APL5333 3A Bus Termination Regulator Features General Description • Sourcing and Sinking Current up to 3A The APL5333 linear regulator is designed to provide a • Wide Input Voltage Range: 1.2V to 3.6V • VTT and VTTREF Voltage Tracks at Half the regulated voltage with bi-directional output current for DDR-SDRAM termination. The APL5333 integrates two power transistors to source or sink current up to 3A. It also incorporate current-limit, thermal shutdown into a VREF Voltage • VTT and VTTREF Voltage with ±20mV Accuracy • Excellent Load Transient Response single chip. The output voltage of APL5333 tracks the voltage at VREF - Droop Compensation pin. An internal resistor divider is used to provide a half voltage of VREF for VTTREF and VTT Voltage. The VTT - Fast Loop Response • Stable with 20µF Ceramic Output Capacitors • Current Limit Protection • Thermal Shutdown Protection • Power-On-Reset Function on VCNTL • S3, S5 Input Signals for ACPI States • Available in a Thermal Enhanced MSOP-10P output voltage is only requiring 20µF of ceramic output capacitance for stability and fast transient response. The S3 and S5 pins provide the sleep state for VTT (S3 state) and suspend state (S4/S5 state) for device, when S5 and S3 are both pulled low the device provides the soft-off for VTT and VTTREF. The MSOP-10P package with a copper pad is available which provides excellent thermal impedance. Package • Lead Free Available (RoHS Compliant) Simplified Application Circuit Applications VIN VCNTL APL5333 • DDR 1/2/3 Memory Termination • SSTL-2, STL-18 and HSTL Termination VTT 1 VREF 2 VIN 3 4 VTT PGND VCNTL S5 10 5V 9 GND 8 7 S3 5 VTTSNS VTTREF 6 Ordering and Marking Information Package Code XA : MSOP-10P Temperature Range I : - 40 to 85 oC Handling Code TR : Tape & Reel Lead Free Code L : Lead Free Device APL5333 Lead Free Code Handling Code Temperature Range Package Code APL5333 XA : L5333 XXX XX X - Date Code Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte in plate termination finish; which are fully compliant with RoHS and compatible with both SnPb and lead-free soldering operations. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J STD-020C for MSL classification at lead-free peak reflow temperature. ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders. Copyright ANPEC Electronics Corp. Rev. A.1 - Feb., 2008 1 www.anpec.com.tw APL5333 Pin Configuration APL5333 VREF 1 VIN 2 VTT 3 10 VCNTL 9 S5 8 GND PGND 4 VTTSNS 5 7 S3 6 VTTREF MSOP-10P Absolute Maximum Ratings Symbol (Note 1) Rating Unit VCNTL Supply Voltage (VCNTL to GND) -0.3~6 V VIN VIN Supply Voltage (VIN to GND) -0.3~6 V VTT VTT Output Voltage (VTT to GND) -0.3~6 V VTTREF Output Voltage (VTTREF to GND) -0.3~6 V VTTSNS, VREF, S3 and S5 Voltage -0.3~6 V -0.3~0.3 V VCNTL VTTREF Parameter PGND to GND Voltage TJ Maximum Junction Temperature TSTG Storage Temperature Range TSDR Maximum Lead Soldering Temperature 150 o -65 to 150 o 260, 10 sec o C C C Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute mximum rating conditions for extended periods may affect device reliability. Thermal Characteristic (Note 2) Symbol θJA Parameter Junction to Ambient Resistance