LTC5599 30MHz to 1300MHz Low Power Direct Quadrature Modulator Description Features n n n n n Frequency Range: 30MHz to 1300MHz Low Power: 2.7V to 3.6V Supply; 28mA Low LO Carrier Leakage: –51.5dBm at 500MHz Side-Band Suppression: –52.6dBc at 500MHz Output IP3: 20.8dBm at 500MHz Low RF Output Noise Floor: –156dBm/Hz at 6MHz Offset, PRF = 3dBm n Sine Wave or Square Wave LO Drive n SPI Control: Adjustable Gain: –19dB to 0dB in 1dB Steps Effecting Supply Current from 8mA to 35mA I/Q Offset Adjust: –65dBm LO Carrier Leakage I/Q Gain/Phase Adjust: –60dBc Side-Band Suppressed n24-Lead QFN 4mm × 4mm Package n Applications n Wireless Microphones Battery Powered Radios Ad-Hoc Wireless Infrastructure Networks “White-Space” Transmitters Software Defined Radios (SDR) Military Radios L, LT, LTC, LTM, Linear Technology, and the Linear logo are registered trademarks and QuikEval is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. Typical Application 90MHz to 1300MHz Direct Conversion Transmitter Application VCTRL 3.3V EVM and Noise Floor vs RF Output Power and Digital Gain Setting with 1Ms/s 16-QAM Signal 10 1nF + 4.7µF VCC LTC5599 SPI V I-DAC I RF = 90MHz to 1300MHz I-CHANNEL 10nF PA 0° EN 90° RMS EVM (%) n n n n n The LTC®5599 is a direct conversion I/Q modulator designed for low power wireless applications that enable direct modulation of differential baseband I and Q signals on an RF carrier. Single side-band modulation or side-band suppressed upconversion can be achieved by applying 90° phase-shifted signals to the I and Q inputs. The I/Q baseband input ports can be either AC or DC coupled to a source with a common mode voltage level of about 1.4V. The SPI interface controls the supply current, modulator gain, and allows optimization of the LO carrier feedthrough and side-band suppression, with sine wave or square wave LO drive. A fixed LC network on the LO and RF ports covers a continuous 90MHz to 1300MHz operation. An on-chip thermometer can be activated to compensate for gain-temperature variations. More accurate temperature measurements can be made using an on-chip diode. In addition, a continuous analog gain control (VCTRL) pin can be used for fast power control. 9 8 7 6 5 4 3 2 1 0 DG = –19 DG = –16 DG = –12 DG = –8 DG = –4 DG = 0 –105 –115 –125 –135 –145 –155 Q-DAC BASEBAND GENERATOR V I Q-CHANNEL THERMOMETER TTCK –15 –10 –5 0 RF OUTPUT POWER (dBm) 5 –165 5599 TA01b 39nH VCO/SYNTHESIZER 15pF 5599 TA01a 5599f For more information www.linear.com/LTC5599 1 LTC5599 Absolute Maximum Ratings Pin Configuration (Note 1) CSB SCLK SDI SDO VCC EN TOP VIEW Supply Voltage..........................................................3.8V Common Mode Level of BBPI, BBMI, and BBPQ, BBMQ.........................................................2V LOL, LOC DC Voltage.............................................. ±0.1V LOL, LOC Input Power (Note 15)...........................20dBm Current Sink of TEMP, SDO.....................................10mA Voltage on Any Pin (Note 16)............–0.3V to VCC + 0.3V TJMAX..................................................................... 150°C Case Operating Temperature Range........–40°C to 105°C Storage Temperature Range................... –65°C to 150°C 24 23 22 21 20 19 VCTRL 1 18 GNDRF GND 2 17 GNDRF GND 25 LOL 3 LOC 4 16 RF 15 GNDRF 13 GNDRF GND BBMQ 9 10 11 12 BBPQ 8 BBMI 7 BBPI 14 GNDRF TTCK 6 TEMP GND 5 UF PACKAGE 24-LEAD (4mm × 4mm) PLASTIC QFN TJMAX = 150°C, θJA = 43°C/W, θJC = 4.5°C/W (AT EXPOSED PAD) EXPOSED PAD (PIN 25) IS GND, MUST BE SOLDERED TO PCB Order Information LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION CASE TEMPERATURE RANGE LTC5599IUF#PBF LTC5599IUF#TRPBF 5599 24-Lead (4mm × 4mm) Plastic QFN –40°C to 105°C Consult LTC Marketing for parts specified with wider operating temperature ranges. Consult LTC Marketing for information on non-standard lead based finish parts. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ Please refer to: http://www.linear.com/designtools/packaging/ for the most recent package drawings. Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, PLO = 0dBm, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, all registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13. SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS fLO = 150MHz, fRF1 = 147.9MHz, fRF2 = 148MHz, Register 0x00 = 0x62 S22(ON) RF Port Return Loss fLO(MATCH) LO Match Frequency Range S11 < –10dB –26 Gain Conversion Voltage Gain 20 • Log (VRF(OUT)(50Ω)/VIN(DIFF)(I or Q)) –7.5 dB POUT Absolute Output Power 1VP-P(DIFF) CW Signal, I and Q –3.5 dBm OP1dB Output 1dB Compression 5 dBm OIP2 Output 2nd Order Intercept (Note 5) 70.5 dBm OIP3 Output 3rd Order Intercept (Note 6) 21.7 dBm NFloor RF Output Noise Floor No Baseband AC Input Signal (Note 3) –155.3 SB Side-Band Suppression (Note 7) –61.4 dBc LOFT Carrier Leakage (LO Feedthrough) (Note 7) EN = Low (Note 7) –52.8 –84.8 dBm dBm 2LOFT LO Feedthrough at 2xLO –59 dBm 116 to 272 dB MHz dBm/Hz 5599f 2 For more information www.linear.com/LTC5599 LTC5599 Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, PLO = 0dBm, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, all registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13. SYMBOL PARAMETER CONDITIONS 2LO Signal Powers at 2xLO Maximum of 2fLO – 2fBB; 2fLO – fBB; 2fLO + fBB, 2fLO + 2fBB MIN TYP MAX UNITS –51 dBc –57 dBm –10.7 dBc RSOURCE = 50Ω, Differential 15 MHz RSOURCE = 50Ω, Differential 28 MHz 3LOFT LO Feedthrough at 3xLO 3LO Signal Powers at 3xLO Maximum of 3fLO – fBB; 3fLO + fBB BW1dBBB –1dB Baseband Bandwidth BW3dBBB –3dB Baseband Bandwidth fLO = 500MHz, fRF1 = 497.9MHz, fRF2 = 498MHz, Register 0x00 = 0x2D S22(ON) RF Port Return Loss fLO(MATCH) LO Match Frequency Range S11 < –10dB –26 180 to 1900 dB MHz Gain Conversion Voltage Gain 20 • Log (VRF(OUT)(50Ω)/VIN(DIFF)(I or Q)) –7.7 dB POUT Absolute Output Power 1VP-P(DIFF) CW Signal, I and Q –3.7 dBm OP1dB Output 1dB Compression 5.0 dBm OIP2 Output 2nd Order Intercept (Note 5) 63.6 dBm OIP3 Output 3rd Order Intercept (Note 6) 20.8 dBm NFloor RF Output Noise Floor No Baseband AC Input Signal (Note 3) POUT = 3dBm (Note 3) –156.7 –156.0 dBm/Hz dBm/Hz SB Side-Band Suppression (Note 7) –52.6 dBc LOFT Carrier Leakage (LO Feedthrough) (Note 7) EN = Low (Note 7) –51.5 –67.5 dBm dBm –61 dBm –51 dBc –62 dBm –11.8 dBc 2LOFT LO Feedthrough at 2xLO 2LO Signal Powers at 2xLO 3LOFT LO Feedthrough at 3xLO 3LO Signal Powers at 3xLO Maximum of 3fLO – fBB; 3fLO + fBB BW1dBBB –1dB Baseband Bandwidth RSOURCE = 50Ω, Differential 29 MHz BW3dBBB –3dB Baseband Bandwidth RSOURCE = 50Ω, Differential 57 MHz Maximum of 2fLO – 2fBB; 2fLO – fBB; 2fLO + fBB, 2fLO + 2fBB fLO = 900MHz, fRF1 = 897.9MHz, fRF2 = 898MHz, Register 0x00 = 0x12 S22(ON) RF Port Return Loss fLO(MATCH) LO Match Frequency Range S11 < –10dB –28 223 to 1902 dB MHz Gain Conversion Voltage Gain 20 • Log (VRF(OUT)(50Ω)/VIN(DIFF)(I or Q)) –8.9 dB POUT Absolute Output Power 1VP-P(DIFF) CW Signal, I and Q –4.9 dBm OP1dB Output 1dB Compression 4.1 dBm OIP2 Output 2nd Order Intercept (Note 5) 63.5 dBm OIP3 Output 3rd Order Intercept (Note 6) 18.4 dBm NFloor RF Output Noise Floor No Baseband AC Input Signal (Note 3) –155.6 dBm/Hz SB Side-Band Suppression (Note 7) –61.3 dBc LOFT Carrier Leakage (LO Feedthrough) (Note 7) EN = Low (Note 7) –58.6 –62.3 dBm dBm 2LOFT LO Feedthrough at 2xLO –59 dBm 2LO Signal Powers at 2xLO –51 dBc Maximum of 2fLO – 2fBB; 2fLO – fBB; 2fLO + fBB, 2fLO + 2fBB 5599f For more information www.linear.com/LTC5599 3 LTC5599 Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, PLO = 0dBm, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, all registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13. SYMBOL PARAMETER 3LOFT LO Feedthrough at 3xLO CONDITIONS MIN TYP MAX 3LO Signal Powers at 3xLO Maximum of 3fLO – fBB; 3fLO + fBB –19.2 dBc BW1dBBB –1dB Baseband Bandwidth RSOURCE = 50Ω, Differential 37 MHz BW3dBBB –3dB Baseband Bandwidth RSOURCE = 50Ω, Differential 69 MHz –60 UNITS dBm Variable Gain Control (VCTRL) VCTRLR Gain Control Voltage Range Set Bit 6 in Register 0x01 0.9 to 3.3 V tCTRL Gain Control Response Time Set Bit 6 in Register 0x01 (Note 8) 20 ns ZCTRL Gain Control Input Impedance Set Bit 6 in Register 0x01 10 pF ICTRL DC Input Current Set Bit 6 in Register 0x01 Clear Bit 6 in Register 0x01 2.58 0 mA mA Internally Generated Differential Four Baseband Pins Shorted Four Baseband Pins Shorted, EN = Low No Hard Clipping, Single-Ended, Digital Gain (DG) = –10 1.42 1.8 350 1.3 1.2 V kΩ Ω nA VP-P Baseband Inputs (BBPI, BBMI, BBPQ, BBMQ) VCMBB RIN(DIFF) RIN(CM) IBB(OFF) VSWING DC Common Mode Voltage Input Resistance Common Mode Input Resistance Baseband Leakage Current Amplitude Swing Power Supply (VCC) VCC VRET(MIN) ICC(ON) ICC(RANGE) ICC(OFF) tON tOFF tSB tLO Supply Voltage Minimum Data Retention Voltage Supply Current Supply Current Range Supply Current, Sleep Mode Turn-On Time Turn-Off Time Side-Band Suppression Settling LO Suppression Settling 2.7 1.6 20 (Note 14) EN = High EN = High, Register 0x01 from 0x00 to 0x13 EN = 0V EN = Low to High (Notes 8, 12) EN = High to Low (Notes 9, 12) Register 0x00 Change, <–50dBc (Note 12) Register 0x02 Change, <–60dBm (Note 12) 3.3 1.3 28 8 to 36 0.7 167 53 500 90 3.6 37 9 V V mA mA µA ns ns ns ns Serial Port (CSB, SCLK, SDI, SDO), Enable (EN) and TTCK, SCLK = 20MHz VIH Input High Voltage l VIL Input Low Voltage l IIH Input High Current 0.02 nA IIL Input Low Current –0.4 nA VOH Output High Voltage (Note 13) l VOL Output Low Voltage ISINK = 8mA (Note 10) l IOH SDO Leakage Current for SDO = High VHYS Input Trip Point Hysteresis tCKH SCLK High Time l 1.1 V 0.2 VCC_L – 0.2 V 0.7 22.5 V V 0.5 nA 110 mV 25 ns 5599f 4 For more information www.linear.com/LTC5599 LTC5599 Electrical Characteristics The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TC = 25°C. VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, PLO = 0dBm, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, all registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13. SYMBOL PARAMETER tCSS CSB Setup Time CONDITIONS l MIN 20 ns tCSH CSB High Time l 30 ns tCS SDI to SCLK Setup Time l 20 ns tCH SDI to SCLK Hold Time l 10 ns tDO SCLK to SDO Time l 45 tC% SCLK Duty Cycle l 45 fCLK Maximum SCLK Frequency l 20 VTEMP Temperature Diode Voltage Temperature Slope ITEMP = 100µA ITEMP = 100µA Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: The LTC5599 is guaranteed functional over the operating case temperature range from –40°C to 105°C. Note 3: At 6MHz offset from the LO signal frequency. 100nF between BBPI and BBMI, 100nF between BBPQ and BBMQ. Note 4: The Default Register Settings are listed in Table 1. Note 5: IM2 is measured at fLO – 4.1MHz. Note 6: IM3 is measured at fLO – 2.2MHz and fLO – 1.9MHz. OIP3 = lowest of (1.5 • P{fLO – 2.1MHz} – 0.5 • P{fLO – 2.2MHz}) and (1.5 • P{fLO – 2MHz} – 0.5 • P{fLO – 1.9MHz}). Note 7: Without side-band or LO feedthrough nulling (unadjusted). Note 8: RF power is within 10% of final value. Note 9: RF power is at least 30dB down from its ON state. Note 10: VOL voltage scales linear with current sink. For example for RPULL-UP = 1kΩ, VCC_L = 3.3V the SDO sink current is about (3.3 – 0.2) /1kΩ = 3.1mA. Max VOL = 0.7 • 3.1/8 = 0.271V, with RPULL-UP the SDO TYP MAX UNITS ns 50 55 % MHz 763 1.6 mV mV/°C pull-up resistor and VCC_L the digital supply voltage to which RPULL-UP is connected to. Note 11: I and Q baseband Input signal = 2MHz CW, 0.8VP-P, DIFF each, I and Q 0° shifted. Note 12: fLO = 500MHz, PLO = 0dBm, C4 = 1.5nF Note 13: Maximum VOH is derated for capacitive load using the following formula: VCC_L • exp (–0.5 • TCLK/(RPULL-UP • CLOAD), with TCLK the time of one SCLK cycle, RPULL-UP the SDO pull-up resistor, VCC_L the digital supply voltage to which RPULL-UP is connected to, and CLOAD the capacitive load at the SDO pin. For example for TCLK = 100ns (10MHz SCLK), RPULL-UP = 1kΩ, CLOAD = 10pF and VCC_L = 3.3V the derating is 3.3 • exp(–5) = 22.2mV, thus maximum VOH = 3.3V – 0.1 – 0.0222 = 3.177V. Note 14: Minimum VCC in order to retain register data content. Note 15: Guaranteed by design and characterization. This parameter is not tested. Note 16: RF pin guaranteed by design while using a 10nF coupling capacitor. The RF pin is not tested. 