0.1 µs TYP MAX UNI T 35 100 µA 0.3 VSYS -1 V -10 10 mV Guaranteed by design. Table 16. Protection Comparator (PCMP) Electrical Characteristics (VSYS = VCCIO = 5V, VCC33 = 3.3V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL ICC;PCMP VICMR;PCMP Operating supply current CONDITIONS MIN Each enabled comparator Input common mode range VOS;PCMP Input offset voltage VHYS;PCMP Hysteresis 20 Input current 0 IIN;PCMP tDEL;PCMP (1) PARAMETER Comparator delay VPCMPx = 2.5V, TA = 25°C mV 1 µA 0.1 µs TYP MAX UNI T 35 100 µA 0.05 3.5 V (1) Guaranteed by design. Table 17. Analog Output Buffer (BUF) Electrical Characteristics (VSYS = VCCIO = 5V, VCC33 = 3.3V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL ICC;BUF PARAMETER Operating supply current CONDITIONS MIN No load VICMR;BUF Input common mode range VOLR;AMP Output linear range 0.1 3.5 V VOS;BUF Offset voltage VBUF = 2.5V, TA = 25°C -18 18 mV Maximum output current CL = 0.1nF 0.8 IOMAX - 34 - 1.3 mA Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller - 35 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Table 18. Analog Front End I/O (AIO) Electrical Characteristics (VSYS = VCCIO = 5V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL VAIO PARAMETER CONDITIONS Pin voltage range MIN TYP 0 VIH;AIO High-level input voltage VIL;AIO Low-level input voltage RPD;AIO Pull-down resistance Input mode VOL;AIO Low-level output voltage IAIOx = 7mA, open-drain output mode IOL;AIO Low-level output sink current VAIOx = 0.4V, open-drain output mode ILK;AIO High-level output leakage current VAIOx = 5V, open-drain output mode MAX UNI T 5 V 2.2 0.5 6 V 1 0.8 V 1.8 MΩ 0.4 V 14 mA 0 10 μA TYP MAX UNI T 5 V Table 19. Push Button (PBTN) Electrical Characteristics (VSYS = VCCIO = 5V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL PARAMETER CONDITIONS MIN VI;PBTN Input voltage range 0 VIH;PBTN High-level input voltage 2 VIL;PBTN Low-level input voltage RPU;PBTN Pull-up resistance V 0.35 V 40 55 95 kΩ MIN TYP MAX UNI T TA = 25°C 2.480 2.5 2.520 TA = -40°C to 105°C 2.453 2.5 2.547 To 3V, push button input mode Table 20. HP DAC and LP DAC Electrical Characteristics (VSYS = VCCIO = 5V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL VDACREF PARAMETER DAC reference voltage V HP 8-bit DAC INL(1) -1 1 LSB HP 8-bit DAC DNL(1) -0.5 0.5 LSB -2 2 LSB -1 1 LSB LP 10-bit DAC INL (1) LP 10-bit DAC DNL (1) CONDITIONS (1) Guaranteed by design and characterization. - 36 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 11.4. Typical Performance Characteristics (VSYS = 5V and TA = 25°C unless otherwise specified.) Differential PGA (DAx) Gain Characteristics at 1x, 2x, 4x, and 8x Settings Differential PGA (DAx) Gain Characteristics at 16x, 32x, and 48x Settings PACCAFE-001 4000 8x 4x 2x 48x Output Voltage (mV) Output Voltage (mV) 5000 3000 1x 2000 1000 0 0 500 1000 1500 2000 0 50 100 150 200 PGA (AMPx) Gain Characteristics at 16x, 32x, and 48x Settings 250 5000 4x 2x Output Voltage (mV) 8x 48x 3000 1x 2000 1000 0 500 1000 1500 2000 32x 4000 16x 3000 2000 1000 0 2500 PACCAFE-004 PACCAFE-003 Output Voltage (mV) 1000 PGA (AMPx) Gain Characteristics at 1x, 2x, 4x, and 8x Settings 0 50 100 150 200 Input Voltage (mV) Input Voltage (mV) LP DAC Output Voltage vs. Input Code HP DAC Output Voltage vs. Input Code 2500 250 2500 Output Voltage (mV) 2000 1500 1000 500 0 100h 200h 300h 2000 1500 1000 500 0 3FFh Input Code PACCAFE-006 PACCAFE-005 Output Voltage (mV) 2000 Differential Input Voltage (mV) 4000 0 16x 3000 Differential Input Voltage (mV) 5000 0 32x 4000 0 2500 PACCAFE-002 5000 0 40h 80h C0h FFh Input Code - 37 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 12. APPLICATION SPECIFIC POWER DRIVERS (ASPD) 12.1. Features 6 low-side and 3 ultra-high-voltage high-side gate drivers 2 open-drain drivers Configurable delays and fast fault protection 12.2. Block Diagram Figure 12-1. Application Specific Power Drivers APPLICATION SPECIFIC POWER DRIVERS DXBx HIGH-SIDE GATE DRIVERS DELAY LEVEL SHIFT PREDRIVER DXHx HS1 DXSx FAULT HS2 PROTECT LS2 ENHS2 LOW-SIDE GATE DRIVERS LS1 PORT/PWM SIGNALS DELAY PREDRIVER VP DRLx ENDRV OMx DOUTOMx OM DRIVERS 12.3. Functional Description The Application Specific Power Drivers (ASPD, Figure 12-1) module handles power driving for power control applications. PAC5250 has six low-side gate drivers (DRLx), three ultra-high-voltage high-side gate drivers (DXHx), two medium-voltage open-drain drivers (OMx). Each gate driver can drive an external MOSFET or IGBT switch in response to high-speed control signals from the microcontroller ports, and a pair of high-side and low-side gate drivers can form a halfbridge driver. The open-drain drivers provide activation control for relays, LEDs, buffers, and other loads. Figure 12-2 below shows typical gate driver connections and Table 21 shows the ASPD resources available on PAC5250. - 38 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Figure 12-2. Typical Gate Driver Connections DXBx VP VIN DXHx DXSx (To loads/inductors.) DRLx PAC5250 Table 21. Power Driver Resources by Part Number PART NUMBER PAC5250 LOW-SIDE GATE DRIVER HIGH-SIDE GATE DRIVER OPEN-DRAIN DRIVER DRLx SOURCE / SINK CURRENT DXHx MAX SUPPLY SOURCE/ SINK CURRENT OMx 6 1A/1A 3 600V 0.25A/0.5A 2 (23V/ 40mA) The ASPD includes built-in configurable fault protection for the internal gate drivers. On PAC5250, the protection signal ENHS2 are provided for external circuitry driver fault protection. 