in Free Air Rating Unit 60 °C/W Note 2 : θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. Recommended Operating Conditions (Note 3) Symbol VCNTL Range Unit VCNTL to GND Parameter 4.5~5.5 V VIN VIN to GND 1.2~3.6 V VTT VTT to GND 0.6~1.8 V VREF VREF to GND 1.2~3.6 V IVTT VTT Output Current (Note 4) -3~+3 A CIN VIN Input Capacitor 4.7~100 µF Capacitance of VTT Output Multi-layer Ceramic Capacitor (MLCC) 4.7~47 µF COUT TA Ambient Temperature -40~+80 o TJ Junction Temperature -40~+125 o C C Note 3 : Refer to the typical application circuit Note 4 : If the VTT output current is “+3A”, then VTT source would be 3A current, and vice versa. Copyright ANPEC Electronics Corp. Rev. A.1 - Feb., 2008 2 www.anpec.com.tw APL5333 Electrical Characteristics VCNTL=5V, VIN=VREF=1.8V, TA = -40 to 85°C, unless otherwise specified. Typical values refer to TA =25°C. Symbol Parameter Test Conditions APL5333 Min Typ Max 0.3 0.7 2 20 40 80 - 0.04 1.0 Unit SUPPLY CURRENT IVCNTL VCNTL Supply Current VCNTL Standby Current o VIN Supply Current TA =25 C, VS3=0V, VS5=5V, no load TA =25oC, VS3=VS5=0V, no load VIN=VREF=0V TA =25oC, VS3=VS5=5V, no load 0.7 2 4 VIN Standby Current TA =25oC, VS3=0V, VS5=5V, no load - 6 10 VIN Shutdown Current TA =25oC, VS3=VS5=0V, no load - 0.3 1.0 VCNTL Shutdown Current IVIN TA =25oC, VS3=VS5=5V, no load mA µA mA µA INPUT CURRENT IVREF IVTTSNS VREF Input Current VS3=VS5=5V 1 3 5 VTTSNS Input Current VS3=VS5=5V -1.00 - 1.00 VCNTL Rising 3.6 3.8 4.0 V 0.1 0.2 0.3 V VIN=VREF=2.5V - 1.25 - VIN=VREF=1.8V - 0.9 - VIN=VREF=1.5V - 0.75 - VIN=VREF=2.5V, IVTT=0A -20 - 20 VIN=VREF=2.5V, IVTT=±1.5A -30 - 30 VIN=VREF=2.5V, IVTT=±3A -40 - 40 VIN=VREF=1.8V, IVTT=0A -20 - 20 VIN=VREF=1.8V, IVTT=±1A -30 - 30 VIN=VREF=1.8V, IVTT=±2A -40 - 40 VIN=VREF=1.5V, IVTT=0A -20 - 20 VIN=VREF=1.5V, IVTT=±1A -30 - 30 VIN=VREF=1.5V, IVTT=±2A -40 - 40 3.3 3.8 4.5 µA POWER-ON-RESET VCNTL POR Threshold VCNTL POR Hysteresis VTT OUTPUT VTT VTT Output Voltage VTT Output Voltage Tolerance VTT Current Limit VTT < 0.5 X VREF X 1.05 and VTT > 0.5 X VREF X 0.95 VTT Short Circuit Current Limit RDS(ON) Internal Power MOSFETs RDS(ON) VTT Leakage Current VTTSNS Leakage Current VTT Discharge Current Copyright ANPEC Electronics Corp. Rev. A.1 - Feb., 2008 VTT > 0.5 X VREF X 1.1 or V mV A 1 1.7 2.3 Upper MOSFET - 230 330 Lower MOSFET - 230 330 - 2.5 4.0 µA -1.00 - 1.00 µA 20 35 50 mA VTT < 0.5 X VREF X 0.9 VTT=1.25V, VS3=0V, VS5=5V, TA =25oC VTT=1.25V, TA =25oC VTT=0.5V, VS3=VS5=0V, TA =25oC VREF=0V 3 mΩ www.anpec.com.tw APL5333 Electrical Characteristics (Cont.) VCNTL=5V, VIN=VREF=1.8V, TA = -40 to 85°C, unless otherwise specified. Typical values refer to TA =25°C. Symbol Parameter Test Conditions APL5333 Min Typ Max VIN=VREF =2.5V - 1.25 - VIN=VREF =1.8V - 0.9 - VIN=VREF =1.5V - 0.75 - Unit VTTREF OUTPUT VTTREF VTTREF Output Voltage V VTTREF Output Voltage Tolerance VIN=VREF, IVTTREF<10mA -20 - +20 mV IVTTREF VTTREF Source Current Limit VTTREF=0V 10 20 30 mA IVREFDIS VTTREF Discharge Current 1 2 3 mA 1.6 - - V - - 0.3 V -1 - 1 µA - 150 - o - o VTTREF=2.5V, VS3=VS5=0V, TA =25oC LOGIC THRESHOLD VIH High Threshold Voltage VS3, VS5 Rising VIL Low Threshold