5599f For more information www.linear.com/LTC5599 5 LTC5599 Typical Performance Characteristics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C, PLO = 0dBm, fLO = 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13. Supply Current vs Digital Gain Setting 36 –40°C –10°C 25°C 85°C 105°C 32 40 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 34 30 28 26 24 30 Gain vs RF Frequency and Digital Gain Setting 0 2.7V, 25°C 3.3V, 25°C 3.6V, 25°C 3.3V, 85°C 3.3V, –40°C –5 –10 –15 20 –20 10 –25 22 3 3.3 SUPPLY VOLTAGE (V) 0 –19 –17 –15 –13 –11 –9 –7 –5 –3 DIGITAL GAIN SETTING 3.6 5599 G01 5 250 450 650 850 1050 RF FREQUENCY (MHz) DG 0 DG –1 DG –2 DG –3 DG –4 DG –5 DG –6 DG –7 DG –8 DG –9 DG –10 DG –11 DG –12 DG –13 DG –14 DG –15 DG –16 DG –17 DG –18 DG –19 70 1250 60 50 40 50 250 450 650 850 1050 RF FREQUENCY (MHz) 5599 G04 –40 –50 –60 –70 50 250 450 650 850 1050 RF FREQUENCY (MHz) 1250 5599 G07 –30 SIDE-BAND SUPPRESSION (dBc) SIDE-BAND SUPPRESSION (dBc) –30 –50 –60 –70 –80 50 1250 250 450 650 850 1050 RF FREQUENCY (MHz) 3.3V, 25°C 2.7V, 25°C 3.3V, 105°C 3.3V, –40°C –40 3.6V, 25°C 3.3V, 85°C 3.3V, –10°C –50 –60 TEMPUPDT = 1 –70 50 250 450 650 850 1050 LO FREQUENCY (MHz) 1250 5599 G06 Side-Band Suppression vs LO Frequency for Gain TempComp Off DG 0 DG –1 DG –2 DG –3 DG –4 DG –5 DG –6 DG –7 DG –8 DG –9 DG –10 DG –11 DG –12 DG –13 DG –14 DG –15 DG –16 DG –17 DG –18 DG –19 –20 DG 0 DG –1 DG –2 DG –3 DG –4 DG –5 DG –6 DG –7 DG –8 DG –9 DG –10 DG –11 DG –12 DG –13 DG –14 DG –15 DG –16 DG –17 DG –18 DG –19 5599 G05 Side-Band Suppression vs RF Frequency and Digital Gain Setting –10 1250 –40 LO LEAKAGE (dBm) OIP3 (dBm) 10 450 650 850 1050 RF FREQUENCY (MHz) LO Leakage vs RF Frequency and Digital Gain Setting 80 OIP2 (dBm) DG 0 DG –1 DG –2 DG –3 DG –4 DG –5 DG –6 DG –7 DG –8 DG –9 DG –10 DG –11 DG –12 DG –13 DG –14 DG –15 DG –16 DG –17 DG –18 DG –19 15 250 5599 G03 Output IP2 vs RF Frequency and Digital Gain Setting 20 DIGITAL GAIN SETTING (DG) = –19 (REGISTER 0x01 = 0x13) 5599 G02 Output IP3 vs RF Frequency and Digital Gain Setting 0 50 –30 50 –1 1250 5599 G08 Side-Band Suppression vs LO Frequency for Gain TempComp On –30 SIDE-BAND SUPPRESSION (dBc) 20 2.7 DIGITAL GAIN SETTING (DG) = 0 (REGISTER 0x01 = 0x00) GAIN (dB) Supply Current vs Supply Voltage 3.3V, 25°C 2.7V, 25°C 3.3V, 105°C 3.3V, –40°C –40 3.6V, 25°C 3.3V, 85°C 3.3V, –10°C –50 –60 –70 50 250 450 650 850 1050 LO FREQUENCY (MHz) 1250 5599 G09 5599f 6 For more information www.linear.com/LTC5599 LTC5599 Typical Performance Characteristics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C, PLO = 0dBm, fLO = 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13. Output 1dB Compression Point vs RF Frequency and Digital Gain Setting and 3.6V Supply Output 1dB Compression Point vs RF Frequency and Digital Gain Setting and 3.3V Supply –140 DIGITAL GAIN SETTING = 0 (REGISTER 0x01 = 0x00) –150 OP1dB (dBm) –155 –160 –2 –6 –165 DIGITAL GAIN SETTING = –19 (REGISTER 0x01 = 0x13) 250 450 650 850 1050 RF FREQUENCY (MHz) 1250 –10 50 250 450 650 850 1050 RF FREQUENCY (MHz) –6 –10 50 250 450 650 850 1050 RF FREQUENCY (MHz) 1250 2 –2 –6 –10 50 250 450 650 850 1050 RF FREQUENCY (MHz) –6 –10 50 250 450 650 850 1050 RF FREQUENCY (MHz) 1250 5599 G16 1250 2 –2 –6 –10 50 250 450 650 850 1050 RF FREQUENCY (MHz) Gain vs RF Frequency and VCTRL DG 0 DG –1 DG –2 DG –3 DG –4 DG –5 DG –6 DG –7 DG –8 DG –9 DG –10 DG –11 DG –12 DG –13 DG –14 DG –15 DG –16 DG –17 DG –18 DG –19 2 –2 –6 –10 50 250 450 650 850 1050 RF FREQUENCY (MHz) 1250 5599 G15 6 OP1dB (dBm) OP1dB (dBm) –2 DG 0 DG –1 DG –2 DG –3 DG –4 DG –5 DG –6 DG –7 DG –8 DG –9 DG –10 DG –11 DG –12 DG –13 DG –14 DG –15 DG –16 DG –17 DG –18 DG –19 Output 1dB Compression Point vs RF Frequency and Digital Gain Setting at 105°C DG 0 DG –1 DG –2 DG –3 DG –4 DG –5 DG –6 DG –7 DG –8 DG –9 DG –10 DG –11 DG –12 DG –13 DG –14 DG –15 DG –16 DG –17 DG –18 DG –19 1250 6 5599 G14 Output 1dB Compression Point vs RF Frequency and Digital Gain Setting at 85°C 2 450 650 850 1050 RF FREQUENCY (MHz) 5599 G12 DG 0 DG –1 DG –2 DG –3 DG –4 DG –5 DG –6 DG –7 DG –8 DG –9 DG –10 DG –11 DG –12 DG –13 DG –14 DG –15 DG –16 DG –17 DG –18 DG –19 5599 G13 6 250 Output 1dB Compression Point vs RF Frequency and Digital Gain Setting at –40°C 6 OP1dB (dBm) OP1dB (dBm) –2 –10 50 1250 Output 1dB Compression Point vs RF Frequency and Digital Gain Setting at –10°C DG 0 DG –1 DG –2 DG –3 DG –4 DG –5 DG –6 DG –7 DG –8 DG –9 DG –10 DG –11 DG –12 DG –13 DG –14 DG –15 DG –16 DG –17 DG –18 DG –19 2 –2 5599 G11 5599 G10 Output 1dB Compression Point vs RF Frequency and Digital Gain Setting and 2.7V Supply 6 2 –6 OP1dB (dBm) –170 50 2 DG 0 DG –1 DG –2 DG –3 DG –4 DG –5 DG –6 DG –7 DG –8 DG –9 DG –10 DG –11 DG –12 DG –13 DG –14 DG –15 DG –16 DG –17 DG –18 DG –19 6 1250 5599 G17 0 –20 GAIN (dB) RF NOISE FLOOR (dBm/Hz) –145 DG 0 DG –1 DG –2 DG –3 DG –4 DG –5 DG –6 DG –7 DG –8 DG –9 DG –10 DG –11 DG –12 DG –13 DG –14 DG –15 DG –16 DG –17 DG –18 DG –19 6 OP1dB (dBm) Noise Floor vs RF Frequency and Digital Gain Setting 3.3V 1.45V –40 1.35V –60 1.25V 1.15V 1V –80 –100 50 1.8V 1.6V AGCTRL = 1 250 450 650 850 1050 RF FREQUENCY (MHz) 1250 5599 G18 5599f For more information www.linear.com/LTC5599 7 LTC5599 Typical Performance Characteristics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C, PLO = 0dBm, fLO = 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13. Input IP2 vs RF Frequency and VCTRL 40 80 1.8V 1.8V 3.3V 1.45V 20 1.35V 1.25V 10 1V 0 50 1.35V 40 1.25V 1.15V 20 AGCTRL = 1 250 1.45V 50 30 1.15V 450 650 850 1050 RF FREQUENCY (MHz) 1V 10 50 1250 AGCTRL = 1 250 450 650 850 1050 RF FREQUENCY (MHz) 5599 G19 –162 –166 50 1250 –156 450 650 850 1050 RF FREQUENCY (MHz) 3.3V, 25°C 3.6V, 25°C 2.7V, 25°C 3.3V, 85°C 3.3V, 105°C 3.3V, –10°C 3.3V, –40°C DG = 0 DG = –4 –156 DG = –8 –158 DG = –12 –160 DG = –16 –154 –158 –162 –162 DG = –19 250 450 650 850 1050 RF FREQUENCY (MHz) 1250 –164 –10 –8 –6 –4 –2 2 0 RF POWER (dBm) 4 3.3V, 25°C 3.3V, 105°C 3.3V, –40°C 3.3V, 0°C –7 –8 3.3V, 85°C 3.3V, –10°C 3.3V, 55°C 21 –15 20 –20 19 OIP3 (dBm) –9 –10 –11 18 17 –12 –13 3.3V, 25°C 3.3V, 105°C 3.3V, –40°C 3.3V, 0°C 16 –14 –15 20 25 30 35 40 RF FREQUENCY (MHz) 45 50 5599 G25 –70 15 20 25 30 35 40 RF FREQUENCY (MHz) 3.3V, 85°C 3.3V, –10°C 3.3V, 55°C 45 –60 –50 –40 –30 VCTRL GAIN (dB) –20 –10 5599 G24 Side-Band Suppression vs RF Frequency for 30MHz LO Match Output IP3 vs RF Frequency for 30MHz LO Match Gain vs RF Frequency for 30MHz LO Match –5 AGCTRL = 1 5599 G23 5599 G22 –6 6 –166 –80 SIDE-BAND SUPPRESSION (dBc) –160 50 GAIN (dB) 1250 Noise Floor vs VCTRL Gain –150 –154 –152 250 5599 G21 Noise Floor vs RF Power RF NOISE FLOOR (dBm/Hz) –148 –158 –152 3.3V, 25°C 3.6V, 25°C 2.7V, 25°C 3.3V, 85°C 3.3V, 105°C 3.3V, –10°C 3.3V, –40°C –144 –154 5599 G20 Noise Floor vs RF Frequency –140 RF NOISE FLOOR (dBm/Hz) 1.6V RF NOISE FLOOR (dBm/Hz) 1.6V 3.3V 2V 1.9V 1.85V 1.8V 1.75 1.65 1.6V 1.55V 1.5V 1.45V 1.4V 1.3V 1V –150 60 IIP2 (dBm) IIP3 (dBm) 3.3V 70 30 Noise Floor vs RF Frequency and VCTRL RF NOISE FLOOR (dBm/Hz) Input IP3 vs RF Frequency and VCTRL 50 5599 G26 3.3V, 85°C 3.3V, –10°C 3.3V, 55°C –25 –30 –35 –40 3.3V, 25°C 3.3V, 105°C 3.3V, –40°C 3.3V, 0°C –45 –50 20 25 30 35 40 RF FREQUENCY (MHz) 45 50 5599 G27 5599f 8 For more information www.linear.com/LTC5599 LTC5599 Typical Performance Characteristics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C, PLO = 0dBm, fLO = 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13. Output IP3 vs RF Frequency for 70MHz LO Match Gain vs RF Frequency for 70MHz LO Match 3.3V, 25°C 3.3V, 105°C 3.3V, –40°C 3.3V, 0°C –10 22 –7 OIP3 (dBm) GAIN (dB) –6 23 3.3V, 85°C 3.3V, –10°C 3.3V, 55°C –8 –9 21 20 3.3V, 25°C 3.3V, 105°C 3.3V, –40°C 3.3V, 0°C 19 –10 50 60 70 80 90 100 RF FREQUENCY (MHz) 110 18 50 120 60 3.3V, 85°C 3.3V, –10°C 3.3V, 55°C 70 80 90 100 RF FREQUENCY (MHz) 110 5599 G28 Gain vs LO Power at fLO = 150MHz –6 –4 –2 0 2 LO POWER (dBm) GAIN (dB) GAIN (dB) GAIN (dB) –14 4 3.3V 3.6V 2.7V –22 –10 6 –8 –6 4 DIGITAL GAIN = –10 4 6 5599 G34 3.3V 3.6V 2.7V –22 –10 6 –8 –6 –4 –2 0 2 LO POWER (dBm) –6 6 5599 G33 DIGITAL GAIN = –4 15 DIGITAL GAIN = –10 3.3V 3.6V 2.7V –8 4 19 DIGITAL GAIN = –10 7 –10 85°C 105°C –10°C –40°C Output IP3 vs LO Power at fLO = 500MHz 15 DIGITAL GAIN = –10 –4 –2 0 2 LO POWER (dBm) –4 –2 0 2 LO POWER (dBm) DIGITAL GAIN = –4 11 –6 120 DIGITAL GAIN = –4 23 19 –18 –8 110 Gain vs LO Power at fLO = 900MHz –18 85°C 105°C –10°C –40°C 23 3.3V DIGITAL GAIN = –4 3.6V 2.7V –14 –22 –10 70 90 100 80 RF FREQUENCY (MHz) –14 Output IP3 vs LO Power at fLO = 150MHz OIP3 (dBm) –10 60 5599 G32 Gain vs LO Power at fLO = 1260MHz 85°C 105°C –10°C –40°C –60 DIGITAL GAIN = –10 –18 85°C 105°C –10°C –40°C 5599 G31 –6 –50 –10 OIP3 (dBm) –8 –40 DIGITAL GAIN = –4 DIGITAL GAIN = –10 –22 –10 –30 –6 –10 –14 3.3V 3.6V 2.7V 3.3V, 85°C 3.3V, –10°C 3.3V, 55°C 5599 G30 Gain vs LO Power at fLO = 500MHz DIGITAL GAIN = –4 –18 –20 –70 50 120 –6 –10 3.3V, 25°C 3.3V, 105°C 3.3V, –40°C 3.3V, 0°C 5599 G29 –6 GAIN (dB) SIDE-BAND SUPPRESSION (dBc) –5 Side-Band Suppression vs RF Frequency for 70MHz LO Match –4 –2 0 2 LO POWER (dBm) 11 85°C 105°C –10°C –40°C 4 6 5599 G35 7 –10 3.3V 3.6V 2.7V –8 –6 –4 –2 0 2 LO POWER (dBm) 85°C 105°C –10°C –40°C 4 6 5599 G36 5599f For more information www.linear.com/LTC5599 9 LTC5599 Typical Performance Characteristics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C, PLO = 0dBm, fLO = 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13. Output IP3 vs LO Power at fLO = 900MHz 3.3V 3.6V 2.7V DIGITAL GAIN = –10 7 –10 –8 –6 –4 –2 0 2 LO POWER (dBm) 70 65 15 11 12 DIGITAL GAIN = –10 8 3.3V 3.6V 2.7V 4 4 0 –10 6 –6 –8 –4 –2 0 2 LO POWER (dBm) 5599 G37 75 DIGITAL GAIN = –4 (SOLID) DIGITAL GAIN = –10 (DASHED) 70 40 –10 6 55 50 3.3V 3.6V 2.7V 45 40 –10 –8 –6 –4 –2 0 2 LO POWER (dBm) 75 DIGITAL GAIN = –4 (SOLID) DIGITAL GAIN = –10 (DASHED) 70 60 55 45 40 –10 6 85°C 105°C –10°C –40°C –6 –8 –45 DIGITAL GAIN = –4 3.3V 3.6V 2.7V 45 –4 –2 0 2 LO POWER (dBm) 4 40 –10 6 –8 –6 –4 –2 0 2 LO POWER (dBm) –45 DIGITAL GAIN = –4 –8 –6 –4 –2 0 2 LO POWER (dBm) 85°C 105°C –10°C –40°C 4 6 5599 G43 LO LEAKAGE (dBm) LO LEAKAGE (dBm) –65 –10 3.3V 3.6V 2.7V –50 DIGITAL GAIN = –10 –55 –60 –10 3.3V 3.6V 2.7V –8 –6 –4 –2 0 2 LO POWER (dBm) 6 LO Leakage vs LO Power at fLO = 900MHz 3.3V 3.6V 2.7V –50 DIGITAL GAIN = –10 4 5599 G42 –50 –55 6 55 LO Leakage vs LO Power at fLO = 500MHz –45 4 50 85°C 105°C –10°C –40°C 3.3V 3.6V 2.7V 60 5599 G41 LO Leakage vs LO Power at fLO = 150MHz LO LEAKAGE (dBm) –4 –2 0 2 LO POWER (dBm) DIGITAL GAIN = –4 (SOLID) DIGITAL GAIN = –10 (DASHED) 65 5599 G40 –60 –6 Output IP2 vs LO Power at fLO = 1260MHz Output IP2 vs LO Power at fLO = 900MHz 50 85°C 105°C –10°C –40°C 4 –8 85°C 105°C –10°C –40°C 5599 G39 65 OIP2 (dBm) OIP2 (dBm) 65 60 3.3V 3.6V 2.7V 45 OIP2 (dBm) 70 DIGITAL GAIN = –4 (SOLID) DIGITAL GAIN = –10 (DASHED) 55 50 85°C 105°C –10°C –40°C 4 60 5599 G38 Output IP2 vs LO Power at fLO = 500MHz 75 75 DIGITAL GAIN = –4 16 OIP3 (dBm) OIP3 (dBm) 19 20 85°C DIGITAL GAIN = –4 105°C –10°C –40°C OIP2 (dBm) 23 Output IP2 vs LO Power at fLO = 150MHz Output IP3 vs LO Power at fLO = 1260MHz 85°C 105°C –10°C –40°C 4 85°C 105°C –10°C –40°C –55 DIGITAL GAIN = –4 –60 DIGITAL GAIN = –10 –65 6 5599 G44 –70 –10 –8 –6 –4 –2 0 2 LO POWER (dBm) 4 6 5599 G45 5599f 10 For more information www.linear.com/LTC5599 LTC5599 Typical Performance Characteristics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C, PLO = 0dBm, fLO = 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13. Side-Band Suppression vs LO Power at fLO = 150MHz –44 –40 SIDE-BAND SUPPRESSION (dBc) –56 –60 DIGITAL GAIN = –10 –64 –68 85°C 105°C –10°C –40°C 3.3V 3.6V 2.7V –72 –76 –80 –10 –8 –6 –4 –2 0 2 LO POWER (dBm) 4 –45 85°C 105°C –10°C –40°C 3.3V 3.6V 2.7V –50 –55 –60 –65 –10 6 –8 –6 –4 –2 0 2 LO POWER (dBm) 5599 G46 SIDE-BAND SUPPRESSION (dBc) SIDE-BAND SUPPRESSION (dBc) –55 –8 –6 3.3V 3.6V 2.7V –4 –2 0 2 LO POWER (dBm) –55 –60 4 85°C 105°C –10°C –40°C –8 3.3V 3.6V 2.7V –6 –4 –2 0 2 LO POWER (dBm) 4 6 5599 G48 Supply Current vs VCTRL Voltage 40 –41 –50 –65 –10 –50 –65 –10 6 –40 –45 85°C 105°C –10°C –40°C –45 Side-Band Suppression vs LO Power at fLO = 1260MHz DIGITAL GAIN = –4 (SOLID) DIGITAL GAIN = –10 (DASHED) –60 DIGITAL GAIN = –4 (SOLID) DIGITAL GAIN = –10 (DASHED) 5599 G47 Side-Band Suppression vs LO Power at fLO = 900MHz –40 4 6 –42 SUPPLY CURRENT (mA) LO LEAKAGE (dBm) –52 –40 DIGITAL GAIN = –4 (SOLID) DIGITAL GAIN = –10 (DASHED) DIGITAL GAIN = –4 –48 Side-Band Suppression vs LO Power at fLO = 500MHz SIDE-BAND SUPPRESSION (dBc) LO Leakage vs LO Power at fLO = 1260MHz –43 –44 –45 –46 DIGITAL GAIN = –4 (SOLID) DIGITAL GAIN = –10 (DASHED) –47 85°C –48 105°C 3.3V –10°C 3.6V –49 –40°C 2.7V –50 –10 –8 –6 –4 –2 0 2 LO POWER (dBm) 5599 G49 4 30 20 10 AGCTRL = 1 0 0.9 1.2 1.5 6 5599 G50 VCTRL Current vs VCTRL Voltage Gain vs VCTRL Voltage 3.0 0 2.7V, 25°C 3.3V, 25°C 3.6V, 25°C 3.3V, 85°C 3.3V, –40°C 3.3V, –10°C 3.3V, 105°C 1.8 2.1 2.4 2.7 VCTRL VOLTAGE (V) 3 3.3 5599 G51 Output IP3 vs VCTRL Gain 25 AGCTRL = 1 AGCTRL = 1 20 –20 15 2.0 1.5 0.9 1.2 1.5 1.8 2.1 2.4 VCTRL (V) 2.7 3 3.3 5599 G52 –40 2.7V, 25°C 3.3V, 25°C 3.6V, 25°C 3.3V, 85°C 3.3V, –40°C 3.3V, –10°C 3.3V, 105°C –60 –80 0.9 1.2 1.5 1.8 2.1 2.4 2.7 VCTRL VOLTAGE (V) 3 3.3 5599 G53 OIP3 (dBm) 2.7V, 25°C 3.3V, 25°C 3.6V, 25°C 3.3V, 85°C 3.3V, –40°C 3.3V, –10°C 3.3V, 105°C GAIN (dB) ICTRL (mA) 2.5 10 5 0 –5 –10 –27 2.7V, 25°C 3.3V, 25°C 3.6V, 25°C 3.3V, 85°C 3.3V, –40°C 3.3V, –10°C 3.3V, 105°C –23 –19 –15 –11 GAIN SET BY VCTRL (dB) –7 5599 G54 5599f For more information www.linear.com/LTC5599 11 LTC5599 Typical Performance Characteristics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C, PLO = 0dBm, fLO = 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13. Output IP2 vs VCTRL Gain –30 65 LO LEAKAGE (dBm) –40 OIP2 (dBm) 60 55 2.7V, 25°C 3.3V, 25°C 3.6V, 25°C 3.3V, 85°C 3.3V, –40°C 3.3V, –10°C 3.3V, 105°C 50 45 40 –17 –15 –13 –11 –9 GAIN SET BY VCTRL (dB) –50 –60 –70 –80 –77 –7 5599 G55 GAIN – DIGITAL GAIN (dB) GAIN (dB) –13 –17 –21 –25 –19 –57 –47 –37 –27 GAIN SET BY VCTRL (dB) –17 –11 –7 DIGITAL GAIN SETTING –35 –40 –45 –50 –55 –7 –3 –4 –5 –6 –19 –3 5599 G58 2.7V, 25°C 3.3V, 25°C 3.6V, 25°C 3.3V, 85°C 3.3V, –40°C –15 –11 –7 DIGITAL GAIN SETTING –67 AGCTRL = 1 –57 –47 –37 –27 GAIN SET BY VCTRL (dB) –17 –7 5599 G57 PRF, IM2, IM3 vs Baseband Amplitude PRF FOR DG = 0, –4, –8, –12, –16, –19, –10 –30 IM3 FOR DG = 0, –19, –50 –16, –4, –12, –8 –70 –90 0.1 –3 5599 G59 IM2 FOR DG = 0, –4, –8, –19, –12, –16 1 BASEBAND AMPLITUDE (VPEAK(DIFF)) 5599 G60 LO Leakage vs LO Frequency for Gain TempComp Off Output IP2 vs Baseband Amplitude Output IP3 vs Baseband Amplitude 2.7V, 25°C 3.3V, 25°C 3.6V, 25°C 3.3V, 85°C 3.3V, –40°C 3.3V, –10°C 3.3V, 105°C 5599 G56 10 AGCTRL = 1 –15 –67 –30 –60 –77 –2 2.7V, 25°C 3.3V, 25°C 3.6V, 25°C 3.3V, 85°C 3.3V, –40°C –9 AGCTRL = 1 –25 Gain Minus Digital Gain vs Digital Gain Setting Gain vs Digital Gain Setting –5 –20 2.7V, 25°C 3.3V, 25°C 3.6V, 25°C 3.3V, 85°C 3.3V, –40°C 3.3V, –10°C 3.3V, 105°C SIDE-BAND SUPPRESSION (dBc) AGCTRL = 1 PRF PER TONE (dBm), IM2, IM3 (dBc) 70 Side-Band Suppression vs VCTRL Gain LO Leakage vs VCTRL Gain –40 70 20 TEMPUPDT = 1 –45 OIP2 (dBm) OIP3 (dBm) 15 10 5 0 –5 0.1 LO LEAKAGE (dBm) 60 50 –50 –55 –60 40 DG = 0 DG = –8 DG = –16 DG = –4 DG = –12 DG = –19 1 BASEBAND AMPLITUDE (VPEAK(DIFF)) 5599 G61 30 0.1 DG = 0 DG = –8 DG = –16 DG = –4 DG = –12 DG = –19 –65 1 BASEBAND AMPLITUDE (VPEAK(DIFF)) 5599 G62 –70 50 2.7V, 25°C 3.3V, 25°C 3.6V, 25°C 3.3V, 85°C 3.3V, 105°C 250 3.3V, –10°C 3.3V, –40°C 450 650 850 1050 LO FREQUENCY (MHz) 1250 5599 G63 5599f 12 For more information www.linear.com/LTC5599 LTC5599 Typical Performance Characteristics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C, PLO = 0dBm, fLO = 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13. Worst-Case LO Leakage Over Five Parts vs LO Frequency After 25°C Calibration for Gain TempComp Off –45 LO LEAKAGE (dBm) 2.7V, 25°C 3.3V, 25°C 3.6V, 25°C 3.3V, 85°C 3.3V, 105°C 3.3V, –10°C 3.3V, –40°C –50 –55 –60 –40 –40 3.3V, 25°C; 3.3V, 85°C; 3.3V, 105°C; 3.3V, –10°C; 3.3V, –40°C; 2.7V, 25°C AND 3.6V, 25°C BETWEEN WORST-CASE AND BEST-CASE –50 LO LEAKAGE (dBm) –40 Worst-Case LO Leakage Over Five Parts vs LO Frequency After 25°C Calibration for Gain TempComp On WORST-CASE: 3.3V, 105°C –60 –70 450 650 850 1050 LO FREQUENCY (MHz) –80 50 1250 BEST-CASE: 3.3V, 25°C TEMPUPDT = 1 250 450 650 850 1050 LO FREQUENCY (MHz) –40 BEST-CASE: 3.3V, 25°C –50 –60 –70 50 TEMPUPDT = 1 250 450 650 850 1050 LO FREQUENCY (MHz) 1250 –30 3.3V, 25°C; 3.3V, 85°C; 3.3V, 105°C; 3.3V, –10°C; 3.3V, –40°C; 2.7V, 25°C AND 3.6V, 25°C BETWEEN WORST-CASE AND BEST-CASE WORST-CASE: 3.3V, 105°C –40 BEST-CASE: 3.3V, 25°C –50 5599 G66 –40 DG = –19 –70 50 –80 50 5599 G67 DG = 0 DG = –8 –60 –70 450 650 850 1050 LO FREQUENCY (MHz) DG = –3 –50 –60 250 1250 DG = –17 DG = –4 450 650 850 1050 1250 RF FREQUENCY (MHz) 250 5599 G68 Side-Band Suppression vs LO Frequency and Digital Gain Setting After Calibration at DG = –4 1250 LO Leakage vs LO Frequency and Digital Gain Setting After Calibration at DG = –4 Worst-Case Side-Band Suppression Over Five Parts vs LO Frequency After 25°C Calibration for Gain TempComp On SIDE-BAND SUPPRESSION (dBc) 3.3V, 25°C; 3.3V, 85°C; 3.3V, 105°C; 3.3V, –10°C; 3.3V, –40°C; 2.7V, 25°C AND 3.6V, 25°C BETWEEN WORST-CASE AND BEST-CASE WORST-CASE: 3.3V, 105°C 450 650 850 1050 LO FREQUENCY (MHz) 250 5599 G65 5599 G64 –30 –80 50 1250 LO LEAKAGE (dBm) 250 Worst-Case Side-Band Suppression Over Five Parts vs LO Frequency After 25°C Calibration for Gain TempComp Off 5599 G69 Temperature Sensing Diode Voltage Cumulative Distribution Supply Current Cumulative Distribution 100 100 80 80 –30 –40 DG = –19 PERCENTAGE (%) –20 DG = 0 DG = –12 –50 –60 60 25°C 40 –40°C 20 –70 –80 50 –40°C 105°C PERCENTAGE (%) SIDE-BAND SUPPRESSION (dBc) –60 BEST-CASE: 3.3V, 25°C –70 50 SIDE-BAND SUPPRESSION (dBc) WORST-CASE: 3.3V, 105°C –70 –65 –10 3.3V, 25°C; 3.3V, 85°C; 3.3V, 105°C; 3.3V, –10°C; 3.3V, –40°C; 2.7V, 25°C AND 3.6V, 25°C BETWEEN WORST-CASE AND BEST-CASE –50 LO LEAKAGE (dBm) LO Leakage vs LO Frequency for Gain TempComp On DG = –4 250 DG = –3 450 650 850 1050 1250 RF FREQUENCY (MHz) 5599 G70 0 0.6 105°C 60 25°C 40 20 0.65 0.7 0.75 0.8 0.85 DIODE VOLTAGE FOR 100µA (V) 0.9 5599 G71 0 24 26 28 32 30 SUPPLY CURRENT (mA) 34 5599 G72 5599f For more information www.linear.com/LTC5599 13 LTC5599 Typical Performance Characteristics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C, PLO = 0dBm, fLO = 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13. Sleep Current Cumulative Distribution Gain Cumulative Distribution for Gain TempComp Off 100 Gain Cumulative Distribution for Gain TempComp On 100 100 80 80 PERCENTAGE (%) PERCENTAGE (%) 80 60 105°C 40 PERCENTAGE (%) 25°C 60 25°C 130°C –40°C 40 20 20 –40°C 60 105°C 40 25°C 20 –40°C 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 SLEEP CURRENT (µA) 0 –8.4 2 –8 TEMPUPDT = 1 5599 G73 Gain Cumulative Distribution for VCTRL = 1.75V 0 –8.4 –6.4 –6.8 –7.2 –7.6 GAIN (dB) –8 5599 G74 Gain Cumulative Distribution for VCTRL = 1V –6.8 –7.2 –7.6 GAIN (dB) –6.4 5599 G75 Output IP3 Cumulative Distribution 100 100 100 80 80 80 NOTE 11 60 25°C 105°C 40 20 25°C 60 105°C 40 20 AGCTRL = 1 –16 –12 –14 GAIN (dB) 0 –80 –10 5599 G76 –40°C PERCENTAGE (%) 25°C 60 105°C 40 0 50 –60 54 70 58 62 66 OUTPUT IP2 (dBm) 74 78 5599 G79 25°C 0 15 –50 100 80 80 105°C 60 40 0 –160 21 19 OUTPUT IP3 (dBm) 23 5599 G78 LO Leakage Cumulative Distribution for Floating Baseband Pins 100 –40°C 17 5599 G77 25°C 20 20 –40°C 40 Noise Floor Cumulative Distribution NOTE 11 80 AGCTRL = 1 –70 GAIN (dB) Output IP2 Cumulative Distribution 100 60 20 PERCENTAGE (%) 0 –18 PERCENTAGE (%) –40°C PERCENTAGE (%) –40°C PERCENTAGE (%) PERCENTAGE (%) 105°C –40°C 60 105°C 40 25°C 20 –158 –156 –154 NOISE FLOOR (dBm/Hz) –152 5599 G80 0 –60 –55 –50 –40 –45 LO LEAKAGE (dBm) –35 5599 G81 5599f 14 For more information www.linear.com/LTC5599 LTC5599 Typical Performance Characteristics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C, PLO = 0dBm, fLO = 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13. LO Leakage Cumulative Distribution for VCTRL = 1.75V LO Leakage Cumulative Distribution 100 100 60 25°C 40 20 80 105°C PERCENTAGE (%) PERCENTAGE (%) 105°C 60 25°C 40 –40°C 20 –55 –50 –40 –45 LO LEAKAGE (dBm) 0 –60 –55 –50 –45 –40 –35 –30 –25 –20 LO LEAKAGE (dBm) –35 5599 G82 100 105°C 60 40 0 –60 5599 G83 25°C –55 –40 –45 –50 SIDE-BAND SUPPRESSION (dBc) –35 5599 G84 RF Return Loss 0 AGCTRL = 1 25°C RESONANCE FREQUENCY WITH C4 = 10nF –5 80 DG = –19 S22 (dB) –10 60 –40°C 20 Side-Band Suppression Cumulative Distribution for VCTRL = 1.75V PERCENTAGE (%) 105°C 40 DG = –18 –15 DG = –17 –20 –25 –40°C 20 –30 DG = 0 0 –60 –55 –40 –45 –50 SIDE-BAND SUPPRESSION (dBc) –35 –35 LO Return Loss for 30MHz and 70MHz Match, Schematic in Figure 3 0 REGISTER 0x00 SET ACCORDING TO LO FREQUENCY TABLE 5 –5 100 1000 RF FREQUENCY (MHz) 5599 G86 LO Return Loss 0 10 5599 G85 –5 –10 –10 –15 –15 70MHz S11 (dB) 0 –60 100 AGCTRL = 1 80 –40°C S11 (dB) PERCENTAGE (%) 80 Side-Band Suppression Cumulative Distribution –20 30MHz –20 –25 –25 –30 –30 –35 –35 10 100 1000 LO FREQUENCY (MHz) REGISTER 0x00 SET TO 0x7F 10 5599 G87 100 LO FREQUENCY (MHz) 5599 G88 5599f For more information www.linear.com/LTC5599 15 LTC5599 Typical Performance Characteristics VCC = 3.3V, EN = 3.3V, VCTRL = 3.3V, TC = 25°C, PLO = 0dBm, fLO = 500MHz, BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 1.4VDC, I and Q baseband input signal = 2MHz, 2.1MHz, 1VP-P(DIFF, I or Q), I and Q 90° shifted, lower sideband selection, TEMPUPDT = 0, register 0x00 value according to Table 5, all other registers set to default values, unless otherwise noted. Test circuit is shown in Figure 13. 0 10 STANDARD REG 0x00 = 0x0A, L1 = 39nH, C5 = 15pF 900MHz REG 0x00 = 0x12, L1 = 8.2nH, C5 = 3.3pF –5 1260MHz REG 0x00 = 0x01, L1 = 5.6nH, C5 = 3pF –15 –20 –25 1260MHz 5 4 3 SOLID: EN = HIGH; DASHED: EN = LOW 700 900 1100 1300 1500 1700 1900 LO FREQUENCY (MHz) 5599 G89 1 0 –20 DG = –4 –16 –12 –8 –4 RF POWER (dBm) 10 DG = –19 5 DG = –19 2 –30 –35 500 6 DG = –8 DG = –10 DG = 0 DG = –12 DG = –16 15 DG = 0 DG = –8 DG = –10 DG = –12 DG = –16 7 900MHz DG = –6 DG = –2 DG = –6 8 STANDARD 20 DG = –2 9 RMS EVM (%) S11 (dB) –10 Peak EVM vs RF Output Power with 1Ms/s 16-QAM Signal RMS EVM vs RF Output Power with 1Ms/s 16-QAM Signal EVMPEAK (%) LO Return Loss for Standard, 900MHz and 1260MHz Match 0 4 5599 G90 0 –20 DG = –4 –16 –12 –8 –4 RF POWER (dBm) 0 4 5599 G91 5599f 16 For more information www.linear.com/LTC5599 LTC5599 Pin Functions VCTRL (Pin 1): Variable Gain Control Input. This analog control pin sets the gain. Write a “1” to bit 6 in register 0x01 (AGCTRL = 1) to activate this pin, resulting in about 2.58mA current draw from a positive supply. Typical VCTRL voltage range is 0.9V to 3.3V. Gain transfer function is not linear-in-dB. Tie to VCC when not used. GND (Pins 2, 5, 12, Exposed Pad 25): Ground. All these pins are connected together internally. For best RF performance all ground pins should be connected to RF ground. LOL, LOC (Pins 3, 4): LO Inputs. This is not a differential input. Both pins are 50Ω inputs. An LC diplexer is recommended to be used at these pins (see Figure 13). AC-coupling capacitors are required at these pins if the applied DC level is higher than ±100mV. TTCK (Pin 6): Temperature Update. When the TTCK temperature update mode is selected in register 0x01 (bit 7 = High, TEMPUPDT = 1), the temperature readout and digital gain compensation vs temperature can be updated through a logic low to logic high transition at this pin. Do not float. BBPQ, BBMQ (Pins 10, 11): Baseband Inputs of the Q-Channel. The input impedance of each input is about 1kΩ. It should be externally biased to a 1.4V common mode level, or AC-coupled. Do not apply common mode voltage beyond 2VDC. Float if Q-channel is disabled. GNDRF (Pins 13, 14, 15, 17, 18): RF Ground. These pins are connected together internally. For best RF performance all ground pins should be connected to RF ground. RF (Pin 16): RF Output. The output impedance at RF frequencies is 50Ω. Its DC output voltage is about 1.7V if enabled. An AC-coupling capacitor should be used at this pin with a recommended value of 10nF. CSB (Pin 19): Serial Port Chip Select. This CMOS input initiates a serial port transaction when driven low, ending the transaction when driven back high. Do not float. SCLK (Pin 20): Serial Port Clock. This CMOS input clocks serial port input data on its rising edge. Do not float. SDI (Pin 21): Serial Port Data Input. The serial port uses this CMOS input for data. Do not float. TEMP (Pin 7): Temperature