12.3.1. Low-Side Gate Driver The DRLx low-side gate driver drives the gate of an external MOSFET or IGBT switch between the low-level V SSP power ground rail and high-level VP supply rail. The DRLx output pin has sink and source output current capability of 1A. Each low-side gate driver is controlled by a microcontroller port signal with 4 configurable levels of propagation delay. 12.3.2. Ultra-High-Voltage Gate Driver The DXHx ultra-high-voltage high-side gate driver drives the gate of an external MOSFET or IGBT switch between its low-level DXSx driver source rail and its high-level DXBx bootstrap rail. The DXSx pin can go up to 600V. The DXHx output pin has 0.5A sink and 0.25A source output current capability. The DXBx bootstrap pin can have a maximum operating voltage of 20V relative to the DXSx pin. The DXSx pin is designed to tolerate momentary switching negative spikes down to -10V without affecting the DXHx output state. Each ultra-high-voltage high-side gate driver is controlled by a microcontroller port signal. For bootstrapped high-side operation, connect an appropriate capacitor between DXBx and DXSx and a properly rated bootstrap diode from VP rail to DXBx. 12.3.3. High-Side Switching Transients Typical high-side switching transients are shown in Figure 12-3(a). To ensure functionality and reliability, the DXSx and DXBx pins must not exceed the peak and undershoot limit values shown. This should be verified by probing the DXSx and DXBx pins directly relative to VSS pin. A small resistor and diode clamp for the DXSx pin can be used to make sure that the pin voltage stays within the negative limit value. In addition, the high-side slew rate dV/dt must be kept within ±50V/ns for DXSx. This can be achieved by adding a resistor-diode pair in series, and an optional capacitor in parallel with the power switch gate. The parallel capacitor also provides a low impedance and close gate shunt against coupling from the switch drain. These optional protection and slew rate control are shown in Figure 12-3(b). - 39 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Figure 12-3. High-Side Switching Transients and Optional Circuitry VDXBx ≤ 625V DXBx VP VIN DXHx DXSx dV/dt VDXBx PAC5250 dV/dt DRLx VDXSx VDXSx ≥ -10V (b) Optional Transient Protection and Slew Rate Control (a) High-Side Switching Transients 12.3.4. Open-Drain Drivers The OMx pin is a 23V open-drain driver output controlled by a register bit. OMx is capable of driving 40mA. The OMx pin is switched to VSSP with 17Ω impedance in the on state when the corresponding bit is '1', and is in the high-impedance off state when the corresponding bit is '0'. 12.3.5. Power Drivers Control All power drivers are initially disabled from power-on-reset. To enable the power drivers, the microprocessor must first set the driver enable bit to '1'. The gate drivers controlled by the microcontroller ports and PWM signals according to Table 22, with configurable delays as shown in Table 22. The OMx open-drain drivers are controlled by their corresponding register bits. Refer to the PAC application notes and user guide for additional information on power drivers control programming. Table 22. Microcontroller Port and PWM to Power Driver Mapping PART NUMBER PWMA0 PWMA1 PWMA2 PWMA3/ PWMA4/ PWMB0 PWMA5/ PWMC0 PWMA6/ PWMD0 PWMA4/ PWMB0 PWMA5/ PWMA7/ PWMC1 PWMA6/ PWMD0 PAC5250 DRL0 DRL1 DRL2 DRL3 DRL4 DRL5 DXH0 DXH1 DXH2 Table 23. Power Driver Delay Configuration DRLx DXHx DELAY SETTING RISING FALLING RISING FALLING Default Setting 130ns 140ns 200ns 240ns 01b Setting 170ns 180ns 10b Setting 230ns 250ns 11b Setting 360ns 380ns - 40 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 12.3.6. Gate Driver Fault Protection The ASPD incorporates a configurable fault protection mechanism using two protection event signals from the Configurable Analog Front End (CAFE), designated as protection event 1 (PR1) and protection event 2 (PR2) signals. The DRL0/DRL1/DRL2 drivers are designated as low-side group 1, and the DRL3/DRL4/DRL5 gate drivers are designed as low-side group 2. The DXH0/DXH1/DXH2 ultra-high-voltage gate drivers are designated as high-side group 1. The PR1 signal from the CAFE can be used to disable low-side group 1, high-side group 1, or both depending on the PR1 mask bit settings. The PR2 signal from the CAFE can be used to disable low-side group 2, high-side group 2, or both depending on the PR2 mask bit settings. ENHS2 (high-side group 2 control output) pin is provided for enabling external power drivers with fault protection. - 41 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 12.4. Electrical Characteristics Table 24. Gate Drivers Electrical Characteristics (VP = 12V, VSYS = 5V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL PARAMETER CONDITIONS MIN TYP VP−0.5 VP−0.25 MAX UNI T Low-Side Gate Drivers (DRLx Pins) VOH,DRL High-level output voltage IDRLx = -50mA VOL,DRL Low-level output voltage IDRLx = 50mA IOHPK,DRL High-level pulsed peak source current 10µs pulse -1 A IOLPK,DRL Low-level pulsed peak sink current 10µs pulse 1 A Delay setting 00 10 Delay setting 01 50 Delay setting 10 120 Delay setting 11 250 TPD,DRL Propagation Delay 0.175 V 0.35 V ns Ultra-High-Voltage Gate Drivers (DXHx, DXBx and DXSx Pins) -10 605 Steady state 0 600 Repetitive, 10us pulse 1 625 Steady state 9 620 Bootstrap supply voltage range VDXBx, relative to respective VDXSx 9 20 V Bootstrap UVLO threshold VDXBx rising, relative to respective VDXSx , Hys=0.5V 7.5 8.8 V 40 80 µA 10 µA VDXS Level-shift driver source voltage range VDXB Bootstrap pin voltage range VBS;DXB VUVLO;DXB Repetitive, 10us pulse IBS;DXB Bootstrap supply current IOS;DXB Offset supply current VDXBx = VDXSx =600V VOH;DXH High-level output voltage IDXHx = -20mA 6.3 VDXBx−0.6 V V V VOL;DXH Low-level output voltage IDXHx = 40mA IOHPK;DXH High-level pulsed peak source current 10µs pulse -0.25 VDXSx+0.6 V A IOLPK;DXH Low-level pulsed peak sink current 10µs pulse 0.5 A Table 25. Open-Drain Drivers Electrical Characteristics (VP = 12V, VSYS = 5V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNI T 23 V Medium-Voltage Open-Drain Drivers (OMx Pins) VOM Output voltage range Off state 0 RON;OM On state resistance IOMx = 20mA IOL;OM On state sink current VOMx = 2V ILK;OM Leakage current VOMx = 23V, off state 17 40 - 42 - 35 80 0 Ω mA 10 μA Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Table 26. Power Drivers Module Electrical Characteristics (VP = 12V, VSYS = 5V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNI T High-Side Driver Group Control Output (ENHS2 Pin) VOH;ENHS2 High-level output voltage IENHS2 = -3mA VOL;ENHS2 Low-level output voltage IENHS2 = 1mA IOH;ENHS2 High-level output source current VENHS2 = 2.4V IOL;ENHS2 Low-level output sink current VENHS2 = 0.4V - 43 - 2.4 V -5.8 1 1.5 0.4 V -4.3 mA mA Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 12.5. Typical Performance Characteristics (VP = 12V, VSYS = 5V and TA = 25°C unless otherwise specified.) Low-Side Gate Driver (DRLx) Source/Sink Current vs. Temperature 7 On Resistance (Ω) Source/Sink Current (A) PACASPD-002 8 PACASPD-001 3 Low-Side Gate Driver (DRLx) On Resistance vs. Temperature 2 Source current 1 Sink current 6 5 Pull up Pull down 4 3 2 1 0 -40 0 40 80 0 120 40 80 120 Ultra-High-Voltage High-Side Gate Driver (DXHx) Source/Sink Current vs. Temperature Ultra-High-Voltage High-Side Gate Driver (DXHx) On Resistance vs. Temperature 25 Sink current 20 On Resistance (Ω) 0.8 0.6 0.4 Source current 0.2 0 -40 Pull up 15 10 Pull down 5 PAC5250 0 40 80 0 -40 120 PAC5250 0 40 80 120 Temperature (°C) Temperature (°C) Low-Side Gate Driver (DRLx) Turn-On Delay vs. Temperature Low-Side Gate Driver (DRLx) Turn-Off Delay vs. Temperature 500 500 Turn-Off Delay (ns) 11b setting 300 10b setting 200 01b setting 00b setting (default) 100 CL = 1nF 0 40 80 Temperature (°C) 11b setting 400 300 10b setting 01b setting 200 00b setting (default) 100 0 -40 120 PACASPD-008 PACASPD-007 400 0 -40 PACASPD-006 PACASPD-005 Source/Sink Current (A) 0 Temperature (°C) 1.0 Turn-On Delay (ns) -40 Temperature (°C) CL = 1nF 0 40 80 120 Temperature (°C) - 44 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Typical Performance Characteristics (Continued) Ultra-High-Voltage High-Side Gate Driver (DXHx) Turn-On Delay vs. Temperature Ultra-High-Voltage High-Side Gate Driver (DXHx) Turn-Off Delay vs. Temperature 500 500 Turn-Off Delay (ns) 400 300 200 100 CL = 1nF 0 -40 0 40 80 400 300 200 100 0 -40 120 Temperature (°C) PACASPD-012 PACASPD-011 Turn-On Delay (ns) (VP = 12V, VSYS = 5V and TA = 25°C unless otherwise specified.) CL = 1nF 0 40 80 120 Temperature (°C) OMx Open-Drain Driver On State Output Voltage vs. Output Current On State Output Voltage (V) PACASPD-014 4 3 105°C 2 25°C 1 0 -30°C 0 40 80 120 160 200 Output Current (mA) - 45 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 13. ADC WITH AUTO-SAMPLING SEQUENCER 13.1. Block Diagram Figure 13-1. ADC with Auto-Sampling Sequencer ADC RESULT REGISTERS (16) AHB/APB ADC WITH AUTO-SAMPLING SEQUENCER REGISTER REGISTER REGISTER REGISTER ADx MUX ADC CONFIGURABLE ANALOG FRONT END 10-BIT ADC DIFF-PGA DAxN AUTO-SAMPLING SEQUENCER ADC PRE-MUX S/H DAxP MUX DIFFERENTIAL PGA STATE MACHINE 0 STATE MACHINE 1 CASM EMUX CONTROL VTEMP, VMON, VREF/2 EMUX 13.2. Functional Description 13.2.1. ADC The analog-to-digital converter (ADC) is a 10-bit succesive approximation register (SAR) ADC with 1 μs conversion time and up to 1MSPS capability. The ADC input clock has a user-configurable divider from /1 to /8 of the system clock. The integrated analog multiplexer allows selection from up to 6 direct ADx inputs, and from up to 10 analog inputs signals in the Configurable Analog Front End (CAFE), including up to 3 differential input pairs. The ADC can be configured for repeating or non-repeating conversions and can interrupt the microcontroller when a conversion is finished. 13.2.2. Auto-Sampling Sequencer Two independent and flexible auto-sampling sequencer state machines allow signal sampling using the ADC without interaction from microcontroller core. Each auto-sampling sequencer state machine can be programmed to take and store up to 8 samples each in the ADC result register from different analog inputs, able to control the ADC MUX and ADC Premux as well as the precise timing of the S/H in the Configurable analog front end. The sampling start of the auto-sampling sequencer can be precisely triggered using timers A, B, C, or D or any of their associated PWM edges (high-to-low or lowto-high). It also supports manual start or a ping-pong-scheme, where one auto-sampling sequencer state machine triggers the other when it finishes sampling. The auto-sampling sequencer can interrupt the microcontroller when either conversion sequence is finished. - 46 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 13.2.3. EMUX Control A dedicated low latency interface controllable by the auto-sampling sequencer or register control allows changing the ADC premultiplexer and asserting/deasserting the S/H circuit in the configurable analog front end, allowing back to back conversions of multiple analog inputs without microcontroller interaction. 