Molded Guide www.vishay.com Vishay Polytech Guide for Tantalum and Niobium Solid Electrolyte Chip Capacitors INTRODUCTION Tantalum electrolytic capacitors are the preferred choice in applications where volumetric efficiency, stable electrical parameters, high reliability, and long service life are primary considerations. The stability and resistance to elevated temperatures of the tantalum / tantalum oxide / manganese dioxide system make solid tantalum capacitors an appropriate choice for today's surface mount assembly technology. Vishay Sprague has been a pioneer and leader in this field, producing a large variety of tantalum capacitor types for consumer, industrial, automotive, military, and aerospace electronic applications. Tantalum is not found in its pure state. Rather, it is commonly found in a number of oxide minerals, often in combination with Columbium ore. This combination is known as “tantalite” when its contents are more than one-half tantalum. Important sources of tantalite include Australia, Brazil, Canada, China, and several African countries. Synthetic tantalite concentrates produced from tin slags in Thailand, Malaysia, and Brazil are also a significant raw material for tantalum production. Electronic applications, and particularly capacitors, consume the largest share of world tantalum production. Other important applications for tantalum include cutting tools (tantalum carbide), high temperature super alloys, chemical processing equipment, medical implants, and military ordnance. Vishay Sprague is a major user of tantalum materials in the form of powder and wire for capacitor elements and rod and sheet for high temperature vacuum processing. THE BASICS OF TANTALUM CAPACITORS Most metals form crystalline oxides which are non-protecting, such as rust on iron or black oxide on copper. A few metals form dense, stable, tightly adhering, electrically insulating oxides. These are the so-called “valve” metals and include titanium, zirconium, niobium, tantalum, hafnium, and aluminum. Only a few of these permit the accurate control of oxide thickness by electrochemical means. Of these, the most valuable for the electronics industry are aluminum and tantalum. Capacitors are basic to all kinds of electrical equipment, from radios and television sets to missile controls and automobile ignitions. Their function is to store an electrical charge for later use. Capacitors consist of two conducting surfaces, usually metal plates, whose function is to conduct electricity. They are separated by an insulating material or dielectric. The dielectric used in all tantalum electrolytic capacitors is tantalum pentoxide. Tantalum pentoxide compound possesses high-dielectric strength and a high-dielectric constant. As capacitors are being manufactured, a film of tantalum pentoxide is applied to their electrodes by means of an electrolytic process. The film is applied in various thicknesses and at various voltages and although transparent to begin with, it takes on different colors as light refracts through it. This coloring occurs on the tantalum electrodes of all types of tantalum capacitors. Revision: 11-Apr-16 Rating for rating, tantalum capacitors tend to have as much as three times better capacitance / volume efficiency than aluminum electrolytic capacitors. An approximation of the capacitance / volume efficiency of other types of capacitors may be inferred from the following table, which shows the dielectric constant ranges of the various materials used in each type. Note that tantalum pentoxide has a dielectric constant of 26, some three times greater than that of aluminum oxide. This, in addition to the fact that extremely thin films can be deposited during the electrolytic process mentioned earlier, makes the tantalum capacitor extremely efficient with respect to the number of microfarads available per unit volume. The capacitance of any capacitor is determined by the surface area of the two conducting plates, the distance between the plates, and the dielectric constant