TL3 Datasheet

TL3
www.vishay.com
Vishay Sprague
Solid Tantalum Surface Mount Chip Capacitors,
TANTAMOUNT™, Molded Case, Very Low DCL
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
PERFORMANCE / ELECTRICAL
CHARACTERISTICS
DC leakage at 0.005 CV
Low ESR options
Available
Qualified to EIA-717
100 % surge current tested
Available
(B, C, D, and E case sizes)
Improved reliability: 0.50 % / 1000 h, 85 °C,
rated voltage
Molded case available in five case codes
Available
Terminations: 100 % matte tin,
standard tin / lead available
Compliant terminations
Compatible with “high volume” automatic pick and place
equipment
Moisture sensitivity level 1
Standard EIA-535-BAAC case size (A through E)
Material categorization: for definitions of compliance
please see www.vishay.com/doc?99912
Note
* This datasheet provides information about parts that are
RoHS-compliant and / or parts that are non-RoHS-compliant. For
example, parts with lead (Pb) terminations are not RoHS-compliant.
Please see the information / tables in this datasheet for details.
www.vishay.com/doc?40192
Operating Temperature: -55 °C to +125 °C
(above 85 °C voltage derating is required)
Capacitance Range: 0.1 μF to 470 μF
Capacitance Tolerance: ± 10 %, ± 20 %
Voltage Rating: 4 V to 50 V


APPLICATIONS
•
•
•
•
•
Industrial
Telecom infrastructure
Consumer
Medical
General purpose
ORDERING INFORMATION
TL3
D
107
K
010
C
0100
TYPE
CASE CODE
CAPACITANCE
CAPACITANCE
TOLERANCE
DC VOLTAGE
RATING AT +85 °C
TERMINATION
AND PACKAGING
ESR
See Ratings
and Case
Codes table
This is expressed
in picofarads. The
first two digits are
significant figures.
The third is the
number of zeros
to follow.
K = ± 10 %
M = ± 20 %
This is expressed in
volts. To complete
the three-digit block,
zeros precede the
voltage rating.
A decimal point is
indicated by an “R”
(6R3 = 6.3 V).
C = matte tin,
7" (178 mm) reels
D = matte tin,
13" (330 mm) reels
E = tin / lead,
7" (178 mm) reels
F = tin / lead,
13" (330 mm) reels
V = matte tin,
7" (178 mm) reels,
dry pack
U = matte tin,
13" (330 mm) reels,
dry pack
T = tin / lead,
7" (178 mm) reels,
dry pack
W = tin / lead,
13" (330 mm) reels,
dry pack
Maximum 100 kHz
ESR in m.
See note below.
Notes
• We reserve the right to supply higher voltage ratings and tighter capacitance tolerance capacitors in the same case size.
Voltage substitutions will be marked with the higher voltage rating.
• The EIA and CECC standards for low ESR solid tantalum chip capacitors, allow delta ESR of 1.25 times the datasheet limit after mounting.
• Dry pack as specified in J-STD-033 for MSL3. Applicable for D and E cases only.
Revision: 12-May-16
Document Number: 40154
1
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TL3
www.vishay.com
Vishay Sprague
DIMENSIONS in inches [millimeters]
L
TW
W
H
Glue Pad
TH (MIN.)
Glue Pad
CASE CODE
EIA SIZE
A
3216-18
B
3528-21
C
6032-28
D
7343-31
E
7343-43
L
0.126 ± 0.008
[3.2 ± 0.20]
0.138 ± 0.008
[3.5 ± 0.20]
0.236 ± 0.012
[6.0 ± 0.30]
0.287 ± 0.012
[7.3 ± 0.30]
0.287 ± 0.012
[7.3 ± 0.30]
W
0.063 ± 0.008
[1.6 ± 0.20]
0.110 ± 0.008
[2.8 ± 0.20]
0.126 ± 0.012
[3.2 ± 0.30]
0.169 ± 0.012
[4.3 ± 0.30]
0.169 ± 0.012
[4.3 ± 0.30]
H
0.063 ± 0.008
[1.6 ± 0.20]
0.075 ± 0.008
[1.9 ± 0.20]
0.098 ± 0.012
[2.5 ± 0.30]
0.110 ± 0.012
[2.8 ± 0.30]
0.157 ± 0.012
[4.0 ± 0.30]
P
0.031 ± 0.012
[0.80 ± 0.30]
0.031 ± 0.012
[0.80 ± 0.30]
0.051 ± 0.012
[1.3 ± 0.30]
0.051 ± 0.012
[1.3 ± 0.30]
0.051 ± 0.012
[1.3 ± 0.30]
P
TW
0.047 ± 0.004
[1.2 ± 0.10]
0.087 ± 0.004
[2.2 ± 0.10]
0.087 ± 0.004
[2.2 ± 0.10]
0.094 ± 0.004
[2.4 ± 0.10]
0.094 ± 0.004
[2.4 ± 0.10]
TH (MIN.)
0.028
[0.70]
0.028
[0.70]
0.039
[1.0]
0.039
[1.0]
0.039
[1.0]
Note
• Glue pad (non-conductive, part of molded case) is dedicated for glue attachment (as user option).
RATINGS AND CASE CODES
μF
0.10
4V
6.3 V
10 V
16 V
20 V
25 V
B (3.00, 1.30)
B (3.10, 1.50) /
C (2.30, 1.00)
B (3.50, 1.50) /
C (2.10, 0.70)
D (1.70, 0.80)
B (2.80, 1.50) /
C (2.0, 0.525)
C (1.90, 0.60) /
D (1.30, 0.60)
D (1.20, 0.60)
C (1.70, 0.50) / C (1.80, 0.900) /
D (1.20, 0.35)
D (1.10, 0.30)
A (3.00, 1.70) / B (2.50, 1.00) / B (2.30, 1.30) / C (1.60, 0.85) /
B (2.80, 0.80) / C (1.70, 0.45) C (1.50, 0.45) /
D (0.80, 0.30)
D (1.00, 0.30)
C (1.80, 0.45)
C
(1.20,
0.425)
/
D (0.80, 0.30)
B (2.00, 0.80)
D (0.90, 0.30)
D (0.80, 0.25)
B (1.90, 1.00) / C (1.20, 0.375) /
C (1.20) /
D (0.70, 0.40) /
D (0.80, 0.25) D (0.70, 0.225) D (0.70, 0.20)
E (0.60, 0.300)
B (1.80, 0.50) /
0.30) /
C (1.10, 0.30) / D (0.70, 0.20) DE(0.70,
(0.60, 0.20)
D (0.70, 0.225)
E (0.90, 0.54)
0.15
0.22
0.33
0.47
0.68
A (11.00, 8.00)
1.0
1.5
A (8.00, 6.00)
A (9.30, 6.00)
A (9.30, 6.00)
A (8.00, 6.00)
A (8.00, 6.00)
2.2
A (7.60, 6.00)
A (7.60, 6.00)
3.3
A (7.60, 4.00)
A (6.30, 5.00)
4.7
A (6.30, 3.50)
A (5.50, 3.50) /
A (5.50, 3.50) / A (5.00, 3.00) / A (3.50, 2.50) / B
(2.90, 1.00) /
B (3.40, 1.80) B (3.40, 1.50) B (2.90, 1.50)
C (2.30, 0.60)
6.8
B (4.50, 2.00)
B (3.40, 1.20)
B (2.90, 1.20)
10
B (3.50, 1.20)
B (2.90, 1.00)
A (3.40, 2.00) /
C (1.80, 0.55)
15
B (2.90, 1.20)
C (1.80, 0.60)
A (2.90, 2.00) /
C (1.80, 0.50)
A (2.90, 2.00) /
C (1.80, 0.60)
A (2.50, 1.50)
22
33
47
68
B (4.60, 2.50)
35 V
50 V
A (20.00, 10.00) A (19.00, 10.00)
10.00) /
A (18.00, 6.00) AB(17.00,
(14.00, 9.00)
A (15.00, 6.00) B (12.00, 8.50)
A (14.00, 10.00) A (13.00, 6.00) B (10.00, 4.50)
4.00) / B (8.40, 4.00) /
A (12.00, 9.00) A (12.00, 9.00) AB(10.00,
(8.00, 2.50)
C (6.70, 1.80)
A (10.00, 8.00) B (7.00, 5.00)
B (6.50, 2.50)
C (5.90, 1.60)
4.00) / A (7.50, 6.00) / B (6.70, 2.00) /
A (8.40, 5.50) AB(7.60,
(5.00, 2.00)
B (5.00, 2.00)
C (4.60, 1.60)
B
(4.20,
3.00)
/
C
(3.40, 1.50) /
B (4.60, 2.50)
B (4.60, 2.00)
C (3.80, 1.50)
D (2.90, 1.00)
A (6.30, 4.00) / B (3.80, 2.30) / C (2.90, 1.50) /
A (5.90, 4.00) / B
(3.80, 2.30) /
C (2.90, 0.90)
D (2.10, 0.80)
B (3.50, 1.50)
C (2.90, 1.00)
B (3.50, 2.50)
B (3.50, 2.00)
C (1.90, 0.60)
C (1.90, 0.55)
(1.90, 0.60) /
A (2.90, 1.50) / B (1.90, 0.60) / B
0.35) /
C (1.80, 050)
C (1.50, 0.40) CD(1.40,
(0.80, 0.25)
B (2.00, 0.55) / B (1.80, 0.60) / C (1.00, 0.30) / D (0.70, 0.20) /
B (2.50, 0.60) / C
0.30) / C (1.10, 0.30) /
C (1.80, 0.40) D(1.40,
E (0.60, 0.15)
(0.80, 0.20) D (0.70, 0.20) D (0.70, 0.15)
D (0.80, 0.175)
D (0.70, 0.20)
(1.80, 0.45) / B (1.70, 0.70) /
100 B
D (0.70, 0.175) D (0.70, 0.14)
0.125) /
150 D (0.60, 0.15) DE(0.60,
(0.50, 0.10)
C (0.70, 0.30) /
220
D (0.60, 0.10) /
E (0.50, 0.10)
330 E (0.50, 0.10)
E (0.50, 0.10)
470
Revision: 12-May-16
D (0.70, 0.15)
D (0.60, 0.15)
C (0.90, 0.20) / D (0.60, 0.125) /
D (0.60, 0.10)
E (0.60, 0.10)
D (0.60, 0.10)
E (0.80, 0.55)
D (0.70, 0.35) /
E (0.60, 0.30)
D (0.70, 0.175) /
E (0.60, 0.15)
E (0.50, 0.15)
E (0.50, 0.15)
D (0.60, 0.36) /
E (0.50, 0.10)
E (0.50, 0.10)
E (0.50, 0.20)
Document Number: 40154
2
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TL3
www.vishay.com
Vishay Sprague
MARKING
“A” CASE VOLTAGE CODE
Indicates
lead (Pb)-free
Capacitance code, pF
V 104L
Voltage
code
Polarity band (+)
A Case
VOLTS
CODE
4.0
G
6.3
J
10
A
16
C
20
D
25
E
35
V
50
T
Indicates
lead (Pb)-free
Voltage
Capacitance, μF
Polarity
band (+)
22
10L
XX
2
Vishay marking
Date code
B, C, D, E, V Cases
Marking
Capacitor marking includes an anode (+) polarity band, capacitance in microfarads and the voltage rating. “A” case capacitors use a letter
code for the voltage and EIA capacitance code.