13.3. Electrical Characteristics Table 27. ADC and Auto-Sampling Sequencer Electrical Characteristics (VSYS = VCCIO = 5V, VCC33 = 3.3V, VCC18 = 1.8V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNI T 16 MHz ADC fADCLK ADC conversion clock input tADCONV ADC conversion time fADCLK = 16MHz 1 ADC resolution 10 ADC effective resolution μs bits 9.2 bits ±0.5 LSB ±1 LSB ADC offset error 0.6 %FS ADC gain error 0.12 %FS 2.5 V 188 μs 1.3 pF ADC differential non-linearity (DNL) ADC integral non-linearity (INL) Reference Voltage VREFADC ADC reference voltage input Sample and Hold tADCSH ADC sample and hold time CADCIC ADC input capacitance fADCLK = 16MHz Input Voltage Range VADCIN ADC input voltage range ADC multiplexer input 0 VREFADC V 50 MHz EMUX Clock Speed fEMUXCLK EMUX engine clock input PLL Clock Speed fOUTPLL PLL output frequency TA = -40°C to 85°C 3.5 100 MHz TA = 85°C to 105°C 3.5 80 MHz - 47 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 14. MEMORY SYSTEM 14.1. Features 32kB embedded FLASH 100,000 program/erase cycles 10 years data retention 8kB SRAM 14.2. Block Diagram Figure 14-1. Memory System INFO ROM FLASH SRAM 256B INFO ROM 1kB FLASH PAGES 8kB SRAM AHB/APB MEMORY SYSTEM 14.3. Functional Description The device has multiple banks of embedded FLASH memory, SRAM memory, as well as peripheral control registers that are all program-accessible in a flat memory map. 14.3.1. Program and Data FLASH 32kB in 32 pages of 1kB each is available for program or data memory. Each of them can be individually erased or written to while the microcontroller is executing a program from SRAM. 14.3.2. SRAM Up to 8kB contiguous array of SRAM is available for non-persistent data storage. The SRAM memory supports word (4-byte), half-word (2-byte) and byte address aligned access. The microcontroller may execute code out of SRAM for timecritical applications, or when modifying the contents of FLASH memory. - 48 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 14.4. Electrical Characteristics Table 28. Memory System Electrical Characteristics (VSYS = VCCIO = 5V, VCC33 = 3.3V, VCC18 = 1.8V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNI T Embedded FLASH tREAD;FLASH FLASH read time 40 ns tWRITE;FLASH FLASH write time 20 μs tPERASE;FLASH FLASH page erase time NPERASE;FLASH FLASH program/erase cycles tDR;FLASH 10 ms 100k cycles FLASH data retention 10 years SRAM access cycle time 20 ns SRAM tSRAM - 49 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 15. CLOCK CONTROL SYSTEM 15.1. Features Ring oscillator with 7.5MHz, 9.6MHz, 13.8MHz, and 25.7MHz settings High accuracy 1% trimmed 4MHz RC oscillator Crystal oscillator driver supporting 2MHz to 10MHz crystals External clock input up to 40MHz PLL with 1MHz to 25 MHz input, and 3.5MHz to 100MHz output /1 to /8 clock divider for HCLK /1 to /128 clock divider for ACLK 15.2. Block Diagram Figure 15-1. Clock Control System CLOCK CONTROL SYSTEM FRCLK FRCLK CLOCK GATING DIV RTC DIV WDT DIV WIC DIV ADC DIV SYSTICK CORTEX M0 CLOCK SOURCES PLL PLL CLOCK CLOCK TREE TREE SRAM RING OSCILLATOR XIN XOUT PLL PLL MUX MUX FRCLK MUX 1% RC OSCILLATOR EXTCLK FLASH FCLK DIVDIV CRYSTAL DRIVER DIVDIV HCLK CLOCK GATING DIV UART DIV I2C DIV SOC BUS DIV SPI ACLK DIV ADC EMUX TIMERS A, B, C & D CLOCK GATING - 50 - DIV TIMER Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 15.3. Functional Description The PAC clock control system covers a wide range of applications. 15.3.1. Free Running Clock (FRCLK) The free running clock (FRCLK) is generated from one of the 4 clock sources: ring oscillator, trimmed RC oscillator, crystal driver or external clock input. The FRCLK is used for the real-time clock (RTC), watchdog timer (WDT), input to the PLL, or FCLK source to clock the system in low power and sleep mode. 15.3.2. Fast Clock (FCLK) The fast clock (FCLK) is generated from the PLL or supplied by the FRCLK directly. The FCLK supplies the watchdog timer (WDT), ADC, wake-up interrupt controller (WIC), SysTick timer, ARM Cortex-M0 peripheral high speed clock (HCLK) and low speed clock (LSCLK). 15.3.3. High-Speed Clock (HCLK) The high-speed clock (HCLK) is derived from the FCLK with a /1, /2, /4 or /8 divider. It supplies the peripheral AHB/APB bus, Timers A to D, dead-time controllers, SPI interface, I 2C interface, UART interface, EMUX interface, SOC bridge interface and memory subsystem, and can go as high as 50MHz. 15.3.4. Auxiliary Clock (ACLK) The auxiliary clock (ACLK) is derived from FCLK with a /1, /2, to /128 divider, and supplies the timer and dead -time blocks. It can be clocked faster or slower than HCLK and can go as high as 100MHz. 15.3.5. Clock Gating The clock tree supports clock gating in deep-sleep mode for the timer block, ADC, SPI interface, I 2C interface, UART interface, memory subsystem and the ARM Cortex-M0 itself. 