of the insulating material between the plates. COMPARISON OF CAPACITOR DIELECTRIC CONSTANTS DIELECTRIC Air or vacuum e DIELECTRIC CONSTANT 1.0 Paper 2.0 to 6.0 Plastic 2.1 to 6.0 Mineral oil 2.2 to 2.3 Silicone oil 2.7 to 2.8 Quartz 3.8 to 4.4 Glass 4.8 to 8.0 Porcelain 5.1 to 5.9 Mica 5.4 to 8.7 Aluminum oxide Tantalum pentoxide Ceramic 8.4 26 12 to 400K In the tantalum electrolytic capacitor, the distance between the plates is very small since it is only the thickness of the tantalum pentoxide film. As the dielectric constant of the tantalum pentoxide is high, the capacitance of a tantalum capacitor is high if the area of the plates is large: where eA C = ------t C = capacitance e = dielectric constant A = surface area of the dielectric t = thickness of the dielectric Tantalum capacitors contain either liquid or solid electrolytes. In solid electrolyte capacitors, a dry material (manganese dioxide) forms the cathode plate. A tantalum lead is embedded in or welded to the pellet, which is in turn connected to a termination or lead wire. The drawings show the construction details of the surface mount types of tantalum capacitors shown in this catalog. Document Number: 40218 1 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Molded Guide www.vishay.com Vishay Polytech SOLID ELECTROLYTE TANTALUM CAPACITORS TANTALUM CAPACITORS FOR ALL DESIGN CONSIDERATIONS Solid electrolyte capacitors contain manganese dioxide, which is formed on the tantalum pentoxide dielectric layer by impregnating the pellet with a solution of manganous nitrate. The pellet is then heated in an oven, and the manganous nitrate is converted to manganese dioxide. Solid electrolyte designs are the least expensive for a given rating and are used in many applications where their very small size for a given unit of capacitance is of importance. Also important are their good low temperature performance characteristics and freedom from corrosive electrolytes. The pellet is next coated with graphite, followed by a layer of metallic silver, which provides a conductive surface between the pellet and the leadframe. Datasheets covering the various types and styles of capacitors for consumer and entertainment electronics and industry applications are available where detailed performance characteristics must be specified. Molded chip tantalum capacitor encases the element in plastic resins, such as epoxy materials. After assembly, the capacitors are tested and inspected to assure long life and reliability. It offers excellent reliability and high stability for consumer and commercial electronics with the added feature of low cost. Surface mount designs of “Solid Tantalum” capacitors use lead frames as shown in the accompanying drawings. MOLDED CHIP CAPACITOR, ALL TYPES EXCEPT TMCTX / TMCJ / NMC Tantalum wire Supporter Silver adhesive Epoxy encapsulation Leadframe Solderable cathode termination Solderable anode termination Carbon / silver coating MnO2 Sintered tantalum MOLDED CHIP CAPACITOR WITH BUILT-IN FUSE, TYPE TMCTX Sintered tantalum Carbon / silver coating Supporter Tantalum wire Epoxy encapsulation Fusible ribbon Leadframe Solderable cathode termination Solderable anode termination MnO2 Silver adhesive MOLDED CHIP CAPACITOR 0603 SIZE, TYPE TMCJ Silver adhesive Tantalum wire Epoxy encapsulation Leadframe Solderable anode termination Solderable cathode termination Carbon / silver coating Revision: 11-Apr-16 MnO2 Sintered tantalum Document Number: 40218 2 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Molded Guide www.vishay.com Vishay Polytech MOLDED CHIP CAPACITOR NIOBIUM, TYPE NMC Tantalum wire Supporter Epoxy encapsulation Silver adhesive Leadframe Solderable cathode termination Solderable anode termination Carbon / silver coating MnO2 Sintered niobium SOLID TANTALUM CAPACITORS - MOLDED CASE SERIES TMCS TMCM TMCR TMCU TMCP TMCJ PRODUCT IMAGE TYPE FEATURES Solid tantalum surface mount chip capacitors, molded case Standard industrial grade Standard industrial grade extended range TEMPERATURE RANGE