Voltage VS3, VS5 Falling Leakage Current o S3, S5, TA =25 C THERMAL SHUTDOWN TSD Thermal Shutdown Temperature TJ Rising Thermal Shutdown Hysteresis Copyright ANPEC Electronics Corp. Rev. A.1 - Feb., 2008 - 4 30 C C www.anpec.com.tw APL5333 Typical Operating Characteristics (Refer to the section “Typical Application Circuits”, VCNTL=5V, VIN=VREF=1.8V, VTT=0.9V, TA=25oC) Frequency Response Frequency Response 200 20 150 Phase (degree) 40 Gain (dB) 0 VTT=1.25V, IVTT=+2.5A -20 VTT=0.75V, IVTT=+2.5A -40 100 50 VTT=1.25V, IVTT=+2.5A 0 VTT=0.75V, IVTT=+2.5A -50 -60 -80 1000 10000 100000 -100 1000 1000000 10000 Frequency (Hz) VCNTL Supply Current, IVCNTL (μA) 800 VTT=1.25V, IVTT=+1.5A -10 VTT=0.75V, IVTT=+1.5A PSRR (dB) 1000000 VCNTL Supply Current vs. VCNTL Voltage VCNTL PSRR 0 -20 VTT=0.9V, IVTT=+1.5A -30 -40 -50 -60 1000 10000 Frequency (Hz) S3=S5=high 700 600 500 400 VVCNTL=5V 300 200 100 0 100000 0 Dropout Voltage vs. VTT Output Current 1 2 3 4 5 VCNTL Voltage, VCNTL (V) 6 Dropout Voltage vs. VTT Output Current 1000 1000 VTT=0.75V 900 800 Dropout Voltage, VDROP (mV) Dropout Voltage, VDROP (mV) 100000 Frequency (Hz) TJ=125oC 700 TJ=75oC 600 TJ=25oC 500 400 300 200 TJ=-50oC TJ=-25oC 100 1 2 VTT Output Current, IVTT(A) Copyright ANPEC Electronics Corp. Rev. A.1 - Feb., 2008 800 TJ=125oC 700 TJ 600 500 400 300 200 0 3 5 =75oC TJ=25oC TJ=-50oC TJ=-25oC 100 0 0 VTT=0.9V 900 0 1 2 VTT Output Current, IVTT(A) 3 www.anpec.com.tw APL5333 Typical Operating Characteristics (Cont.) (Refer to the section “Typical Application Circuits”, VCNTL=5V, VIN=VREF=1.8V, VTT=0.9V, TA=25oC) VTTREF and VTT Offset Voltage vs. Junction Temperature Dropout Voltage vs. VTT Output Current VTTREF and VTT Offset Voltage (mV) 1200 Dropout Voltage, VDROP (mV) VTT=1.25V 1000 TJ=125oC TJ=75oC 800 TJ=25oC 600 400 200 TJ=-50oC TJ=-25oC 0 1 2 VTT Output Current, IVTT(A) 0 8 IVTT=-10mA 6 4 2 0 -2 IVTT=10mA -4 -6 -8 -10 -50 3 -25 0 25 50 75 100 Junction Temperature (oC) 125 VTT Source Current Limit vs. Junction Temperature VTT Load Regulation vs. Output Current 30 5 20 VTT Sourcing Current Limit (A) VTT Load Regulation (mV) 10 VTT=0.9V 10 0 -10 -20 -30 -3 -2 -1 0 1 2 Output Current, IVTT (A) Copyright ANPEC Electronics Corp. Rev. A.1 - Feb., 2008 VIN=1.8V 4 3 2 1 0 3 -50 -25 6 0 25 50 75 100 125 150 Junction Temperature (oC) www.anpec.com.tw APL5333 Operating Waveforms (Refer to the section “Typical Application Circuits”, VCNTL=5V, VIN=VREF=1.8V, VTT=0.9V, TA=25oC) Power off Power on RLOAD=1Ω RLOAD=1Ω VCNTL VCNTL 1 1 2 3 4 VIN 3 VTT VTT IVTT IVTT 4 CH1 : VCNTL , 5V/div CH2 : VIN , 1V/div CH3 : VTT , 500mV/div CH4 : IVTT , 1A/div Time : 2ms/div CH1 : VCNTL , 5V/div CH2 : VIN , 1V/div CH3 : VTT , 500mV/div CH4 : IVTT , 1A/div Time : 5ms/div S5 Low to High 1 VIN 2 S5 High to Low VS5 VS5 1 VS3 2 VS3 2 VTTREF VTTREF 3 3 VTT VTT 4 4 CH1 : VS5 , 5V/div CH2 : VS3 , 5V/div CH3 :VTTREF , 1V/div CH4 : VTT , 1V/div Time : 10µs/div Copyright ANPEC Electronics Corp. Rev. A.1 - Feb., 2008 CH1 : VS5 , 5V/div CH2 : VS3 , 5V/div CH3 :VTTREF , 1V/div CH4 : VTT , 1V/div Time : 20µs/div 7 www.anpec.com.tw APL5333 Operating Waveforms (Cont.) (Refer to the section “Typical