The Vishay identification is included if space permits. Capacitors rated at 6.3 V are marked 6 V.
A manufacturing date code is marked on all capacitors.
Capacitors may bear TP3 marking scheme if parts are substituted with high performance automotive grade TP3 family products. 
This includes, for example, letter “P” as shown below.
Call the factory for further explanation.
TP3 MARKING EXAMPLE
Capacitance
code, pF
Indicates
high performance (1)
Indicates
high performance (1)
Capacitance
μF
Voltage
Polarity
band (+)
V 104Z
Voltage
Polarity band (+)
code
A Case
22
P10
XX
2
Date code
Vishay marking
B, C, D, E Cases
Note
(1) Capital letter indicates lead (Pb)-free.
STANDARD RATINGS
CAPACITANCE
(μF)
CASE CODE
2.2
2.2
3.3
3.3
4.7
4.7
6.8
6.8
10
10
15
15
A
A
A
A
A
A
B
B
B
B
B
B
PART NUMBER
MAX. DCL
AT +25 °C
(μA)
4 VDC AT +85 °C; 2.7 VDC AT +125 °C
TL3A225(1)004(2)7600
0.25
TL3A225(1)004(2)6000
0.25
TL3A335(1)004(2)7600
0.25
TL3A335(1)004(2)4000
0.25
TL3A475(1)004(2)6300
0.25
TL3A475(1)004(2)3500
0.25
TL3B685(1)004(2)4500
0.25
TL3B685(1)004(2)2000
0.25
TL3B106(1)004(2)3500
0.25
TL3B106(1)004(2)1200
0.25
TL3B156(1)004(2)2900
0.30
TL3B156(1)004(2)1200
0.30
MAX. DF
AT +25 °C
120 Hz
(%)
MAX. ESR
AT +25 °C
100 kHz
()
MAX. RIPPLE
100 kHz
IRMS
(A)
6
6
6
6
6
6
6
6
6
6
6
6
7.600
6.000
7.600
4.000
6.300
3.500
4.500
2.000
3.500
1.200
2.900
1.200
0.10
0.11
0.10
0.14
0.11
0.15
0.14
0.20
0.16
0.27
0.17
0.27
Note
• Part number definitions:
(1) Capacitance tolerance: K, M
(2) Termination and packaging: C, D, E, F
(3) Termination and packaging: C, D, E, F, U, V, T, W
Revision: 12-May-16
Document Number: 40154
3
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TL3
www.vishay.com
Vishay Sprague
STANDARD RATINGS
CAPACITANCE
(μF)
CASE CODE
33
33
33
33
47
47
47
47
68
68
100
100
100
100
150
150
330
330
A
A
C
C
B
B
C
C
D
D
B
B
D
D
D
D
E
E
1.5
1.5
2.2
2.2
3.3
3.3
4.7
4.7
4.7
4.7
6.8
6.8
10
10
15
15
22
22
22
22
33
33
33
33
47
47
47
A
A
A
A
A
A
A
A
B
B
B
B
B
B
C
C
A
A
C
C
B
B
C
C
B
B
C
PART NUMBER
MAX. DCL
AT +25 °C
(μA)
4 VDC AT +85 °C; 2.7 VDC AT +125 °C
TL3A336(1)004(2)2900
0.66
TL3A336(1)004(2)1500
0.66
TL3C336(1)004(2)1800
0.66
TL3C336(1)004(2)0500
0.66
TL3B476(1)004(2)2500
0.94
TL3B476(1)004(2)0600
0.94
TL3C476(1)004(2)1800
0.94
TL3C476(1)004(2)0400
0.94
TL3D686(1)004(3)0800
1.36
TL3D686(1)004(3)0175
1.36
TL3B107(1)004(2)1800
2.00
TL3B107(1)004(2)0450
2.00
TL3D107(1)004(3)0700
2.00
TL3D107(1)004(3)0175
2.00
TL3D157(1)004(3)0600
3.00
TL3D157(1)004(3)0150
3.00
TL3E337(1)004(3)0500
6.60
TL3E337(1)004(3)0100
6.60
6 VDC AT +85 °C; 4 VDC AT +125 °C
TL3A155(1)6R3(2)8000
0.25
TL3A155(1)6R3(2)6000
0.25
TL3A225(1)6R3(2)7600
0.25
TL3A225(1)6R3(2)6000
0.25
TL3A335(1)6R3(2)6300
0.25
TL3A335(1)6R3(2)5000
0.25
TL3A475(1)6R3(2)5500
0.25
TL3A475(1)6R3(2)3500
0.25
TL3B475(1)6R3(2)3400
0.25
TL3B475(1)6R3(2)1800
0.25
TL3B685(1)6R3(2)3400
0.25
TL3B685(1)6R3(2)1200
0.25
TL3B106(1)6R3(2)2900
0.30
TL3B106(1)6R3(2)1000
0.3
TL3C156(1)6R3(2)1800
0.45
TL3C156(1)6R3(2)0600
0.45
TL3A226(1)6R3(2)2900
0.66
TL3A226(1)6R3(2)2000
0.66
TL3C226(1)6R3(2)1800
0.66
TL3C226(1)6R3(2)0600
0.66
TL3B336(1)6R3(2)1900
0.99
TL3B336(1)6R3(2)0600
0.99
TL3C336(1)6R3(2)1500
0.99
TL3C336(1)6R3(2)0400
0.99
TL3B476(1)6R3(2)2000
1.41
TL3B476(1)6R3(2)0550
1.41
TL3C476(1)6R3(2)1400
1.41
MAX. DF
AT +25 °C
120 Hz
(%)
MAX. ESR
AT +25 °C
100 kHz
()
MAX. RIPPLE
100 kHz
IRMS
(A)
6
6
6
6
6
6
6
6
6
6
6
6
6
6
8
8
8
8
2.900
1.500
1.800
0.500
2.500
0.600
1.800
0.400
0.800
0.175
1.800
0.450
0.700
0.175
0.600
0.150
0.500
0.100
0.16
0.22
0.25
0.47
0.18
0.38
0.25
0.52
0.43
0.93
0.22
0.43
0.46
0.93
0.50
1.00
0.57
1.28
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
8.000
6.000
7.600
6.000
6.300
5.000
5.500
3.500
3.400
1.800
3.400
1.200
2.900
1.000
1.800
0.600
2.900
2.000
1.800
0.600
1.900
0.600
1.500
0.400
2.000
0.550
1.400
0.10
0.11
0.10
0.11
0.11
0.12
0.12
0.15
0.16
0.22
0.16
0.27
0.17
0.29
0.25
0.43
0.16
0.19
0.25
0.43
0.21
0.38
0.27
0.52
0.21
0.39
0.28
Note
• Part number definitions:
(1) Capacitance tolerance: K, M
(2) Termination and packaging: C, D, E, F
(3) Termination and packaging: C, D, E, F, U, V, T, W
Revision: 12-May-16
Document Number: 40154
4
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TL3
www.vishay.com
Vishay Sprague
STANDARD RATINGS
CAPACITANCE
(μF)
CASE CODE
PART NUMBER
47
47
47
68
68
100
100
100
100
150
150
150
150
220
220
220
220
220
220
330
330
C
D
D
D
D
B
B
D
D
D
D
E
E
C
C
D
D
E
E
E
E
TL3C476(1)6R3(2)0300
TL3D476(1)6R3(3)0800
TL3D476(1)6R3(3)0200
TL3D686(1)6R3(3)0700
TL3D686(1)6R3(3)0200
TL3B107(1)6R3(2)1700
TL3B107(1)6R3(2)0700
TL3D107(1)6R3(3)0700
TL3D107(1)6R3(3)0140
TL3D157(1)6R3(3)0600
TL3D157(1)6R3(3)0125
TL3E157(1)6R3(3)0500
TL3E157(1)6R3(3)0100
TL3C227(1)6R3(2)0700
TL3C227(1)6R3(2)0300
TL3D227(1)6R3(3)0600
TL3D227(1)6R3(3)0100
TL3E227(1)6R3(3)0500
TL3E227(1)6R3(3)0100
TL3E337(1)6R3(3)0500
TL3E337(1)6R3(3)0100
1.0
1.0
1.5
1.5
3.3
3.3
4.7
4.7
4.7
4.7
6.8
6.8
10
10
10
10
15
15
15
15
22
22
33
33
A
A
A
A
B
B
A
A
B
B
B
B
A
A
C
C
A
A
C
C
A
A
B
B
TL3A105(1)010(2)9300
TL3A105(1)010(2)6000
TL3A155(1)010(2)8000
TL3A155(1)010(2)6000
TL3B335(1)010(2)3500
TL3B335(1)010(2)2500
TL3A475(1)010(2)5000
TL3A475(1)010(2)3000
TL3B475(1)010(2)3400
TL3B475(1)010(2)1500
TL3B685(1)010(2)2900
TL3B685(1)010(2)1200
TL3A106(1)010(2)3400
TL3A106(1)010(2)2000
TL3C106(1)010(2)1800
TL3C106(1)010(2)0550
TL3A156(1)010(2)2900
TL3A156(1)010(2)2000
TL3C156(1)010(2)1800
TL3C156(1)010(2)0500
TL3A226(1)010(2)2500
TL3A226(1)010(2)1500
TL3B336(1)010(2)1900
TL3B336(1)010(2)0600
MAX. DCL
AT +25 °C
(μA)
MAX. DF
AT +25 °C
120 Hz
(%)
MAX. ESR
AT +25 °C
100 kHz
()
MAX. RIPPLE
100 kHz
IRMS
(A)
6
6
6
6
6
15
15
6
6
8
8
8
8
14
14
8
8
8
8
8
8
0.300
0.800
0.200
0.700
0.200
1.700
0.700
0.700
0.140
0.600
0.125
0.500
