ONSEMI MC74HC4052AFG

MC74HC4051A,
MC74HC4052A,
MC74HC4053A
Analog Multiplexers /
Demultiplexers
http://onsemi.com
High−Performance Silicon−Gate CMOS
The MC74HC4051A, MC74HC4052A and MC74HC4053A utilize
silicon−gate CMOS technology to achieve fast propagation delays,
low ON resistances, and low OFF leakage currents. These analog
multiplexers/demultiplexers control analog voltages that may vary
across the complete power supply range (from VCC to VEE).
The HC4051A, HC4052A and HC4053A are identical in pinout to
the metal−gate MC14051AB, MC14052AB and MC14053AB. The
Channel−Select inputs determine which one of the Analog
Inputs/Outputs is to be connected, by means of an analog switch, to the
Common Output/Input. When the Enable pin is HIGH, all analog
switches are turned off.
The Channel−Select and Enable inputs are compatible with standard
CMOS outputs; with pullup resistors they are compatible with LSTTL
outputs.
These devices have been designed so that the ON resistance (Ron) is
more linear over input voltage than Ron of metal−gate CMOS analog
switches.
For a multiplexer/demultiplexer with injection current protection,
see HC4851A and HC4852A.
MARKING
DIAGRAMS
16
PDIP−16
N SUFFIX
CASE 648
16
1
1
16
SOIC−16
D SUFFIX
CASE 751B
16
1
•
•
•
•
Fast Switching and Propagation Speeds
Low Crosstalk Between Switches
Diode Protection on All Inputs/Outputs
Analog Power Supply Range (VCC − VEE) = 2.0 to 12.0 V
Digital (Control) Power Supply Range (VCC − GND) = 2.0 to 6.0 V
Improved Linearity and Lower ON Resistance Than Metal−Gate
Counterparts
Low Noise
In Compliance With the Requirements of JEDEC Standard No. 7A
Chip Complexity: HC4051A — 184 FETs or 46 Equivalent Gates
HC4052A — 168 FETs or 42 Equivalent Gates
HC4053A — 156 FETs or 39 Equivalent Gates
Pb−Free Packages are Available*
HC405xAG
AWLYWW
1
16
SOIC−16 WIDE
DW SUFFIX
CASE 751G
16
1
HC405xA
AWLYWWG
1
16
Features
•
•
•
•
•
•
MC74HC405xAN
AWLYYWWG
16
1
TSSOP−16
DT SUFFIX
CASE 948F
HC40
5xA
ALYWG
G
1
16
16
1
SOEIAJ−16
F SUFFIX
CASE 966
74HC405xA
ALYWG
1
A
= Assembly Location
L, WL
= Wafer Lot
Y, YY
= Year
W, WW = Work Week
G
= Pb−Free Package
G
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 13 of this data sheet.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2006
January, 2006 − Rev. 3
1
Publication Order Number:
MC74HC4051A/D
MC74HC4051A, MC74HC4052A, MC74HC4053A
FUNCTION TABLE − MC74HC4051A
LOGIC DIAGRAM
MC74HC4051A
Single−Pole, 8−Position Plus Common Off
Control Inputs
Enable
C
L
L
L
L
L
L
L
L
H
L
L
L
L
H
H
H
H
X
13
X0
14
X1
15
X2
ANALOG
12
MULTIPLEXER/
INPUTS/ X3
DEMULTIPLEXER
OUTPUTS X4 1
5
X5
2
X6
4
X7
11
A
CHANNEL
10
B
SELECT
9
INPUTS
C
6
ENABLE
PIN 16 = VCC
PIN 7 = VEE
PIN 8 = GND
3
X
COMMON
OUTPUT/
INPUT
Select
B
A
L
L
H
H
L
L
H
H
X
ON Channels
L
H
L
H
L
H
L
H
X
X0
X1
X2
X3
X4
X5
X6
X7
NONE
X = Don’t Care
Pinout: MC74HC4051A (Top View)
VCC
X2
X1
X0
X3
A
B
C
16
15
14
13
12
11
10
9
6
7
8
GND
1
2
3
4
5
X4
X6
X
X7
X5
Enable VEE
FUNCTION TABLE − MC74HC4052A
LOGIC DIAGRAM
MC74HC4052A
Double−Pole, 4−Position Plus Common Off
Control Inputs
Select
Enable
B
A
ON Channels
L
L
L
L
H
L
L
H
H
X
L
H
L
H
X
Y0
Y1
Y2
Y3
12
ANALOG
INPUTS/OUTPUTS
CHANNEL-SELECT
INPUTS
X0
14
X1
15
X2
11
X3
Y0
Y1
Y2
Y3
A
B
ENABLE
X SWITCH
13
X
COMMON
OUTPUTS/INPUTS
1
5
2
Y SWITCH
3
X = Don’t Care
4
6
NONE
Y
