ashx prod file.ashx?prod id=768&file path=20151223134656758.pdf&original name=

APL5339
Source and Sink, 2A, Fast Transient Response Linear Regulator
Features
General Description
•
The APL5339 linear regulator is designed to provide a
regulated voltage with bi-direction output current for DDR-
Provide Bi-direction Currents
- Sourcing or Sinking Current Up to 2A
•
•
•
•
•
SDRAM termination voltage. The APL5339 integrates two
power transistors to source or sink load current up to 2A.
Built-in Soft-Start
Power-On-Reset Monitoring on VCNTL Pins
It also features internal soft-start, current-limit, thermal
shutdown and enable control functions into a single chip.
Fast Transient Resoponse
Stable with Ceramic Output Capacitors
The internal soft-start controls the rising rate of the output
voltage to prevent inrush current during start-up. The cur-
+10mV High System Output Accuracy Over Load
and Temperature Ranges
•
•
•
•
•
•
rent-limit circuit detects the output current and limits the
current during short-circuit or current overload conditions.
Adjustable Output Voltage by External Resistors
The on-chip thermal shutdown provides thermal protection against any combination of overload that would cre-
Current-Limit Protection
On-Chip Thermal Shutdown
ate excessive junction temperatures.
The output voltage of APL5339 is regulated to track the
Shutdown for Standby or Suspend Mode
Compact TDFN3x3-10 Package
voltage on half voltage of VREF. An internal resistor divider is used to provide a half voltage of VREF for VOUT
Lead Free and Green Devices Available (RoHS
Compliant)
Voltage. The VOUT output voltage is only requiring 10µF
of ceramic output capacitance for stability and fast tran-
Applications
•
•
•
•
sient response.
Pulling and holding the voltage on voltage of EN below
DDRII/III/IV SDRAM Termination Voltage
the enable voltage threshold shuts off the output.
The APL5339 is available in TDFN3x3-10 package.
Motherboard and VGA Card Power Supplies
Setop Box
Low Power DDRIII/IV
Simplified Application Circuit
VCNTL
VCNTL
VIN
VIN
VREF
VOUT
VOUT
APL5339
EN
Enable
EN
VOSNS
GND
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
1
www.anpec.com.tw
APL5339
Pin Configuration
EN 1
10 VCNTL
VOSNS 2
9 VREF
VOUT 3
GND
8 VIN
VOUT 4
7 VIN
VOUT 5
6 VIN
TDFN3X3-10
(Top View)
= Exposed Pad
(connected to ground plane for better heat dissipation)
Ordering and Marking Information
APL5339
Package Code
QB : TDFN3x3-10
Assembly Material
Handling Code
Temperature Range
Package Code
APL5339 QB:
APL
5339
XXXXX
Operating Junction Temperature
I : -40 to 85 o C
Handling Code
TR : Tape & Reel
Assembly Material
G : Halogen and Lead Free Device
X - Date Code
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020D for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
Absolute Maximum Ratings
Symbol
(Note 1)
Rating
Unit
VCNTL Supply Voltage (VCNTL to GND)
-0.3 ~ 7
V
VIN Supply Voltage (VIN to GND)
-0.3 ~ 4
V
VREF Input Voltage (VREF to GND)
-0.3 ~ 7
V
VOSNS
VOSNS Input Voltage (VOSNS to GND)
-0.3 ~ 7
V
VOUT
VOUT Output Voltage (VOUT to GND)
VEN
EN to GND Voltage
VCNTL
VIN
VREF
TJ
Parameter
Junction Temperature
TSTG
Storage Temperature
TSDR
Maximum Lead Soldering Temperature (10 Seconds)
-0.3 ~ VIN+0.3
V
-0.3 ~ VCNTL+0.3
V
150
o
-65 ~ 150
o
260
o
C
C
C
Note1: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are
stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device
reliability.
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
2
www.anpec.com.tw
APL5339
Thermal Characteristics
Symbol
Parameter
Junction-to-Ambient Resistance in Free Air
θJA
Typical Value
Unit
(Note 2)
o
TDFN3x3-10
C/W
60
Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air.