0.100
0.700
0.300
0.600
0.100
0.500
0.100
0.500
0.100
0.61
0.43
0.87
0.46
0.87
0.22
0.35
0.46
1.04
0.50
1.10
0.57
1.28
0.40
0.61
0.50
1.22
0.57
1.28
0.57
1.28
4
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
8
8
6
6
9.300
6.000
8.000
6.000
3.500
2.500
5.000
3.000
3.400
1.500
2.900
1.200
3.400
2.000
1.800
0.550
2.900
2.000
1.800
0.500
2.500
1.500
1.900
0.600
0.09
0.11
0.10
0.11
0.16
0.18
0.12
0.16
0.16
0.24
0.17
0.27
0.15
0.19
0.25
0.45
0.16
0.19
0.25
0.47
0.17
0.22
0.21
0.38
6 VDC AT +85 °C; 4 VDC AT +125 °C
1.41
1.41
1.41
2.04
2.04
3.00
3.00
3.00
3.00
4.50
4.50
4.50
4.50
6.60
6.60
6.60
6.60
6.60
6.60
9.90
9.90
10 VDC AT +85 °C; 7 VDC AT +125 °C
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.34
0.34
0.50
0.50
0.50
0.50
0.75
0.75
0.75
0.75
1.10
1.10
1.65
1.65
Note
• Part number definitions:
(1) Capacitance tolerance: K, M
(2) Termination and packaging: C, D, E, F
(3) Termination and packaging: C, D, E, F, U, V, T, W
Revision: 12-May-16
Document Number: 40154
5
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TL3
www.vishay.com
Vishay Sprague
STANDARD RATINGS
CAPACITANCE
(μF)
CASE CODE
PART NUMBER
33
33
33
33
47
47
47
47
47
47
68
68
100
100
100
100
150
150
220
220
220
220
330
330
470
470
C
C
D
D
B
B
C
C
D
D
D
D
C
C
D
D
D
D
D
D
E
E
E
E
E
E
TL3C336(1)010(2)1400
TL3C336(1)010(2)0350
TL3D336(1)010(3)0800
TL3D336(1)010(3)0250
TL3B476(1)010(2)1800
TL3B476(1)010(2)0600
TL3C476(1)010(2)1100
TL3C476(1)010(2)0300
TL3D476(1)010(3)0700
TL3D476(1)010(3)0200
TL3D686(1)010(3)0700
TL3D686(1)010(3)0150
TL3C107(1)010(2)0900
TL3C107(1)010(2)0200
TL3D107(1)010(3)0600
TL3D107(1)010(3)0100
TL3D157(1)010(3)0600
TL3D157(1)010(3)0100
TL3D227(1)010(3)0600
TL3D227(1)010(3)0360
TL3E227(1)010(3)0500
TL3E227(1)010(3)0100
TL3E337(1)010(3)0500
TL3E337(1)010(3)0100
TL3E477(1)010(3)0500
TL3E477(1)010(3)0200
0.68
0.68
1.0
1.0
1.5
1.5
2.2
2.2
3.3
3.3
4.7
4.7
4.7
4.7
6.8
6.8
10
10
10
A
A
A
A
A
A
B
B
B
B
A
A
B
B
C
C
A
A
B
TL3A684(1)016(2)11R0
TL3A684(1)016(2)8000
TL3A105(1)016(2)9300
TL3A105(1)016(2)6000
TL3A155(1)016(2)8000
TL3A155(1)016(2)6000
TL3B225(1)016(2)4600
TL3B225(1)016(2)2500
TL3B335(1)016(2)3500
TL3B335(1)016(2)2000
TL3A475(1)016(2)5000
TL3A475(1)016(2)3500
TL3B475(1)016(2)2900
TL3B475(1)016(2)1500
TL3C685(1)016(2)1900
TL3C685(1)016(2)0600
TL3A106(1)016(2)3000
TL3A106(1)016(2)1700
TL3B106(1)016(2)2800
MAX. DCL
AT +25 °C
(μA)
MAX. DF
AT +25 °C
120 Hz
(%)
MAX. ESR
AT +25 °C
100 kHz
()
MAX. RIPPLE
100 kHz
IRMS
(A)
6
6
6
6
6
6
6
6
6
6
6
6
8
8
8
8
8
8
8
8
8
8
10
10
15
15
1.400
0.350
0.800
0.250
1.800
0.600
1.100
0.300
0.700
0.200
0.700
0.150
0.900
0.200
0.600
0.100
0.600
0.100
0.600
0.360
0.500
0.100
0.500
0.100
0.500
0.200
0.28
0.56
0.43
0.77
0.22
0.38
0.32
0.61
0.46
0.87
0.46
1.00
0.35
0.74
0.50
1.22
0.50
1.22
0.50
0.65
0.57
1.28
0.57
1.28
0.57
0.91
4
4
4
4
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
11.000
8.000
9.300
6.000
8.000
6.000
4.600
2.500
3.500
2.000
5.000
3.500
2.900
1.500
1.900
0.600
3.000
1.700
2.800
0.08
0.10
0.09
0.11
0.10
0.11
0.14
0.18
0.16
0.21
0.12
0.15
0.17
0.24
0.24
0.43
0.16
0.21
0.17
10 VDC AT +85 °C; 7 VDC AT +125 °C
1.65
1.65
1.65
1.65
2.35
2.35
2.35
2.35
2.35
2.35
3.40
3.40
5.00
5.00
5.00
5.00
7.50
7.50
11.00
11.00
11.00
11.00
16.50
16.50
23.50
23.50
16 VDC AT +85 °C; 10 VDC AT +125 °C
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.26
0.26
0.38
0.38
0.38
0.38
0.54
0.54
0.80
0.80
0.80
Note
• Part number definitions:
(1) Capacitance tolerance: K, M
(2) Termination and packaging: C, D, E, F
(3) Termination and packaging: C, D, E, F, U, V, T, W
Revision: 12-May-16
Document Number: 40154
6
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TL3
www.vishay.com
Vishay Sprague
STANDARD RATINGS
CAPACITANCE
(μF)
CASE CODE
PART NUMBER
10
10
10
15
15
22
22
22
22
33
33
33
33
33
33
47
47
47
47
68
68
100
100
100
100
150
150
B
C
C
B
B
B
B
D
D
B
B
C
C
D
D
C
C
D
D
D
D
D
D
E
E
E
E
TL3B106(1)016(2)0800
TL3C106(1)016(2)1800
TL3C106(1)016(2)0450
TL3B156(1)016(2)2000
TL3B156(1)016(2)0800
TL3B226(1)016(2)1900
TL3B226(1)016(2)1000
TL3D226(1)016(3)0800
TL3D226(1)016(3)0250
TL3B336(1)016(2)1800
TL3B336(1)016(2)0500
TL3C336(1)016(2)1100
TL3C336(1)016(2)0300
TL3D336(1)016(3)0700
TL3D336(1)016(3)0225
TL3C476(1)016(2)1000
TL3C476(1)016(2)0300
TL3D476(1)016(3)0700
TL3D476(1)016(3)0150
TL3D686(1)016(3)0600
TL3D686(1)016(3)0150
TL3D107(1)016(3)0600
TL3D107(1)016(3)0125
TL3E107(1)016(3)0600
TL3E107(1)016(3)0100
TL3E157(1)016(3)0500
TL3E157(1)016(3)0150
0.47
0.47
0.68
0.68
1.0
1.0
1.5
1.5
2.2
2.2
2.2
2.2
3.3
3.3
4.7
4.7
4.7
4.7
A
A
A
A
A
A
B
B
A
A
B
B
B
B
A
A
B
B
TL3A474(1)020(2)12R0
TL3A474(1)020(2)9000
TL3A684(1)020(2)10R0
TL3A684(1)020(2)8000
TL3A105(1)020(2)8400
TL3A105(1)020(2)5500
TL3B155(1)020(2)4600
TL3B155(1)020(2)2500
TL3A225(1)020(2)5900
TL3A225(1)020(2)4000
TL3B225(1)020(2)3500
TL3B225(1)020(2)1500
TL3B335(1)020(2)3000
TL3B335(1)020(2)1300
TL3A475(1)020(2)5500
TL3A475(1)020(2)3500
TL3B475(1)020(2)2900
TL3B475(1)020(2)1000
MAX. DCL
AT +25 °C
(μA)
MAX. DF
AT +25 °C
120 Hz
(%)
MAX. ESR
AT +25 °C
100 kHz
()
MAX. RIPPLE
100 kHz
IRMS
(A)
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
8
8
8
8
8
8
0.800
1.800
0.450
2.000
0.800
1.900
1.000
0.800
0.250
1.800
0.500
1.100
0.300
0.700
0.225
1.000
0.300
0.700
0.150
0.600
0.150
0.600
0.125
0.600
0.100
0.500
0.150
0.33
0.25
0.49
0.21
0.33
0.21
0.29
0.43
0.77
0.22
0.41
1.05
0.61
0.46
0.82
0.33
0.61
0.46
1.00
0.50
1.00
0.50
1.10
0.52
1.28
0.57
1.28
4
4
4
4
4
4
6
6
6
6
6
6
6
6
6
6
6
6
12.000
9.000
10.000
8.000
8.400
5.500
4.600
2.500
5.900
4.000
3.500
1.500
3.000
1.300
5.500
3.500
2.900
1.000
0.08
0.09
0.09
0.10
0.09
0.12
0.14
0.18
0.11
0.14
0.16
0.24
0.17
0.26
0.12
0.15
0.17
0.29
16 VDC AT +85 °C; 10 VDC AT +125 °C
0.80
0.80
0.80
1.20
1.20
1.76
1.76
1.76
1.76