Pinout: MC74HC4052A (Top View)
10
9
X0
X1
X2
X3
PIN 16 = VCC
PIN 7 = VEE
PIN 8 = GND
http://onsemi.com
2
VCC
X2
X1
X
X0
X3
A
B
16
15
14
13
12
11
10
9
6
7
8
GND
1
2
3
4
5
Y0
Y2
Y
Y3
Y1
Enable VEE
MC74HC4051A, MC74HC4052A, MC74HC4053A
FUNCTION TABLE − MC74HC4053A
Control Inputs
LOGIC DIAGRAM
MC74HC4053A
Triple Single−Pole, Double−Position Plus Common Off
12
X0
13
X1
14
X SWITCH
2
ANALOG
INPUTS/OUTPUTS
Y0
1
Y1
15
Y SWITCH
5
Z0
3
Z1
4
Z SWITCH
Enable
C
L
L
L
L
L
L
L
L
H
L
L
L
L
H
H
H
H
X
X
Y
COMMON
OUTPUTS/INPUTS
Select
B
A
L
L
H
H
L
L
H
H
X
ON Channels
L
H
L
H
L
H
L
H
X
Z0
Z0
Z0
Z0
Z1
Z1
Z1
Z1
Y0
Y0
Y1
Y1
Y0
Y0
Y1
Y1
NONE
X0
X1
X0
X1
X0
X1
X0
X1
X = Don’t Care
Z
11
A
10
B
9
C
6
ENABLE
PIN 16 = VCC
PIN 7 = VEE
PIN 8 = GND
CHANNEL-SELECT
INPUTS
Pinout: MC74HC4053A (Top View)
VCC
Y
X
X1
X0
A
B
C
16
15
14
13
12
11
10
9
6
7
NOTE: This device allows independent control of each switch.
Channel−Select Input A controls the X−Switch, Input B controls
the Y−Switch and Input C controls the Z−Switch
1
2
3
4
5
Y1
Y0
Z1
Z
Z0
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
Enable VEE
8
GND
MAXIMUM RATINGS
Symbol
Parameter
Unit
– 0.5 to + 7.0
– 0.5 to + 14.0
V
VCC
Positive DC Supply Voltage
VEE
Negative DC Supply Voltage (Referenced to GND)
– 7.0 to + 5.0
V
VIS
Analog Input Voltage
VEE − 0.5 to
VCC + 0.5
V
Vin
Digital Input Voltage (Referenced to GND)
– 0.5 to VCC + 0.5
V
DC Current, Into or Out of Any Pin
± 25
mA
PD
Power Dissipation in Still Air,
750
500
450
mW
Tstg
Storage Temperature Range
– 65 to + 150
_C
TL
Lead Temperature, 1 mm from Case for 10 Seconds
Plastic DIP, SOIC or TSSOP Package
I
(Referenced to GND)
(Referenced to VEE)
Value
Plastic DIP†
EIAJ/SOIC Package†
TSSOP Package†
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high−impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND v (Vin or Vout) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
_C
260
Maximum ratings are those values beyond which device damage can occur. Maximum ratings
applied to the device are individual stress limit values (not normal operating conditions) and are
not valid simultaneously. If these limits are exceeded, device functional operation is not implied,
damage may occur and reliability may be affected.
†Derating — Plastic DIP: – 10 mW/_C from 65_ to 125_C
EIAJ/SOIC Package: – 7 mW/_C from 65_ to 125_C
TSSOP Package: − 6.1 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D).
http://onsemi.com
3
MC74HC4051A, MC74HC4052A, MC74HC4053A
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Max
Unit
2.0
2.0
6.0
12.0
V
Negative DC Supply Voltage, Output (Referenced to
GND)
− 6.0
GND
V
VIS
Analog Input Voltage
VEE
VCC
V
Vin
Digital Input Voltage (Referenced to GND)
GND
VCC
V
VIO*
Static or Dynamic Voltage Across Switch
1.2
V
– 55
+ 125
_C
0
0
0
0
1000
600
500
400
ns
VCC
Positive DC Supply Voltage
VEE
(Referenced to GND)
(Referenced to VEE)
TA
Operating Temperature Range, All Package Types
tr, tf
Input Rise/Fall Time
(Channel Select or Enable Inputs)
VCC = 2.0 V
VCC = 3.0 V
VCC = 4.5 V
VCC = 6.0 V
*For voltage drops across switch greater than 1.2V (switch on), excessive VCC current may be
drawn; i.e., the current out of the switch may contain both VCC and switch input components. The
reliability of the device will be unaffected unless the Maximum Ratings are exceeded.