Recommended Operating Conditions(Note 3)
S ymbol
VCNTL
Pa ra mete r
VCNTL Supp ly Volta ge
(Note 4)
V IN
VIN Supp ly Voltage
V REF
VREF Input Vol tage
VOUT
VOUT Output Vo ltag e (VCNTL - VOU T > 2.3V for IOUT = 2A, TJ=25° C)
IOUT
VOUT Output Cu rrent
C IN
(No te 5 )
(Note 6)
3.0 ~ 5.5
V
1.0 ~ 3.6
V
0 ~ VIN
V
0 .5 xVR EF ~ VIN – VDROP
V
-2 ~ +2
A
10 ~ 10 0
µF
Equivalen t Ser ies Resisto r (E SR) o f Input Ca pacito r
0 ~ 2 00
mΩ
Capacitance of O utp ut Multi-layer Ceramic Capacitor (ML CC)
Total Output Capa ci tance
TJ
Unit
Capa ci tan ce of Inp ut Capacitor
COUT
TA
Range
(Note 7)
Ambient Tempe rature
Jun ction Tempera tur e
8 ~ 47
µF
10 ~ 82 0
µF
-40 ~ 85
o
C
-4 0 ~ 125
o
C
Note 3: Refer to the typical application circuit
Note 4: The voltage of VCNTL must be higher than the voltage of VOUT pin.
Note 5: The voltage of VREF should not be higher than the voltage of VIN when the regulator be enabled.
Note 6: The symbol “+” means the VOUT sources current to load; the symbol “-” means the VOUT sinks current from load to GND.
Note 7: It is necessary to use a multi-layer ceramic capacitor 8µF at least as an output capacitor. Please place the ceramic capacitor
near VOUT pin as close as possible. Besides, the other kinds of capacitors (like Electrolytic, PoSCap, tantalum capacitors) can
be used as the output capacitors in parallel.
Electrical Characteristics
Unless otherwise specified, these specifications apply over VCNTL=5V, VIN=1.8V, 1.5V or 1.35V, VREF=VIN, CIN=10µF, COUT=10µF
(MLCC) and TA= -40 to 85 oC. Typical values are at TA=25oC.
P arame ter
APL5339
Symbol
Unit
Tes t Conditions
Min
Typ
Max
SUPPLY CURRENT
ICN TL
VCNTL Su pply Cur rent
VEN =VC NTL , I OUT =0 A
-
0 .5
1
mA
I SD
VCNTL Su pply Cur rent a t Shu tdown
VEN =GND
-
15
30
µA
I VIN
VIN Su pply Cu rrent at Shu tdo wn
VEN =GND
-
-
1
µA
VCNTL Rising
2.3
2 .6
2.9
V
-
0.35
-
V
VIN Rising
0.4
0.6
0 .8
V
-
0.2
-
V
POWER-ON-RES ET (POR)
Risi ng VCNTL POR Th reshold
VCNTL PO R Hysteresis
Risi ng VIN PO R Threshold
VIN POR Hystere sis
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
3
www.anpec.com.tw
APL5339
Electrical Characteristics(Cont.)
Unless otherwise specified, these specifications apply over VCNTL=5V, VIN=1.8V, 1.5V or 1.35V, VREF=VIN, CIN=10µF, COUT=10µF
(MLCC) and TA= -40 to 85 oC. Typical values are at TA=25oC.
P arame ter
APL5339
Tes t Conditions
Symbol
Unit
Min
Typ
Max
-
0 .5
-
V REF
-10
-
10
mV
-
22
-
µA
-1 00
-
+100
nA
-
12.5
-
µA
0 .5
0.8
1.1
V
-
0.1
-
V
-
3.5
-
µA
0 .1
0.25
0.4
ms
OUTPUT VOLTAGE
V OUT
VOUT O utput Voltage
System A ccura cy
Over Loa d, O ffse t and Tempera ture
VOUT Discharg e Cur rent
VC NTL=5V, VEN =0V, VOUT =0.1V
VOSNS Inpu t Curren t
VOSNS=VCNTL
VREF In put Curre nt
VR EF=5V
ENABLE and INTERNAL SOFT-S TART
V EN
EN Logic In put Thresho ld
I EN
EN Pull-High Curr ent
VC NTL=3V ~5.5V
EN Hyste resis
t SS
In te rnal Soft-Start Interval
VEN =GND
o
VR EF=1.8 V, V OUT =10% to 9 0%, T J=2 5 C
DROPOUT VO LTAGES
V DROP
VIN-to-V OUT Dropo ut Voltage
V CNTL=5 .0V, I OU T=2 A,
V OUT =1.2 V
o
TJ=25 C
o
o
TJ=-40 C ~12 5 C
-
0.34
0.41
V
-
-
0.55
V
PROTECTIONS
o
So urcing Curren t
T J=25 C
2.6
3 .4
4.2
A
2.2
-
-
A
T J=25 C
-2.6
-3.4
-4.2
A
T J=-40oC ~ 125 oC
-2.2
-
-
-
170
-
o
C
-
o
C
o
o
T J=-40 C~125 C
I LIM
Curren t Limit L eve l
o
Sin king Cu rrent
TSD
Thermal Sh utdo wn Temper atu re
T J r isin g
Thermal Sh utd own Hyster esi s
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
-
4
50
A
www.anpec.com.tw
APL5339
Pin Description
PIN
FUNCTION
NO.