2.64
2.64
2.64
2.64
2.64
2.64
3.76
3.76
3.76
3.76
5.44
5.44
8.00
8.00
8.00
8.00
12.00
12.00
20 VDC AT +85 °C; 13 VDC AT +125 °C
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.33
0.33
0.47
0.47
0.47
0.47
Note
• Part number definitions:
(1) Capacitance tolerance: K, M
(2) Termination and packaging: C, D, E, F
(3) Termination and packaging: C, D, E, F, U, V, T, W
Revision: 12-May-16
Document Number: 40154
7
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TL3
www.vishay.com
Vishay Sprague
STANDARD RATINGS
CAPACITANCE
(μF)
CASE CODE
PART NUMBER
4.7
4.7
6.8
6.8
10
10
10
10
15
15
22
22
22
22
33
33
47
47
47
47
68
68
68
68
100
100
C
C
C
C
B
B
C
C
D
D
C
C
D
D
D
D
D
D
E
E
D
D
E
E
E
E
TL3C475(1)020(2)2300
TL3C475(1)020(2)0600
TL3C685(1)020(2)1900
TL3C685(1)020(2)0550
TL3B106(1)020(2)2500
TL3B106(1)020(2)1000
TL3C106(1)020(2)1700
TL3C106(1)020(2)0450
TL3D156(1)020(3)0900
TL3D156(1)020(3)0300
TL3C226(1)020(2)1200
TL3C226(1)020(2)0375
TL3D226(1)020(3)0700
TL3D226(1)020(3)0225
TL3D336(1)020(3)0700
TL3D336(1)020(3)0200
TL3D476(1)020(3)0700
TL3D476(1)020(3)0200
TL3E476(1)020(3)0600
TL3E476(1)020(3)0150
TL3D686(1)020(3)0700
TL3D686(1)020(3)0175
TL3E686(1)020(3)0600
TL3E686(1)020(3)0150
TL3E107(1)020(3)0500
TL3E107(1)020(3)0150
0.33
0.33
0.47
0.47
0.68
0.68
1.0
1.0
1.0
1.0
1.5
1.5
2.2
2.2
2.2
2.2
2.2
2.2
3.3
A
A
A
A
B
B
A
A
B
B
B
B
A
A
B
B
C
C
B
TL3A334(1)025(2)14R0
TL3A334(1)025(2)10R0
TL3A474(1)025(2)12R0
TL3A474(1)025(2)9000
TL3B684(1)025(2)7000
TL3B684(1)025(2)5000
TL3A105(1)025(2)7600
TL3A105(1)025(2)4000
TL3B105(1)025(2)5000
TL3B105(1)025(2)2000
TL3B155(1)025(2)4600
TL3B155(1)025(2)2000
TL3A225(1)025(2)6300
TL3A225(1)025(2)4000
TL3B225(1)025(2)3800
TL3B225(1)025(2)2300
TL3C225(1)025(2)2900
TL3C225(1)025(2)1000
TL3B335(1)025(2)3100
MAX. DCL
AT +25 °C
(μA)
MAX. DF
AT +25 °C
120 Hz
(%)
MAX. ESR
AT +25 °C
100 kHz
()
MAX. RIPPLE
100 kHz
IRMS
(A)
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
8
8
2.300
0.600
1.900
0.550
2.500
1.000
1.700
0.450
0.900
0.300
1.200
0.375
0.700
0.225
0.700
0.200
0.700
0.200
0.600
0.150
0.700
0.175
0.600
0.150
0.500
0.150
0.22
0.43
0.24
0.45
0.18
0.29
0.25
0.49
0.41
0.71
0.30
0.54
0.46
0.82
0.46
0.87
0.46
0.87
0.52
1.05
0.46
0.93
0.52
1.05
0.57
1.05
4
4
4
4
4
4
4
4
4
4
6
6
6
6
6
6
6
6
6
14.000
10.000
12.000
9.000
7.000
5.000
7.600
4.000
5.000
2.000
4.600
2.000
6.300
4.000
3.800
2.300
2.900
1.000
3.100
0.07
0.09
0.08
0.09
0.11
0.13
0.10
0.14
0.13
0.21
0.14
0.21
0.11
0.14
0.15
0.19
0.19
0.33
0.17
20 VDC AT +85 °C; 13 VDC AT +125 °C
0.47
0.47
0.68
0.68
1.00
1.00
1.00
1.00
1.50
1.50
2.20
2.20
2.20
2.20
3.30
3.30
4.70
4.70
4.70
4.70
6.80
6.80
6.80
6.80
10.00
10.00
25 VDC AT +85 °C; 17 VDC AT +125 °C
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.28
0.28
0.28
0.28
0.28
0.28
0.41
Note
• Part number definitions:
(1) Capacitance tolerance: K, M
(2) Termination and packaging: C, D, E, F
(3) Termination and packaging: C, D, E, F, U, V, T, W
Revision: 12-May-16
Document Number: 40154
8
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TL3
www.vishay.com
Vishay Sprague
STANDARD RATINGS
CAPACITANCE
(μF)
CASE CODE
3.3
3.3
3.3
4.7
4.7
4.7
4.7
6.8
6.8
6.8
6.8
10
10
10
10
10
10
15
15
15
15
22
22
22
33
33
33
33
47
47
47
47
B
C
C
B
B
C
C
C
C
D
D
B
B
C
C
D
D
C
C
D
D
C
D
D
D
D
E
E
D
D
E
E
0.10
0.10
0.15
0.15
0.22
0.22
0.33
0.33
0.47
0.47
0.47
0.47
0.68
0.68
A
A
A
A
A
A
A
A
A
A
B
B
B
B
PART NUMBER
MAX. DCL
AT +25 °C
(μA)
25 VDC AT +85 °C; 17 VDC AT +125 °C
TL3B335(1)025(2)1500
0.41
TL3C335(1)025(2)2300
0.41
TL3C335(1)025(2)1000
0.41
TL3B475(1)025(2)2800
0.59
TL3B475(1)025(2)1500
0.59
TL3C475(1)025(2)2000
0.59
TL3C475(1)025(2)0525
0.59
TL3C685(1)025(2)1700
0.85
TL3C685(1)025(2)0500
0.85
TL3D685(1)025(3)1200
0.85
TL3D685(1)025(3)0350
0.85
TL3B106(1)025(2)2300
1.25
TL3B106(1)025(2)1300
1.25
TL3C106(1)025(2)1500
1.25
TL3C106(1)025(2)0450
1.25
TL3D106(1)025(3)1000
1.25
TL3D106(1)025(3)0300
1.25
TL3C156(1)025(2)1200
1.88
TL3C156(1)025(2)0425
1.88
TL3D156(1)025(3)0800
1.88
TL3D156(1)025(3)0250
1.88
TL3C226(1)025(2)1200
2.75
TL3D226(1)025(3)0700
2.75
TL3D226(1)025(3)0200
2.75
TL3D336(1)025(3)0700
4.13
TL3D336(1)025(3)0300
4.13
TL3E336(1)025(3)0600
4.13
TL3E336(1)025(3)0200
4.13
TL3D476(1)025(3)0700
5.88
TL3D476(1)025(3)0350
5.88
TL3E476(1)025(3)0600
5.88
TL3E476(1)025(3)0300
5.88
35 VDC AT +85 °C; 23 VDC AT +125 °C
TL3A104(1)035(2)20R0
0.25
TL3A104(1)035(2)10R0
0.25
TL3A154(1)035(2)18R0
0.25
TL3A154(1)035(2)6000
0.25
TL3A224(1)035(2)15R0
0.25
TL3A224(1)035(2)6000
0.25
TL3A334(1)035(2)13R0
0.25
TL3A334(1)035(2)6000
0.25
TL3A474(1)035(2)10R0
0.25
TL3A474(1)035(2)4000
0.25
TL3B474(1)035(2)8000
0.25
TL3B474(1)035(2)2500
0.25
TL3B684(1)035(2)6500
0.25
TL3B684(1)035(2)2500
0.25
MAX. DF
AT +25 °C
120 Hz
(%)
MAX. ESR
AT +25 °C
100 kHz
()
MAX. RIPPLE
100 kHz
IRMS
(A)
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
8
8
6
6
1.500
2.300
1.000
2.800
1.500
2.000
0.525
1.700
0.500
1.200
0.350
2.300
1.300
1.500
0.450
1.000
0.300
1.200
0.425
0.800
0.250
1.200
0.700
0.200
0.700
0.300
0.600
0.200
0.700
0.350
0.600
0.300
0.24
0.22
0.33
0.17
0.24
0.23
0.46
0.25
0.47
0.35
0.65
0.19
0.26
0.27
0.49
0.39
0.71
0.30
0.51
0.43
0.77
0.30
0.46
0.87
0.46
0.71
0.52
0.91
0.46
0.65
0.52
0.74
4
4
4
4
4
4
4
4
4
4
4
4
4
4
20.000
10.000
18.000
6.000
15.000
6.000
13.000
6.000
10.000
4.000
8.000
2.500
6.500
2.500
0.06
0.09
0.06
0.11
0.07
0.11
0.08
0.11
0.09
0.14
0.10
0.33
0.11
0.18
Note
• Part number definitions:
(1) Capacitance tolerance: K, M
(2) Termination and packaging: C, D, E, F
(3) Termination and packaging: C, D, E, F, U, V, T, W
Revision: 12-May-16
Document Number: 40154
9
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TL3
www.vishay.com
Vishay Sprague
STANDARD RATINGS
MAX. DF
AT +25 °C
120 Hz
(%)
MAX. ESR
AT +25 °C