15.3.6. Ring Oscillator (ROSC) The integrated ring oscillator provides 4 different clocks with 7.5MHz, 9.6MHz, 13.8MHz, and 25.7MHz settings. After reset, the clock tree always defaults to this clock input with the lowest frequency setting. 15.3.7. Trimmed 4MHz RC Oscillator The 1% trimmed 4MHz RC oscillator provides an accurate clock suitable for many applications. It is also used to derive the clock for the Multi-Mode Power Manager. 15.3.8. Internal Slow RC Oscillator An internal 32kHz RC oscillator is used during start up to provide an initial clock to analog circuitry. It is not used as a clock input to the clock tree. 15.3.9. Crystal Oscillator Driver The optional crystal oscillator driver can drive crystals from 2MHz to 10MHz to provide a highly accurate and stable clock into the system. 15.3.10. External Clock Input The clock tree can be supplied with an external clock up to 10MHz. 15.3.11. PLL The integrated PLL input clock is supplied by the FRCLK with an input frequency range of 1MHz to 25MHz. The PLL output frequency is adjustable from 3.5MHz to 100MHz. - 51 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 15.4. Electrical Characteristics Table 29. Clock Control System Electrical Characteristics (VSYS = VCCIO = 5V, VCC33 = 3.3V, VCC18 = 1.8V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNI T Clock Tree (FRCLK, FCLK, HCLK, and ACLK) fFRCLK Free running clock frequency 50 MHz fFCLK Fast clock frequency 100 MHz fHCLK High-speed clock frequency 50 MHz fACLK Auxiliary clock frequency 100 MHz Internal Oscillators fROSC fTRIM Ring oscillator frequency Trimmed RC oscillator frequency Trimmed RC oscillator clock jitter Frequency setting = 11b 7.5 Frequency setting = 10b 9.6 Frequency setting = 01b 13.8 Frequency setting = 00b 25.7 MHz TA = 25°C 3.96 4 4.04 TA = -40°C to 105°C 3.90 4 4.06 TA = -40°C to 85°C 0.5 MHz % Crystal Oscillator Driver VIH;XIN XIN high-level input voltage VIL;XIN XIN low-level input voltage fXTAL Crystal oscillator frequency range Recommended capacitive load External circuit ESR V 0.65•VCC18 2 fXTAL = 2MHz to 3MHz 25 fXTAL = 3MHz to 6MHz 20 fXTAL = 6MHz to 10MHz 16 0.35•VCC18 V 10 MHz pF fXTAL = 2MHz to 3MHz 1000 fXTAL = 3MHz to 6MHz 400 fXTAL = 6MHz to 10MHz 100 Ω External Clock Input fEXTCLK External clock input frequency range 40 MHz tHIGH;EXTCLK External clock high time 10 ns tLOW;EXTCLK External clock low time 10 ns PLL fINPLL PLL input frequency range 2 25 MHz fOUTPLL PLL output frequency range 3.5 100 MHz PLL settling time PLL period jitter 0.5 RMS ms 30 ±150 Peak to peak - 52 - ps Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 16. ARM CORTEX-M0 MICROCONTROLLER CORE 16.1. Features ARM Cortex-M0 core Fast single-cycle 32-bit x 32-bit multiplier 24-bit SysTick timer Up to 50MHz operation Serial wire debug (SWD), with 4 break-point and 2 watch-point unit comparators Nested vectored interrupt controller (NVIC) with 25 external interrupts Wake-up interrupt controller (WIC) with GPIO, real-time clock (RTC) and watchdog timer (WDT) interrupts enabled Sleep and deep-sleep mode with clock gating 16.2. Block Diagram Figure 16-1. ARM Cortex-M0 Microcontroller Core SWDCL SWDDA SERIAL WIRE DEBUG WITH DISABLE ARM CORTEX-M0 1-CYCLE 32X32 MULTIPLIER 24-BIT SYSTICK NESTED VECTORED INTERRUPT CONTROLLER AHB/APB ARM CORTEX-M0 MICROCONTROLLER CORE WAKE-UP INTERRUPT CONTROLLER 16.3. Functional Description The ARM Cortex-M0 microcontroller core is configured for little endian operation and includes the fast single-cycle 32-bit multiplier and 24-bit SysTick timer and can operate at a frequency of up to 50MHz. The microcontroller nested vectored interrupt controller (NVIC) supports 25 external interrupts for the device's peripherals and sub-systems. For low-latency interrupt processing, the NVIC also supports interrupt tail-chaining. The wake-up interrupt controller (WIC) is able to wake up the device from low-power modes using any GPIO interrupt, as well as from the RTC or WDT. The ARM Cortex-M0 supports both sleep and deep-sleep low-power modes. The deep-sleep mode supports clock gating to limit standby power even further. Firmware debug support includes 4 break-point and 2 watch-point unit comparators using the serial wire debug (SWD) protocol. The serial wire debug mechanism can be disabled to prevent device access to the firmware in the field. - 53 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 16.4. Electrical Characteristics Table 30. Microcontroller and Clock Control System Electrical Characteristics (VSYS = VCCIO = 5V, VCC33 = 3.3V, VCC18 = 1.8V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL PARAMETER fHCLK CONDITIONS Microcontroller clock IOP;VSYS TYP HCLK VSYS operating supply current IQ;VCCIO MIN fFRCLK = fHCLK = fACLK = ROSC 11b, PLL disabled, CPU halt; other clock sources, ADC, timers, and serial interface disabled 3.4 fFRCLK = fHCLK = fACLK = ROSC 10, PLL disabled, CPU halt; other clock sources, ADC, timers, and serial interface disabled 4 fFRCLK = fHCLK = fACLK = ROSC 01, PLL disabled, CPU halt; other clock sources, ADC, timers, and serial interface disabled 5.3 fFRCLK = fHCLK = fACLK = ROSC 00, PLL disabled, CPU halt; other clock sources, ADC, timers, and serial