Application Circuits”, VCNTL=5V, VIN=VREF=1.8V, VTT=0.9V, TA=25oC) S3 Low to High S3 and S5 High to Low VS5 VS5 1 1 VS3 VS3 2 2 VTTREF VTTREF 3 3 4 VTT VTT 4 CH1 : VS5 , 5V/div CH2 : VS3 , 5V/div CH3 :VTTREF , 1V/div CH4 : VTT , 1V/div Time : 20µs/div CH1 : VS5 , 5V/div CH2 : VS3 , 5V/div CH3 :VTTREF , 1V/div CH4 : VTT , 1V/div Time : 5ms/div Current Limit and Short Circuit Current Limit VIN 1 VTTREF 2 VTT 3 IVTT 4 CH1 : VIN , 2V/div CH2 : VTTREF , 1V/div CH3 : VTT , 500mV/div CH4 : IVTT , 2A/div Time : 500µs/div Copyright ANPEC Electronics Corp. Rev. A.1 - Feb., 2008 8 www.anpec.com.tw APL5333 Pin Description PIN NO. 1 PIN NAME VREF 2 VIN 3 VTT 4 5 6 7 8 9 PGND VTTSNS VTTREF S3 GND S5 10 VCNTL DESCRIPTION Reference Voltage Input for VTT and VTTREF Regulator. Power Input for VTT and VTTREF Pin. An input capacitor should be connected from VIN to PGND. VTT Output Voltage Pin. Source and sink current up to 3A. To insure the stability issue, the output capacitor typical 20µF(10µF*2) should be connected from VTT to PGND. Power Ground for VIN and VTT. Voltage Sense for VTT. Connect to the positive node of VTT output capacitors. VTT Reference Output Pin. A small capacitor 0.1µF should be connected from VTTREF to GND. S3 Signal Input. Signal Ground. S5 Signal Input Power Input for Internal Control Circuitry. A bypass capacitor 0.1µF should be connected near the pin. Block Diagram VIN VREF VTTREF GND VCNTL POR VTT S3 Soft-start and Control Logic S5 VTTSNS Thermal Shutdown Current Limit PGND Typical Application Circuit VIN 2.5/1.8/1.5V VCNTL CIN 10µF VTT 1.25/0.9/0.75V -3~+3A APL5333 1 2 3 4 COUT 2x10µF Copyright ANPEC Electronics Corp. Rev. A.1 - Feb., 2008 5 5V 10 C2 0.1µF VCNTL VREF VIN S5 VTT GND S3 PGND VTTSNS VTTREF 9 9 8 7 6 C1 0.1µF www.anpec.com.tw APL5333 Function Description VTT Source/Sink Regulator output voltage rise. If the load current is above the current The APL5333 is a low dropout source/sink linear regulator limit 1.7A at start-up, the VTT cannot start sucessfully. STATE S0 S3 S4/5 with maximum 3A source/sink current. Two internal Nchannel MOSFETs controlled by separate high bandwidth error amplifiers regulate the output voltage by sourcing current from VIN or sinking current to PGND. To prevent S3 H L L S5 H H L VTTREF 1 1 0 (discharge) VTT 1 0 (high-Z) 0 (discharge) Table1. The truth table of S3 and S5 pins two pass elements from shoot-through, a voltage offset is created between two positive inputs of the error S3, S5 Control amplifiers. The APL5333 has a droop compensation for minimizing the amplitude of the peak-to-peak VTT volt- The S3 and S5 signals control the VTT and VTTREF states and these pins should be connected to SLP_S3 and SLP_S5 signals respectively. The table1 shows the truth age during load transient response. The droop voltage, added to the reference voltage applied to the positive table of the S3 and S5 pins. When both S3 and S5 are above the logic threshold voltage, the VTT and VTTREF inputs, is regulated by and proportional to the VTT sourcing and sinking output current. Therefore, the droop volt- are turned on at S0 state. When S3 is low and S5 is high, the VTT voltage is disabled