100 kHz
()
MAX. RIPPLE
100 kHz
IRMS
(A)
0.25
4
7.500
0.10
0.25
4
6.000
0.11
0.25
4
5.000
0.13
TL3B105(1)035(2)2000
0.25
4
2.000
0.21
B
TL3B155(1)035(2)4200
0.26
6
4.200
0.14
1.5
B
TL3B155(1)035(2)3000
0.26
6
3.000
0.17
1.5
C
TL3C155(1)035(2)3800
0.26
6
3.800
0.17
1.5
C
TL3C155(1)035(2)1500
0.26
6
1.500
0.27
2.2
B
TL3B225(1)035(2)3800
0.39
6
3.800
0.15
2.2
B
TL3B225(1)035(2)2300
0.39
6
2.300
0.19
2.2
C
TL3C225(1)035(2)2900
0.39
6
2.900
0.19
2.2
C
TL3C225(1)035(2)0900
0.39
6
0.900
0.35
3.3
B
TL3B335(1)035(2)3500
0.58
6
3.500
0.16
3.3
B
TL3B335(1)035(2)1500
0.58
6
1.500
0.24
3.3
C
TL3C335(1)035(2)2100
0.58
6
2.100
0.23
3.3
C
TL3C335(1)035(2)0700
0.58
6
0.700
0.40
4.7
C
TL3C475(1)035(2)1900
0.82
6
1.900
0.24
4.7
C
TL3C475(1)035(2)0600
0.82
6
0.600
0.43
4.7
D
TL3D475(1)035(3)1300
0.82
6
1.300
0.34
4.7
D
TL3D475(1)035(3)0600
0.82
6
0.600
0.50
6.8
C
TL3C685(1)035(2)1800
1.19
6
1.800
0.25
6.8
C
TL3C685(1)035(2)0900
1.19
6
0.900
0.35
6.8
D
TL3D685(1)035(3)1100
1.19
6
1.100
0.37
6.8
D
TL3D685(1)035(3)0300
1.19
6
0.300
0.71
10
C
TL3C106(1)035(2)1600
1.75
6
1.600
0.26
10
C
TL3C106(1)035(2)0850
1.75
6
0.850
0.36
10
D
TL3D106(1)035(3)0800
1.75
6
0.800
0.43
10
D
TL3D106(1)035(3)0300
1.75
6
0.300
0.71
15
D
TL3D156(1)035(3)0800
2.63
6
0.800
0.43
15
D
TL3D156(1)035(3)0400
2.63
6
0.400
0.61
22
D
TL3D226(1)035(3)0600
3.85
6
0.600
0.50
22
D
TL3D226(1)035(3)0400
3.85
6
0.400
0.61
22
E
TL3E226(1)035(3)0600
3.85
6
0.600
0.52
22
E
TL3E226(1)035(3)0300
3.85
6
0.300
0.74
CAPACITANCE
(μF)
CASE CODE
PART NUMBER
1.0
A
TL3A105(1)035(2)7500
1.0
A
TL3A105(1)035(2)6000
1.0
B
TL3B105(1)035(2)5000
1.0
B
1.5
MAX. DCL
AT +25 °C
(μA)
35 VDC AT +85 °C; 23 VDC AT +125 °C
50 VDC AT +85 °C; 33 VDC AT +125 °C
0.10
A
TL3A104(1)050(2)19R0
0.25
4
19.000
0.06
0.10
A
TL3A104(1)050(2)10R0
0.25
4
10.000
0.09
0.15
A
TL3A154(1)050(2)17R0
0.25
4
17.000
0.07
0.15
A
TL3A154(1)050(2)10R0
0.25
4
10.000
0.09
0.15
B
TL3B154(1)050(2)14R0
0.25
4
14.000
0.08
0.15
B
TL3B154(1)050(2)9000
0.25
4
9.000
0.10
0.22
B
TL3B224(1)050(2)12R0
0.25
4
12.000
0.08
Note
• Part number definitions:
(1) Capacitance tolerance: K, M
(2) Termination and packaging: C, D, E, F
(3) Termination and packaging: C, D, E, F, U, V, T, W
Revision: 12-May-16
Document Number: 40154
10
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TL3
www.vishay.com
Vishay Sprague
STANDARD RATINGS
MAX. DCL
AT +25 °C
(μA)
MAX. DF
AT +25 °C
120 Hz
(%)
MAX. ESR
AT +25 °C
100 kHz
()
MAX. RIPPLE
100 kHz
IRMS
(A)
CAPACITANCE
(μF)
CASE CODE
PART NUMBER
0.22
B
TL3B224(1)050(2)8500
0.25
4
8.500
0.10
0.33
B
TL3B334(1)050(2)10R0
0.25
4
10.000
0.09
0.33
B
TL3B334(1)050(2)4500
0.25
4
4.500
0.14
0.47
B
TL3B474(1)050(2)8400
0.25
4
8.400
0.10
0.47
B
TL3B474(1)050(2)4000
0.25
4
4.000
0.15
0.47
C
TL3C474(1)050(2)6700
0.25
4
6.700
0.13
0.47
C
TL3C474(1)050(2)1800
0.25
4
1.800
0.25
0.68
C
TL3C684(1)050(2)5900
0.25
4
5.900
0.14
0.68
C
TL3C684(1)050(2)1600
0.25
4
1.600
0.26
1.0
B
TL3B105(1)050(2)6700
0.25
4
6.700
0.11
50 VDC AT +85 °C; 33 VDC AT +125 °C
1.0
B
TL3B105(1)050(2)2000
0.25
4
2.000
0.21
1.0
C
TL3C105(1)050(2)4600
0.25
4
4.600
0.15
1.0
C
TL3C105(1)050(2)1600
0.25
4
1.600
0.26
1.5
C
TL3C155(1)050(2)3400
0.38
6
3.400
0.18
1.5
C
TL3C155(1)050(2)1500
0.38
6
1.500
0.27
1.5
D
TL3D155(1)050(3)2900
0.38
6
2.900
0.23
1.5
D
TL3D155(1)050(3)1000
0.375
6
1.000
0.39
2.2
C
TL3C225(1)050(2)2900
0.55
6
2.900
0.19
2.2
C
TL3C225(1)050(2)1500
0.55
6
1.500
0.27
2.2
D
TL3D225(1)050(3)2100
0.55
6
2.100
0.27
2.2
D
TL3D225(1)050(3)0800
0.55
6
0.800
0.43
3.3
D
TL3D335(1)050(3)1700
0.83
6
1.700
0.30
3.3
D
TL3D335(1)050(3)0800
0.83
6
0.800
0.43
4.7
D
TL3D475(1)050(3)1200
1.18
6
1.200
0.35
4.7
D
TL3D475(1)050(3)0600
1.18
6
0.600
0.50
6.8
E
TL3E685(1)050(3)0900
1.70
6
0.900
0.43
6.8
E
TL3E685(1)050(3)0540
1.70
6
0.540
0.55
10
E
TL3E106(1)050(3)0800
2.50
6
0.800
0.45
10
E
TL3E106(1)050(3)0550
2.50
6
0.550
0.55
Note
• Part number definitions:
(1) Capacitance tolerance: K, M
(2) Termination and packaging: C, D, E, F
(3) Termination and packaging: C, D, E, F, U, V, T, W
Revision: 12-May-16
Document Number: 40154
11
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TL3
www.vishay.com
Vishay Sprague
RECOMMENDED VOLTAGE DERATING GUIDELINES (for temperatures below +85 °C)
STANDARD CONDITIONS. FOR EXAMPLE: OUTPUT FILTERS
Capacitor Voltage Rating
4.0
6.3
10
16
20
25
35
50
63
SEVERE CONDITIONS. FOR EXAMPLE: INPUT FILTERS
Capacitor Voltage Rating
4.0
6.3
10
16
20
25
35
50
63
Operating Voltage
2.5
3.6
6.0
10
12
15
24
28
36
Operating Voltage
2.5
3.3
5.0
8.0
10
12
15
24
31
POWER DISSIPATION
CASE CODE
A
B
C
D
E
MAXIMUM PERMISSIBLE POWER DISSIPATION AT +25 °C (W) IN FREE AIR
0.075
0.085
0.110
0.150
0.165
STANDARD PACKAGING QUANTITY
CASE CODE
A
B
C
D
E
PRODUCT INFORMATION
Guide for Molded Tantalum Capacitors
Pad Dimensions
Packaging Dimensions
Moisture Sensitivity
SELECTOR GUIDES
Solid Tantalum Selector Guide
Solid Tantalum Chip Capacitors
FAQ
Frequently Asked Questions
Revision: 12-May-16
UNITS PER REEL
7" REEL
2000
2000
500
500
400
13" REEL
9000
8000
3000
2500
1500
www.vishay.com/doc?40074
www.vishay.com/doc?40135
www.vishay.com/doc?49053
www.vishay.com/doc?40091
www.vishay.com/doc?40110
Document Number: 40154
12
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Molded Guide
www.vishay.com
Vishay Sprague
Guide for Molded Tantalum Capacitors
INTRODUCTION
Tantalum electrolytic capacitors are the preferred choice in
applications where volumetric efficiency, stable electrical
parameters, high reliability, and long service life are primary
considerations. The stability and resistance to elevated
temperatures of the tantalum / tantalum oxide / manganese
dioxide system make solid tantalum capacitors an
appropriate choice for today's surface mount assembly
technology.