DC CHARACTERISTICS — Digital Section (Voltages Referenced to GND) VEE = GND, Except Where Noted
Condition
Guaranteed Limit
VCC
V
−55 to 25°C
≤85°C
≤125°C
Unit
Symbol
Parameter
VIH
Minimum High−Level Input Voltage,
Channel−Select or Enable Inputs
Ron = Per Spec
2.0
3.0
4.5
6.0
1.50
2.10
3.15
4.20
1.50
2.10
3.15
4.20
1.50
2.10
3.15
4.20
V
VIL
Maximum Low−Level Input Voltage,
Channel−Select or Enable Inputs
Ron = Per Spec
2.0
3.0
4.5
6.0
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
V
Iin
Maximum Input Leakage Current,
Channel−Select or Enable Inputs
Vin = VCC or GND,
VEE = − 6.0 V
6.0
± 0.1
± 1.0
± 1.0
mA
ICC
Maximum Quiescent Supply
Current (per Package)
Channel Select, Enable and
VIS = VCC or GND;
VEE = GND
VIO = 0 V
VEE = − 6.0
6.0
6.0
1
4
10
40
20
80
mA
NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D).
http://onsemi.com
4
MC74HC4051A, MC74HC4052A, MC74HC4053A
DC CHARACTERISTICS — Analog Section
Guaranteed Limit
Symbol
Ron
≤125°C
Unit
W
VCC
VEE
Vin = VIL or VIH; VIS = VCC to
VEE; IS ≤ 2.0 mA
(Figures 1, 2)
4.5
4.5
6.0
0.0
− 4.5
− 6.0
190
120
100
240
150
125
280
170
140
Vin = VIL or VIH; VIS = VCC or
VEE (Endpoints); IS ≤ 2.0 mA
(Figures 1, 2)
4.5
4.5
6.0
0.0
− 4.5
− 6.0
150
100
80
190
125
100
230
140
115
Parameter
Maximum “ON” Resistance
≤85°C
Condition
−55 to 25°C
DRon
Maximum Difference in “ON”
Resistance Between Any Two
Channels in the Same Package
Vin = VIL or VIH;
VIS = 1/2 (VCC − VEE);
IS ≤ 2.0 mA
4.5
4.5
6.0
0.0
− 4.5
− 6.0
30
12
10
35
15
12
40
18
14
Ioff
Maximum Off−Channel Leakage
Current, Any One Channel
Vin = VIL or VIH;
VIO = VCC − VEE;
Switch Off (Figure 3)
6.0
− 6.0
0.1
0.5
1.0
Maximum Off−ChannelHC4051A Vin = VIL or VIH;
Leakage Current,
HC4052A VIO = VCC − VEE;
Common Channel
HC4053A Switch Off (Figure 4)
6.0
6.0
6.0
− 6.0
− 6.0
− 6.0
0.2
0.1
0.1
2.0
1.0
1.0
4.0
2.0
2.0
Maximum On−ChannelHC4051A Vin = VIL or VIH;
Leakage Current,
HC4052A Switch−to−Switch =
Channel−to−Channel HC4053A VCC − VEE; (Figure 5)
6.0
6.0
6.0
− 6.0
− 6.0
− 6.0
0.2
0.1
0.1
2.0
1.0
1.0
4.0
2.0
2.0
mA
Ion
W
mA
AC CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6 ns)
Symbol
Parameter
Guaranteed Limit
VCC
V
−55 to 25°C
≤85°C
≤125°C
Unit
tPLH,
tPHL
Maximum Propagation Delay, Channel−Select to Analog Output
(Figure 9)
2.0
3.0
4.5
6.0
270
90
59
45
320
110
79
65
350
125
85
75
ns
tPLH,
tPHL
Maximum Propagation Delay, Analog Input to Analog Output
(Figure 10)
2.0
3.0
4.5
6.0
40
25
12
10
60
30
15
13
70
32
18
15
ns
tPLZ,
tPHZ
Maximum Propagation Delay, Enable to Analog Output
(Figure 11)
2.0
3.0
4.5
6.0
160
70
48
39
200
95
63
55
220
110
76
63
ns
tPZL,
tPZH
Maximum Propagation Delay, Enable to Analog Output
(Figure 11)
2.0
3.0
4.5
6.0
245
115
49
39
315
145
69
58
345
155
83
67
ns
Cin
Maximum Input Capacitance, Channel−Select or Enable Inputs
10
10
10
pF
CI/O
Maximum Capacitance
Analog I/O
35
35
35
pF
Common O/I: HC4051A
HC4052A
HC4053A
130
80
50
130
80
50
130
80
50
Feedthrough
1.0
1.0
1.0
(All Switches Off)
NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the ON
Semiconductor High−Speed CMOS Data Book (DL129/D)
Typical @ 25°C, VCC = 5.0 V, VEE = 0 V
CPD
Power Dissipation Capacitance (Figure 13)*
HC4051A
HC4052A
HC4053A
45
80
45
pF
* Used to determine the no−load dynamic power consumption: PD = CPD VCC2 f + ICC VCC . For load considerations, see Chapter 2 of the
ON Semiconductor High−Speed CMOS Data Book (DL129/D).