CAPACITANCE RANGE VOLTAGE RANGE TERMINATION FINISH Revision: 11-Apr-16 0805 size 0603 size 0.1 μF to 68 μF 0.47 μF to 470 μF 10 μF to 330 μF 0.1 μF to 220 μF 0.1 μF to 47 μF 0.68 μF to 22 μF 4 V to 35 V 2.5 V to 35 V 7 V to 35 V 2.5 V to 35 V 2.5 V to 25 V 2.5 V to 20 V ± 10 %, ± 20 % LEAKAGE CURRENT CASE SIZES Low profile -55 °C to +125 °C CAPACITANCE TOLERANCE DISSIPATION FACTOR Low ESR ± 20 % 0.01 CV or 0.5 μA, whichever is greater 4 % to 6 % 4 % to 30 % 6 % to 30 % 4 % to 30 % 6 % to 30 % 20 % A, B, C, E A, B, C, E B, C, E UA, UB P J 100 % tin Case UA: 100 % tin Case UB: Ni / Pd / Au 100 % tin Document Number: 40218 3 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Molded Guide www.vishay.com Vishay Polytech SOLID TANTALUM CAPACITORS - MOLDED CASE SERIES TMCTX TMCH THC PRODUCT IMAGE TYPE FEATURES Solid tantalum surface mount chip capacitors, molded case Built-in fuse TEMPERATURE RANGE CAPACITANCE RANGE VOLTAGE RANGE High reliability -55 °C to +125 °C DISSIPATION FACTOR CASE SIZES -55 °C to +150 °C 1.0 μF to 68 μF 0.1 μF to 100 μF 0.33 μF to 47 μF 10 V to 35 V 4 V to 35 V 10 V to 35 V CAPACITANCE TOLERANCE LEAKAGE CURRENT High reliability, high temperature +150 °C ± 10 %, ± 20 % 0.01 CV or 0.5 μA, whichever is greater 0.005 CV or 0.25 μA, whichever is greater 4 % to 6 % 4 % to 8 % 4 % to 6 % B, C, E, F A, B, C, E, P A, B, C, E TERMINATION FINISH 100 % tin SOLID NIOBIUM CAPACITORS - MOLDED CASE SERIES NMC NMCU PRODUCT IMAGE TYPE FEATURES Solid niobium surface mount chip capacitors, molded case Flame retardant TEMPERATURE RANGE CAPACITANCE RANGE -55 °C to +105 °C 10 μF to 470 μF VOLTAGE RANGE 4.7 μF to 47 μF 2.5 V to 10 V CAPACITANCE TOLERANCE ± 20 % LEAKAGE CURRENT DISSIPATION FACTOR Flame retardant, low profile 0.02 CV or less 8 % to 30 % 30 % CASE SIZES A, B, C, E UA, UB TERMINATION FINISH 100 % tin Case UA: 100 % tin Case UB: Ni / Pd / Au Revision: 11-Apr-16 Document Number: 40218 4 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Molded Guide www.vishay.com Vishay Polytech PLASTIC TAPE AND REEL PACKAGING DIMENSIONS in millimeters E A B C Label D W CASE CODE TAPE WIDTH A+0/-3 B+1/0 C ± 0.2 D ± 0.5 E ± 0.5 W ± 0.3 J, P, A, UA, B, UB 8 C, E, F 12 Ø 180 Ø 60 Ø 13 Ø 21 2.0 9.0 13.0 TAPE SIZE in millimeters Pocket Perforation E Ø 1.5 + 0.10 F B W A P1 t Direction of tape flow 4.0 ± 0.1 2.0 ± 0.1 Inserting direction Perforation Marking side (upper) Mounting terminal side (lower) Symbol: R CASE CODE J P A UA B UB C E F Revision: 11-Apr-16 A ± 0.2 1.0 1.4 1.9 1.9 3.1 3.1 3.7 4.8 6.2 B ± 0.2 1.8 2.2 3.5 3.5 3.8 3.8 6.3 7.7 7.5 W ± 0.3 8.0 8.0 8.0 8.0 8.0 8.0 12.0 12.0 12.0 F ± 0.1 3.5 3.5 3.5 3.5 3.5 3.5 5.5 5.5 5.5 E ± 0.1 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 P1 ± 0.1 4.0 4.0 4.0 4.0 4.0 4.0 8.0 8.0 8.0 tmax. 1.3 1.6 2.5 1.7 2.5 1.7 3.1 3.4 4.1 Document Number: 40218 5 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Molded Guide www.vishay.com Vishay Polytech RECOMMENDED REFLOW PROFILES Capacitors should withstand reflow profile as per J-STD-020 standard TEMPERATURE (°C) Tp tp Max. ramp-up rate = 3 °C/s Max. ramp-down rate = 6 °C/s TL Ts max. TC - 5 °C tL Preheat area Ts min. ts 25 Time 25 °C to peak TIME (s) PROFILE FEATURE Preheat / soak Temperature min. (Ts min.) Temperature max. (Ts max.) Time (ts) from (Ts min. to Ts max.) Ramp-up Ramp-up rate (TL to Tp) Liquidus temperature (TL) Time (tL) maintained above TL LEAD (Pb)-FREE ASSEMBLY 130 °C 160 °C 60 s to 120 s 3 °C/s max. 200 °C 50 s max. Peak package body temperature (Tp) max. Depends on case size - see table below Time (tp) within 5 °C of the peak maximum temperature Ramp-down rate (Tp to TL) Time from 25 °C to peak temperature 10 s max. 6 °C/s max. 8 min max. PEAK PACKAGE BODY TEMPERATURE (Tp) PEAK PACKAGE BODY TEMPERATURE (Tp) CASE CODE LEAD (Pb)-FREE PROCESS J, P, UA, A, UB, B, C 260 °C E, F 250 °C PAD DIMENSIONS in millimeters L Capacitor Pattern Y CASE / DIMENSIONS J P UA, A UB, B C E F Revision: 11-Apr-16 CAPACITOR SIZE L W 1.6 0.8 2.0 1.25 3.2 1.6 3.5 2.8 5.8 3.2 7.3 4.3 7.3 5.8 X W