NAME
1
EN
Active-high enable control pin. Applying and holding the voltage on this pin below the enable voltage
threshold shuts down the output. When re-enabled, the IC undergoes a new soft-start process. When leave
this pin open, an internal pull-up current (3µA typical) pulls the EN voltage and enables the regulator.
2
VOSNS
Output voltage feedback pin. Connecting this pin to an external resistor divider receives the feedback
voltage of the regulator.
3, 4, 5
VOUT
Output pin of the regulator. Connect this pin to load and output capacitors (8µF at least) required for stability
and improving transient response. The output voltage is regulated to track the reference voltage and
capable of sourcing or sinking current up to 2A. During shutdown, the output voltage is discharged by an
internal pull-low MOSFET.
6, 7, 8
VIN
Main supply input pin for voltage conversions. A decoupling capacitor (≥10µF recommended) is usually
connected near this pin to filter the voltage noise and improve transient response. The APL5339 sources
current to VOUT pin by controlling the upper pass MOSFET, providing a current path from VIN pin.
9
VREF
Reference voltage input for VOUT regulator.
10
VCNTL
Bias voltage input pin for internal control circuitry. Connect this pin to a voltage source (+5V recommended).
A decoupling capacitor (1µF typical) is usually connected near this pin to filter the voltage noise. The
voltage at this pin is monitored for Power-On-Reset purpose.
Exposed
Pad
GND
Ground pin of the circuitry. Connect the exposed pad to the system ground plan with large copper area for
dissipating heat into the ambient air. The APL5339 sinks current from VOUT pin by controlling the lower
pass MOSFET, providing a current path to GND pin.
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
5
www.anpec.com.tw
APL5339
Typical Operating Characteristics
VCNTL Shutdown Current vs.
Junction Temperature
VCNTL Supply Current vs.
Junction Temperature
30
700
VCNTL Shutdown Current, ISD (( A)
VCNTL Supply Current, ICNTL (mA)
VCNTL = 5V
650
600
550
500
450
400
350
VCNTL = 5V
25
20
15
10
5
300
-50
-25
0
25
75
50
100
-50
125
-25
4.2
TJ = 125°C
VCNTL = 5V
3.8
Current-Limit, ILIM (A)
Dropout Voltage, VDROP (mV)
125
4.0
TJ = 100°C
200
TJ = 25°C
150
TJ = - 40°C
100
Sinking Current
3.6
3.4
3.2
3.0
2.8
Sourcing Current
2.6
50
2.4
2.2
0
0
0.5
1
1.5
-50
2
-25
0
25
50
75
100
Output Current, IOUT (A)
Junction Temperature, TJ ( C)
Offset Voltage vs.
Junction Temperature
Offset Voltage vs.
Junction Temperature
5
VCNTL = 5V
VOUT = 0.75V
4
3
2
IOUT=-10mA
1
0
-1
-2
125
o
Offset Voltage, VOFFSET (mV)
Offset Voltage, VOFFSET (mV)
100
Current-Limit vs.
Junction Temperature
250
4
75
Dropout Voltage vs.