http://onsemi.com
5
MC74HC4051A, MC74HC4052A, MC74HC4053A
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)
VCC
V
Symbol
Parameter
Condition
BW
Maximum On−Channel Bandwidth
or Minimum Frequency Response
(Figure 6)
fin = 1MHz Sine Wave; Adjust fin Voltage
to Obtain 0dBm at VOS; Increase fin
Frequency Until dB Meter Reads −3dB;
RL = 50W, CL = 10pF
Off−Channel Feedthrough Isolation
(Figure 7)
−
−
Feedthrough Noise.
Channel−Select Input to Common
I/O (Figure 8)
−
Crosstalk Between Any Two
Switches (Figure 12)
(Test does not apply to HC4051A)
THD
Total Harmonic Distortion
(Figure 14)
Limit*
VEE
V
25°C
‘52
‘53
80
80
80
95
95
95
120
120
120
2.25
4.50
6.00
−2.25
−4.50
−6.00
fin = Sine Wave; Adjust fin Voltage to
Obtain 0dBm at VIS
fin = 10kHz, RL = 600W, CL = 50pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
−50
−50
−50
fin = 1.0MHz, RL = 50W, CL = 10pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
−40
−40
−40
Vin ≤ 1MHz Square Wave (tr = tf = 6ns);
Adjust RL at Setup so that IS = 0A;
Enable = GND
RL = 600W, CL = 50pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
25
105
135
RL = 10kW, CL = 10pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
35
145
190
fin = Sine Wave; Adjust fin Voltage to
Obtain 0dBm at VIS
fin = 10kHz, RL = 600W, CL = 50pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
−50
−50
−50
fin = 1.0MHz, RL = 50W, CL = 10pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
−60
−60
−60
fin = 1kHz, RL = 10kW, CL = 50pF
THD = THDmeasured − THDsource
VIS = 4.0VPP sine wave
VIS = 8.0VPP sine wave
VIS = 11.0VPP sine wave
Unit
‘51
MHz
dB
mVPP
dB
%
2.25
4.50
6.00
−2.25
−4.50
−6.00
0.10
0.08
0.05
*Limits not tested. Determined by design and verified by qualification.