Vishay Sprague has been a pioneer and leader in this field,
producing a large variety of tantalum capacitor types for
consumer, industrial, automotive, military, and aerospace
electronic applications.
Tantalum is not found in its pure state. Rather, it is
commonly found in a number of oxide minerals, often in
combination with Columbium ore. This combination is
known as “tantalite” when its contents are more than
one-half tantalum. Important sources of tantalite include
Australia, Brazil, Canada, China, and several African
countries. Synthetic tantalite concentrates produced from
tin slags in Thailand, Malaysia, and Brazil are also a
significant raw material for tantalum production.
Electronic applications, and particularly capacitors,
consume the largest share of world tantalum production.
Other important applications for tantalum include cutting
tools (tantalum carbide), high temperature super alloys,
chemical processing equipment, medical implants, and
military ordnance.
Vishay Sprague is a major user of tantalum materials in the
form of powder and wire for capacitor elements and rod and
sheet for high temperature vacuum processing.
THE BASICS OF TANTALUM CAPACITORS
Most metals form crystalline oxides which are
non-protecting, such as rust on iron or black oxide on
copper. A few metals form dense, stable, tightly adhering,
electrically insulating oxides. These are the so-called
“valve”metals and include titanium, zirconium, niobium,
tantalum, hafnium, and aluminum. Only a few of these
permit the accurate control of oxide thickness by
electrochemical means. Of these, the most valuable for the
electronics industry are aluminum and tantalum.
Capacitors are basic to all kinds of electrical equipment,
from radios and television sets to missile controls and
automobile ignitions. Their function is to store an electrical
charge for later use.
Capacitors consist of two conducting surfaces, usually
metal plates, whose function is to conduct electricity. They
are separated by an insulating material or dielectric. The
dielectric used in all tantalum electrolytic capacitors is
tantalum pentoxide.
Tantalum pentoxide compound possesses high-dielectric
strength and a high-dielectric constant. As capacitors are
being manufactured, a film of tantalum pentoxide is applied
to their electrodes by means of an electrolytic process. The
film is applied in various thicknesses and at various voltages
and although transparent to begin with, it takes on different
colors as light refracts through it. This coloring occurs on the
tantalum electrodes of all types of tantalum capacitors.
Revision: 11-Apr-16
Rating for rating, tantalum capacitors tend to have as much
as three times better capacitance / volume efficiency than
aluminum electrolytic capacitors. An approximation of the
capacitance / volume efficiency of other types of capacitors
may be inferred from the following table, which shows the
dielectric constant ranges of the various materials used in
each type. Note that tantalum pentoxide has a dielectric
constant of 26, some three times greater than that of
aluminum oxide. This, in addition to the fact that extremely
thin films can be deposited during the electrolytic process
mentioned earlier, makes the tantalum capacitor extremely
efficient with respect to the number of microfarads available
per unit volume. The capacitance of any capacitor is
determined by the surface area of the two conducting
plates, the distance between the plates, and the dielectric
constant of the insulating material between the plates.
COMPARISON OF CAPACITOR
DIELECTRIC CONSTANTS
DIELECTRIC
Air or vacuum
Paper
Plastic
Mineral oil
Silicone oil
Quartz
Glass
Porcelain
Mica
Aluminum oxide
Tantalum pentoxide
Ceramic
e
DIELECTRIC CONSTANT
1.0
2.0 to 6.0
2.1 to 6.0
2.2 to 2.3
2.7 to 2.8
3.8 to 4.4
4.8 to 8.0
5.1 to 5.9
5.4 to 8.7
8.4
26
12 to 400K
In the tantalum electrolytic capacitor, the distance between
the plates is very small since it is only the thickness of the
tantalum pentoxide film. As the dielectric constant of the
tantalum pentoxide is high, the capacitance of a tantalum
capacitor is high if the area of the plates is large:

where
eA
C = ------t
C = capacitance
e = dielectric constant
A = surface area of the dielectric
t = thickness of the dielectric
Tantalum capacitors contain either liquid or solid
electrolytes. In solid electrolyte capacitors, a dry material
(manganese dioxide) forms the cathode plate. A tantalum
lead is embedded in or welded to the pellet, which is in turn
connected to a termination or lead wire. The drawings show
the construction details of the surface mount types of
tantalum capacitors shown in this catalog.
Document Number: 40074
1
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Molded Guide
www.vishay.com
Vishay Sprague
SOLID ELECTROLYTE TANTALUM CAPACITORS
TANTALUM CAPACITORS FOR ALL DESIGN
CONSIDERATIONS
Solid electrolyte capacitors contain manganese dioxide,
which is formed on the tantalum pentoxide dielectric layer
by impregnating the pellet with a solution of manganous
nitrate. The pellet is then heated in an oven, and the
manganous nitrate is converted to manganese dioxide.
Solid electrolyte designs are the least expensive for a given
rating and are used in many applications where their very
small size for a given unit of capacitance is of importance.
They will typically withstand up to about 10 % of the rated
DC working voltage in a reverse direction. Also important
are their good low temperature performance characteristics
and freedom from corrosive electrolytes.
The pellet is next coated with graphite, followed by a layer
of metallic silver, which provides a conductive surface
between the pellet and the Leadframe.
Vishay Sprague patented the original solid electrolyte
capacitors and was the first to market them in 1956. Vishay
Sprague has the broadest line of tantalum capacitors and
has continued its position of leadership in this field. Data
sheets covering the various types and styles of Vishay
Sprague capacitors for consumer and entertainment
electronics, industry, and military applications are available
where detailed performance characteristics must be
specified.
Molded Chip tantalum capacitor encases the element in
plastic resins, such as epoxy materials. After assembly, the
capacitors are tested and inspected to assure long life and
reliability. It offers excellent reliability and high stability for
consumer and commercial electronics with the added
feature of low cost
Surface mount designs of “Solid Tantalum” capacitors use
lead frames or lead frameless designs as shown in the
accompanying drawings.
MOLDED CHIP CAPACITOR, ALL TYPES EXCEPT 893D / TF3 / T86
Epoxy
Encapsulation
Silver
Adhesive
Anode
Polarity Bar
MnO2/Carbon/
Silver Coating
Solderable
Leadframe
Cathode
Sintered
Termination
Tantalum
Solderable Anode
Termination
MOLDED CHIP CAPACITOR WITH BUILT-IN FUSE, TYPES 893D / TF3 / T86
Epoxy Encapsulation
Silver Adhesive
Anode Polarity Bar
Solderable Cathode
Termination
MnO2/Carbon/Silver
Coating
Sintered Tantalum
Pellet
Fusible
Wire
Lead Frame
Revision: 11-Apr-16
Solderable
Anode Termination
Document Number: 40074
2
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Molded Guide
www.vishay.com
Vishay Sprague
COMMERCIAL PRODUCTS
SOLID TANTALUM CAPACITORS - MOLDED CASE
SERIES
793DX-CTC3CTC4
293D
593D
TR3
TP3
TL3
High performance,
automotive grade
Very low DCL
PRODUCT IMAGE
Surface mount TANTAMOUNT™, molded case
TYPE
FEATURES
Standard
industrial grade
CECC approved
Low ESR
TEMPERATURE
RANGE
CAPACITANCE
RANGE
VOLTAGE RANGE
CAPACITANCE
TOLERANCE
-55 °C to +125 °C
0.1 μF to 1000 μF
0.1 μF to 100 μF
1 μF to 470 μF
0.47 μF to 1000 μF
0.1 μF to 470 μF
0.1 μF to 470 μF
4 V to 75 V
4 V to 50 V
4 V to 50 V
4 V to 75 V
4 V to 50 V
4 V to 50 V
± 10 %, ± 20 %
LEAKAGE
CURRENT
DISSIPATION
FACTOR
CASE CODES
TERMINATION
Low ESR
0.005 CV or
0.25 μA,
whichever is
greater
0.01 CV or 0.5 μA, whichever is greater
4 % to 30 %
4 % to 6 %
A, B, C, D, E, V
A, B, C, D
4 % to 15 %
4 % to 30 %
4 % to 15 %
4 % to 15 %
A, B, C, D, E
A, B, C, D, E, V, W
A, B, C, D, E
100 % matte tin standard, tin / lead available
A, B, C, D, E
SOLID TANTALUM CAPACITORS - MOLDED CASE
SERIES
TH3
TH4
TH5
893D
TF3
PRODUCT IMAGE
FEATURES
High temperature
+150 °C,
automotive grade
Surface mount TANTAMOUNT™, molded case
High temperature
Very high temperature
+175 °C,
Built-in fuse
+200 °C
automotive grade
TEMPERATURE
RANGE
-55 °C to +150 °C
-55 °C to +175 °C
-55 °C to +200 °C
0.33 μF to 220 μF
10 μF to 47 μF
4.7 μF to 100 μF
0.47 μF to 680 μF
0.47 μF to 470 μF
6.3 V to 50 V
6.3 V to 35 V
5 V to 24 V
4 V to 50 V
4 V to 50 V
TYPE
CAPACITANCE
RANGE
VOLTAGE RANGE
CAPACITANCE
TOLERANCE
LEAKAGE
CURRENT
DISSIPATION
FACTOR
CASE CODES
TERMINATION
Revision: 11-Apr-16
Built-in fuse,
low ESR
-55 °C to +125 °C
± 10 %, ± 20 %
0.01 CV or 0.5 μA, whichever is greater
4 % to 8 %
4.5 % to 6 %
6 % to 10 %
6 % to 15 %
6 % to 15 %
A, B, C, D, E
100 % matte tin
standard, tin / lead and
gold plated available
B, C, D
E
C, D, E
C, D, E
100 % matte tin
Gold plated
100 % matte tin standard
Document Number: 40074
3
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Molded Guide
www.vishay.com
Vishay Sprague
HIGH RELIABILITY PRODUCTS
SOLID TANTALUM CAPACITORS - MOLDED CASE
SERIES
TM3
T83
T86
CWR11
95158
PRODUCT
IMAGE
TYPE
TANTAMOUNT™,
molded case,
Hi-Rel.