and left high impedance in S3 age is positive at sinking current and negative at sourcing current. Typical droop voltage is within ±40mV in all state. When both S3 and S5 are low, the VTT and VTTREF are turned off and discharged to the ground through inter- conditions. Power-on-Reset (POR) nal MOSFETs during S4/S5 state. (Note that if the S3 is forced high and S5 is forced low, then VTTREF is dis- The APL5333 monitors the VCNTL pin voltage for power-on-reset function to prevent erroneous operation. charged and VTT is at high-Z state. Such condition is not recommended.) The built-in POR circuit keeps the outputs shutoff until internal circuit is operating properly. Typical POR thresh- Thermal Shutdown old is 3.8V with 0.2V hysteresis. A thermal shutdown circuit limits the junction tempera- VTTREF Regulator ture of the APL5333. When the junction temperature exceeds +150°C, the device will turn off the MOSFETs, VTTREF voltage follows 1/2VREF voltage which is the allowing the device to cool down. The regulator regulates the output again through initiation of a new soft-start cycle reference of the VTT regulator. The VTTREF block consists of a resistor divider and a low pass filter. The regulator after the junction temperature cools by 30oC, resulting in a pulsed output during continuous thermal overload can source current up to 10mA. To insure the stability, a 0. 1µF ceramic capacitor should be connected from VTTREF conditions. The thermal shutdown designed with a 30°C hysteresis lowers the average junction temperature to GND. during continuous thermal overload conditions, extending lifetime of the device. For normal operation, device Soft-start, Current Limit and Short Circuit Current Limit The APL5333 provides a current limit protection to pre- power dissipation should be externally limited so that vent the device from burnout. According to the voltage between VTT and VTTREF, current limit level is divided junction temperatures will not exceed +125°C. into two levels. When the VTT voltage is out of the 10% VTTREF voltage, the current limit is 1.7A (typical) and VTT voltage comes inside the 5% of VTTREF voltage, the current limit switches to 3.8A (typical). The APL5333 provides a soft-start function, using the constant current to charge the output capacitor that gives a rapid and linear Copyright ANPEC Electronics Corp. Rev. A.1 - Feb., 2008 10 www.anpec.com.tw APL5333 Application Information Layout Consideration Input Capacitor Figure 1 illustrates the layout. Below is a checklist for The APL5333 requires proper input capacitors to supply your layout: 1. Please place the input capacitors close to the VIN. surge current during stepping load transients to prevent the input rail from dropping. Because the parasitic induc- 2. Output capacitors for VTT must be close to the pin with short and wide track. tor from the voltage sources or other bulk capacitors to the VIN limits the slew rate of the surge current, it is nec- 3. VTTSNS should be connected to the output capacitors of VTT separated from large current path to avoid ef- essary to place the input capacitors near VIN as close as possible. Input capacitors should be greater than 4.7µF. A fect of ESR and ESL. The ESR and ESL of ground track between VTT and GND should be minimized. capacitor of 0.47µF (MLCC) or above is recommended for VCNTL pin noise decoupling. 