180
250
Ron , ON RESISTANCE (OHMS)
Ron , ON RESISTANCE (OHMS)
300
200
125°C
150
25°C
−55 °C
100
50
160
140
120
125°C
100
80
25°C
60
−55 °C
40
20
0
0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0
0
2.25
0
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Figure 1a. Typical On Resistance, VCC − VEE = 2.0 V
Figure 1b. Typical On Resistance, VCC − VEE = 3.0 V
http://onsemi.com
6
120
105
100
90
80
Ron , ON RESISTANCE (OHMS)
Ron , ON RESISTANCE (OHMS)
MC74HC4051A, MC74HC4052A, MC74HC4053A
125°C
60
25°C
40
−55 °C
20
0
75
125°C
60
25°C
45
−55 °C
30
15
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0
4.5
0
0.5
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Figure 1c. Typical On Resistance, VCC − VEE = 4.5 V
3.0 3.5
4.0
4.5 5.0 5.5 6.0
60
70
Ron , ON RESISTANCE (OHMS)
Ron , ON RESISTANCE (OHMS)
2.0 2.5
Figure 1d. Typical On Resistance, VCC − VEE = 6.0 V
80
60
50
125°C
40
30
25°C
20
−55 °C
10
0
1.0 1.5
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
0
1
2
3
4
5
6
7
8
50
125°C
40
25°C
30
−55 °C
20
10
0
0
9
1
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
2
3
4
5
8
9
10
11
12
Figure 1f. Typical On Resistance, VCC − VEE = 12.0 V
PLOTTER
−
7
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Figure 1e. Typical On Resistance, VCC − VEE = 9.0 V
PROGRAMMABLE
POWER
SUPPLY
6
MINI COMPUTER
DC ANALYZER
+
VCC
DEVICE
UNDER TEST
ANALOG IN
COMMON OUT
VEE
GND
Figure 2. On Resistance Test Set−Up
http://onsemi.com
7
MC74HC4051A, MC74HC4052A, MC74HC4053A
VCC
VCC
VCC
16
VEE
VEE
OFF
A
VCC
VIH
OFF
VIH
6
7
8
VEE
COMMON O/I
6
7
8
VEE
Figure 3. Maximum Off Channel Leakage Current,
Any One Channel, Test Set−Up
VCC
Figure 4. Maximum Off Channel Leakage Current,
Common Channel, Test Set−Up
VCC
VCC
16
A
VEE
fin
dB
METER
ON
N/C
COMMON O/I
OFF
VOS
16
0.1mF
ON
VCC
OFF
VCC
COMMON O/I
OFF
NC
VCC
16
ANALOG I/O
RL
C L*
ANALOG I/O
VIL
6
7
8
6
7
8
VEE
VEE
Figure 5. Maximum On Channel Leakage Current,
Channel to Channel, Test Set−Up
VCC
VIS
fin
VCC
dB
METER
OFF
RL
Figure 6. Maximum On Channel Bandwidth,
Test Set−Up
VOS
16
0.1mF
*Includes all probe and jig capacitance
C L*
16
RL
ON/OFF
COMMON O/I
ANALOG I/O
RL
OFF/ON
RL
RL
6
7
8
VEE
VIL or VIH
VCC
GND
CHANNEL SELECT
Vin ≤ 1 MHz
tr = tf = 6 ns
*Includes all probe and jig capacitance
6
7
8
VEE
C L*
TEST
POINT
VCC
11
CHANNEL SELECT
*Includes all probe and jig capacitance
Figure 7. Off Channel Feedthrough Isolation,
Test Set−Up
Figure 8. Feedthrough Noise, Channel Select to
Common Out, Test Set−Up
http://onsemi.com
8
MC74HC4051A, MC74HC4052A, MC74HC4053A
VCC
VCC
16
VCC
CHANNEL
SELECT
ON/OFF
50%
COMMON O/I
ANALOG I/O
OFF/ON
GND
tPLH
C L*
TEST
POINT
tPHL
ANALOG
OUT
6
7
8
50%
CHANNEL SELECT
*Includes all probe and jig capacitance
Figure 9a. Propagation Delays, Channel Select
to Analog Out
Figure 9b. Propagation Delay, Test Set−Up Channel
Select to Analog Out
VCC
16
VCC
ANALOG
IN
COMMON O/I
ANALOG I/O
ON
50%
C L*
TEST
POINT
GND
tPLH
tPHL
ANALOG
OUT
6
7
8
50%
*Includes all probe and jig capacitance
Figure 10a. Propagation Delays, Analog In
to Analog Out
tf
tr
90%
50%
10%
ENABLE
tPZL
ANALOG
OUT
tPLZ
1
VCC
GND
VCC
VCC
HIGH
IMPEDANCE
10%
POSITION 1 WHEN TESTING tPHZ AND tPZH
POSITION 2 WHEN TESTING tPLZ AND tPZL
2
16
1
ON/OFF
C L*
VOL
tPHZ
ENABLE
90%
1kW
ANALOG I/O
2
50%
tPZH
ANALOG
OUT
Figure 10b. Propagation Delay, Test Set−Up
Analog In to Analog Out
VOH
50%
HIGH
IMPEDANCE
Figure 11a. Propagation Delays, Enable to
Analog Out
6
7
8
Figure 11b. Propagation Delay, Test Set−Up
Enable to Analog Out
http://onsemi.com
9
TEST
POINT
MC74HC4051A, MC74HC4052A, MC74HC4053A
VCC
VIS
A
VCC
16
RL
fin
16
VOS
ON
ON/OFF
COMMON O/I
NC
ANALOG I/O
0.1mF
OFF/ON
OFF
VEE
RL
RL
C L*
RL
C L*
6
7
8
VEE
VCC
6
7
8
11
CHANNEL SELECT
*Includes all probe and jig capacitance
Figure 12. Crosstalk Between Any Two
Switches, Test Set−Up
Figure 13. Power Dissipation Capacitance,
Test Set−Up
0
VIS
VCC
−10
VOS
16
0.1mF
fin
ON
C L*
TO
DISTORTION
METER
−30
−40
dB
RL
FUNDAMENTAL FREQUENCY
−20
−50
DEVICE
−60
6
7
8
VEE
SOURCE
−70
−80
−90
*Includes all probe and jig capacitance
− 100
1.0
2.0
3.125
FREQUENCY (kHz)
Figure 14a. Total Harmonic Distortion, Test Set−Up
Figure 14b. Plot, Harmonic Distortion
APPLICATIONS INFORMATION
outputs to VCC or GND through a low value resistor helps
minimize crosstalk and feedthrough noise that may be
picked up by an unused switch.