Output Current
300
5
50
Junction Temperature, TJ ( C)
VCNTL = 5V
VOUT = 1.05V
350
25
Junction Temperature, TJ (oC)
o
400
0
IOUT=+10mA
-3
-4
VCNTL = 3.3V
VOUT = 0.75V
3
2
1
0
-1
IOUT=-10mA
-2
IOUT=+10mA
-3
-4
-5
-5
-50
-25
0
25
50
75
100
125
-50
o
0
25
50
75
100
125
o
Junction Temperature, TJ ( C)
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
-25
Junction Temperature, TJ ( C)
6
www.anpec.com.tw
APL5339
Typical Operating Characteristics (Cont.)
Offset Voltage vs.
Junction Temperature
Offset Voltage vs.
Junction Temperature
Offset Voltage, VOFFSET (mV)
4
5
VCNTL = 5V
VOUT = 0.675V
4
Offset Voltage, VOFFSET (mV)
5
3
2
IOUT=-10mA
1
0
-1
-2
-3
IOUT=+10mA
VCNTL = 3.3V
VOUT = 0.675V
3
2
IOUT=-10mA
1
0
-1
-2
IOUT=+10mA
-3
-4
-4
-5
-5
-50
-25
0
25
50
75
100
-50
125
0
25
50
75
100
125
Junction Temperature, TJ ( C)
Junction Temperature, TJ ( C)
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
-25
o
o
7
www.anpec.com.tw
APL5339
Operating Waveforms
Refer to the typical application circuit. The test condition is VCNTL=5V, TA= 25oC unless otherwise specified.
Power On
Power Off
V CNTL
VCNTL
1
V IN
1
VIN
2
V REF
2
VREF
3
3
VOUT
V OUT
4
4
VCNTL=5V, VIN=1.5V, IOUT =2A
CH1: VCNTL, 2V/Div, DC
CH2: VIN, 0.5V/Div, DC
CH3: VREF, 0.5V/Div, DC
CH4: VOUT , 0.2V/Div, DC
TIME: 2ms/Div
VCNTL=5V, VIN=1.5V, IOUT =2A
CH1: VCNTL, 2V/Div, DC
CH2: VIN, 0.5V/Div, DC
CH3: VREF, 0.5V/Div, DC
CH4: VOUT , 0.2V/Div, DC
TIME: 500µs/Div
Load Transient Response
Load Transient Response
VOUT
VOUT
1
1
2
IOUT
IOUT
2
IOUT=14mA to 2A to 14mA (rise / fall time = 1µs)
VCNTL=5V, VIN=1.35V, VOUT=0.675V
CH1: VOUT, 20mV/Div, DC offset 0.675V
CH2: IOUT, 1A/Div, DC
TIME: 10µs/Div
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
IOUT= -14mA to -2A to -14mA (rise / fall time = 1µs)
VCNTL=5V, VIN=1.35V, VOUT=0.675V
CH1: VOUT, 20mV/Div, DC offset 0.675V
CH2: IOUT, 1A/Div, DC
TIME: 5µs/Div
8
www.anpec.com.tw
APL5339
Operating Waveforms(Cont.)
Refer to the typical application circuit. The test condition is VCNTL=5V, TA= 25oC unless otherwise specified.
Load Transient Response
Load Transient Response
VOUT
V OUT
1
1
2
I OUT
I OUT
2
IOUT=14mA to 2A to 14mA (rise / fall time = 1µs)
VCNTL=5V, VIN=1.5V, VOUT=0.75V
CH1: VOUT , 20mV/Div, DC offset 0.75V
CH2: IOUT , 1A/Div, DC
TIME: 10µs/Div
VCNTL=5V, VIN=1.5V, VOUT=0.75V
CH1: VOUT , 20mV/Div, DC offset 0.75V
CH2: IOUT , 1A/Div, DC
TIME: 5µs/Div
Load Transient Response
Load Transient Response
VOUT
VOUT
1
2
1
IOUT
2
IOUT= 2A to -2A to 2A
VCNTL=5V, VIN=1.5V, VOUT=0.75V
CH1: VOUT , 50mV/Div, DC offset 0.75V
CH2: IOUT , 2A/Div, DC
TIME: 5µs/Div
IOUT= 2A to -2A to 2A
VCNTL=5V, VIN=1.35V, VOUT=0.675V
CH1: VOUT , 50mV/Div, DC offset 0.675V
CH2: IOUT , 2A/Div, DC
TIME: 5µs/Div
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
I OUT
9
www.anpec.com.tw
APL5339
Operating Waveforms(Cont.)