G Z G (max.) 0.7 0.5 1.1 1.4 2.9 4.1 4.1 PAD DIMENSIONS Z (min.) X (min.) 2.5 1.0 2.6 1.2 3.8 1.5 4.1 2.7 6.9 2.7 8.2 2.9 8.2 4.0 Y (Ref.) 0.9 1.05 1.35 1.35 2.0 2.05 2.05 Document Number: 40218 6 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000 Molded Guide www.vishay.com Vishay Polytech GUIDE TO APPLICATION 1. AC Ripple Current: the maximum allowable ripple current shall be determined from the formula: I R MS = 4. P -----------R ESR where, P= 2. At 85 °C: 5 % of the rated voltage or 0.5 V, whichever is smaller. power dissipation in W at +25 °C as given in the tables in the product datasheets. RESR = the capacitor equivalent series resistance at the specified frequency. 5. Mounting Precautions: 5.1 Limit Pressure on Capacitor Installation with Mounter: pressure must not exceed 4.9 N with a tool end diameter of 1.5 mm when applied to the capacitors using an absorber, centering tweezers, or similar (maximum permitted pressurization time: 5 s). An excessively low absorber setting position would result in not only the application of undue force to the capacitors but capacitor and other component scattering, circuit board wiring breakage, and / or cracking as well, particularly when the capacitors are mounted together with other chips having a height of 1 mm or less. AC Ripple Voltage: the maximum allowable ripple voltage shall be determined from the formula: P V R MS = Z -----------R ESR or, from the formula: V RMS = I R MS x Z where, P= power dissipation in W at +25 °C as given in the tables in the product datasheets. RESR = The capacitor equivalent series resistance at the specified frequency. Z= 2.1 The capacitor impedance at the specified frequency. The tantalum capacitors must be used in such a condition that the sum of the working voltage and ripple voltage peak values does not exceed the rated voltage as shown in figure below. Reverse Voltage: the capacitors are not intended for use with reverse voltage applied. If the application of an reverse voltage is unavoidable, it must not exceed the following values: At 25 °C: 10 % of the rated voltage or 1 V, whichever is smaller. 5.2 Flux Selection 5.2.1 Select a flux that contains a minimum of chlorine and amine. 5.2.2 After flux use, the chlorine and amine in the flux remain must be removed. 5.3 Cleaning After Mounting: the following solvents are usable when cleaning the capacitors after mounting. Never use a highly active solvent. • Halogen organic solvent (HCFC225, etc.) • Alcoholic solvent (IPA, ethanol, etc.) Voltage Ripple voltage Rated voltage Operating voltage Working voltage Time (s) 3. Temperature Derating: power dissipation is affected by the heat sinking capability of the mounting surface. If these capacitors are to be operated at temperatures above +25 °C, the permissible ripple current (or voltage) shall be calculated using the derating coefficient as shown in the table below: MAXIMUM RIPPLE CURRENT TEMPERATURE DERATING FACTOR TEMPERATURE TMC NMC 25 °C 1.0 1.0 85 °C 0.9 0.9 105 °C 0.65 0.4 125 °C 0.4 - Revision: 11-Apr-16 • Petroleum solvent, alkali saponifying agent, water, etc. Circuit board cleaning must be conducted at a temperature of not higher than 50 °C and for an immersion time of not longer than 30 minutes. When an ultrasonic cleaning method is used, cleaning must be conducted at a frequency of 48 kHz or lower, at an vibrator output of 0.02 W/cm3, at a temperature of not higher than 40 °C, and for a time of 5 minutes or shorter. Notes • Care must be exercised in cleaning process so that the mounted capacitor will not come into contact with any cleaned object or the like or will not get rubbed by a stiff brush or similar. If such precautions are not taken particularly when the ultrasonic cleaning method is employed, terminal breakage may occur. • When performing ultrasonic cleaning under conditions other than stated above, conduct adequate advance checkout. Document Number: 40218 7 For technical questions, contact: [email protected] THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000