Although used here, balanced supplies are not a
requirement. The only constraints on the power supplies are
that:
VCC − GND = 2 to 6 volts
VEE − GND = 0 to −6 volts
VCC − VEE = 2 to 12 volts
and VEE ≤ GND
When voltage transients above VCC and/or below VEE are
anticipated on the analog channels, external Germanium or
Schottky diodes (Dx) are recommended as shown in Figure
16. These diodes should be able to absorb the maximum
anticipated current surges during clipping.
The Channel Select and Enable control pins should be at
VCC or GND logic levels. VCC being recognized as a logic
high and GND being recognized as a logic low. In this
example:
VCC = +5V = logic high
GND = 0V = logic low
The maximum analog voltage swings are determined by
the supply voltages VCC and VEE. The positive peak analog
voltage should not exceed VCC. Similarly, the negative peak
analog voltage should not go below VEE. In this example,
the difference between VCC and VEE is ten volts. Therefore,
using the configuration of Figure 15, a maximum analog
signal of ten volts peak−to−peak can be controlled. Unused
analog inputs/outputs may be left floating (i.e., not
connected). However, tying unused analog inputs and
http://onsemi.com
10
MC74HC4051A, MC74HC4052A, MC74HC4053A
VCC
+5V
+5V
16
ANALOG
SIGNAL
−5V
ON
6
7
8
Dx
+5V
ANALOG
SIGNAL
VCC
16
Dx
Dx
VEE
VEE
7
8
−5V
VEE
Figure 15. Application Example
Figure 16. External Germanium or
Schottky Clipping Diodes
+5V
+5V
16
ANALOG
SIGNAL
VEE
ON/OFF
6
7
8
VEE
Dx
ON/OFF
−5V
TO EXTERNAL CMOS
CIRCUITRY 0 to 5V
DIGITAL SIGNALS
11
10
9
VCC
+5V
ANALOG
SIGNAL
+5V
*
R
R
11
10
9
+5V
+5V
VEE
VEE
16
ANALOG
SIGNAL
ON/OFF
+5V
ANALOG
SIGNAL
R
VEE
+5V
6
7
8
LSTTL/NMOS
CIRCUITRY
VEE
* 2K ≤ R ≤ 10K
a. Using Pull−Up Resistors
11
10
9
LSTTL/NMOS
CIRCUITRY
HCT
BUFFER
b. Using HCT Interface
Figure 17. Interfacing LSTTL/NMOS to CMOS Inputs
A
11
13
LEVEL
SHIFTER
14
B
10
15
LEVEL
SHIFTER
12
C
9
1
LEVEL
SHIFTER
5
ENABLE
6
2
LEVEL
SHIFTER
4
3
Figure 18. Function Diagram, HC4051A
http://onsemi.com
11
X0
X1
X2
X3
X4
X5
X6
X7
X
MC74HC4051A, MC74HC4052A, MC74HC4053A
A
10
12
LEVEL
SHIFTER
14
B
9
15
LEVEL
SHIFTER
11
13
ENABLE
6
1
LEVEL
SHIFTER
5
2
4
3
X0
X1
X2
X3
X
Y0
Y1
Y2
Y3
Y
Figure 19. Function Diagram, HC4052A
A
11
13
LEVEL
SHIFTER
12
14
B
10
1
LEVEL
SHIFTER
2
15
C
9
3
LEVEL
SHIFTER
5
4
ENABLE
6
LEVEL
SHIFTER
Figure 20. Function Diagram, HC4053A
http://onsemi.com
12
X1
X0
X
Y1
Y0
Y
Z1
Z0
Z
MC74HC4051A, MC74HC4052A, MC74HC4053A
ORDERING INFORMATION
Package
Shipping †
MC74HC4051AN
PDIP−16
500 Units / Box
MC74HC4051ANG
PDIP−16