interface disabled 9 fFRCLK = fHCLK = fACLK = CLKREF, PLL disabled, CPU halt; other clock sources, ADC, timers, and serial interface disabled 2.3 fFRCLK = fHCLK = fACLK = 10MHz XTAL, PLL disabled, CPU halt; other clock sources, ADC, timers, and serial interface disabled 4.5 fFRCLK = 4MHz CLKREF, fHCLK = 50MHz, fACLK = fOUTPLL = 100MHz, CPU halt; other clock sources, ADC, timers, and serial interface disabled 23.3 VCCIO quiescent supply current MAX UNI T 50 MHz mA 0.02 mA 16.5. Typical Performance Characteristics (VSYS = VCCIO = 5V, VCC33 = 3.3V, VCC18 = 1.8V, and TA = 25°C unless otherwise specified.) IVCC18 vs. PLL Frequency IVCC18 (mA) 20 PACMCU-001 25 fHCLK = fACLK = fOUTPLL 15 fHCLK = 0.5•fOUTPLL, fACLK = fOUTPLL 10 5 0 0 20 40 60 80 100 PLL Frequency (MHz) - 54 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 17. I/O CONTROLLER 17.1. Features 5V-compliant I/O PAx, PDx, PEx 3.3V-compliant I/O PCx Configurable drive strength on PAx, PDx, PEx Configurable pull-up or pull-down on PAx, PDx, PEx 17.2. Block Diagram Figure 17-1. I/O controller DIGITAL I/O GPIO (PAx, PDx, PEx) VCCIO (5V/3.3V) PERIPHERAL PULL UP GPIO INPUT PAx, PDx, PEx VCCIO (5V/3.3V) PULL DOWN PERIPHERAL GPIO OUTPUT OUTPUT ENABLE DRIVE STRENGTH GPIO (PCx) ADC MUX GPIO INPUT INPUT ENABLE PCx GPIO OUTPUT AHB/APB VCC33 (3.3V) OUTPUT ENABLE 17.3. Functional Description The PAC can support up to 4 ports with 8 I/Os each from PAx, PCx, PDx, and PEx, in addition to the I/Os on the analog front end. All PAx, PCx, PDx, and PEx ports have interrupt capability with configurable interrupt edge. PAx, PDx, and PEx I/Os use VCCIO as the I/O supply voltage that is 5V on default parts (and 3.3V available from factory). The drive current can be configured as 8mA or 16mA. They also support weak pull-up and pull-down to save external components. PCx uses VCC33 as its I/O supply voltage. The drive current is fixed to 8mA. PC0 to PC5 are also associated with analog inputs AD0 to AD5 to the ADC. - 55 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 17.4. Electrical Characteristics Table 31. I/O Controller Electrical Characteristics (VSYS = VCCIO = 5V, VCC33 = 3.3V, VCC18 = 1.8V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNI T PAx, PDx, PEx (5V Operation) VIH High-level input voltage VCCIO = 5V 3 V VIL Low-level input voltage VCCIO = 5V IOL Low-level output sink current VCCIO = 5V, VOL = 0.4V Drive strength setting = 0b 7 Drive strength setting = 1b 15 IOH High-level output source current VCCIO = 5V, VOH = 2.4V Drive strength setting = 0b -7 Drive strength setting = 1b -15 RPU Weak pull-up resistance VCCIO = 5V 53 66 87 kΩ RPD Weak pull-down resistance VCCIO = 5V 63 108 244 kΩ IIL Input leakage current TA = 125°C -10 0 10 μA 2 0.8 V mA mA PAx, PDx, PEx (3.3V Operation) VIH High-level input voltage VCCIO = 3.3V V VIL Low-level input voltage VCCIO = 3.3V IOL Low-level output sink current VCCIO = 3.3V, VOL = 0.4V Drive strength setting = 0b 4 Drive strength setting = 1b 8 IOH High-level output source current VCCIO = 3.3V, VOH = 2.4V Drive strength setting = 0b -4 Drive strength setting = 1b -8 RPU Weak pull-up resistance VCCIO = 3.3V 47 74 104 kΩ RPD Weak pull-down resistance VCCIO = 3.3V 50 84 121 kΩ IIL Input leakage current TA = 125°C -10 0 10 μA 2 0.8 V mA mA PCx (3.3V Operation) VIH High-level input voltage VCC33 = 3.3V VIL Low-level input voltage VCC33 = 3.3V IOL Low-level output sink current VCC33 = 3.3V, VOL = 0.4V IOH High-level output source current VCC33 = 3.3V, VOH = 2.4V IIL Input leakage current TA = 125°C V 0.8 7 -10 - 56 - V mA 0 -7 mA 10 μA Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 18. SERIAL INTERFACE 18.1. Block Diagram Figure 18-1. Serial Interface SERIAL INTERFACE I2C I2C MASTER SCL SDA I2C SLAVE UART 16550-COMPATIBLE UART AHB/APB TX RX SPI SPICLK SPI MASTER SPIMISO SPIMOSI SPI SLAVE SPICS0, 1, 2 18.2. Functional Description The device has up to three serial interfaces: I2C, UART, and SPI. 18.2.1. I2C Controller The I2C controller is a configurable peripheral that can support various modes of operation: I2C master operation Normal mode (100kHz), fast mode (400kHz), or fast mode plus (1MHz) Single and multi-master Synchronization (multi-master) Arbitration (multi-master) 7-bit or 10-bit slave addressing 2 I C slave operation Normal mode (100kHz), fast mode (400kHz), or fast mode plus (1MHz) Clock stretching 7-bit or 10-bit slave addressing The I2C peripheral may operate either by polling, or can be configured to be interrupt driven for both receive and transmit - 57 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller data. 18.3. UART Controller The UART peripheral is a configurable peripheral that can support various features and modes of operation: Programmable clock selection National Instruments PC16550D compatible 16-deep transmit and receive FIFO and fractional clock divisor Up to 3.125Mbps communication speed (with HCLK = 50MHz) The UART peripheral may operate either by polling, or can be configured to be interrupt driven for both receive and transmit data. 18.4. SPI Controller The device contains an SPI controller that can each be used in either master or slave operation, with the following features: SPI master operation Control of up to three different SPI slaves Operation up to 25MHz Flexible multiple transmit mode for variable-size SPI data with