4. VREF should be connected to VIN by a separate track. VREF is the reference voltage of VTTREF, so avoid any Output Capacitor noise to get into the VREF. 5. PGND is the ground of VIN and VTT. GND is the signal The APL5333 needs a proper output capacitor to maintain circuit stability and improve transient response over ground of VREF, VTTREF S3 and S5. GND and PGND should be isolated with a single point connection be- temperature and current. In order to insure the circuit stability, a 4.7µF MLCC (minimum) as an output capaci- tween them. 6. Soldering the exposed pad to ground is good for tor must be placed near the VTT. With X5R and X7R dielectrics, 20µF is sufficient at all operating temperatures. heatsinking. Numerous vias 0.33 mm in diameter connected from the thermal land to the internal/solder- Attaching two 10µF ceramic capacitors in parallel, the effects from ESR and ESL can be minimized. side ground plane(s) should be used to enhance dissipation. Thermal Consideration The APL5333 maximum power dissipation depends on the differences of the thermal resistance and tempera- Large ground plane is good for heatsinking. Optimum performance can only be achieved when the device is mounted on a PC board according to the board layout ture between junction and ambient air. The power dissipation PD across the device is: diagrams which are shown as Figure 2. PD = (TJ - TA) / θJA VIN where (TJ-TA) is the temperature difference between the junction and ambient air. θ JA is the thermal resistance VCNTL CIN between junction and ambient air. Assuming the TA=25°C and maximum TJ=150°C (typical thermal limit threshold), VTT APL5333 1 VCNTL VREF 2 VIN 3 S5 GND VTT the maximum power dissipation is calculated as: 4 PD(max)=(150-25)/60 COUT 5 PGND VTTSNS S3 VTTREF 5V 10 C2 9 8 7 6 C1 = 2.08(W) For normal operation, do not exceed the maximum operating junction temperature of TJ = 125°C. The calculated power dissipation should be less than: Figure 1 PD =(125-25)/60 = 1.66(W) The exposed pad provides an electrical connection to ground and channels heat away. Connect the exposed pad to ground by using a large ground plane. Copyright ANPEC Electronics Corp. Rev. A.1 - Feb., 2008 11 www.anpec.com.tw APL5333 Application Information (Cont.) Layout Consideration (Cont.) For dissipating heat PGND GND CIN VCNTL VIN C2 COUT VTT C1 PGND APL5333 GND Figure 2 Recommended Layout Recommended Minimum Footprint 8 7 6 5 10 9 8 7 6 0.061 0.010 0.181 0.098 0.098 1 2 0.020 3 4 5 Unit : Inch Copyright ANPEC Electronics Corp. Rev. A.1 - Feb., 2008 12 www.anpec.com.tw APL5333 Package Information MSOP-10P D SEE VIEW A e E E2 EXPOSED PAD E1 D1 c 0.25 A A2 b L 0 A1 GAUGE PLANE SEATING PLANE VIEW A S Y M B O L MSOP-10P INCHES MILLIMETERS MIN. MIN. MAX. A MAX. 0.043 1.10 A1 0.00 0.15 0.000 0.006 A2 0.75 0.95 0.030 0.037 b 0.17 0.33 0.007 0.013 c 0.08 0.23 0.003 0.009 D 2.90 3.10 0.114 0.122 D1 1.50 2.50 0.059 0.098 E 4.70 5.10 0.185 0.201 E1 2.90 3.10 0.114 0.122 E2 1.50 2.50 0.059 0.098 e 0.50 BSC 0.020 BSC L 0.40 0.80 0.016 0.031 0 0° 8° 0° 8° Note: 1. Follow JEDEC MO-187 BA-T. 2. Dimension “D”does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not flash or protrusions. 