Sensing Diode. This pin is connected to the anode of a diode that may be used to measure the die temperature, by forcing a current and measuring the voltage. This diode is not part of the onchip thermometer. SDO (Pin 22): Serial Port Data Output. This NMOS output presents data from the serial port during a read transaction. Connect this pin to the digital supply voltage through a pull-up resistor of sufficiently large value, to ensure that the current does not exceed 10mA when pulled low. BBPI, BBMI (Pins 8, 9): Baseband Inputs of the I-Channel. The input impedance of each input is about 1kΩ. It should be externally biased to a 1.4V common mode level, or ACcoupled. Do not apply common mode voltage beyond 2VDC. EN (Pin 23): Enable Pin. The chip is completely turned on when a logic high voltage is applied to this pin, and completely turned off for a logic low voltage. Do not float. VCC (Pin 24): Power Supply. It is recommended to use 1nF and 4.7µF capacitors for decoupling to ground on this pin. 5599f For more information www.linear.com/LTC5599 17 LTC5599 Block Diagram CSB 19 SCLK SDI SDO 21 20 22 EN VCC 23 24 SPI BBPI 8 V BBMI 9 I I-CHANNEL 16 RF 0° VCTRL 1 90° BBPQ 10 V BBMQ 11 2 I 5 THERMOMETER Q-CHANNEL 12 GND 25 7 3 TEMP LOL 4 13 14 LOC 15 17 GNDRF 6 TTCK 18 5599 BD 5599f 18 For more information www.linear.com/LTC5599 LTC5599 Applications Information The LTC5599 consists of I and Q input differential voltageto-current converters, I and Q upconverting mixers, an RF output buffer and an LO quadrature phase generator. An SPI bus addresses nine control registers, enabling optimization of side-band suppression, LO leakage, and adjustment of the modulator gain. See Table 1 for a summary of the writable registers and their default values. A full map of all the registers in the LTC5599 is listed in Table 10 and Table 11 in the Appendix. Table 1. SPI Writable Registers and Default Register Values. DEFAULT VALUE SETTING REGISTER FUNCTION 0x00 0x2E 490MHz LO Frequency Tuning 0x01 0x84 DG = –4 Gain 0x02 0x80 0mV Offset I-Channel 0x03 0x80 0mV Offset Q-Channel 0x04 0x80 0dB I/Q Gain Ratio ADDRESS 0x05 0x10 0° I/Q Phase Balance 0x06 0x50 OFF LO Port Matching Override 0x07 0x06 OFF Temperature Correction Override 0x08 0x00 NORMAL Operating Mode Without using the SPI the registers will use the default values which may not result in the optimum side-band suppression (SB). For example: for LO frequency from about 400MHz to about 580MHz, the SB is about –45dBc; from 380MHz to 400MHz and 580MHz to 630MHz it falls to about –40dBc; from 350MHz to 380MHz and 630MHz to 690MHz the SB falls to about –35dBc. Aside of powering up the LTC5599, the register values can be reset to the default values by setting SRESET = 1 (bit 3, register 0x08). After about 50ns SRESET is automatically set back to 0. External I and Q baseband signals are applied to the differential baseband input pins: BBPI, BBMI and BBPQ, BBMQ. These voltage signals are converted to currents and translated to RF frequency by means of double-balanced upconverting mixers. The mixer outputs are combined at the inputs of the RF output buffer, which also transforms the output impedance to 50Ω. The center frequency of the resulting RF signal is equal to the LO signal frequency. The LO inputs drive a phase shifter which splits the LO signal into in-phase and quadrature signals which drive the upconverting mixers. In most applications, the LOL input is driven by the LO source via a 39nH inductor, while the LOC input is driven by the LO source via a 15pF capacitor. This inductor and capacitor form a diplexer circuit tuned to 200MHz. The RF output is single-ended and internally 50Ω matched across a wide RF frequency range from 0.6MHz to 6GHz with better than 10dB return loss using C4 = 10nF. See Figure 13. Baseband Interface The baseband inputs (BBPI, BBMI, BBPQ, BBMQ) present a differential input impedance of about 1.8kΩ, as depicted in Figure 1. The baseband bandwidth depends on the source impedance and the frequency setting (register 0x00). It is recommended to compensate the baseband input impedance in the baseband lowpass filter design in order to achieve best gain flatness vs baseband frequency. The S-parameters for (each of) the baseband inputs are given in Table 2 for various LO frequency and gain settings. VCC = 3.3V + 1.4V 1 EN VCTRL 2.5mA 1kΩ 8 9 1kΩ BBPI VCM = 1.4V BBMI 35Ω 10pF 40Ω 3pF 40Ω 3pF 5599 F01 Figure 1. Simplified Circuit Schematic of the Base Band Input Interface (Only One Channel Is Shown). 5599f For more information www.linear.com/LTC5599 19 LTC5599 Applications Information Table 2. Differential Baseband (BB) Input Impedance vs Table 2. Differential Baseband (BB) Input Impedance vs Frequency for EN = High and VCMBB = 1.4V (continued) Frequency for EN = High and VCMBB = 1.4V BB INPUT IMPEDANCE (W) FREQUENCY (MHz) REAL* IMAG* (CAP) REFL COEFFICIENT MAG ANGLE LO FREQUENCY = 92MHz (REGISTER 0x00 = 0x79), DIGITAL GAIN = –4dB 1 1.90k –7.17k (22.2pF) 0.900 –1.6 4 1.76k –1.82k (21.9pF) 0.893 –6.3 10 1.25k –751 (21.2pF) 0.854 –15 20 678 –429 (18.6pF) 0.755 –27 40 342 –308 (12.9pF) 0.585 –39 LO FREQUENCY = 150MHz (REGISTER 0x00 = 0x62), DIGITAL GAIN = –4dB 1 1.90k –9.11k (17.5pF) 0.900 –1.3 4 1.82k –2.30k (17.3pF) 0.896 –5.0 10 1.45k –935 (17.0pF) 0.872 –12 20 887 –507 (15.7pF) 0.804 –23 40 441 –325 (12.2pF) 0.658 –36 100 226 –252 (6.3pF) 0.457 –51 LO FREQUENCY = 500MHz (REGISTER 0x00 = 0x2D), DIGITAL GAIN = –4dB 1 1.91k –14.7k (10.6pF) 0.900 –0.8 4 1.89k –3.74k (10.7pF) 0.899 –3.0 10 1.72k –1.50k (10.7pF) 0.891 –7.7 20 1.35k –769 (10.4pF) 0.864 –15 40 786 –426 (9.4pF) 0.785 –27 100 323 –251 (6.4pF) 0.583 –47 200 212 –190 (4.2pF) 0.478 –65 LO FREQUENCY = 500MHz (REGISTER 0x00 = 0x2D), DIGITAL GAIN = 0dB 1 1.56k –15.0k (10.6pF) 0.879 –0.8 4 1.56k –3.84k (10.4pF) 0.880 –3.0 10 1.48k –1.52k (10.4pF) 0.874 –7.5 20 1.21k –784 (10.2pF) 0.849 –15 40 753 –432 (9.2pF) 0.776 –27 100 323 –251 (6.3pF) 0.582 –47 200 213 –190 (4.2pF) 0.478 –65 LO FREQUENCY = 900MHz (REGISTER 0x00 = 0x12), DIGITAL GAIN = –4dB 1 1.91k –17.0k (9.4pF) 0.901 –0.7 2 1.90k –4.3k (9.3pF) 0.900 –2.7 10 1.77k –1.72k (9.3pF) 0.893 –6.7 20 1.46k –878 (9.1pF) 0.873 –13 40 915 –475 (8.4pF) 0.811 –24 0.622 –45 100 371 –261 (6.1pF) 200 233 –193 (4.1pF) 0.506 –62 BB INPUT IMPEDANCE (W) FREQUENCY (MHz) REAL* IMAG* (CAP) REFL COEFFICIENT MAG EN = Low (Chip Disabled, REGISTER 0X00 = 0x2E) 1 2.04k –18.2k (8.8pF) 0.906 2 2.02k –4.59k (8.7pF) 0.906 10 1.91k –1.84k (8.7pF) 0.901 20 1.59k –935 (8.5pF) 0.893 40 1.01k –502 (7.9pF) 0.826 100 402 –269 (5.9pF) 0.644 200 246 –197 (4.0pF) 0.522 *Parallel Equivalent ANGLE –0.6 –2.5 –6.3 –12 –23 –43 –60 The circuit is optimized for a common mode voltage of 1.4V which can be internally or externally applied. In case of ACcoupling to the baseband pins (1.4V internally generated bias) make sure that the high pass filter corner is not affecting the low frequency components of the baseband signal. Even a small error for low baseband frequencies can result in degraded EVM. The baseband input offset voltage depends on the source resistance. In case of AC-coupling the 1 sigma offset is about 1.1mV, resulting in about –46.6dBm LO leakage. For shorted baseband pins (0Ω source resistance), the LO leakage improves to about –50.1dBm. In case of ACcoupling the LO leakage can be reduced by connecting a resistor in parallel with the baseband inputs, thus lowering baseband input impedance and offset. Further, the low combined baseband input leakage current of 1.3nA in shutdown mode retains the voltage over the coupling capacitors, which helps to settle faster when the part is enabled again. It is recommended to drive the baseband inputs differentially to improve the linearity. When a DAC is used as the signal source, a reconstruction filter should be placed between the DAC output and the LTC5599 baseband inputs to avoid aliasing. Internal Gain Trim DACs Four internal gain trim DACs (one for each baseband pin) are configured as 11-bit each. The usable DAC input value range is integer continuous from 64 to 2047 and 0 for shutdown. The DACs are not intended for baseband signal 5599f 20 For more information www.linear.com/LTC5599 LTC5599 Applications Information generation but for gain and offset setting only, because there are no reconstruction filters between the DACs and the mixer core, and there is only indirect access between the DAC values and the register settings. The following functions are implemented in this way: • Coarse digital gain control with 1dB steps • Fine digital gain control with 0.1dB steps • Gain-temperature correction • DC offset adjustment in the I-channel • DC offset adjustment in the Q-channel • I/Q gain balance control • Disable Q-channel • Continuous variable gain control Coarse Digital Gain Control (DG) with 1dB Steps (Register 0x01) Twenty digital gain positions 1dB apart are implemented by hardwiring a corresponding DAC code for all four DACs. The coarse digital gain is set by writing to the five least-significant bits in register 0x01, see Table 10 and 11. The gain is the highest for code 00000 (code 0 = 0dB, DG = 0) and the lowest for code 10011 (code 19 = –19dB, DG = –19). Note that the gain 0dB set by the digital gain control is not the same as the voltage gain of the part. The remaining 12 codes (decimal 20 to 31) are reserved. The digital gain in dB equals minus the decimal value written into the 5 least-significant bits of the gain register. The formula relating the modulator gain G(in V/V) relative to the maximum conversion gain therefore equals: G(V/V) = 10(DG/20) Fine Digital Gain Control(FDG) with 0.1dB Steps and Gain-Temperature Correction (Register 0x07) Sixteen digital gain positions about 0.1dB apart can be set directly using the four least-significant bits in register 0x07 combined with bit 2 = 1 in register 0x08 (TEMPCORR = 1). For coarse digital gain settings code 9 and higher some or more subsequent codes of the fine digital gain positions may be the same due to the limited resolution of the 11bit DACs. The main purpose of these 0.1dB gain steps is to implement an automatic gain/temperature correction which can be activated by setting TEMPCORR = 1. In that case, the input of the fine digital gain control will be the on-chip thermometer. The on-chip thermometer generates a 4-bit digital code with code 0 corresponding to –30°C and code 15 corresponding to 120°C and 10°C spacing between the codes. The on-chip thermometer output code can be updated continuous (by clearing TEMPUPDT, bit 7 in register 0x01, see Table 10) or can be updated by bringing the external pin TTCK from low to high (and setting TEMPUPTD = 1). In case of continuous update the code will be an asynchronous update whenever the temperature crosses a certain threshold. In some cases it is desired to prevent a gain update to happen in the middle of a data frame. In that case, the gain/temperature update can be synchronized using the TTCK pin for example at the beginning or end of a data frame. The on-chip temperature can be read back by reading register 0x1F (TEMP[3:0]).The decimal value of TEMP[3:0] is given by: TEMP[3:0] = round(T/10) + 3 with T the actual on-chip temperature in °C. It’s accuracy is about ±10°C. TEMP[3:0] defaults to 7 after an EN low to high transition with TEMPUPDT = 1. Switching from TEMPUPDT = 0 to TEMPTUPDT = 1, TEMP[3:0] indicates the temperature during the last time TTCK went from low to high. Note that the actual on-chip temperature cannot be read if TEMPCORR = 1 or when TEMPUPDT = 1 without toggling TTCK. Analog Gain Control The LTC5599 supports analog control of the conversion gain through a voltage applied to VCTRL (pin 1). The gain can be controlled downward from the digital gain setting (DG) programmed in register 0x01. In order to minimize distortion in the RF output signal the AGCTRL bit (bit 6 in register 0x01) should be set to 1. If analog gain control is not used, VCTRL should be connected to VCC and AGCTRL set to 0; this saves about 2.58mA of supply current. The typical usable gain control range is from 0.9V to 3.3V. Setting VCTRL to a voltage lower than VCC with AGCTRL = 0 significantly impairs the linearity of the RF output signal and lowers the VCTRL response time. A simplified schematic is shown in Figure 1. 