Refer to the typical application circuit. The test condition is VCNTL=5V, TA= 25oC unless otherwise specified.
Over Current Protection
Load Transient Response
V IN
V OUT
VOUT
1
1,2
I OUT
2
IOUT
3
V IN= 1.5V, VOUT= 0.75V, IOUT = 2A to 3A
CH1: VIN, 0.5V/Div, DC
CH2: VOUT, 0.5V/Div, DC
CH3: IOUT , 1A/Div, DC
TIME: 20µs/Div, DC
IOUT= 2A to -2A to 2A
VCNTL=5V, VIN=1.8V, VOUT=0.9V
CH1: VOUT , 50mV/Div, DC offset 0.9V
CH2: IOUT , 2A/Div, DC
TIME: 5µs/Div
Shutdown
Enable
VEN
VEN
1
1
VOUT
VOUT
IOUT
2
2
IOUT
3
3
VIN=1.8V, VREF=1.8V, IOUT=2A
CH1: VEN, 5V/Div, DC
CH2: VOUT, 0.2V/Div, DC
CH3: IOUT, 1A/Div, DC
TIME: 5µs/Div
VIN=1.8V, VREF=1.8V, IOUT=2A
CH1: VEN, 5V/Div, DC
CH2: VOUT, 0.2V/Div, DC
CH3: IOUT, 1A/Div, DC
TIME: 50µs/Div
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
10
www.anpec.com.tw
APL5339
Block Diagram
VIN
VCNTL
VCNTL
3µA
Power-OnReset
Enable
EN
0.8V
THSD
VREF
Control Logic
and
Soft-Start
POR
Soft-Start
Thermal
Shutdown
Error Amplifier
VOUT
RH
200kΩ
RL
200kΩ
Current
Limit
GND
VOSNS
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
11
www.anpec.com.tw
APL5339
Typical Application Circuit
VOUT = 0.9V/0.75V/0.675V Application
VCNTL
+5V
C1
1µF
10
VCNTL
6, 7, 8
VIN
+1.8V/+1.5V/+1.35V
C2
10µF
9
VIN
VREF
VOUT
3, 4, 5
C3
10µF
(X5R/X7R)
APL5339
1
EN
EN
VOSNS
GND
Enable
VOUT
C4
+0.9V/+0.75V/+0.65V
100µF
-2A ~ +2A
(Optional)
2
VOUT =
1
VREF
2
The ceramic capacitor C3 ( at least 8µF) is necessary for output stability.
General Application
VCNTL
+5V
C1
1µF
VIN
C2
10µF
10
6, 7, 8
VIN
9 VREF
VREF
C3
1µF
VCNTL
VOUT
3, 4, 5
APL5339
EN
1 EN
Enable
VOUT =
R1
VOSNS
GND
VOUT
C3
10µF
(X5R/X7R)
C4
100µF
(Optional)
2
R2
1
R1 

VREF 1 +

2
R2 

The ceramic capacitor C3 ( at least 8µF) is necessary for output stability.
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
12
www.anpec.com.tw
APL5339
Function Description
Power-On-Reset(POR)
Thermal Shutdown
A Power-On-Reset (POR) circuit monitors both input voltages at VCNTL and VIN pins to prevent wrong logic
An thermal shutdown circuit limits the junction temperature of the APL5339. When the junction temperature ex-
controls. The POR function initiates a soft-start process
after both of the supply voltages exceed their rising POR
ceeds TJ = +170oC, a thermal sensor turns off the both
pass transistors, allowing the device to cool. The thermal
votage thresholds during powering on.
sensor allows the regulator to regulate again after the
junction temperature cools by 50oC, resulting in a pulsed
Output Voltage Regulation
output during continuous thermal overload conditions.
The thermal limit designed with a 50oC hysteresis low-
The output voltage on VOUT pin is regulated to track the
reference voltage applied on VREF pin. Two internal Nchannel power MOSFETs controlled by high bandwidth
ers the average TJ during continuous thermal overload
conditions , increasing life time of the APL5339.
error amplifiers regulate the output voltage by sourcing
current from VIN pin or sinking current to GND pin. An
internal output voltage sense pad is bonded to the VOUT
pin with a bonding wire for perfect load regulation.