FEATURES
High reliability,
for Medical
Instruments
TANTAMOUNT™, molded case,
Hi-Rel. COTS
High reliability,
standard and
low ESR
TEMPERATURE
RANGE
CAPACITANCE
RANGE
VOLTAGE RANGE
MIL-PRF-55365/8
qualified
Low ESR
-55 °C to +125 °C
1 μF to 220 μF
4 V to 20 V
CAPACITANCE
TOLERANCE
LEAKAGE
CURRENT
High reliability,
built-in fuse,
standard and
low ESR
TANTAMOUNT™, molded case,
DLA approved
0.1 μF to 470 μF 0.47 μF to 330 μF
4 V to 63 V
4.7 μF to 220 μF
4 V to 50 V
± 10 %, ± 20 %
0.005 CV or 0.25 μA,
whichever is greater
0.1 μF to 100 μF
± 5 %, ± 10 %, ± 20 %
± 10 %, ± 20 %
0.01 CV or 0.5 μA, whichever is greater
DISSIPATION
FACTOR
4 % to 8 %
4 % to 15 %
6 % to 16 %
4 % to 6 %
4 % to 12 %
CASE CODES
A, B, C, D, E
A, B, C, D, E
C, D, E
A, B, C, D
C, D, E
TERMINATION
100 % matte tin;
tin / lead
100 % matte tin;
tin / lead;
tin / lead
solder fused
100 % matte tin
Tin / lead;
tin / lead solder fused
Tin / lead solder plated;
gold plated
Revision: 11-Apr-16
Document Number: 40074
4
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Molded Guide
www.vishay.com
Vishay Sprague
PLASTIC TAPE AND REEL PACKAGING in inches [millimeters]
0.157 ± 0.004
[4.0 ± 0.10]
Tape thickness
Deformation
between
embossments
0.014
[0.35]
MAX.
0.059 + 0.004 - 0.0
[1.5 + 0.10 - 0.0]
Top
cover
tape
B1 MAX.
(Note 6)
Center lines
of cavity
0.069 ± 0.004
[1.75 ± 0.10]
Embossment
0.030 [0.75]
MIN. (Note 3)
B0
Top
cover
tape
For tape feeder
reference only
including draft.
Concentric around B0
(Note 5)
0.079 ± 0.002
[2.0 ± 0.05]
A0
K0
0.004 [0.1]
MAX.
10 pitches cumulative
tolerance on tape
± 0.008 [0.200]
20°
F
W
Maxim um
component
rotation
0.030 [0.75]
MIN. (Note 4)
(Side or front sectional view)
P1
USER DIRECTION OF FEED
Maximum
cavity size
(Note 1)
D1 MIN. for components
0.079 x 0.047 [2.0 x 1.2] and larger .
(Note 5)
Cathode (-)
Anode (+)
Direction of Feed
20° maximum
component rotation
Typical
component
cavity
center line
B0
A0
(Top view)
Typical
component
center line
Tape and Reel Specifications: all case sizes are available
on plastic embossed tape per EIA-481. Standard reel
diameter is 7" [178 mm], 13" [330 mm] reels are available and
recommended as the most cost effective packaging method.
3.937 [100.0]
0.039 [1.0]
MAX.
Tape
0.039 [1.0]
MAX.
0.9843 [250.0]
Camber
(top view)
Allowable camber to be 0.039/3.937 [1/100]
non-cumulative over 9.843 [250.0]
The most efficient packaging quantities are full reel
increments on a given reel diameter. The quantities shown
allow for the sealed empty pockets required to be in
conformance with EIA-481. Reel size and packaging
orientation must be specified in the Vishay Sprague part
number.
Notes
• Metric dimensions will govern. Dimensions in inches are rounded and for reference only.
(1) A , B , K , are determined by the maximum dimensions to the ends of the terminals extending from the component body and / or the body
0
0
0
dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the
cavity (A0, B0, K0) must be within 0.002" (0.05 mm) minimum and 0.020" (0.50 mm) maximum. The clearance allowed must also prevent
rotation of the component within the cavity of not more than 20°.
(2) Tape with components shall pass around radius “R” without damage. The minimum trailer length may require additional length to provide
“R” minimum for 12 mm embossed tape for reels with hub diameters approaching N minimum.
(3) This dimension is the flat area from the edge of the sprocket hole to either outward deformation of the carrier tape between the embossed
cavities or to the edge of the cavity whichever is less.
(4) This dimension is the flat area from the edge of the carrier tape opposite the sprocket holes to either the outward deformation of the carrier
tape between the embossed cavity or to the edge of the cavity whichever is less.
(5) The embossed hole location shall be measured from the sprocket hole controlling the location of the embossement. Dimensions of
embossement location shall be applied independent of each other.
(6) B dimension is a reference dimension tape feeder clearance only.
1
CASE
TAPE
B1
CODE
SIZE
(MAX.)
MOLDED CHIP CAPACITORS; ALL TYPES
A
0.165
8 mm
[4.2]
B
C
D
0.32
E
12 mm
[8.2]
V
W
Revision: 11-Apr-16
D1
(MIN.)
F
K0
(MAX.)
P1
W
0.039
[1.0]
0.138 ± 0.002
[3.5 ± 0.05]
0.094
[2.4]
0.157 ± 0.004
[4.0 ± 1.0]
0.315 ± 0.012
[8.0 ± 0.30]
0.059
[1.5]
0.217 ± 0.00
[5.5 ± 0.05]
0.177
[4.5]
0.315 ± 0.004
[8.0 ± 1.0]
0.472 ± 0.012
[12.0 ± 0.30]
Document Number: 40074
5
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Molded Guide
www.vishay.com
Vishay Sprague
RECOMMENDED REFLOW PROFILES
Capacitors should withstand reflow profile as per J-STD-020 standard
TEMPERATURE (°C)
Tp
TL
Ts max.
TC - 5 °C
tp
Max. ramp-up rate = 3 °C/s
Max. ramp-down rate = 6 °C/s
tL
Preheat area
Ts min.
ts
25
Time 25 °C to peak
TIME (s)
PROFILE FEATURE
Preheat / soak
Temperature min. (Ts min.)
Temperature max. (Ts max.)
Time (ts) from (Ts min. to Ts max.)
Ramp-up
Ramp-up rate (TL to Tp)
Liquidous temperature (TL)
Time (tL) maintained above TL
Peak package body temperature (Tp)
Time (tp) within 5 °C of the specified
classification temperature (TC)
Time 25 °C to peak temperature
Ramp-down
Ramp-down rate (Tp to TL)
SnPb EUTECTIC ASSEMBLY
LEAD (Pb)-FREE ASSEMBLY
100 °C
150 °C
60 s to 120 s
150 °C
200 °C
60 s to 120 s
3 °C/s max.
3 °C/s max.
183 °C
217 °C
60 s to 150 s
60 s to 150 s
Depends on case size - see table below
20 s
30 s
6 min max.
8 min max.
6 °C/s max.
6 °C/s max.
PEAK PACKAGE BODY TEMPERATURE (Tp)
PEAK PACKAGE BODY TEMPERATURE (Tp)
SnPb EUTECTIC PROCESS
LEAD (Pb)-FREE PROCESS
CASE CODE
A, B, C, V
235 °C
260 °C
D, E, W
220 °C
250 °C
PAD DIMENSIONS in inches [millimeters]
B
D
C
A
A
(MIN.)
MOLDED CHIP CAPACITORS, ALL TYPES
A
0.071 [1.80]
B
0.118 [3.00]
C
0.118 [3.00]
D
0.157 [4.00]
E
0.157 [4.00]
V
0.157 [4.00]
W
0.185 [4.70]
CASE CODE
Revision: 11-Apr-16
B
(NOM.)
C
(NOM.)
D
(NOM.)
0.067 [1.70]
0.071 [1.80]
0.094 [2.40]
0.098 [2.50]
0.098 [2.50]
0.098 [2.50]
0.098 [2.50]
0.053 [1.35]
0.065 [1.65]
0.118 [3.00]
0.150 [3.80]
0.150 [3.80]
0.150 [3.80]
0.150 [3.80]
0.187 [4.75]
0.207 [5.25]
0.307 [7.80]
0.346 [8.80]
0.346 [8.80]
0.346 [8.80]
0.346 [8.80]
Document Number: 40074
6
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Molded Guide
www.vishay.com
Vishay Sprague
GUIDE TO APPLICATION
1.
AC Ripple Current: the maximum allowable ripple
current shall be determined from the formula:
I R MS =
P
-----------R ESR
shown. It is important that the equivalent IRMS value
be established when calculating permissible
operating levels. (Power dissipation calculated using
+25 °C temperature rise).
6.
Printed Circuit Board Materials: molded capacitors
are compatible with commonly used printed circuit
board materials (alumina substrates, FR4, FR5, G10,
PTFE-fluorocarbon and porcelanized steel).
7.
Attachment:
7.1
Solder Paste: the recommended thickness of the
solder paste after application is 0.007" ± 0.001"
[0.178 mm ± 0.025 mm]. Care should be exercised in
selecting the solder paste. The metal purity should be
as high as practical. The flux (in the paste) must be
active enough to remove the oxides formed on the
metallization prior to the exposure to soldering heat. In
practice this can be aided by extending the solder
preheat time at temperatures below the liquidous
state of the solder.