(Pb−Free)
500 Units / Box
MC74HC4051AD
SOIC−16
48 Units / Rail
MC74HC4051ADG
SOIC−16
(Pb−Free)
48 Units / Rail
MC74HC4051ADR2
SOIC−16
2500 Units / Tape & Reel
MC74HC4051ADR2G
SOIC−16
(Pb−Free)
2500 Units / Tape & Reel
MC74HC4051ADT
TSSOP−16*
96 Units / Rail
MC74HC4051ADTG
TSSOP−16*
96 Units / Rail
MC74HC4051ADTR2
TSSOP−16*
2500 Units / Tape & Reel
Device
MC74HC4051ADTR2G
TSSOP−16*
2500 Units / Tape & Reel
MC74HC4051ADW
SOIC−16 WIDE
48 Units / Rail
MC74HC4051ADWG
SOIC−16 WIDE
(Pb−Free)
48 Units / Rail
MC74HC4051ADWR2
SOIC−16 WIDE
1000 Units / Tape & Reel
MC74HC4051ADWR2G
SOIC−16 WIDE
(Pb−Free)
1000 Units / Tape & Reel
MC74HC4051AFEL
SOEIAJ−16
2000 Units / Tape & Reel
MC74HC4051AFELG
SOEIAJ−16
(Pb−Free)
2000 Units / Tape & Reel
MC74HC4052AN
PDIP−16
500 Units / Box
MC74HC4052ANG
PDIP−16
(Pb−Free)
500 Units / Box
MC74HC4052AD
SOIC−16
48 Units / Rail
MC74HC4052ADG
SOIC−16
(Pb−Free)
48 Units / Rail
MC74HC4052ADR2
SOIC−16
2500 Units / Tape & Reel
MC74HC4052ADR2G
SOIC−16
(Pb−Free)
2500 Units / Tape & Reel
MC74HC4052ADT
TSSOP−16*
96 Units / Rail
MC74HC4052ADTG
TSSOP−16*
96 Units / Rail
MC74HC4052ADTR2
TSSOP−16*
2500 Units / Tape & Reel
MC74HC4052ADTR2G
TSSOP−16*
2500 Units / Tape & Reel
MC74HC4052ADW
SOIC−16 WIDE
48 Units / Rail
MC74HC4052ADWG
SOIC−16 WIDE
(Pb−Free)
48 Units / Rail
MC74HC4052ADWR2
SOIC−16 WIDE
1000 Units / Tape & Reel
MC74HC4052AF
SOEIAJ−16
50 Units / Rail
MC74HC4052AFG
SOEIAJ−16
(Pb−Free)
50 Units / Rail
MC74HC4052AFEL
SOEIAJ−16
2000 Units / Tape & Reel
MC74HC4052AFELG
SOEIAJ−16
(Pb−Free)
2000 Units / Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb−Free.
http://onsemi.com
13
MC74HC4051A, MC74HC4052A, MC74HC4053A
ORDERING INFORMATION
Package
Shipping †
MC74HC4053AN
PDIP−16
500 Units / Box
MC74HC4053ANG
PDIP−16
(Pb−Free)
500 Units / Box
MC74HC4053AD
SOIC−16
48 Units / Rail
MC74HC4053ADG
SOIC−16
(Pb−Free)
48 Units / Rail
MC74HC4053ADR2
SOIC−16
2500 Units / Tape & Reel
MC74HC4053ADR2G
SOIC−16
(Pb−Free)
2500 Units / Tape & Reel
MC74HC4053ADT
TSSOP−16*
96 Units / Rail
MC74HC4053ADTG
TSSOP−16*
96 Units / Rail
MC74HC4053ADTR2
TSSOP−16*
2500 Units / Tape & Reel
Device
MC74HC4053ADTR2
TSSOP−16*
2500 Units / Tape & Reel
MC74HC4053ADW
SOIC−16 WIDE
48 Units / Rail
MC74HC4053ADWG
SOIC−16 WIDE
(Pb−Free)
48 Units / Rail
MC74HC4053ADWR2
SOIC−16 WIDE
1000 Units / Tape & Reel
MC74HC4053ADWR2G
SOIC−16 WIDE
(Pb−Free)
1000 Units / Tape & Reel
MC74HC4053AF
SOEIAJ−16
50 Units / Rail
MC74HC4053AFG
SOEIAJ−16
(Pb−Free)
50 Units / Rail
MC74HC4053AFEL
SOEIAJ−16
2000 Units / Tape & Reel
MC74HC4053AFELG
SOEIAJ−16
(Pb−Free)