user-defined chip-select behavior Chip select “shaping” through programmable additional delay for chip-select setup, hold and wait time for back-to-back transfers SPI master or slave operation Supports clock phase and polarity control Data transmission/reception can be on 8-, 16-, 24- or 32-bit boundary Selectable data bit ordering (LSB or MSB first) Programmable chip select polarity Selectable “auto-retransmit” mode The SPI peripheral may operate either by polling, or can be configured to be interrupt driven for both receive and transmit data. - 58 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 18.5. Dynamic Characteristics Table 32. Serial Interface Dynamic Characteristics (VSYS = VCCIO = 5V, VCC33 = 3.3V, VCC18 = 1.8V, and TA = -40°C to 105°C unless otherwise specified.) SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNI T I2C fI2CCLK 2 I C input clock frequency Standard mode (100kHz) 2.8 MHz Fast mode (400kHz) 2.8 MHz Fast mode plus (1MHz) 6.14 MHz UART fUARTCLK UART input clock frequency UART baud rate fHCLK/16 MHz fHCLK = 50MHz 3.125 Mbps Master mode fHCLK/2 MHz Slave mode fHCLK/2 MHz SPI fSPICLK SPI input clock frequency - 59 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Table 33. I2C Dynamic Characteristics SYMBOL fSCL tLOW tHIGH tHD;STA tSU;STA tHD;DAT tSU;DAT tSU;STO tBUF PARAMETER SCL clock frequency SCL clock low SCL clock high CONDITIONS Data hold time Data set-up time 0 100 0 400 Fast mode plus 0 1000 Standard mode 4.7 Fast mode 1.3 Fast mode plus 0.5 Standard mode 4.0 Fast mode 0.6 Fast mode plus 0.26 Standard mode 4.0 0.6 4.7 Fast mode 0.6 Fast mode plus 0.26 Standard mode 0 3.45 Fast mode 0 0.9 Fast mode plus 0 Standard mode 250 Fast mode 100 50 Fast mode 0.6 Fast mode plus 0.26 Standard mode Bus free time between a STOP and START Fast mode condition Fast mode plus 4.7 tf Cb Rise time for SDA and SCL Fall time for SDA and SCL Capacitive load for each bus line μs Standard mode 4.0 Fast mode kHz μs 0.26 Standard mode UNIT μs Fast mode plus μs μs ns μs 1.3 μs 0.5 Standard mode tr MAX Fast mode Fast mode plus Set-up time for STOP condition TYP Standard mode Hold time for a repeated START condition Fast mode Set-up time for a repeated START condition MIN 1000 20 300 ns Fast mode plus 120 Standard mode 300 Fast mode 300 Fast mode plus 120 Standard mode, Fast mode 400 pF Fast mode plus 550 pF - 60 - ns Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Figure 18-2. I2C Timing Diagram tHD;STA tSU;DAT tSU;STA tr tf tBUF SDA tHD;DAT tf tr tSU;STO SCL S tLOW tHIGH Sr - 61 - P S Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 19. TIMERS 19.1. Block Diagram Figure 19-1. Timers A, B, C, and D TIMER A PWM PWMA0, PWMA1, PWMA2, PWMA3 PWMA4, PWMA5, PWMA6, PWMA7 CAPTURE & COMPARE TIMER A 16-BIT SYNC TIMERS A, B, C, AND D DEAD TIME GENERATOR CAPTURE & COMPARE TIMER B PWM PWMB0 PWMB1 CAPTURE & COMPARE TIMER B 16-BIT DEAD TIME GENERATOR CAPTURE & COMPARE TIMER C PWM PWMC1 CAPTURE & COMPARE TIMER C 16-BIT DEAD TIME GENERATOR CAPTURE & COMPARE AHB/APB PWMC0 TIMER D PWM PWMD0 PWMD1 CAPTURE & COMPARE TIMER D 16-BIT DEAD TIME GENERATOR CAPTURE & COMPARE - 62 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller Figure 19-2. SOC Bus Watchdog and Wake-Up Timer SOC SOC BUS WATCHDOG WAKE-UP TIMER SOC BUS AHB/APB SOC BUS WATCHDOG AND WAKE-UP TIMER Figure 19-3. Real-Time Clock and Watchdog Timer REAL-TIME CLOCK AND WATCHDOG TIMER WDT 24-BIT AHB/APB RTC 24-BIT 19.2. Functional Description The device includes 9 timers: timer A, timer B, timer C, timer D, watchdog timer 1 (WDT), watchdog timer 2, wake-up timer, real-time clock (RTC), and SysTick timer. The device supports up to 14 different PWM signals and has up to 7 deadtime controllers. Timers A, B, C and D can be concatenated to synchronize to a single clock and start/stop signal for applications that require a synchronized timer period between timers. 19.2.1. Timer A Timer A is a general purpose 16-bit timer with 8 PWM/capture and compare units. It has 4 pairs of PWM signals going into 4 dead-time controllers. Timer A can be concatenated with timers B, C, and D to synchronize the PWM/capture and compare units. It can use either ACLK or HCLK as clock input with an additional clock divider from /1 to /128. 19.2.2. Timer B Timer B is a general purpose 16-bit timer with 2 PWM/capture and compare units. It has one pair of PWM signals going into one dead-time controller, as well as 2 additional compare units that can be used for additional system time bases for interrupts. Timer B can be concatenated with timers A, C, and D to synchronize the PWM/capture and compare units. It can use either ACLK or HCLK as clock input with an additional clock divider from /1 to /128. 19.2.3. Timer C Timer C is a general purpose 16-bit timer with 2 PWM/capture and compare units. It has one pair of PWM signals going into one dead-time controller. Timer C can be concatenated with timers A, B, and D to synchronize the PWM/capture and compare units. It can use either ACLK or HCLK as clock input with an additional clock divider from /1 to /128. - 63 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 19.2.4. Timer D Timer D is a general purpose 16-bit timer with 2 PWM/capture and compare units. It has one pair of PWM signals going into one dead-time controller. Timer D can be concatenated with timers A, B, and C to synchronize the PWM/capture and compare units. It can use either ACLK or HCLK as clock input with an additional clock divider from /1 to /128. 