7.2
Soldering: capacitors can be attached by
conventional soldering techniques; vapor phase,
convection reflow, infrared reflow, wave soldering,
and hot plate methods. The soldering profile charts
show recommended time / temperature conditions
for soldering. Preheating is recommended. The
recommended maximum ramp rate is 2 °C per s.
Attachment with a soldering iron is not
recommended due to the difficulty of controlling
temperature and time at temperature. The soldering
iron must never come in contact with the capacitor.
where,
P=
power dissipation in W at +25 °C as given in
the tables in the product datasheets (Power
Dissipation).
RESR = the capacitor equivalent series resistance at
the specified frequency
2.
AC Ripple Voltage: the maximum allowable ripple
voltage shall be determined from the formula:
V RMS = I R MS x Z
or, from the formula:
P
V R MS = Z -----------R ESR
where,
P=
power dissipation in W at +25 °C as given in
the tables in the product datasheets (Power
Dissipation).
RESR = the capacitor equivalent series resistance at
the specified frequency
Z=
2.1
2.2
the capacitor impedance at the specified
frequency
The sum of the peak AC voltage plus the applied DC
voltage shall not exceed the DC voltage rating of the
capacitor.
The sum of the negative peak AC voltage plus the
applied DC voltage shall not allow a voltage reversal
exceeding 10 % of the DC working voltage at
+25 °C.
3.
Reverse Voltage: solid tantalum capacitors are not
intended for use with reverse voltage applied.
However, they have been shown to be capable of
withstanding momentary reverse voltage peaks of up
to 10 % of the DC rating at 25 °C and 5 % of the DC
rating at +85 °C.
4.
Temperature Derating: if these capacitors are to be
operated at temperatures above +25 °C, the
permissible RMS ripple current shall be calculated
using the derating factors as shown:
TEMPERATURE (°C)
+25
+85
+125
+150 (1)
+175 (1)
+200 (1)
DERATING FACTOR
1.0
0.9
0.4
0.3
0.2
0.1
Note
(1) Applicable for dedicated high temperature product
series
5.
Power Dissipation: power dissipation will be
affected by the heat sinking capability of the
mounting surface. Non-sinusoidal ripple current may
produce heating effects which differ from those
Revision: 11-Apr-16
7.2.1 Backward and Forward Compatibility: capacitors
with SnPb or 100 % tin termination finishes can be
soldered using SnPb or lead (Pb)-free soldering
processes.
8.
Cleaning (Flux Removal) After Soldering: molded
capacitors are compatible with all commonly used
solvents such as TES, TMS, Prelete, Chlorethane,
Terpene and aqueous cleaning media. However,
CFC / ODS products are not used in the production
of these devices and are not recommended.
Solvents containing methylene chloride or other
epoxy solvents should be avoided since these will
attack the epoxy encapsulation material.
8.1
When using ultrasonic cleaning, the board may
resonate if the output power is too high. This
vibration can cause cracking or a decrease in the
adherence of the termination. DO NOT EXCEED 9W/l
at 40 kHz for 2 min.
9.
Recommended Mounting Pad Geometries: proper
mounting pad geometries are essential for
successful solder connections. These dimensions
are highly process sensitive and should be designed
to minimize component rework due to unacceptable
solder joints. The dimensional configurations shown
are the recommended pad geometries for both wave
and reflow soldering techniques. These dimensions
are intended to be a starting point for circuit board
designers and may be fine tuned if necessary based
upon the peculiarities of the soldering process and /
or circuit board design.
Document Number: 40074
7
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Typical Performance Characteristics
www.vishay.com
Vishay Sprague
Molded Chip Tantalum Capacitors
CAPACITOR ELECTRICAL PERFORMANCE CHARACTERISTICS
ITEM
PERFORMANCE CHARACTERISTICS
Category temperature range
-55 °C to +85 °C (to +125 °C with voltage derating)
Capacitance tolerance
± 20 %, ± 10 %. Tested via bridge method, at +25 °C, 120 Hz
Dissipation factor
Limit per Standard Ratings table. Tested via bridge method, at 25 °C, 120 Hz
ESR
Limit per Standard Ratings table. Tested via bridge method, at 25 °C, 100 kHz
Leakage current
After application of rated voltage applied to capacitors for 5 min using a steady source of power with
1 k resistor in series with the capacitor under test, leakage current at 25 °C is not more than 0.01 CV or
0.5 μA, whichever is greater. Note that the leakage current varies with temperature and applied voltage.
See graph below for the appropriate adjustment factor.
Capacitance change by
temperature
+20 % max. (at +125 °C) 
+10 % max. (at +85 °C)
-10 % max. (at -55 °C)
Reverse voltage
Capacitors are capable of withstanding peak voltages in the reverse direction equal to:
10 % of the DC rating at +25 °C
5 % of the DC rating at +85 °C
Vishay does not recommend intentional or repetitive application of reverse voltage
Ripple current
For maximum ripple current values (at 25 °C) refer to relevant datasheet. If capacitors are to be used at
temperatures above +25 °C, the permissible RMS ripple current (or voltage) shall be calculated using the
derating factors:
1.0 at +25 °C; 0.9 at +85 °C; 0.4 at +125 °C
Maximum operating and surge
voltages vs. temperature
+85 °C
+125 °C
RATED VOLTAGE
(V)
SURGE VOLTAGE
(V)
CATEGORY VOLTAGE
(V)
SURGE VOLTAGE
(V)
4
5.2
2.7
3.4
6.3
8
4
5
10
13
7
8
16
20
10
12
20
26
13
16
25
32
17
20
46
23
28
35
(3)
35
(4)
42
23
28
50
65
33
40
50 (1)
60
33
40
63
75
42
50
75
50
50
75
(2)
Notes
• All information presented in this document reflects typical performance characteristics.
(1) Capacitance values 15 μF and higher.
(2) For 293D and TR3 only.
(3) Capacitance values lower than 33 μF.
(4) Capacitance values 33 μF and higher.
Revision: 26-May-15
Document Number: 40192
1
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Typical Performance Characteristics
www.vishay.com
Vishay Sprague
TYPICAL LEAKAGE CURRENT TEMPERATURE FACTOR
100
+175 °C
+150 °C
+125 °C
10
Leakage Current Factor
+85 °C
+55 °C
1
+25 °C
0 °C
0.1
-55 °C
0.01
0.001
0
10
20
30
40
50
60
70
80
90 100
Percent of Rated Voltage
Note
• At +25 °C, the leakage current shall not exceed the value listed in the Standard Ratings table.
At +85 °C, the leakage current shall not exceed 10 times the value listed in the Standard Ratings table.
At +125 °C, the leakage current shall not exceed 12 times the value listed in the Standard Ratings table.
At +150 °C, the leakage current shall not exceed 15 times the value listed in the Standard Ratings table.
At +175 °C, the leakage current shall not exceed 18 times the value listed in the Standard Ratings table.
ENVIRONMENTAL PERFORMANCE CHARACTERISTICS
ITEM
CONDITION
POST TEST PERFORMANCE
Surge voltage
Post application of surge voltage (as specified in
the table above) in series with a 33  resistor at
the rate of 30 s ON, 30 s OFF, for 1000 successive
test cycles at 85 °C.
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
Life test at +85 °C
1000 h application of rated voltage at 85 °C.
MIL-STD-202, method 108
Capacitance change
Dissipation factor
Leakage current
Within -20 % / +10 % of initial value
Initial specified limit
Shall not exceed 125 % of initial limit
Life test at +125 °C
1000 h application 2/3 of rated voltage at 125 °C.
MIL-STD-202, method 108
Capacitance change
Dissipation factor
Leakage current
Within -20 % / +10 % of initial value
Initial specified limit
Shall not exceed 125 % of initial limit
Humidity tests
At 60 °C / 90 % RH 1000 h, biased
Capacitance change
Dissipation factor
Leakage current
Within -10 % / +20 % of initial value
Not to exceed 150 % of initial limit
Shall not exceed 200 % of initial limit
Thermal shock
MIL-STD-202, method 107, test condition A
(-55 °C / +85 °C, for 1000 cycles)
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
Revision: 26-May-15
Document Number: 40192
2
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Typical Performance Characteristics
www.vishay.com
Vishay Sprague
MECHANICAL PERFORMANCE CHARACTERISTICS
TEST CONDITION
CONDITION
POST TEST PERFORMANCE
Terminal strength /
shear force test
Apply a pressure load of 17.7 N for 60 s
horizontally to the center of capacitor side body.
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
There shall be no mechanical or visual damage to
capacitors post-conditioning.
Vibration
MIL-STD-202, method 204, condition D,
10 Hz to 2000 Hz, 20 g peak, 8 h, at rated voltage
Electrical measurements are not applicable, since the
same parts are used for shock (specified pulse) test.
There shall be no mechanical or visual damage to
capacitors post-conditioning.
Shock
(specified pulse)
MIL-STD-202, method 213, condition I,
100 g peak
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
There shall be no mechanical or visual damage to
capacitors post-conditioning.
Resistance to
soldering heat
Recommended reflow profiles temperatures and
durations are located within the Capacitor Series
Guides
MIL-STD-202, method 210, condition B
Solderability and
dissolution of metallization
MIL-STD-202, method 208, ANSI/J-STD-002, test
B (SnPb) and B1 (lead (Pb)-free). Dissolution of
metallization: method D.
Does not apply to gold terminations.
Flammability
Encapsulation materials meet UL 94 V-0 with an
oxygen index of 32 %.
Revision: 26-May-15
Capacitance change
Dissipation factor
Leakage current
Within ± 10 % of initial value
Initial specified limit
Initial specified limit
There shall be no mechanical or visual damage to
capacitors post-conditioning.
There shall be no mechanical or visual damage to
capacitors post-conditioning.
Document Number: 40192
3
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000