For preventing the two power MOSFETs from shootthrough, a small voltage offset between the positive inputs of the two error amplifiers is designed. It results in
higher output voltage while the regulator sinks light or
heavy load current.
Enable/Shutdown
The APL5339 has a dedicated enable pin (EN). A logic
low signal applied to this pin shuts down the output. Following a shutdown, a logic high signal re-enables the
output through initiation of a new soft-start cycle. When
left open, this pin is pulled up by an internal current source
(3µA typical) to enable normal operation.
Internal Soft-Start
An internal soft-start function controls rise rate of the output voltage to limit the current surge during start-up. The
typical soft-start interval is about 0.25 ms.
Current-Limit Protection
The APL5339 monitors the output current, both sourcing
and sinking current, and limits the maximum output current to prevent damages during current overload or
shortcircuit (shorten from VOUT to GND or VIN) conditions.
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
13
www.anpec.com.tw
APL5339
Application Information
Power Sequencing
Where (TJ-TA) is the temperature difference between the
The input sequencing of VIN and VCNTL is not necessary
to be concerned.
junction and ambient air. θJA is the thermal resistance
o
between junction and ambient air. Assuming the TA=25 C
o
and maximum TJ=150 C (Absolute Maximum Rating), the
maximum power dissipation is calculated as:
Input Capacitor Selection
The APL5339 requires proper input capacitors to supply
PD(max) =
current surge during stepping load transients to prevent
the input rail from dropping. Because the parasitic inductors from the voltage sources or other bulk capacitors to
the VIN pin limit the slew rate of the input current, more
(150 − 25)
= 2.08(W)
60
For normal operation, do not exceed the maximum junco
tion temperature of TJ = 125 C. The calculated power dis-
parasitic inductance needs more input capacitance. For
the APL5339, the total capacitance of input capacitors value
sipation should less than:
including MLCC and aluminum electrolytic capacitors
should be larger than 10µF. For VCNTL pin, a capacitor of
PD =
1µF (MLCC) or above is recommended for noise
decoupling.
(125 − 25)
= 1.67( W )
60
PCB Layout Considerations
Output Capacitor Selection
Figure 1 illustrates the layout. Below is a checklist for
your layout:
The APL5339 needs a proper output capacitor to maintain
1. Please place the input capacitors close to the VIN.
2. Please place the output capacitors close to the VOUT,
circuit stability and improve transient response. In order
to insure the circuit stability, a 10µF X5R or X7R MLCC
a MLCC capacitor larger than 8µF must be placed near
the VOUT. The distance from VOUT to output MLCC must
output capacitor is sufficient at all operating temperatures
and it must be placed near the VOUT. The maximum dis-
be less than 2mm.
3. To place APL5339 and output capacitors near the load
tance from output capacitor to VOUT must within 2mm.
Total output capacitors value including MLCC and alumi-
is good for load transient response.
4. Large current paths, the bold lines in Figure 1, must
num electrolytic capacitors should be larger than 10µF.
Table 1 provides the suitable output capacitors for
have wide tracks.
5. VREF should be connected to VIN by a separate track.
APL5339.
VREF is the reference voltage of VOUT, so avoid any noise
to get into the VREF.
Table 1: Output Capacitor Guide
Murata
6. Place the R1 and R2 near the APL5339 as close as
possible to avoid noise coupling.
Description
Vendor
10µF, 6.3V, X7R, 0805, GRM21BR70J106K
7. Connect the ground of the R2 to the GND pin by using
a dedicated track.
10µF, 6.3V, X5R, 0805, GRM21BR60J106K
Murata website: www.murata.com
8. Connect the one pin of the R1 to the load for Kelvin
sensing.
Operation Region and Power Dissipation
The APL5339 maximum power dissipation depends on
the thermal resistance and temperature difference between the die junction and ambient air. The power dissipation PD across the device is:
PD ≤
(TJ − TA )
θJA
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
14
www.anpec.com.tw
APL5339
Application Information (Cont.)
PCB Layout Considerations (Cont.)
VCNTL
CCNTL
CIN
VCNTL
VIN
VIN
VREF
VOUT
VOUT
APL5339
COUT
VOSNS
GND
R1
Load
R2
Figure 1.