3. Dimension “E1” does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 6 mil per side. Copyright ANPEC Electronics Corp. Rev. A.1 - Feb., 2008 13 www.anpec.com.tw APL5333 Carrier Tape & Reel Dimensions P0 P2 P1 A B0 W F E1 OD0 K0 A0 A OD1 B B T SECTION A-A SECTION B-B H A d T1 Application A H 330.0±2.00 50 MIN. MSOP-10P P0 T1 C d D W E1 12.4+2.00 13.0+0.50 1.5 MIN. 20.2 MIN. 12.0±0.30 1.75±0.10 -0.00 -0.20 P1 P2 4.00±0.10 8.00±0.10 2.00±0.10 D0 D1 1.5+0.10 -0.00 1.5 MIN. T A0 B0 F 5.5±0.10 K0 0.6+0.00 6.70±0.20 3.30±0.20 1.40±0.20 -0.40 (mm) Devices Per Unit Package Type Unit Quantity MSOP- 10P Tape & Reel 3000 Copyright ANPEC Electronics Corp. Rev. A.1 - Feb., 2008 14 www.anpec.com.tw APL5333 Reflow Condition (IR/Convection or VPR Reflow) tp TP Critical Zone TL to TP Ramp-up Temperature TL tL Tsmax Tsmin Ramp-down ts Preheat 25 t 25°C to Peak Time Reliability Test Program Test item SOLDERABILITY HOLT PCT TST ESD Latch-Up Method MIL-STD-883D-2003 MIL-STD-883D-1005.7 JESD-22-B,A102 MIL-STD-883D-1011.9 MIL-STD-883D-3015.7 JESD 78 Description 245°C, 5 sec 1000 Hrs Bias @125°C 168 Hrs, 100%RH, 121°C -65°C~150°C, 200 Cycles VHBM > 2KV, VMM > 200V 10ms, 1tr > 100mA Classification Reflow Profiles Profile Feature Average ramp-up rate (TL to TP) Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (min to max) (ts) Time maintained above: - Temperature (TL) - Time (tL) Peak/Classification Temperature (Tp) Time within 5°C of actual Peak Temperature (tp) Ramp-down Rate Time 25°C to Peak Temperature Sn-Pb Eutectic Assembly Pb-Free Assembly 3°C/second max. 3°C/second max. 100°C 150°C 60-120 seconds 150°C 200°C 60-180 seconds 183°C 60-150 seconds 217°C 60-150 seconds See table 1 See table 2 10-30 seconds 20-40 seconds 6°C/second max. 6°C/second max. 6 minutes max. 8 minutes max. Note: All temperatures refer to topside of the package. Measured on the body surface. Copyright ANPEC Electronics Corp. Rev. A.1 - Feb., 2008 15 www.anpec.com.tw APL5333 Classification Reflow Profiles (Cont.) Table 1. SnPb Eutectic Process – Package Peak Reflow Temperatures Package Thickness <2.5 mm ≥2.5 mm 3 Volume mm3 <350 240 +0/-5°C 225 +0/-5°C Volume mm ≥350 225 +0/-5°C 225 +0/-5°C Table 2. Pb-free Process – Package Classification Reflow Temperatures 3 3 3 Volume mm Volume mm Volume mm <350 350-2000 >2000 <1.6 mm 260 +0°C* 260 +0°C* 260 +0°C* 1.6 mm – 2.5 mm 260 +0°C* 250 +0°C* 245 +0°C* ≥2.5 mm 250 +0°C* 245 +0°C* 245 +0°C* * Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature (this means Peak reflow temperature +0°C. For example 260°C+0°C) at the rated MSL level. Package Thickness Customer Service Anpec Electronics Corp. Head Office : No.6, Dusing 1st Road, SBIP, Hsin-Chu, Taiwan, R.O.C. Tel : 886-3-5642000 Fax : 886-3-5642050 Taipei Branch : 2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan Tel : 886-2-2910-3838 Fax : 886-2-2917-3838 Copyright ANPEC Electronics Corp. Rev. A.1 - Feb., 2008 16 www.anpec.com.tw