5599f For more information www.linear.com/LTC5599 21 LTC5599 Applications Information I/Q DC Offset Adjustment (Registers 0x02 and 0x03) and LO Leakage Offsets in the I- and Q-channel translates into LO leakage at the RF port. This offset can either be caused by the I/Q modulator or, in case the baseband connections are DC-coupled, applied externally. Registers 0x02 and 0x03 (I-offset and Q-offset) can be set to cancel this offset and hence lower the LO leakage. To adjust the offset in the I-channel, the BBPI DAC is set to a (slightly) different value than the BBMI DAC, introducing an offset. These 8-bit registers defaults are 128 and represents 0 offset. The register value can be set from 1 to 255. The value 0 represents an unsupported code and should not be used. Since the input referred offset depends on the gain the input offset value (VOS) can be calculated as: VOS = 1260/((3632 • G)/(NOS – 128) – (NOS – 128) /(3632 • G)) and Vos = 0 for Nos =128. G represents the gain from Table 3. Table 3. Coarse Digital Gain (DG) Register Settings. A positive offset means that the voltage of the positive input terminal (BBPI or BBPQ) is increased relative to the negative input terminal (BBMI or BBMQ). I/Q Gain Ratio (Register 0x04) and Side-Band Suppression The 8-bit I/Q gain ratio register 0x04 controls the ratio of the I-channel mixer conversion gain GI and the Q-channel mixer conversion gain GQ. Together with the quadrature phase imbalance register 0x05, register 0x04 allows further optimization of the modulator side-band suppression. The expression relating the gain ratio GI/GQ to the contents of the 8-bit register 0x04, represented by decimal NIQ and the nominal conversion gain G equals: 20 log (GI/GQ) = 20 log ((3632 • G – (NIQ – 128))/ (3632 • G +(NIQ –128))) (dB) The step size of the gain ratio trim in dB vs NIQ is approximately constant for the same digital gain setting. For digital gain setting = –4, for example, the step size is about 7.6mdB. Table 4 lists the gain step size for each digital gain setting that follows from the formula above. DG (dB) G(V/V) DEC BINARY HEX 0 1.000 0 00000 0x00 –1 0.891 1 00001 0x01 –2 0.794 2 00010 0x02 –3 0.708 3 00011 0x03 DG (dB) G (V/V) –4 0.631 4 00100 0x04 ∆GI/GQ (mdB) 0 1.000 4.8 –5 0.562 5 00101 0x05 –1 0.891 5.4 –6 0.501 6 00110 0x06 –2 0.794 6.0 –7 0.447 7 00111 0x07 –3 0.708 6.8 –8 0.398 8 01000 0x08 –4 0.631 7.6 –9 0.355 9 01001 0x09 –5 0.562 8.5 Table 4. I/Q Gain Ratio Step Size vs Digital Gain Setting –10 0.316 10 01010 0x0A –6 0.501 9.6 –11 0.282 11 01011 0x0B –7 0.447 10.7 –12 0.251 12 01100 0x0C –8 0.398 12.0 –13 0.224 13 01101 0x0D –9 0.355 13.5 –14 0.200 14 01110 0x0E –10 0.316 15.1 –15 0.178 15 01111 0x0F –11 0.282 17.1 –16 0.158 16 10000 0x10 –12 0.251 19.2 –17 0.141 17 10001 0x11 –13 0.224 21.5 –18 0.126 18 10010 0x12 –14 0.200 24.2 –19 0.112 19 10011 0x13 –15 0.178 27.3 5599f 22 For more information www.linear.com/LTC5599 LTC5599 Applications Information Table 5. Register 0x00 Setting vs LO Frequency (continued) Table 4. I/Q Gain Ratio Step Size vs Digital Gain Setting (continued) DG (dB) G (V/V) ∆GI/GQ (mdB) –16 0.158 30.7 –17 0.141 34.6 –18 0.126 39.0 –19 0.112 44.1 REGISTER VALUE LO FREQUENCY RANGE (MHz) DECIMAL BINARY HEX LOWER BOUND UPPER BOUND 15 0001111 0F 961.8 988.2 16 0010000 10 941.3 961.7 17 0010001 11 921.5 941.2 18 0010010 12 895.2 921.4 19 0010011 13 877.6 895.1 20 0010100 14 863.6 877.5 21 0010101 15 843.2 863.5 22 0010110 16 826.9 843.1 23 0010111 17 807.0 826.8 24 0011000 18 792.3 806.9 25 0011001 19 772.2 792.2 26 0011010 1A 752.7 772.1 27 0011011 1B 734.0 752.6 28 0011100 1C 724.2 739.9 29 0011101 1D 704.6 724.1 30 0011110 1E 688.7 704.5 The internal LO chain consists of a poly-phase filter which generates the I and Q signals for the image-reject doublebalanced mixer. The center frequency of the poly-phase filter is set by the lower seven bits of register 0x00. The recommended settings vs LO frequency are given in Table 5 (see the QuikEval™ GUI). 31 0011111 1F 673.2 688.6 32 0100000 20 655.2 673.1 33 0100001 21 638.1 655.1 34 0100010 22 624.6 638.0 35 0100011 23 611.9 624.5 36 0100100 24 598.4 611.8 Table 5. Register 0x00 Setting vs LO Frequency 37 0100101 25 585.1 598.3 38 0100110 26 573.9 585.0 39 0100111 27 563.1 573.8 40 0101000 28 548.1 563.0 41 0101001 29 538.1 548.0 42 0101010 2A 529.1 538.0 43 0101011 2B 518.5 529.0 44 0101100 2C 507.0 518.4 45 0101101 2D 497.7 506.9 46 0101110 2E 488.0 497.6 47 0101111 2F 471.5 487.9 48 0110000 30 457.7 471.4 49 0110001 31 448.7 457.6 50 0110010 32 437.4 448.6 51 0110011 33 426.6 437.3 52 0110100 34 417.5 426.5 53 0110101 35 407.5 417.4 54 0110110 36 398.0 407.4 The conversion gain of the I-channel and Q-channel are equal for NIQ = 128. The I-channel gain is larger than the Q-channel gain for NIQ > 128. Disable Q-Channel If bit 5 in register 0x01 (QDISABLE) is set, the Q-channel is switched off, turning the I/Q modulator into an upconversion mixer. It is recommended to float the BBPQ and BBMQ pins in this mode. The default mode is Q-channel is on (QDISABLE = 0). LO Section (Register 0x00) REGISTER VALUE LO FREQUENCY RANGE (MHz) DECIMAL BINARY HEX LOWER BOUND UPPER BOUND 0 0000000 00 N/A N/A 1 0000001 01 1249.1 1300.0 2 0000010 02 1248.6 1249.0 3 0000011 03 1238.1 1248.5 4 0000100 04 1214.1 1238.0 5 0000101 05 1191.2 1214.0 6 0000110 06 1165.6 1191.1 7 0000111 07 1141.0 1165.5 8 0001000 08 1120.6 1140.9 9 0001001 09 1100.5 1120.5 10 0001010 0A 1069.5 1100.4 11 0001011 0B 1039.6 1069.4 12 0001100 0C 1023.1 1039.5 13 0001101 0D 1007.1 1023.0 14 0001110 0E 988.3 1007.0 5599f For more information www.linear.com/LTC5599 23 LTC5599 Applications Information Table 5. Register 0x00 Setting vs LO Frequency (continued) REGISTER VALUE DECIMAL BINARY Table 5. Register 0x00 Setting vs LO Frequency (continued) LO FREQUENCY RANGE (MHz) HEX REGISTER VALUE LO FREQUENCY RANGE (MHz) LOWER BOUND UPPER BOUND DECIMAL BINARY HEX LOWER BOUND UPPER BOUND 55 0110111 37 390.1 397.9 96 1100000 60 153.6 156.6 56 0111000 38 382.8 390.0 97 1100001 61 151.1 153.5 57 0111001 39 376.6 382.7 98 1100010 62 148.6 151.0 58 0111010 3A 369.8 376.5 99 1100011 63 142.5 148.5 59 0111011 3B 353.1 369.7 100 1100100 64 139.6 142.4 60 0111100 3C 339.0 353.0 101 1100101 65 136.5 139.5 61 0111101 3D 332.6 338.9 102 1100110 66 134.3 136.4 62 0111110 3E 327.2 332.5 103 1100111 67 131.2 134.2 63 0111111 3F 320.6 327.1 104 1101000 68 128.1 131.1 64 1000000 40 313.7 320.5 105 1101001 69 126.0 128.0 65 1000001 41 309.1 313.6 106 1101010 6A 123.8 125.9 66 1000010 42 304.5 309.0 107 1101011 6B 121.3 123.7 67 1000011 43 288.1 304.4 108 1101100 6C 118.3 121.2 68 1000100 44 278.3 288.0 109 1101101 6D 115.7 118.2 69 1000101 45 274.2 278.2 110 1101110 6E 113.5 115.6 70 1000110 46 270.3 274.1 111 1101111 6F 111.3 113.4 71 1000111 47 266.0 270.2 112 1110000 70 109.5 111.2 72 1001000 48 261.9 265.9 113 1110001 71 107.6 109.4 73 1001001 49 258.2 261.8 114 1110010 72 105.6 107.5 74 1001010 4A 254.1 258.1 115 1110011 73 103.0 105.5 75 1001011 4B 243.6 254.0 116 1110100 74 100.3 102.9 76 1001100 4C 233.8 243.5 117 1110101 75 98.5 100.2 77 1001101 4D 230.8 233.7 118 1110110 76 96.6 98.4 78 1001110 4E 228.0 230.7 119 1110111 77 94.7 96.5 79 1001111 4F 220.2 227.9 120 1111000 78 93.0 94.6 80 1010000 50 212.6 220.1 121 1111001 79 30.0 92.9 81 1010001 51 210.0 212.5 122 1111010 7A N/A N/A 82 1010010 52 207.6 209.9 123 1111011 7B N/A N/A 83 1010011 53 202.1 207.5 124 1111100 7C N/A N/A 84 1010100 54 196.2 202.0 125 1111101 7D N/A N/A 85 1010101 55 193.7 196.1 126 1111110 7E N/A N/A 86 1010110 56 191.2 193.6 127 1111111 7F N/A N/A 87 1010111 57 186.6 191.1 88 1011000 58 182.0 186.5 89 1011001 59 179.4 181.9 90 1011010 5A 176.0 179.3 91 1011011 5B 170.1 175.9 92 1011100 5C 165.0 170.0 93 1011101 5D 162.5 164.9 94 1011110 5E 160.0 162.4 95 1011111 5F 156.7 159.9 A simplified circuit schematic of the LOL and LOC interfaces is depicted in Figure 2. The LOL and LOC inputs are not differential LO inputs. They are 50Ω inputs and are intended to be driven with an inductor going to the LOL input and a capacitor to the LOC input. Do not switch the capacitor and inductor, as this will result in very poor performance. For a wideband LO range an inductor value of 39nH and a capacitor value of 15pF (standard LO match) 5599f 24 For more information www.linear.com/LTC5599 LTC5599 Applications Information is recommended at these pins, forming a diplexer circuit with center frequency of 200MHz. This diplexer helps to improve the uncalibrated side-band suppression significantly around 200MHz. Even for LO frequencies far from 200MHz the diplexer performs better than a single-ended LO drive or a differential drive. Due to factory calibration of the poly-phase filter the typical side-band suppression is about 50dBc for frequencies from 100MHz to 700MHz and 45dBc from 700MHz to 1300MHz. For narrow-band applications far from 200MHz it may help to tune the diplexer to a different frequency which can improve the uncalibrated side-band suppression and the gain vs LO drive level. The Typical Performance Characteristics section shows the return loss for a 900MHz match (L1 = 8.2nH, C5 = 3.3pF) and a 1260MHz match (L1 = 5.6nH, C5 = 3pF). To get a performance with the standard 200MHz match equivalent to the 900MHz and 1260MHz match, the LO power should be increased by 1.5dB and 2dB respectively. Register 0x00 values of Table 5 may have to be adjusted as well, in case the standard match is not used. 3 4 LOL LOC 5599 F02 Figure 2. Simplified Circuit Schematic for the LOL and LOC Inputs Below 100MHz the matching network of Figure 3 can be used.The side-band suppression in that case is largely defined by the diplexer L1, C5 and the (temperature dependent) LOL and LOC input impedance. See measured performance in the Typical Performance Characteristics section. 30MHz/70MHz LO L2 120nH/51nH C19 180pF/47pF L1 47nH/43nH C5 560pF/120pF C20 270pF/100pF C21 270pF/100pF 3 LOL 4 LOC 5599 F03 Figure 3. Impedance Matching Network for LOL and LOC Interfaces Matched at 30MHz/70MHz Table 6 lists LOL and LOC port input impedance vs frequency at EN = High and PLO = 0dBm. The other LO port (LOC or LOL) is terminated in a 50Ω. Table 6. LOL, LOC Port Input Impedance vs Frequency for EN = High and PLO = 0dBm (Other LO Port Terminated with 50Ω to Ground) FREQ (MHz) REG 0x00 20 30 LOL/LOC PORT IMPEDANCE (W) REFL COEFFICIENT REAL* IMAG* (IND) MAG ANGLE 79 7.9 24.3 (194nH) 0.750 175 79 9.1 19.0 (101nH) 0.743 172 40 79 10.8 17.4 (69nH) 0.732 169 50 79 13.0 17.6 (56nH) 0.716 165 60 79 15.7 18.9 (50nH) 0.693 162 70 79 18.6 21.4 (49nH)) 0.661 158 80 79 21.6 25.0 (50nH) 0.618 154 90 79 24.4 30.3 (54nH) 0.564 151 100 75 27.0 38.3 (61nH)) 0.497 148 110 70 29.0 51.4 (74nH) 0.419 146 120 6C 30.3 76.1 (101nH) 0.338 149 130 68 32.3 109.3 (134nH) 0.276 150 140 64 34.3 121.6 (138nH) 0.247 148 150 62 36.2 119.4 (127nH) 0.234 142 160 5E 37.4 149.1 (148nH)) 0.201 143 170 5C 37.1 357.5 (335nH) 0.160 162 180 59 39.6 188.6 (167nH) 0.164 141 190 57 41.4 192.0 (161nH)) 0.150 135 200 54 40.7 418.6 (333nH) 0.116 156 *Parallel Equivalent The circuit schematic of the demo board is shown in Figure 13. I/Q Phase Balance Adjustment Register 0x05 and Side-Band Suppression Ideally the I-channel LO phase is exactly 90° ahead of the Q-channel LO phase, so called quadrature. In practice however, the I/Q phase difference differs from exact quadrature by a small error due to component parameter variations and harmonic content in the LO signal (see below). The I/Q phase imbalance register (0x05) allows adjustment of the I/Q phase shift to compensate for such errors. Together with gain ratio register 0x04, it can thus be used to optimize the side-band suppression of the modulator. 