Recommanded Minimum Footprint
The via diameter = 0.012
0.012
Hole size = 0.008
0.024
0.0965
0.012
0.02
0.062
Unit: Inch
TDFN3x3-10
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
15
www.anpec.com.tw
APL5339
Package Information
TDFN3x3-10
A
E
D
b
Pin
1
D2
A1
A3
NX
aaa
C
L K
E2
Pin 1 Corner
e
S
Y
M
B
O
L
TDFN3*3-10
MILLIMETERS
INCHES
MIN.
MAX.
MIN.
MAX.
A
0.70
0.80
0.028
0.031
A1
0.00
0.05
0.000
0.002
A3
0.20 REF
0.008 REF
b
0.18
0.30
0.007
0.012
D
2.90
3.10
0.114
0.122
D2
2.20
2.70
0.087
0.106
0.122
0.069
E
2.90
3.10
0.114
E2
1.40
1.75
0.055
0.50
0.012
e
0.50 BSC
L
0.30
K
0.20
aaa
0.020 BSC
0.020
0.008
0.08
0.003
Note:1.Followed from JEDEC MO-229 VEED-5.
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
16
www.anpec.com.tw
APL5339
Carrier Tape & Reel Dimensions
A
B
A
B
SECTION A-A
Note : 1. 10 sprocket hole pitch cumulative tolerance ±0.2 SECTION B-B
2. Material: conductive polystyrene
3. Ao and Bo measured on a plane 0.3mm above the bottom of
the pocket
4 Ko measured from a plane on the inside bottom of the pocket
to the top surface of the carrier
Note : 1. Followed from EIA-481
Application
TDFN3x3-10
A
H
T1
C
d
D
330±2.00
50 MIN.
P0
P1
P2
D0
D1
4.0±0.10
8.0±0.10
2.0±0.05
1.5+0.10
-0.00
1.5 MIN.
12.4+2.00 13.0+0.50
-0.00
-0.20 1.5 MIN.
W
E1
20.2 MIN. 12.0±0.30 1.75±0.10
T
A0
B0
F
5.5±0.05
K0
0.6+0.00
-0.40 3.30±0.20 3.30±0.20 1.00±0.20
(mm)
Devices Per Unit
Package Type
Unit
Quantity
TDFN 3*3-10
Tape & Reel
3000
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
17
www.anpec.com.tw
APL5339
Taping Direction Information
TDFN3x3-10
USER DIRECTION OF FEED
Classification Profile
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
18
www.anpec.com.tw
APL5339
Classification Reflow Profiles
Profile Feature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
3 °C/second max.
3°C/second max.
183 °C
60-150 seconds
217 °C
60-150 seconds
See Classification Temp in table 1
See Classification Temp in table 2
Time (tP)** within 5°C of the specified
classification temperature (Tc)
20** seconds
30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max.
6 °C/second max.
6 minutes max.
8 minutes max.
Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
Average ramp-up rate
(Tsmax to TP)
Liquidous temperature (TL)
Time at liquidous (tL)
Peak package body Temperature
(Tp)*
Time 25°C to peak temperature
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)
Package
Thickness
<2.5 mm
≥2.5 mm
Volume mm
<350
235 °C
220 °C
3
Volume mm
≥350
220 °C
220 °C
3
Table 2. Pb-free Process – Classification Temperatures (Tc)
Package
Thickness
<1.6 mm
1.6 mm – 2.5 mm
≥2.5 mm
Volume mm
<350
260 °C
260 °C
250 °C
3
Volume mm
350-2000
260 °C
250 °C
245 °C
3
Volume mm
>2000
260 °C
245 °C
245 °C
3
Reliability Test Program
Test item
SOLDERABILITY
HOLT
PCT
TCT
HBM
MM
Latch-Up
Method
JESD-22, B102
JESD-22, A108
JESD-22, A102
JESD-22, A104
MIL-STD-883-3015.7
JESD-22, A115
JESD 78
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
19
Description
5 Sec, 245°C
1000 Hrs, Bias @ Tj=125°C
168 Hrs, 100%RH, 2atm, 121°C
500 Cycles, -65°C~150°C
VHBM≧2KV
VMM≧200V
10ms, 1tr≧100mA
www.anpec.com.tw
APL5339
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Copyright  ANPEC Electronics Corp.
Rev. A.1 - Nov., 2015
20
www.anpec.com.tw