19.2.5. Watchdog Timer The 24-bit watchdog timer (WDT) can be used for long time period measurements or periodic wake up from sleep mode. The watchdog timer can be used as a system watchdog, or as an interval timer, or both. The watchdog timer can use either FRCLK or FCLK as clock input with an additional clock divider from /2 to /65536. 19.2.6. SOC Bus Watchdog Timer The watchdog timer 2 is used to monitor internal SOC Bus communication. It will trigger device reset if there is no SOC Bus communication to the AFE for 4s or 8s. 19.2.7. Wake-Up Timer The wake-up timer can be used for very low power hibernate and sleep modes to wake up the micro controller periodically. It can be configured to be 125ms, 250ms, 500ms, 1s, 2s, 4, or 8s. 19.2.8. Real-Time Clock The 24-bit real-time clock (RTC) can be used for time measurements when an accurate clock source is used. This timer can also be used for periodic wake up from sleep mode. The RTC uses FRCLK as clock input with an additional clock divider from /2 to /65536. - 64 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 20. THERMAL CHARACTERISTICS Table 34. Thermal Characteristics PARAMETER VALUE UNIT Operating ambient temperature range -40 to 105 °C Operating junction temperature range -40 to 150 °C Storage temperature range -55 to 150 °C Lead temperature (Soldering, 10 seconds) 300 °C Junction-to-case thermal resistance (θJC) 16.8 °C/W Junction-to-ambient thermal resistance (θJA) 31.5 °C/W - 65 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 21. APPLICATION EXAMPLES The following simplified diagrams show different examples of PAC applications. Refer to application notes for detailed design description. Figure 21-1. 3-Phase Motor Using PAC5250 (Simplified Diagram) VP VAC PAC5250 DRM CSM INTERFACE GPIO MONITORING SIGNALS DXBx VP DXHx DXSx M DRLx DAxP, DAxN Figure 21-2. Solar Micro-Inverter Using PAC5250 (Simplified Diagram) VP PAC5250 DRM CSM INTERFACE GPIO MONITORING SIGNALS DRL2 AMPx DXB0, DXB1 VP DXH0, DXH1 DXS0, DXS1 VAC DRL0, DRL1 DAxP, DAxN - 66 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller VP Figure 21-3. Motor with LED Lighting Using PAC5250 (Simplified Diagram) VAC PAC5250 DRM CSM VP INTERFACE GPIO MONITORING SIGNALS INTERFACE VAC PAC5250 DRM CSM DXBx VP DXHx GPIO MONITORING SIGNALS DXSx DXBx VP DRLx DXHx DAxP, DAxN DXSx M M DRLx DAxP, DAxN DRLx AMPx - 67 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 22. PACKAGE OUTLINE AND DIMENSIONS 22.1. TQFN1010-57 Package Outline and Dimensions Figure 22-1. TQFN1010-57 D e D/2 e/2 pin #1 pin #1 top side marking 4xe E E2 E1 E1 / 2 4xe D2 Detail A A3 L L1 Bottom View A1 Top View D1 A b b1 Side View Table 22-1. Dimensions Millimeters Inches Dimensions Min. Max. Min. Max. A 0.700 0.800 0.028 0.031 A1 -0.004 0.046 0.000 A3 0.110 0.002 0.004 b 0.175 0.225 0.007 0.009 b1 0.100 0.200 0.004 0.008 D 9.900 10.100 0.390 0.398 D1 4.975 5.025 0.196 D2 0.500 0.198 0.020 E 9.900 10.100 0.390 0.398 E1 2.975 3.025 0.117 0.119 E2 0.500 e L L1 0.020 0.500 0.350 0.020 0.450 0.050 0.014 0.018 0.050 - 68 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller - 69 - Rev 1.5‒August 4, 2015 PAC5250 Power Application Controller 23. LEGAL INFORMATION Copyright © 2015 Active-Semi, Inc. All rights reserved. All information provided in this document is subject to legal disclaimers. Active-Semi reserves the right to modify its products, circuitry or product specifications without notice. Active-Semi products are not intended, designed, warranted or authorized for use as critical components in life-support, life-critical or safety-critical devices, systems, or equipment, nor in applications where failure or malfunction of any Active-Semi product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Active-Semi accepts no liability for inclusion and/or use of its products in such equipment or applications. Active-Semi does not assume any liability arising out of the use of any product, circuit, or any information described in this document. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of Active-Semi or others. Active-Semi assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein. Customers should evaluate each product to make sure that it is suitable for their applications. Customers are responsible for the design, testing, and operation of their applications and products using Active-Semi products. Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. All products are sold subject to Active-Semi's terms and conditions of sale supplied at the time of order acknowledgment. Exportation of any Active-Semi product may be subject to export control laws. Active-SemiTM, Active-Semi logo, Solutions for SustainabilityTM, Power Application ControllerTM, Micro Application Controller TM, Multi-Mode Power ManagerTM, Configurable Analog Front EndTM, and Application Specific Power DriversTM are trademarks of Active-Semi, Inc. ARM® is a registered trademark and CortexTM is a trademark of ARM Limited. All referenced brands and trademarks are the property of their respective owners. For more information on this and other products, contact [email protected] or visit www.active-semi.com. - 70 - Rev 1.5‒August 4, 2015