5599f For more information www.linear.com/LTC5599 25 LTC5599 Applications Information Register 0x05 contains two parts (see Table 11); the five least significant bits IQPHF realize a fine phase adjustment, while the three most significant bits IQPHE are used for coarse adjustments. The fine phase adjustment realized by IQPHF can be approximated as: jIQ = –((Nph –16)/15) • ln(fLO/50) (degrees) for 30MHz < fLO < 1300MHz where Nph is the decimal value of IQPHF and fLO is the frequency of the LO signal in MHz. A positive value for jIQ means that the I-channel LO phase is more than 90° ahead of the Q-channel LO phase. Notice from the expression that the phase adjustment range and resolution are coupled, and dependent on the LO frequency. At low LO frequencies the the smallest adjustment range and highest resolution is achieved, while high LO frequencies exhibit the largest range and lowest resolution. The extension bits IQPHE provide a larger phase adjustment range, particularly useful at lower LO frequencies, and overcome another trade-off; between phase adjustment range and the maximum center frequency of the polyphase filter. The latter trade-off is due to the fact that the capacitances in the I-channel, CppI, and Q-channel, CppQ, of the poly-phase filter control both these parameters. Their difference sets the phase shift, while their sum determines the center frequency of the filter. The extension bits IQPHE introduce a large phase offset in addition to the fine adjustment realized by the IQPHF bits. The sign of this large offset can be positive or negative, controlled by IQPHSIGN (bit 7 in register 0x00). Including these bits, the total phase shift from quadrature can be expressed as: As a side effect, the extension bits slightly detune the center frequency of the poly-phase filter, after crossing the boundary to a new NCOARSE value. This can be observed as a large step in the actual phase shift. A solution for this is to decrease the value in the frequency register 0x00 (increase the poly-phase filter center frequency) at the NCOARSE value boundaries. The result is a smooth phase adjustment. In the demo board QuikEval GUI, this LO frequency register adjustment is automatically taken care of. Whenever the poly-phase filter center frequency is adjusted to improve the smoothness of the phase adjustment, it is recommended to manually program the LO port impedance match using the CLOO bits in register 0x06. By default, changing the filter center frequency also automatically adjusts the matching of the LO port (when CLOEN, bit 4 in register 0x06 is set). However, since the LO carrier frequency does not change, automatic adjustment of the LO match is undesirable in this case; it may add another large step to the phase adjustment. Instead, the LO match should remain unchanged while the filter center frequency is adjusted. This can be achieved as follows. First, the current LO matching configuration is read from the CLO bits in register 0x1D, and written to the CLOO override bits in register 0x06. Subsequently, the CLOEN bit (bit 4, register 0x06) is cleared to disable automatic LO match adjustment. As a result the center frequency can be adjusted in register 0x00 without changing the LO match. At 100MHz the maximum phase shift is about ±9.8°, while at 1GHz it is about ±3°. The extension bits are not useful above 988.2MHz since the poly-phase center frequency register 0x00 value cannot be adjusted low enough to ensure a smooth transition to a new NCOARSE value. jIQ = –(MPH/15) • ln(fLO/50) (degrees) with Square Wave LO Drive MPH = NCOARSE + NPH –16 and Harmonic content of the LO signal adversely affects quadrature phase error and gain accuracy, whenever a poly-phase filter is used for quadrature generation. The LTC5599 can correct for phase and gain errors due to harmonics in the LO carrier (e.g. in a square wave) by setting appropriate values in the I/Q gain and I/Q phase registers. Such adjustments are typically needed when the 3rd-order harmonic of the LO signal exceeds the desirable side-band suppression minus 13dB. Although the poly-phase filter is less sensitive to the second harmonic content of the LO NCOARSE = 32 • (–1)IQPHSIGN + 1 • NEXT where Next equals the decimal value of the IQPHE bits. The valid range of values for (Nph –16) is thus expanded from {–16, –15, ... , +15} to {–240, –239, ... , +239}. Table 9 in the Appendix lists all the possible combinations. The coding ranges for IQPHSIGN = 0 and IQPHSIGN = 1 overlap between Mph = –16 and Mph = +15, such that IQPHSIGN only needs to be changed for larger phase shifts. 5599f 26 For more information www.linear.com/LTC5599 LTC5599 Applications Information carrier, it’s influence can still be significant. For –15dBc second harmonic content, the side-band suppression can degrade to –45dBc; for –20dBc it is –54dBc, assuming no I/Q gain and phase adjustments are made. Table 7. RF Output Impedance vs Frequency and Digital Gain Setting (DG) for EN = High (continued) OUTPUT IMPEDANCE (W) REFL COEFFICIENT FREQUENCY (MHz) DG (dB) REAL* IMAG* (CAP) MAG ANGLE RF Output 600 –16 58 –1.77k (0.15pF) 0.078 –12 After upconversion, the RF outputs of the I and Q mixers are combined. An on-chip buffer performs internal differential to single-ended conversion, while transforming the output signal to 50Ω as shown in Figure 4. 600 –18 62 –1.44k (0.18pF) 0.109 –11 600 –19 77 –680 (0.39pF) 0.217 –14 VCC 1300 0 48 –802 (0.15pF) 0.035 –119 1300 –12 51 –807 (0.15pF) 0.034 –68 1300 –16 55 –709 (0.17pF) 0.059 –41 1300 –18 59 –526 (0.23pF) 0.098 –35 1300 –19 73 –280 (0.44pF) 0.215 –36 *Parallel Equivalent The RF port output impedance for EN = Low is given in Table 8. 50Ω RF 16 Table 8. RF Output Impedance vs Frequency for EN = Low 5599 F04 OUTPUT IMPEDANCE (W) REFL COEFFICIENT FREQUENCY (MHz) REAL* IMAG* (CAP) MAG ANGLE Table 7 shows the RF port output impedance vs frequency and digital gain setting for EN = High. 30 16.1k –7.76k (0.68pF) 0.994 –0.7 40 16.2k –5.24k (0.76pF) 0.994 –1.1 50 15.7k –3.96k (0.80pF) 0.994 –1.4 Table 7. RF Output Impedance vs Frequency and Digital Gain Setting (DG) for EN = High 60 16.5k –3.18k (0.83pF) 0.994 –1.8 70 16.8k –2.66k (0.86pF) 0.994 –2.2 80 16.4k –2.29k (0.87pF) 0.994 –2.5 Figure 4. Simplified Circuit Schematic for the RF Output Port FREQUENCY (MHz) DG (dB) OUTPUT IMPEDANCE (W) REFL COEFFICIENT REAL* IMAG* (CAP) MAG ANGLE 30 0 59 –413 (12.8pF) 0.104 –43 30 –12 61 –465 (11.4pF) 0.114 –35 30 –16 64 –529 (10.0pF) 0.133 –27 30 –18 69 –623 (8.5pF) 0.166 –19 30 –19 83 –902 (5.9pF) 0.249 –10 50 0 56 –671 (4.7pF) 0.068 –38 50 –12 58 –762 (4.2pF) 0.082 –27 50 –16 61 –859 (3.7pF) 0.107 –19 50 –18 67 –972 (3.3pF) 0.146 –13 50 –19 81 –1.21k (2.6pF) 0.239 –8 100 0 55 –1.08k (1.5pF) 0.050 –30 100 –12 57 –1.32k (1.2pF) 0.066 –19 100 –16 60 –1.55k (1.0pF) 0.096 –12 100 –18 66 –1.75k (0.91pF) 0.142 –8 100 –19 82 –1.98k (0.80pF) 0.246 –5 600 0 54 –1.35k (0.20pF) 0.040 –30 600 –12 56 –1.75k (0.15pF) 0.057 –16 90 17.1k –2.01k (0.88pF) 0.994 –2.9 100 17.9k –1.79k (0.89pF) 0.994 –3.2 200 14.7k –856 (0.93pF) 0.993 –6.7 250 11.1k –679 (0.94pF) 0.991 –8.4 300 8.55k –563 (0.94pF) 0.988 –10 350 7.97k –481 (0.94pF) 0.988 –12 400 6.42k –420 (0.95pF) 0.985 –14 450 5.27k –373 (0.95pF) 0.982 –15 500 4.26k –336 (0.95pF) 0.977 –17 600 3.05k –281 (0.94pF) 0.969 –20 700 2.32k –241 (0.94pF) 0.959 –23 800 1.85k –211 (0.94pF) 0.950 –27 900 1.54k –188 (0.94pF) 0.941 –30 1000 1.30k –169 (0.94pF) 0.932 –33 1100 1.12k –154 (0.94pF) 0.923 –36 1200 991 –141 (0.94pF) 0.914 –39 1300 881 –129 (0.95pF) 0.906 –42 *Parallel Equivalent 5599f For more information www.linear.com/LTC5599 27 LTC5599 Applications Information serial bus master device first taking CSB low to enable the LTC5599’s port. Input data applied on SDI is clocked on the rising edge of SCLK, with all transfers MSB first. The communication burst is terminated by the serial bus master returning CSB high. See Figure 6 for details. For VCC = 3.3V and EN = High the RF pin voltage is about 1.68V. For VCC = 3.3V and EN = Low the RF pin voltage is about 3.1V. Enable Interface Figure 5 shows a simplified schematic of the EN pin interface. The voltage necessary to turn on the LTC5599 is 1.1V. To disable (shut down) the chip, the enable voltage must be below 0.2V. Data is read from the part during a communication burst using SDO. Readback may be multidrop (more than one LTC5599 connected in parallel on the serial bus), as SDO is high impedance (Hi-Z) when CSB = 1, or when data is not being read from the part. If the LTC5599 is not used in a multidrop configuration, or if the serial port master is not capable of setting the SDO line level between read sequences, it is recommended to attach a resistor between SDO and VCC_L to ensure the line returns to VCC_L during Hi-Z states. The resistor value should be large enough to ensure that the SDO output current does not exceed 10mA. See Figure 7 for details. VCC 23 INTERNAL ENABLE CIRCUIT EN 5599 F05 Figure 5. Simplified Circuit Schematic of the EN interface Single Byte Transfers SERIAL PORT The serial port is arranged as a simple memory map, with status and control available in 9 read/write and 23 readonly byte-wide registers. All data bursts are comprised of at least two bytes. The 7 most significant bits of the first byte are the register address, with an LSB of 1 indicating a read from the part, and LSB of 0 indicating a write to the part. The subsequent byte, or bytes, is data from/to the The SPI-compatible serial port provides control and monitoring functionality. Communication Sequence The serial bus is comprised of CSB, SCLK, SDI and SDO. Data transfers to the part are accomplished by the MASTER–CSB tCSS tCKL tCKH tCSS tCSH MASTER–SCLK tCS MASTER–SDI tCH DATA DATA 5599 F06 Figure 6. Serial Port Write Timing Diagram MASTER–CSB 8TH CLOCK MASTER–SCLK tDO LTC5599–SDO tDO tDO tDO DATA DATA 5599 F07 Figure 7. Serial Port Read Timing Diagram 5599f 28 For more information www.linear.com/LTC5599 LTC5599 Applications Information specified register address. See Figure 8 for an example of a detailed write sequence, and Figure 9 for a read sequence. byte of the second burst contains the destination register address (Addr1) and an LSB indicating a write. The next byte on SDI is the data intended for the register at address Addr1. CSB is then taken high to terminate the transfer. Figure 10 shows an example of two write communication bursts. The first byte of the first burst sent from the serial bus master on SDI contains the destination register address (Addr0) and an LSB of 0 indicating a write. The next byte is the data intended for the register at address Addr0. CSB is then taken high to terminate the transfer. The first Note that the written data is transferred to the internal register at the falling edge of the 16th clock cycle (parallel load). MASTER–CSB 16 CLOCKS MASTER–SCLK 7-BIT REGISTER ADDRESS MASTER–SDI 8 BITS OF DATA PARALLEL LOAD A6 A5 A4 A3 A2 A1 A0 0 D7 D6 D5 D4 D3 D2 D1 D0 0 = WRITE LTC5599–SD0 5599 F08 Figure 8. Serial Port Write Sequence MASTER–CSB 16 CLOCKS MASTER–SCLK 7-BIT REGISTER ADDRESS MASTER–SDI 1 = READ A6 A5 A4 A3 A2 A1 A0 1 8 BITS OF DATA LTC5599–SDO X D7 D6 D5 D4 D3 D2 D1 D0 DX 5599 F09 Figure 9. Serial Port Read Sequence MASTER–CSB MASTER–SDI ADDR0 + WR BYTE 0 ADDR1 + WR LTC5599–SDO BYTE 1 5599 F10 Figure 10. Serial Port Single Byte Writes 5599f For more information www.linear.com/LTC5599 29 LTC5599 Applications Information Multiple Byte Transfers Multidrop Configuration More efficient data transfer of multiple bytes is accomplished by using the LTC5599’s register address autoincrement feature as shown in Figure 11. The serial port master sends the destination register address in the first byte and its data in the second byte as before, but continues sending bytes destined for subsequent registers. Byte 1’s address is Addr0+1, Byte 2’s address is Addr0+2, and so on. If the resister address pointer attempts to increment past 31 (0x1F), it is automatically reset to 0. Several LTC5599s may share the serial bus. In this multidrop configuration, SCLK, SDI, and SDO are common between all parts. The serial bus master must use a separate CSB for each LTC5599 and ensure that only one device has CSB asserted at any time. It is recommended to attach a high value resistor to SDO to ensure the line returns to a known level (VCC_L) during Hi-Z states. An example of an auto-increment read from the part is shown in Figure 12. The first byte of the burst sent from the serial bus master on SDI contains the destination register address (Addr0) and an LSB of 1 indicating a read. Once the LTC5599 detects a read burst, it takes SDO out of the Hi-Z condition and sends data bytes sequentially, beginning with data from register Addr0. The part ignores all other data on SDI until the end of the burst. The memory map of the LTC5599 may be found in the Appendix in Table 10, with detailed bit descriptions found in Table 11. The register address shown