2000 Units / Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb−Free.
http://onsemi.com
14
MC74HC4051A, MC74HC4052A, MC74HC4053A
PACKAGE DIMENSIONS
PDIP−16
N SUFFIX
CASE 648−08
ISSUE T
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS
WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE
MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
−A−
16
9
1
8
B
F
C
L
DIM
A
B
C
D
F
G
H
J
K
L
M
S
S
−T−
SEATING
PLANE
K
H
D
M
J
G
16 PL
0.25 (0.010)
T A
M
M
INCHES
MIN
MAX
0.740 0.770
0.250 0.270
0.145 0.175
0.015 0.021
0.040
0.70
0.100 BSC
0.050 BSC
0.008 0.015
0.110 0.130
0.295 0.305
0_
10 _
0.020 0.040
MILLIMETERS
MIN
MAX
18.80 19.55
6.35
6.85
3.69
4.44
0.39
0.53
1.02
1.77
2.54 BSC
1.27 BSC
0.21
0.38
2.80
3.30
7.50
7.74
0_
10 _
0.51
1.01
SOIC−16
D SUFFIX
CASE 751B−05
ISSUE J
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
−A−
16
9
−B−
1
P
8 PL
0.25 (0.010)
8
M
B
S
G
R
K
F
X 45 _
C
−T−
SEATING
PLANE
J
M
D
16 PL
0.25 (0.010)
M
T B
S
A
S
http://onsemi.com
15
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
MC74HC4051A, MC74HC4052A, MC74HC4053A
SOIC−16 WIDE
DW SUFFIX
CASE 751G−03
ISSUE C
A
D
9
h X 45 _
E
0.25
H
8X
M
B
M
16
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INLCUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.13 TOTAL IN
EXCESS OF THE B DIMENSION AT MAXIMUM
MATERIAL CONDITION.
q
1
MILLIMETERS
DIM MIN
MAX
A
2.35
2.65
A1 0.10
0.25
B
0.35
0.49
C
0.23
0.32
D 10.15 10.45
E
7.40
7.60
e
1.27 BSC
H 10.05 10.55
h
0.25
0.75
L
0.50
0.90
q
0_
7_
8
B
B
16X
M
T A
14X
e
S
B
S
L
A
0.25
A1
SEATING
PLANE
C
T
TSSOP−16
DT SUFFIX
CASE 948F−01
ISSUE A
16X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
K
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
ÇÇÇ
K1
2X
L/2
16
9
J1
B
−U−
L
SECTION N−N
J
PIN 1
IDENT.
8
1
N
0.25 (0.010)
0.15 (0.006) T U
S
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
M
N
F
DETAIL E
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
H
D
DETAIL E
G
http://onsemi.com
16
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.007
0.011
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
MC74HC4051A, MC74HC4052A, MC74HC4053A
PACKAGE DIMENSIONS
SOEIAJ−16
F SUFFIX
CASE 966−01
ISSUE O
16
LE
9
Q1
M_
E HE
1
8
L
DETAIL P
Z
D
e
VIEW P
A
DIM
A
A1
b
c
D
E
e
HE
L
LE
M
Q1
Z
A1
b
0.13 (0.005)
c
M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE
MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH
OR PROTRUSIONS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
0.10 (0.004)
http://onsemi.com
17
MILLIMETERS
MIN
MAX
−−−
2.05
0.05
0.20
0.35
0.50
0.18
0.27
9.90
10.50
5.10
5.45
1.27 BSC
7.40
8.20
0.50
0.85
1.10
1.50
10 _
0_
0.70
0.90
−−−
0.78
INCHES
MIN
MAX
−−− 0.081
0.002
0.008
0.014
0.020
0.007
0.011
0.390
0.413
0.201
0.215
0.050 BSC
0.291
0.323
0.020
0.033
0.043
0.059
10 _
0_
0.028
0.035
−−− 0.031
MC74HC4051A, MC74HC4052A, MC74HC4053A
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
18
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
MC74HC4051A/D