in hexadecimal format under the ADDR column is used to specify each register. Each register is denoted as either read-only (R) or read-write (R/W). The register’s default value on device power-up or after a reset (bit 3, register 0x08, SRESET) is shown at the right. Serial Port Registers MASTER–CSB MASTER–SDI ADDR0 + WR BYTE 0 BYTE 1 BYTE 2 LTC5599–SDO 5599 F11 Figure 11. Serial Port Auto-Increment Write MASTER–CSB MASTER–SDI LTC5599–SDO ADDR0 + RD DON’T CARE BYTE 0 BYTE 1 BYTE 2 5599 F12 Figure 12. Serial Port Auto-Increment Read 5599f 30 For more information www.linear.com/LTC5599 LTC5599 Applications Information SPI Signal Levels is not done properly, the RF performance will degrade. Figures 14 and 15 show the component side and bottom side of the evaluation board. The SPI bus supports signal levels from a digital VCC_L from 1.2V to 3.6V. The CSB = 1.2V condition creates an additional static input sleep current of 0.2µA. For CSB = 1.8V the extra sleep current can be neglected. Ferrite bead FB1 limits the supply voltage ramping speed in case VCC is abruptly connected to a voltage source. In the application, limit the VCC ramp speed to a maximum of 1V/µs. Evaluation Board Figure 13 shows the evaluation board schematic. A good ground connection is required for the exposed pad. If this VCC_L 1.2V TO 3.6V VCC 2.7V TO 3.6V C17 100nF FB1 FERRITE BEAD TDK, MPZ1608S331AT R18 1k (RPULL-UP) R19, 1k C1 4.7µF R23, 1k C18 2.2pF R1, 1Ω 1 2 L1, 39nH C5, 15pF VCTRL GNDRF GND GNDRF 3 LOL LTC5599IUF 4 LOC 5 GND RF GNDRF GNDRF GNDRF 6 TTCK TTCK C13 2.2pF C12 2.2pF C10 2.2pF SCLK CSB 25 24 23 22 21 20 19 GND VCC EN SDO SDI SCLK CSB C3 100nF LO SDI R25, 1k C2 1nF EN VCTRL SDO R26, 1k 18 C4 10nF 17 16 RF 15 14 13 TEMP BBPI BBMI BBPQ BBMQ GND 8 7 9 10 12 11 TEMP BBPQ BBPI BBPQ BBMQ R9 49.9Ω R8 49.9Ω C7 100nF R10 49.9Ω C6 100nF C8 100nF BOARD NUMBER: DC2091A R11 49.9Ω C9 100nF 5599 F13 Figure 13. Evaluation Circuit Schematic 5599f For more information www.linear.com/LTC5599 31 LTC5599 Applications Information Figure 14. Evaluation Board Component Side Figure 15. Evaluation Board Bottom Side 5599f 32 For more information www.linear.com/LTC5599 LTC5599 Appendix Phase Shift Register (0x05) Map This appendix summarizes the detailed value assignments for the phase shift register, including the extension bits and sign bit (bit 7 in register 0x00). Table 9. Register 0x05 Phase Shift Register Settings, Including the Extension Bits and Sign Bit (Bit 7 in Register 0x00) MPH NCOARSE NPH BPH –240 –224 0 011100000 –239 –224 1 011100001 –238 –224 2 011100010 –237 –224 3 011100011 –236 –224 4 011100100 –235 –224 5 011100101 –234 –224 6 011100110 –233 –224 7 011100111 –232 –224 8 011101000 –231 –224 9 011101001 –230 –224 10 011101010 –229 –224 11 011101011 –228 –224 12 011101100 –227 –224 13 011101101 –226 –224 14 011101110 –225 –224 15 011101111 –224 –224 16 011110000 –223 –224 17 011110001 –222 –224 18 011110010 –221 –224 19 011110011 –220 –224 20 011110100 –219 –224 21 011110101 –218 –224 22 011110110 –217 –224 23 011110111 –216 –224 24 011111000 –215 –224 25 011111001 –214 –224 26 011111010 –213 –224 27 011111011 –212 –224 28 011111100 –211 –224 29 011111101 –210 –224 30 011111110 –209 –224 31 011111111 –208 –192 0 011000000 –207 –192 1 011000001 –206 –192 2 011000010 –205 –192 3 011000011 Table 9. Register 0x05 Phase Shift Register Settings, Including the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued) MPH NCOARSE NPH BPH –204 –192 4 011000100 –203 –192 5 011000101 –202 –192 6 011000110 –201 –192 7 011000111 –200 –192 8 011001000 –199 –192 9 011001001 –198 –192 10 011001010 –197 –192 11 011001011 –196 –192 12 011001100 –195 –192 13 011001101 –194 –192 14 011001110 –193 –192 15 011001111 –192 –192 16 011010000 –191 –192 17 011010001 –190 –192 18 011010010 –189 –192 19 011010011 –188 –192 20 011010100 –187 –192 21 011010101 –186 –192 22 011010110 –185 –192 23 011010111 –184 –192 24 011011000 –183 –192 25 011011001 –182 –192 26 011011010 –181 –192 27 011011011 –180 –192 28 011011100 –179 –192 29 011011101 –178 –192 30 011011110 –177 –192 31 011011111 –176 –160 0 010100000 –175 –160 1 010100001 –174 –160 2 010100010 –173 –160 3 010100011 –172 –160 4 010100100 –171 –160 5 010100101 –170 –160 6 010100110 –169 –160 7 010100111 –168 –160 8 010101000 –167 –160 9 010101001 –166 –160 10 010101010 –165 –160 11 010101011 –164 –160 12 010101100 5599f For more information www.linear.com/LTC5599 33 LTC5599 Appendix Table 9. Register 0x05 Phase Shift Register Settings, Including the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued) Table 9. Register 0x05 Phase Shift Register Settings, Including the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued) MPH NCOARSE NPH BPH MPH NCOARSE NPH BPH –163 –160 13 010101101 –122 –128 22 010010110 –162 –160 14 010101110 –121 –128 23 010010111 –161 –160 15 010101111 –120 –128 24 010011000 –160 –160 16 010110000 –119 –128 25 010011001 –159 –160 17 010110001 –118 –128 26 010011010 –158 –160 18 010110010 –117 –128 27 010011011 –157 –160 19 010110011 –116 –128 28 010011100 –156 –160 20 010110100 –115 –128 29 010011101 –155 –160 21 010110101 –114 –128 30 010011110 –154 –160 22 010110110 –113 –128 31 010011111 –153 –160 23 010110111 –112 –96 0 001100000 –152 –160 24 010111000 –111 –96 1 001100001 –151 –160 25 010111001 –110 –96 2 001100010 –150 –160 26 010111010 –109 –96 3 001100011 –149 –160 27 010111011 –108 –96 4 001100100 –148 –160 28 010111100 –107 –96 5 001100101 –147 –160 29 010111101 –106 –96 6 001100110 –146 –160 30 010111110 –105 –96 7 001100111 –145 –160 31 010111111 –104 –96 8 001101000 –144 –128 0 010000000 –103 –96 9 001101001 –143 –128 1 010000001 –102 –96 10 001101010 –142 –128 2 010000010 –101 –96 11 001101011 –141 –128 3 010000011 –100 –96 12 001101100 –140 –128 4 010000100 –99 –96 13 001101101 –139 –128 5 010000101 –98 –96 14 001101110 –138 –128 6 010000110 –97 –96 15 001101111 –137 –128 7 010000111 –96 –96 16 001110000 –136 –128 8 010001000 –95 –96 17 001110001 –135 –128 9 010001001 –94 –96 18 001110010 –134 –128 10 010001010 –93 –96 19 001110011 –133 –128 11 010001011 –92 –96 20 001110100 –132 –128 12 010001100 –91 –96 21 001110101 –131 –128 13 010001101 –90 –96 22 001110110 –130 –128 14 010001110 –89 –96 23 001110111 –129 –128 15 010001111 –88 –96 24 001111000 –128 –128 16 010010000 –87 –96 25 001111001 –127 –128 17 010010001 –86 –96 26 001111010 –126 –128 18 010010010 –85 –96 27 001111011 –125 –128 19 010010011 –84 –96 28 001111100 –124 –128 20 010010100 –83 –96 29 001111101 –123 –128 21 010010101 –82 –96 30 001111110 5599f 34 For more information www.linear.com/LTC5599 LTC5599 Appendix Table 9. Register 0x05 Phase Shift Register Settings, Including the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued) Table 9. Register 0x05 Phase Shift Register Settings, Including the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued) MPH NCOARSE NPH BPH MPH NCOARSE NPH BPH –81 –96 31 001111111 –40 –32 8 000101000 –80 –64 0 001000000 –39 –32 9 000101001 –79 –64 1 001000001 –38 –32 10 000101010 –78 –64 2 001000010 –37 –32 11 000101011 –77 –64 3 001000011 –36 –32 12 000101100 –76 –64 4 001000100 –35 –32 13 000101101 –75 –64 5 001000101 –34 –32 14 000101110 –74 –64 6 001000110 –33 –32 15 000101111 –73 –64 7 001000111 –32 –32 16 000110000 –72 –64 8 001001000 –31 –32 17 000110001 –71 –64 9 001001001 –30 –32 18 000110010 –70 –64 10 001001010 –29 –32 19 000110011 –69 –64 11 001001011 –28 –32 20 000110100 –68 –64 12 001001100 –27 –32 21 000110101 –67 –64 13 001001101 –26 –32 22 000110110 –66 –64 14 001001110 –25 –32 23 000110111 –65 –64 15 001001111 –24 –32 24 000111000 –64 –64 16 001010000 –23 –32 25 000111001 –63 –64 17 001010001 –22 –32 26 000111010 –62 –64 18 001010010 –21 –32 27 000111011 –61 –64 19 001010011 –20 –32 28 000111100 –60 –64 20 001010100 –19 –32 29 000111101 –59 –64 21 001010101 –18 –32 30 000111110 000111111 –58 –64 22 001010110 –17 –32 31 –57 –64 23 001010111 –16 0 0 x00000000 –56 –64 24 001011000 –15 0 1 x00000001 –55 –64 25 001011001 –14 0 2 x00000010 –54 –64 26 001011010 –13 0 3 x00000011 –53 –64 27 001011011 –12 0 4 x00000100 –52 –64 28 001011100 –11 0 5 x00000101 –51 –64 29 001011101 –10 0 6 x00000110 –50 –64 30 001011110 –9 0 7 x00000111 –49 –64 31 001011111 –8 0 8 x00001000 –48 –32 0 000100000 –7 0 9 x00001001 –47 –32 1 000100001 –6 0 10 x00001010 –46 –32 2 000100010 –5 0 11 x00001011 –45 –32 3 000100011 –4 0 12 x00001100 –44 –32 4 000100100 –3 0 13 x00001101 –43 –32 5 000100101 –2 0 14 x00001110 –42 –32 6 000100110 –1 0 15 x00001111 –41 –32 7 000100111 0 0 16 x00010000 5599f For more information www.linear.com/LTC5599 35 LTC5599 Appendix Table 9. Register 0x05 Phase Shift Register Settings, Including the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued) MPH NCOARSE NPH BPH Table 9. Register 0x05 Phase Shift Register Settings, Including the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued) MPH NCOARSE NPH BPH 1 0 17 x00010001 42 32 26 100111010 2 0 18 x00010010 43 32 27 100111011 3 0 19 x00010011 44 32 28 100111100 4 0 20 x00010100 45 32 29 100111101 5 0 21 x00010101 46 32 30 100111110 6 0 22 x00010110 47 32 31 100111111 7 0 23 x00010111 48 64 0 101000000 8 0 24 x00011000 49 64 1 101000001 9 0 25 x00011001 50 64 2 101000010 10 0 26 x00011010 51 64 3 101000011 11 0 27 x00011011 52 64 4 101000100 12 0 28 x00011100 53 64 5 101000101 13 0 29 x00011101 54 64 6 101000110 14 0 30 x00011110 55 64 7 101000111 15 0 31 x00011111 56 64 8 101001000 16 32 0 100100000 57 64 9 101001001 17 32 1 100100001 58 64 10 101001010 18 32 2 100100010 59 64 11 101001011 19 32 3 100100011 60 64 12 101001100 20 32 4 100100100 61 64 13 101001101 21 32 5 100100101 62 64 14 101001110 22 32 6 100100110 63 64 15 101001111 23 32 7 100100111 64 64 16 101010000 24 32 8 100101000 65 64 17 101010001 25 32 9 100101001 66 64 18 101010010 26 32 10 100101010 67 64 19 101010011 27 32 11 100101011 68 64 20 101010100 28 32 12 100101100 69 64 21 101010101 29 32 13 100101101 70 64 22 101010110 30 32 14 100101110 71 64 23 101010111 31 32 15 100101111 72 64 24 101011000 32 32 16 100110000 73 64 25 101011001 33 32 17 100110001 74 64 26 101011010 34 32 18 100110010 75 64 27 101011011 35 32 19 100110011 76 64 28 101011100 36 32 20 100110100 77 64 29 101011101 37 32 21 100110101 78 64 30 101011110 38 32 22 100110110 79 64 31 101011111 39 32 23 100110111 80 96 0 101100000 40 32 24 100111000 81 96 1 101100001 41 32 25 100111001 82 96 2 101100010 5599f 36 For more information www.linear.com/LTC5599 LTC5599 Appendix Table 9. Register 0x05 Phase Shift Register Settings, Including the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued) Table 9. Register 0x05 Phase Shift Register Settings, Including the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued) MPH NCOARSE NPH BPH MPH NCOARSE NPH BPH 83 96 3 101100011 124 128 12 110001100 128 13 110001101 128 14 110001110 84 96 4 101100100 125 85 96 5 101100101 126 86 96 6 101100110 127 128 15 110001111 87 96 7 101100111 128 128 16 110010000 88 96 8 101101000 129 128 17 110010001 89 96 9 101101001 130 128 18 110010010 90 96 10 101101010 131 128 19 110010011 91 96 11 101101011 132 128 20 110010100 92 96 12 101101100 133 128 21 110010101 93 96 13 101101101 134 128 22 110010110 94 96 14 101101110 135 128 23 110010111 95 96 15 101101111 136 128 24 110011000 96 96 16 101110000 137 128 25 110011001 97 96 17 101110001 138 128 26 110011010 98 96 18 101110010 139 128 27 110011011 99 96 19 101110011 140 128 28 110011100 100 96 20 101110100 141 128 29 110011101 101 96 21 101110101 142 128 30 110011110 102 96 22 101110110 143 128 31 110011111 103 96 23 101110111 144 160 0 110100000 104 96 24 101111000 145 160 1 110100001 105 96 25 101111001 146 160 2 110100010 106 96 26 101111010 147 160 3 110100011 107 96 27 101111011 148 160 4 110100100 108 96 28 101111100 149 160 5 110100101 109 96 29 101111101 150 160 6 110100110 110 96 30 101111110 151 160 7 110100111 111 96 31 101111111 152 160 8 110101000 112 128 0 110000000 153 160 9 110101001 154 160 10 110101010 113 128 1 110000001 114 128 2 110000010 155 160 11 110101011 156 160 12 110101100 115 128 3 110000011 116 128 4 110000100 157 160 13 110101101 158 160 14 110101110 117 128 5 110000101 118 128 6 110000110 159 160 15 110101111 160 16 110110000 160 17 110110001 119 128 7 110000111 160 120 128 8 110001000 161 121 128 9 110001001 162 160 18 110110010 122 128 10 110001010 163 160 19 110110011 123 128 11 110001011 164 160 20 110110100 5599f For more information www.linear.com/LTC5599 37 LTC5599 Appendix Table 9. Register 0x05 Phase Shift Register Settings, Including the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued) Table 9. Register 0x05 Phase Shift Register Settings, Including the Extension Bits and Sign Bit (Bit 7 in Register 0x00) (continued) MPH NCOARSE NPH BPH MPH NCOARSE NPH BPH 165 160 21 110110101 205 192 29 111011101 166 160 22 110110110 206 192 30 111011110 167 160 23 110110111 207 192 31 111011111 168 160 24 110111000 208 224 0 111100000 169 160 25 110111001 209 224 1 111100001 170 160 26 110111010 210 224 2 111100010 171 160 27 110111011 211 224 3 111100011 172 160 28 110111100 212 224 4 111100100 173 160 29 110111101 213 224 5 111100101 174 160 30 110111110 214 224 6 111100110 175 160 31 110111111 215 224 7 111100111 176 192 0 111000000 216 224 8 111101000 177 192 1 111000001 217 224 9 111101001 178 192 2 111000010 218 224 10 111101010 179 192 3 111000011 219 224 11 111101011 180 192 4 111000100 220 224 12 111101100 181 192 5 111000101 221 224 13 111101101 182 192 6 111000110 222 224 14 111101110 183 192 7 111000111 223 224 15 111101111 184 192 8 111001000 224 224 16 111110000 185 192 9 111001001 225 224 17 111110001 186 192 10 111001010 226 224 18 111110010 187 192 11 111001011 227 224 19 111110011 188 192 12 111001100 228 224 20 111110100 189 192 13 111001101 229 224 21 111110101 190 192 14 111001110 230 224 22 111110110 191 192 15 111001111 231 224 23 111110111 192 192 16 111010000 232 224 24 111111000 193 192 17 111010001 233 224 25 111111001 194 192 18 111010010 234 224 26 111111010 195 192 19 111010011 235 224 27 111111011 196 192 20 111000100 236 224 28 111111100 237 224 29 111111101 197 192 21 111010101 198 192 22 111010110 238 224 30 111111110 199 192 23 111010111 239 224 31 111111111 200 192 24 111011000 201 192 25 111011001 202 192 26 111011010 203 192 27 111011011 204 192 28 111011100 5599f 38 For more information www.linear.com/LTC5599 LTC5599 appendix Table 10. Serial Port Register Contents ADDR MSB [6] [5] [4] [3] [2] [1] LSB R/W DEFAULT 0x00 IQPHSIGN FREQ[6] FREQ[5] FREQ[4] FREQ[3] FREQ[2] FREQ[1] FREQ[0] R/W 0x2E 0x01 TEMPUPDT AGCTRL QDISABLE GAIN[4] GAIN[3] GAIN[2] GAIN[1] GAIN[0] R/W 0x84 0x02 OFFSETI[7] OFFSETI[6] OFFSETI[5] OFFSETI[4] OFFSETI[3] OFFSETI[2] OFFSETI[1] OFFSETI[0] R/W 0x80 0x03 OFFSETQ[7] OFFSETQ[6] OFFSETQ[5] OFFSETQ[4] OFFSETQ[3] OFFSETQ[2] OFFSETQ[1] OFFSETQ[0] R/W 0x80 R/W 0x80 0x04 IQGR[7] IQGR[6] IQGR[5] IQGR[4] IQGR[3] IQGR[2] IQGR[1] IQGR[0] 0x05 IQPHE[2] IQPHE[1] IQPHE[0] IQPHF[4] IQPHF[3] IQPHF[2] IQPHF[1] IQPHF[0] R/W 0x10 CLOO[3] CLOO[2] CLOO[1] CLOO[0] R/W 0x50 GAINF[2] GAINF[1] GAINF[0] R/W 0x06 0x06 0x07 * 0† * 0† * 0† CLOEN 0† GAINF[3] 0x08 0† 0† 0† 0† SRESET 0x00 0† 0† 0† 0† 0† 0† 0† * 0† R/W 0x09 R 0x00 0x0A CHIPID[7] CHIPID[6] CHIPID[5] CHIPID[4] CHIPID[3] CHIPID[2] CHIPID[1] CHIPID[0] R 0x01 0x0B 0† 0† 0† 0† FUSE[3] FUSE[2] FUSE[1] FUSE[0] R 0x0X 0x0C 0† 0† CPPP0[5] CPPP0[4] CPPP0[3] CPPP0[2] CPPP0[1] CPPP0[0] R 0xXX 0x0D 0† CPPP1[6] CPPP1[5] CPPP1[4] CPPP1[3] CPPP1[2] CPPP1[1] CPPP1[0] R 0x0X 0x0E 0† 0† CPPM0[5] CPPM0[4] CPPM0[3] CPPM0[2] CPPM0[1] CPPM0[0] R 0xXX 0x0F 0† CPPM1[6] CPPM1[5] CPPM1[4] CPPM1[3] CPPM1[2] CPPM1[1] CPPM1[0] R 0x0X 0x10 0† GPI0[6] GPI0[5] GPI0[4] GPI0[3] GPI0[2] GPI0[1] GPI0[0] R 0x08 0x11 GPI1[7] GPI1[6] GPI1[5] GPI1[4] GPI1[3] GPI1[2] GPI1[1] GPI1[0] R 0xFF 0x12 0† GPI2[6] GPI2[5] GPI2[4] GPI2[3] GPI2[2] GPI2[1] GPI2[0] R 0x01 0x13 0† GMI0[6] GMI0[5] GMI0[4] GMI0[3] GMI0[2] GMI0[1] GMI0[0] R 0x08 0x14 GMI1[7] GMI1[6] GMI1[5] GMI1[4] GMI1[3] GMI1[2] GMI1[1] GMI1[0] R 0xFF 0x15 0† GMI2[6] GMI2[5] GMI2[4] GMI2[3] GMI2[2] GMI2[1] GMI2[0] R 0x01 0x16 0† GPQ0[6] GPQ0[5] GPQ0[4] GPQ0[3] GPQ0[2] GPQ0[1] GPQ0[0] R 0x08 0x17 GPQ1[7] GPQ1[6] GPQ1[5] GPQ1[4] GPQ1[3] GPQ1[2] GPQ1[1] GPQ1[0] R 0xFF 0x18 0† GPQ2[6] GPQ2[5] GPQ2[4] GPQ2[3] GPQ2[2] GPQ2[1] GPQ2[0] R 0x01 0x19 0† GMQ0[6] GMQ0[5] GMQ0[4] GMQ0[3] GMQ0[2] GMQ0[1] GMQ0[0] R 0x08 TEMPCORR THERMINP 0x1A GMQ1[7] GMQ1[6] GMQ1[5] GMQ1[4] GMQ1[3] GMQ1[2] GMQ1[1] GMQ1[0] R 0xFF 0x1B 0† GMQ2[6] GMQ2[5] GMQ2[4] GMQ2[3] GMQ2[2] GMQ2[1] GMQ2[0] R 0x01 0x1C 0† 0† 0† 0† 0† 0† 0† 0† R 0x00 0x1D 0† 0† 0† 0† CLO[3] CLO[2] CLO[1] CLO[0] R 0x00 0x1E 0† 0† 0† GOR IDT[3] IDT[2] IDT[1] IDT[0] R 0x04 0x1F 0† 0† 0† 0† TEMP[3] TEMP[2] TEMP[1] TEMP[0] R 0x0Y *unused †read-only; values written are disregarded, X = production dependent, Y = resets to 7 after EN from Low to High with TEMPUPDT = 1, for EN = Low all read-only (R) registers default to 0x00. 5599f For more information www.linear.com/LTC5599 39 LTC5599 appendix Table 11. Serial Port Register Bit Field Summary FUNCTION DESCRIPTION AGCTRL CHIPID[7:0] CLO[3:0] CLOO[3:0] CLOEN BITS Analog Gain Control Enable Chip ID LO Port Match Cap Array LO Port Cap Array Override Automatic LO Match Enable Enables analog control through VCTRL (Pin 1) when AGCTRL = 1. CPPM0[5:0] CPPM1[6:0] CPPP0[5:0] CPPP1[6:0] FREQ[6:0] FUSE[3:0] GAIN[4:0] GAINF[3:0] GMI0[6:0] GMI1[7:0] GMI2[6:0] GMQ0[6:0] GMQ1[7:0] GMQ2[6:0] GOR GPI0[6:0] GPI1[7:0] GPI2[6:0] GPQ0[6:0] GPQ1[7:0] GPQ2[6:0] IDT[3:0] IQGR[7:0] IQPHE[2:0] IQPHF[4:0] IQPHSIGN CppQ Fine Control CppQ Coarse Control CppI Fine Control CppI Coarse Control Poly-Phase Filter Frequency Fuse Read Out Coarse Digital Gain Control Fine Digital Gain Control Fine GMI DAC Read-Out Coarse GMI DAC Read-Out1 Coarse GMI DAC Read-Out2 Fine GMQ DAC Read-Out Coarse GMQ DAC Read-Out1 Coarse GMQ DAC Read-Out2 Gain Out of Range Fine GPI DAC Read-Out Coarse GPI DAC Read-Out1 Coarse GPI DAC Read-Out2 Fine GPQ DAC Read-Out Coarse GPQ DAC Read-Out1 Coarse GPQ DAC Read-Out2 RF Buffer Bias I/Q Gain Ratio Control I/Q Phase Extension Bits Fine I/Q Phase Balance Control Sign IQ Phase Extension Bits OFFSETI[7:0] OFFSETQ[7:0] QDISABLE I-Channel Offset Control Q-Channel Offset Control Disable Q-Channel SRESET TEMP[3:0] TEMPCORR Soft Reset Thermometer Output Temperature Correction Disable Temperature Correction Update TEMPUPDT THERMINP Thermometer Input Select LO port match, automatically adjusted through programming FREQ[6:0] Programs LO port match capacitor array when CLOEN = 0 Automatic LO port impedance matching enabled when CLOEN = 1. Override bits CLOO[3:0] control LO port match when CLOEN = 0. CppQ = CPPM0[5:0] + number of 1’s in CPPM1[6:0] × 64 CppI = CPPP0[5:0] + number of 1’s in CPPP1[6:0] × 64 Programs the center frequency of the poly-phase filter, according to Table 5. Programs the conversion gain in 1dB steps, according to Table 3. Conversion gain control in approximately 0.1dB steps, when TEMPCORR = 1. BBMI input stage gain GmI. GmI = GMI0[6:0] + (number of 1’s in GMI1[7:0] and GMI2[6:0]) × 128 BBMQ input stage gain GmQ. GmQ = GMQ0[6:0] + (number of 1’s in GMQ1[7:0] and GMQ2[6:0]) × 128 For DG < –19 GOR = 1; Else GOR = 0 BBPI input stage gain GpI. GpI = GPI0[6:0] + (number of 1’s in GPI1[7:0] and GPI2[6:0]) × 128 BBPQ input stage gain GpQ. GpQ = GPQ0[6:0] + (number of 1’s in GPQ1[7:0] and GPQ2[6:0]) × 128 Adjust the gain difference in approximate constant steps in dB. See Table 4. Extend the IQ phase adjustment range. See Table 9. Fine adjustment of IQ LO phase difference. See Table 9. Zero phase shift for 0x10. Encodes the sign of the IQ phase extension bits IQPHE[2:0]. Positive for IQPHSIGN = 1. Adjusts DC offset in the I-channel. Zero offset for 0x80. See page 19. Adjusts DC offset in the Q-channel. Zero offset for 0x80. See page 19. QDISABLE = 1 shuts down the Q-channel, turning the LTC5599 into an upconversion mixer. Writing 1 to this bit resets all registers to their default values. Digital representation of die temperature. Step size about 10°C. TEMPCORR = 1 disables temperature correction of the gain, and enables manual fine-adjustment using bits GAINF[3:0]. TEMPUPDT = 1 synchronizes temperature correction of the gain to a LOW - HIGH transition on the TTCK pin. Asynchronous correction for TEMPUPDT = 0. For test purposes only. Should be set to 0. VALID VALUES DEFAULT 0, 1 1 0x00 to 0x0F 0x00 to 0x0F 0, 1 1 1 0x00 0x00 1 0x00 to 0x5F 0x00 to 0x7F 0x00 to 0x5F 0x00 to 0x7F 0x00 to 0x79 0x00 to 0x0F 0x00 to 0x13 0x00 to 0x0F 0x00 to 0x7F 0x00 to 0x07 0x00 to 0x07 0x00 to 0x7F 0x00 to 0x07 0x00 to 0x07 0, 1 0x00 to 0x7F 0x00 to 0x07 0x00 to 0x07 0x00 to 0x7F 0x00 to 0x07 0x00 to 0x07 0x00 to 0x0D 0x00 to 0xFF 0x00 to 0x07 0x00 to 0x1F 0xXX 0x0X 0xXX 0x0X 0x2E 0x0X 0x04 0x00 0x08 0xFF 0x01 0x08 0xFF 0x01 0 0x08 0xFF 0x01 0x08 0xFF 0x01 0x04 0x80 0x00 0x10 0, 1 0 0x01 to 0xFF 0x01 to 0xFF 0, 1 0x80 0x80 0 0, 1 0x00 to 0x07 0, 1 0 0x07 0 0, 1 1 0 0 5599f 40 For more information www.linear.com/LTC5599 LTC5599 Package Description Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings. UF Package 24-Lead Plastic QFN (4mm × 4mm) (Reference LTC DWG # 05-08-1697 Rev B) 0.70 ±0.05 4.50 ±0.05 2.45 ±0.05 3.10 ±0.05 (4 SIDES) PACKAGE OUTLINE 0.25 ±0.05 0.50 BSC RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS 4.00 ±0.10 (4 SIDES) BOTTOM VIEW—EXPOSED PAD R = 0.115 TYP 0.75 ±0.05 PIN 1 NOTCH R = 0.20 TYP OR 0.35 × 45° CHAMFER 23 24 PIN 1 TOP MARK (NOTE 6) 0.40 ±0.10 1 2 2.45 ±0.10 (4-SIDES) (UF24) QFN 0105 REV B 0.200 REF 0.00 – 0.05 0.25 ±0.05 0.50 BSC NOTE: 1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGD-X)—TO BE APPROVED 2. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE, IF PRESENT 5. EXPOSED PAD SHALL BE SOLDER PLATED 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE 5599f Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of itsinformation circuits as described herein will not infringe on existing patent rights. For more www.linear.com/LTC5599 41 LTC5599 Typical Application VCTRL 3.3V 22, 21, 20, 19 24 1nF + 4.7µF VCC LTC5599 SPI RF = 90MHz to 1300MHz 8 I-DAC 9 V I 16 1 10nF PA 0° 23 EN I-CHANNEL 90° 13, 14, 15, 17, 18 10 Q-DAC 11 V I BASEBAND GENERATOR Q-CHANNEL 39nH 3 4 THERMOMETER 2, 5, 12 6 TTCK 5599 TA01a VCO/SYNTHESIZER 15pF Figure 16. 90MHz to 1300MHz Direct Conversion Transmitter Application Related Parts PART NUMBER DESCRIPTION COMMENTS Infrastructure LT5518 1.5GHz to 2.4GHz High Linearity Direct Quadrature Modulator 22.8dBm OIP3 at 2GHz, –158.2dBm/Hz Noise Floor, 3kΩ 2.1VDC Baseband Interface, 5V/128mA Supply LT5528 1.5GHz to 2.4GHz High Linearity Direct Quadrature Modulator 21.8dBm OIP3 at 2GHz, –159.3dBm/Hz Noise Floor, 50Ω 0.5VDC Baseband Interface, 5V/128mA Supply LT5558 600MHz to 1100MHz High Linearity Direct Quadrature Modulator 22.4dBm OIP3 at 900MHz, –158dBm/Hz Noise Floor, 3kΩ 2.1VDC Baseband Interface, 5V/108mA Supply LT5568 700MHz to 1050MHz High Linearity Direct Quadrature Modulator 22.9dBm OIP3 at 850MHz, –160.3dBm/Hz Noise Floor, 50Ω 0.5VDC Baseband Interface, 5V/117mA Supply LT5571 620MHz to 1100MHz High Linearity Direct Quadrature Modulator 21.7dBm OIP3 at 900MHz, –159dBm/Hz Noise Floor, Hi-Z 0.5VDC Baseband Interface, 5V/97mA Supply LT5572 1.5GHz to 2.5GHz High Linearity Direct Quadrature Modulator 21.6dBm OIP3 at 2GHz, –158.6dBm/Hz Noise Floor, Hi-Z 0.5VDC Baseband Interface, 5V/120mA Supply LTC5598 5MHz to 1600MHz High Linearity Direct Quadrature Modulator 27.7dBm OIP3 at 140MHz, –160dBm/Hz Noise Floor with POUT = 5dBm LT5560 0.01MHz to 4GHz Low Power Active Mixer IIP3 = 9dBm, 2.6dB Conversion Gain, 9.3dB NF, 3.0V/10mA Supply Current LT5506/5546 40MHz to 500MHz Quadrature Demodulator with VGA 56dB Gain, –49 to 0dBm IIP3, 6.8dB NF, 1.8V to 5.25V/26.5mA Supply Current LTC5510 1MHz to 6GHz, 3.3V Wideband High Linearity Active Mixer 1.5dB Gain, 27dBm IIP3, 11.6dB NF, 3.3V/105mA Supply Current RF Power Detector LT5581 6GHz Low Power RMS Detector 40dB Dynamic Range, ±1dB Accuracy Over Temperature, 1.5mA Supply Current LTC5582 40MHz to 10GHz RMS Power Detector 57dB Dynamic Range, ±1dB Accuracy Over Temperature, Single-Ended RF Input (No Transformer) LT5534 50MHz to 3GHz RF Power Detector with 60dB Dynamic Range 60dB Dynamic Range, Linear-in-dB Response, 2.7V to 5.25V/7mA LT5537 LF to 1GHz Wide Dynamic Range RF/IF Log Detector 83dB Dynamic Range, Linear-in-dB Response, 2.7V to 5.25V/13.5mA 5599f 42 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 For more information www.linear.com/LTC5599 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com/LTC5599 LT 0814 • PRINTED IN USA LINEAR TECHNOLOGY CORPORATION 2014